Sample records for plane multi-layer systems

  1. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE PAGES

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  2. A Novel MUMPs-compatible single-layer out-of-plane electrothermal actuator

    NASA Astrophysics Data System (ADS)

    Tang, Weider; Wu, Mingching; Ho, Yi-Ping; Yeh, Mau-Shium; Fang, Weileun

    2002-11-01

    Microactuator is one of the key components for the microelectromechanical systems (MEMS), and it can be categorized as out-of-plane and in-plane according to the motion types. Most of the existing out-of-plane thermal actuators are multi-layer structures. In this paper, a novel electrothermal single-layer out-of-plane actuator is provided and it characteristics and advantages of this device are stated as follows: (1) This actuator is consisted of only a single thin film material, therefore, it can prevent from delaminating after a long-term operation. Besides, owing to its symmetric geometric design, the inner-beams of this structure don"t have any current passed through them and the inner-beams also provide a geometric constraint to allow the two free ends of the structure to bend upwards symmetrically. (2) This device can be operated at a relative low voltage (<5 volt), and deflected upwards about 4 μm in the experiment test. Besides, the fabrication process is very simple and it is MUMPs(Multi-User MEMS Processes)-compatible. Presently, a prototype structure has been successfully fabricated and tested. This structure offers the potential applications in the adaptive optics systems, and Fabry-Perot filters, etc. Besides, it also provides an interface to cooperate with integrated circuits (IC) and various optical elements to construct an embedded-control optical system.

  3. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    PubMed

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  4. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    PubMed Central

    Li, Shuang; Li, Rui

    2016-01-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977

  5. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  6. Remote focusing for programmable multi-layer differential multiphoton microscopy

    PubMed Central

    Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.

    2010-01-01

    We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641

  7. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  8. Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jourde, H.

    2017-12-01

    Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.

  9. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.

    PubMed

    Song, Hooyoung; Kim, Jin Soak; Kim, Eun Kyu; Seo, Yong Gon; Hwang, Sung-Min

    2010-04-02

    The potential of nonpolar a-plane InGaN/GaN multi-quantum wells (MQWs), which are free from a strong piezoelectric field, was demonstrated. An a-GaN template grown on an r-plane sapphire substrate by the multi-buffer layer technique showed high structural quality with an omega full width at half maximum value along the c-axis of 418 arcsec obtained from high-resolution x-ray diffraction analysis. From barrier analysis by deep level transient spectroscopy, it appeared that a-plane InGaN/GaN MQWs can solve the efficiency droop problem as they have a lower electron capture barrier than the c-plane sample. The peak shift of the temperature-dependent photoluminescence signal for the nonpolar InGaN/GaN MQWs was well fitted by Varshni's empirical equation with zero-internal fields. A high photoluminescence efficiency of 0.27 from this sample also showed that nonpolar MQWs can be the key factor to solve the efficiency limitation in conventional c-plane GaN based light emitting diodes.

  10. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  11. In-plane dynamic Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Kang, Zeqing; Liang, Jianwen

    2018-04-01

    The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.

  12. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  13. Effect of Initial Stress on the Dynamic Response of a Multi-Layered Plate-Strip Subjected to an Arbitrary Inclined Time-Harmonic Force

    NASA Astrophysics Data System (ADS)

    Daşdemir, A.

    2017-08-01

    The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

  14. Three-dimensional broadband ground-plane cloak made of metamaterials

    PubMed Central

    Ma, Hui Feng; Cui, Tie Jun

    2010-01-01

    Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss ground-plane cloak at microwave frequencies. The cloak, realized by drilling inhomogeneous holes in multi-layered dielectric plates, can conceal a 3D object located under a curved conducting plane from all viewing angles by imitating the reflection of a flat conducting plane. We also designed and realized, using non-resonant metamaterials, a high-gain lens antenna that can produce narrow-beam plane waves in the near-field region in a broad frequency band. The antenna constitutes the transmitter of the measurement system and is essential for the measurement of cloaking behaviour. PMID:20975696

  15. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  16. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  17. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  18. Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.

    1999-11-01

    A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.

  19. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Longhitano, F.; Lo Presti, D.; Bonanno, D. L.; Bongiovanni, D. G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-02-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) [1]. Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) [2] proton beam, and a comparison with the simulations of the detectors are presented.

  20. MeV Si ion modifications on the thermoelectric generators from Si/Si + Ge superlattice nano-layered films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Heidary, K.; Johnson, R. B.; Colon, T.; Muntele, C.; Ila, D.

    2014-08-01

    The performance of thermoelectric materials and devices is characterized by a dimensionless figure of merit, ZT = S2σT/K, where, S and σ denote, respectively, the Seebeck coefficient and electrical conductivity, T is the absolute temperature in Kelvin and K represents the thermal conductivity. The figure of merit may be improved by means of raising either S or σ or by lowering K. In our laboratory, we have fabricated and characterized the performance of a large variety of thermoelectric generators (TEG). Two TEG groups comprised of 50 and 100 alternating layers of Si/Si + Ge multi-nanolayered superlattice films have been fabricated and thoroughly characterized. Ion beam assisted deposition (IBAD) was utilized to assemble the alternating sandwiched layers, resulting in total thickness of 300 nm and 317 nm for 50 and 100 layer devices, respectively. Rutherford Backscattering Spectroscopy (RBS) was employed in order to monitor the precise quantity of Si and Ge utilized in the construction of specific multilayer thin films. The material layers were subsequently impregnated with quantum dots and/or quantum clusters, in order to concurrently reduce the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and raise the cross plane electrical conductivity. The quantum dots/clusters were implanted via the 5 MeV Si ion bombardment which was performed using a Pelletron high energy ion beam accelerator. We have achieved remarkable results for the thermoelectric and optical properties of the Si/Si + Ge multilayer thin film TEG systems. We have demonstrated that with optimal setting of the 5 MeV Si ion beam bombardment fluences, one can fabricate TEG systems with figures of merits substantially higher than the values previously reported.

  1. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  2. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  3. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  4. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  5. Multi-angle lensless digital holography for depth resolved imaging on a chip.

    PubMed

    Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-04-26

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.

  6. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  7. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  8. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  9. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  10. An ultra-small, multi-point, and multi-color photo-detection system with high sensitivity and high dynamic range.

    PubMed

    Anazawa, Takashi; Yamazaki, Motohiro

    2017-12-05

    Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).

  11. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  12. Increasing component functionality via multi-process additive manufacturing

    NASA Astrophysics Data System (ADS)

    Coronel, Jose L.; Fehr, Katherine H.; Kelly, Dominic D.; Espalin, David; Wicker, Ryan B.

    2017-05-01

    Additively manufactured components, although extensively customizable, are often limited in functionality. Multi-process additive manufacturing (AM) grants the ability to increase the functionality of components via subtractive manufacturing, wire embedding, foil embedding and pick and place. These processes are scalable to include several platforms ranging from desktop to large area printers. The Multi3D System is highlighted, possessing the capability to perform the above mentioned processes, all while transferring a fabricated component with a robotic arm. Work was conducted to fabricate a patent inspired, printed missile seeker. The seeker demonstrated the advantage of multi-process AM via introduction of the pick and place process. Wire embedding was also explored, with the successful interconnect of two layers of embedded wires in different planes. A final demonstration of a printed contour bracket, served to show the reduction of surface roughness on a printed part is 87.5% when subtractive manufacturing is implemented in tandem with AM. Functionality of the components on all the cases was improved. Results included optical components embedded within the printed housing, wires embedded with interconnection, and reduced surface roughness. These results highlight the improved functionality of components through multi-process AM, specifically through work conducted with the Multi3D System.

  13. Optimized planning methodologies of ASON implementation

    NASA Astrophysics Data System (ADS)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  14. Self-Assembled Layered Supercell Structure of Bi2AlMnO6 with Strong Room-Temperature Multiferroic Properties.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Leigang; Boullay, Philippe; Lu, Ping

    2017-02-01

    Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less

  15. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  16. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  17. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    PubMed

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  18. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284

  19. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    PubMed

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.

  20. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoan, E-mail: hoan.ho@wdc.com; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Zhu, Jingxi, E-mail: jingxiz@andrew.cmu.edu

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It wasmore » also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.« less

  1. Charge and spin transport in metal-graphene-metal vertical junctions

    NASA Astrophysics Data System (ADS)

    Cobas, Enrique; van't Erve, Olaf; Cheng, Shu-Fan; Culbertson, James; Jernigan, Glenn; Bussman, Konrad; Jonker, Berry

    We observe negative magnetoresistance(MR) in metallic NiFe(111)|multi-layer graphene|Fe heterostructures consistent with minority spin filtering. The MR is -5 percent at room temperature and -12 percent at 10 K. The transport properties and temperature dependence are metallic. We further investigate the out-of-plane (c-axis) resistivity and magnetoresistance of multi-layer graphene between metal surfaces. We fabricate various metal-graphene-metal vertical heterostructures via chemical vapor deposition directly on lattice-matched crystalline metal films including NiFe(111) and Co(0002) and in-situ electron beam evaporation of NiFe, Co, Ni, Fe, Cu and Au.

  2. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  3. Mixing Of Mode Symmetries In Top Gated Bilayer And Multilayer Graphene Field Effect Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Biswanath; Das, Anindya; Sood, A. K.

    2011-07-15

    We report Raman study to investigate the influence of stacking on the inversion symmetry breaking in top gated bi- and multi-layer ({approx}10 layers) graphene field effect transistors. The G phonon mode splits into a low frequency (G{sub low}) and a high frequency (G{sub high}) mode in bi- and multi-layer graphene and the two modes show different dependence on doping. The mode splitting is explained in terms of mixing of zone-center in-plane optical phonons representing in-phase and out-of-phase inter-layer atomic motions. Unlike in bilayer graphene, there is no transfer of intensity from G{sub low} to G{sub high} in multilayer graphene. Amore » comparison is made for the bilayer graphene data with the recent theory of Gava et al. [Phys. Rev. B 80, 155422 (2009)].« less

  4. Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression

    NASA Astrophysics Data System (ADS)

    Farajpour, Ali; Arab Solghar, Alireza; Shahidi, Alireza

    2013-01-01

    In this article, the nonlinear buckling characteristics of multi-layered graphene sheets are investigated. The graphene sheet is modeled as an orthotropic nanoplate with size-dependent material properties. The graphene film is subjected by non-uniformly distributed in-plane load through its thickness. To include the small scale and the geometrical nonlinearity effects, the governing differential equations are derived based on the nonlocal elasticity theory in conjunction with the von Karman geometrical model. Explicit expressions for the postbuckling loads of single- and double-layered graphene sheets with simply supported edges under biaxial compression are obtained. For numerical results, six types of armchair and zigzag graphene sheets with different aspect ratio are considered. The present formulation and method of solution are validated by comparing the results, in the limit cases, with those available in the open literature. Excellent agreement between the obtained and available results is observed. Finally, the effects of nonlocal parameter, buckling mode number, compression ratio and non-uniform parameter on the postbuckling behavior of multi-layered graphene sheets are studied.

  5. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    PubMed Central

    Gao, Fengli; Li, Xide

    2018-01-01

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847

  6. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  7. Printed Circuit Board Assembly for Use in Space Missions

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor); Vo, Luan (Inventor); Albaijes, Dennis (Inventor)

    2017-01-01

    An electronic assembly for use in space missions that includes a PCB and one or more multi-pin CGA devices coupled to the PCB. The PCB has one or more via-in-pad features and each via-in-pad feature comprises a land pad configured to couple a pin of the one or more multi-pin CGA devices to the via. The PCB also includes a plurality of layers arranged symmetrically in a two-halves configuration above and below a central plane of the PCB.

  8. Application of SQL database to the control system of MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomohiro; Omata, Koji; Konishi, Masahiro; Ichikawa, Takashi; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Nishimura, Tetsuo

    2006-06-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru telescope. In order to perform observations of near-infrared imaging and spectroscopy with cold slit mask, MOIRCS contains many device components, which are distributed on an Ethernet LAN. Two PCs wired to the focal plane array electronics operate two HAWAII2 detectors, respectively, and other two PCs are used for integrated control and quick data reduction, respectively. Though most of the devices (e.g., filter and grism turrets, slit exchange mechanism for spectroscopy) are controlled via RS232C interface, they are accessible from TCP/IP connection using TCP/IP to RS232C converters. Moreover, other devices are also connected to the Ethernet LAN. This network distributed structure provides flexibility of hardware configuration. We have constructed an integrated control system for such network distributed hardwares, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS has also network distributed software design, applying TCP/IP socket communication to interprocess communication. In order to help the communication between the device interfaces and the user interfaces, we defined three layers in T-LECS; an external layer for user interface applications, an internal layer for device interface applications, and a communication layer, which connects two layers above. In the communication layer, we store the data of the system to an SQL database server; they are status data, FITS header data, and also meta data such as device configuration data and FITS configuration data. We present our software system design and the database schema to manage observations of MOIRCS with Subaru.

  9. Colloidal domain lithography for regularly arranged artificial magnetic out-of-plane monodomains in Au/Co/Au layers.

    PubMed

    Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks

    2011-03-04

    Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.

  10. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  11. Physics considerations in MV-CBCT multi-layer imager design.

    PubMed

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.

  12. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  13. A perspective view of the plane mixing layer

    NASA Technical Reports Server (NTRS)

    Jimenez, J.; Cogollos, M.; Bernal, L. P.

    1984-01-01

    A three-dimensional model of the plane mixing layer is constructed by applying digital image processing and computer graphic techniques to laser fluorescent motion pictures of its transversal sections. A system of streamwise vortex pairs is shown to exist on top of the classical spanwise eddies. Its influence on mixing is examined.

  14. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  15. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  16. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  17. Multi-spectral Metasurface for Different Functional Control of Reflection Waves.

    PubMed

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-03-22

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.

  18. Investigation of the graphene-electrolyte interface in Li-air batteries: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pavlov, S. V.; Kislenko, S. A.

    2018-01-01

    In this work the behavior of the main reactants (Li+, O2) of the oxygen reduction reaction (ORR) in acetonitrile solvent near the multi-layer graphene edge has been studied. It was observed by molecular dynamics simulations that the concentration distributions of the Li+ and O2 represent a “chessboard” structure. It was ascertained that the concentrations of the lithium ions and oxygen molecules reach their maximum values near the graphene edges pushed out from the surface, which may act as nucleation centers for the formation of crystalline products of the ORR. The maps of the free energy were estimated for the Li+ and O2. Energy optimal trajectories for the adsorption of oxygen molecules and lithium ions were found. Moreover, the distributions of the electric potential were obtained near the following carbon surfaces: single- and multi-layer graphene edge, graphene plane, which shows the qualitative differences in the double-layer structure.

  19. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    PubMed Central

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-01-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  1. A plane wave model for direct simulation of reflection and transmission by discretely inhomogeneous plane parallel media

    NASA Astrophysics Data System (ADS)

    Mackowski, Daniel; Ramezanpour, Bahareh

    2018-07-01

    A formulation is developed for numerically solving the frequency domain Maxwell's equations in plane parallel layers of inhomogeneous media. As was done in a recent work [1], the plane parallel layer is modeled as an infinite square lattice of W × W × H unit cells, with W being a sample width of the layer and H the layer thickness. As opposed to the 3D volume integral/discrete dipole formulation, the derivation begins with a Fourier expansion of the electric field amplitude in the lateral plane, and leads to a coupled system of 1D ordinary differential equations in the depth direction of the layer. A 1D dyadic Green's function is derived for this system and used to construct a set of coupled 1D integral equations for the field expansion coefficients. The resulting mathematical formulation is considerably simpler and more compact than that derived, for the same system, using the discrete dipole approximation applied to the periodic plane lattice. Furthermore, the fundamental property variable appearing in the formulation is the Fourier transformed complex permittivity distribution in the unit cell, and the method obviates any need to define or calculate a dipole polarizability. Although designed primarily for random media calculations, the method is also capable of predicting the single scattering properties of individual particles; comparisons are presented to demonstrate that the method can accurately reproduce, at scattering angles not too close to 90°, the polarimetric scattering properties of single and multiple spheres. The derivation of the dyadic Green's function allows for an analytical preconditioning of the equations, and it is shown that this can result in significantly accelerated solution times when applied to densely-packed systems of particles. Calculation results demonstrate that the method, when applied to inhomogeneous media, can predict coherent backscattering and polarization opposition effects.

  2. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. The Discovery and Characterization of the Carbon Allotrope GUITAR

    NASA Astrophysics Data System (ADS)

    Foutch, Jeremy D.

    GUITAR (Graphene from the University of Idaho Thermolyzed Asphalt Reaction) was first observed as a silvery deposit on the inside of a porcelain crucible after the pyrolysis of oil shale during a routine metals analysis. After initial characterization by optical and electron microscopies it was thought to be multi-layered graphene or graphene paper. Raman spectrographic analysis indicated that it was a nano-crystalline graphite or graphene. Electrochemical characterization showed three significant differences from graphene or graphite; (1) There is lack of electrolyte intercalation through basal plane and edge planes of GUITAR, (2) there is fast heterogenous electron transfer at both the basal plane as well as the edge plane and (3) the hydrogen overpotential is much higher. In this work, GUITAR was subjected to a battery of techniques to more fully characterize its composition, morphology, and structure. Based on the results obtained, it is proposed that GUITAR is a highly noble, porous material, consisting of nanometer-sized grains of two-dimensional graphene-like layers, which are interconnected by three-dimensional diamond-like “defects.” This unique structure begins to give some explanation as to why GUITAR displays many of the useful and superior qualities of both graphene and diamond.

  4. Simultaneous application of two independent EIT devices for real-time multi-plane imaging.

    PubMed

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Mueller-Lisse, U; Moeller, K

    2016-09-01

    Diagnosis and treatment of many lung diseases like cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD) could benefit from 3D ventilation information. Applying two EIT systems concurrently is a simple approach without specialized hardware that allows monitoring of regional changes of ventilation distribution inside the thorax at different planes with the high temporal resolution much valued in common single plane EIT. Effects of two simultaneously operated EIT devices on one subject were investigated to monitor rapid processes inside the thorax with a multi-plane approach. Results obtained by simulations with a virtual phantom and measurements with a phantom tank reveal that the distance of electrode planes has an important influence on the signal quality. Band-pass filters adapted according to the distance of the planes, can be used to reduce the crosstalk of the concurrent EIT systems. Besides simulations and phantom tank experiments measurements were also taken from a lung healthy volunteer to demonstrate the operation under realistic conditions. Reconstructed images indicate that it is possible to simultaneously visualize regional ventilation at different planes if settings of the EIT devices are chosen appropriately.

  5. Surface Evolution of Nano-Textured 4H-SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth.

    PubMed

    Liu, Xingfang; Chen, Yu; Sun, Changzheng; Guan, Min; Zhang, Yang; Zhang, Feng; Sun, Guosheng; Zeng, Yiping

    2015-09-18

    Nano-textured 4H-SiC homoepitaxial layers (NSiCLs) were grown on 4H-SiC(0001) substrates using a low pressure chemical vapor deposition technique (LPCVD), and subsequently were subjected to high temperature treatments (HTTs) for investigation of their surface morphology evolution and graphene growth. It was found that continuously distributed nano-scale patterns formed on NSiCLs which were about submicrons in-plane and about 100 nanometers out-of-plane in size. After HTTs under vacuum, pattern sizes reduced, and the sizes of the remains were inversely proportional to the treatment time. Referring to Raman spectra, the establishment of multi-layer graphene (MLG) on NSiCL surfaces was observed. MLG with sp ² disorders was obtained from NSiCLs after a high temperature treatment under vacuum at 1700 K for two hours, while MLG without sp ² disorders was obtained under Ar atmosphere at 1900 K.

  6. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  7. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  8. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  9. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  10. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  11. Numerical simulation of multi-layered textile composite reinforcement forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-04

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual workmore » is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.« less

  12. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  13. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    NASA Astrophysics Data System (ADS)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  14. Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

    DOEpatents

    Rose, Klint Aaron; Kuntz, Joshua D.; Worsley, Marcus

    2016-09-27

    A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.

  15. Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.

  16. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications.

    PubMed

    Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter

    2013-10-07

    We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

  17. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  18. Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Liu, Jian; Ding, Kai; Zhao, Xiaohui; Li, Shuai; Zhou, Wenguang; Liang, Baolai

    2018-01-01

    Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks ( 1580 cm-1 in graphene layers and 1362 cm-1 in h-BN layers) as a function of temperature from - 194 to 200 °C. The h-BN flakes show higher sensitivity to temperature-dependent frequency shifts and broadenings than graphene flakes. Moreover, the thermal effect in the c direction on phonon frequency in h-BN layers is more sensitive than that in graphene layers but on phonon broadening in h-BN layers is similar as that in graphene layers. These results are very useful to understand the thermal properties and related physical mechanisms in h-BN and graphene flakes for applications of thermal devices.

  19. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  20. Efficient thermoelectric device

    NASA Technical Reports Server (NTRS)

    Ila, Daryush (Inventor)

    2010-01-01

    A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.

  1. Development of Thermal Bridging Factors for Use in Energy Models

    DTIC Science & Technology

    2015-06-20

    assemblies. 5.2.2 Drainage : Drained systems Drained (Figure 5-6) and screened enclosures assume some rainwater will penetrate the outer surface...38 5.2.2 Drainage : Drained systems ...layer (e.g., drainage plane and gap or waterproofing) 2. Airflow control layer (e.g., an air barrier system ) 3. Thermal control layer (e.g., insulation

  2. Solution to the Boltzmann equation for layered systems for current perpendicular to the planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.

    2000-05-01

    Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less

  3. An inference method from multi-layered structure of biomedical data.

    PubMed

    Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung

    2017-05-18

    Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.

  4. Accuracy of percutaneous soft-tissue interventions using a multi-axis, C-arm CT system and 3D laser guidance.

    PubMed

    Kostrzewa, Michael; Rathmann, Nils; Kara, Kerim; Schoenberg, Stefan O; Diehl, Steffen J

    2015-10-01

    Purpose of this phantom study was to compare the accuracy of needle placement using a multi-axis, C-arm-based, flat-panel, cone-beam computed tomography system (CBCT guidance) with that under multi-detector computed tomography guidance (MDCT guidance). In an abdominal phantom, eight lesions (six lesions in the liver and two in the renal pelvises, respectively) were each punctured in-plane and off-plane with a 20G needle under CBCT and MDCT guidance. Access paths were initially defined and reproduced identically on the two systems. In total, 32 interventions were conducted. CBCT and MDCT guidance was compared prospectively with respect to technical success, accuracy, and overall procedural time. All 32 interventions were technically successful in that it was possible to hit the respective lesion in each procedure. When comparing the accuracy of MDCT to CBCT guidance there was no significant difference in absolute, angular, and longitudinal deviation for either in- or off-plane interventions. Overall procedural duration was significantly longer under CBCT guidance for in-plane interventions (888 vs 527s, p=0.00005), whereas, for off-plane procedures there was no significant difference between CBCT and MDCT guidance (920 vs 701s, p=0.08). Off-plane interventions took significantly longer than in-plane interventions under MDCT guidance (701 vs 527s, p=0.03), whereas under CBCT guidance no significant difference could be found between off- and in-plane procedures (920 vs. 888s, p=0.2). In this phantom study, we could show that percutaneous soft-tissue interventions under CBCT guidance can be conducted with an accuracy comparable to that under MDCT guidance. Although overall procedural duration is in general shorter using MDCT guidance, CBCT-guided interventions offer the advantage of more degrees of freedom, which is of particular importance for off-plane procedures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Preston, M. F.; Myers, L. S.; Annand, J. R. M.; Fissum, K. G.; Hansen, K.; Isaksson, L.; Jebali, R.; Lundin, M.

    2014-04-01

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.

  6. Towards Optimal Connectivity on Multi-layered Networks.

    PubMed

    Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang

    2017-10-01

    Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.

  7. Bi-layer graphene structure with non-equivalent planes: Magnetic properties study

    NASA Astrophysics Data System (ADS)

    Mhirech, A.; Aouini, S.; Alaoui-Ismaili, A.; Bahmad, L.

    2018-05-01

    In this paper, we study the magnetic properties of a ferromagnetic bi-layer graphene structure with non-equivalent planes. The geometry of the studied system is formed by two layers (A) and (B) consisting of the spins σ = 1 / 2 and S = 1 . For this purpose, the influence of the coupling exchange interactions, the external magnetic and the crystal fields are investigated and presented as well as the ground state phase diagrams. The Monte Carlo simulations have been used to examine the behavior of the partial and the total magnetizations as a function of the system parameters. These effects on the compensation and critical temperatures behavior are also presented in different phase diagrams, for the studied system.

  8. Optically transduced MEMS magnetometer

    DOEpatents

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  9. Directed-assembled multi-band moiré plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Nagavalli Yogeesh, Maruthi; Wu, Zilong; Li, Wei; Akinwande, Deji; Zheng, Yuebing

    With the large number of component sets and high rotational symmetry, plasmonic metamaterials with moiré patterns can support multiple plasmonic modes for multi-functional applications. Herein, we introduce moiré plasmonic metasurfaces using both gold and graphene, by a recently developed directed-assembled method known as moiré nanosphere lithography (MNSL). The graphene moiré metasurfaces show multiple and tunable resonance modes in the mid-infrared wavelength regime. The number and wavelength of the resonance modes can be tuned by controlling the moiré patterns, which can be easily achieved by changing the relative in-plane rotation angle during MNSL. Furthermore, we have designed a metal-insulator-metal (MIM) patch structure with a thin Au moiré metasurface layer and an optically thick Au layer separated by a dielectric spacer layer. Benefiting from the combination of moiré patterns and field enhancement from the MIM configuration, the moiré metasurface patch exhibits strong broadband absorption in the NIR ( 1.3 μm) and MIR ( 5 μm) range. The dual-band optical responses make moiré metasurface patch a multi-functional platform for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins.

  10. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  11. MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously

    PubMed Central

    Abrahamsson, Sara; McQuilken, Molly; Mehta, Shalin B.; Verma, Amitabh; Larsch, Johannes; Ilic, Rob; Heintzmann, Rainer; Bargmann, Cornelia I.; Gladfelter, Amy S.; Oldenbourg, Rudolf

    2015-01-01

    We have developed an imaging system for 3D time-lapse polarization microscopy of living biological samples. Polarization imaging reveals the position, alignment and orientation of submicroscopic features in label-free as well as fluorescently labeled specimens. Optical anisotropies are calculated from a series of images where the sample is illuminated by light of different polarization states. Due to the number of images necessary to collect both multiple polarization states and multiple focal planes, 3D polarization imaging is most often prohibitively slow. Our MF-PolScope system employs multifocus optics to form an instantaneous 3D image of up to 25 simultaneous focal-planes. We describe this optical system and show examples of 3D multi-focus polarization imaging of biological samples, including a protein assembly study in budding yeast cells. PMID:25837112

  12. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  13. Optical characterisation and analysis of multi-mode pixels for use in future far infrared telescopes

    NASA Astrophysics Data System (ADS)

    McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; Doherty, Stephen; Gradziel, Marcin; O'Sullivan, Créidhe; Audley, Michael D.; de Lange, Gert; van der Vorst, Maarten

    2016-07-01

    In this paper we present the development and verification of feed horn simulation code based on the mode- matching technique to simulate the electromagnetic performance of waveguide based structures of rectangular cross-section. This code is required to model multi-mode pyramidal horns which may be required for future far infrared (far IR) space missions where wavelengths in the range of 30 to 200 µm will be analysed. Multi-mode pyramidal horns can be used effectively to couple radiation to sensitive superconducting devices like Kinetic Inductance Detectors (KIDs) or Transition Edge Sensor (TES) detectors. These detectors could be placed in integrating cavities (to further increase the efficiency) with an absorbing layer used to couple to the radiation. The developed code is capable of modelling each of these elements, and so will allow full optical characterisation of such pixels and allow an optical efficiency to be calculated effectively. As the signals being measured at these short wavelengths are at an extremely low level, the throughput of the system must be maximised and so multi-mode systems are proposed. To this end, the focal planes of future far IR missions may consist of an array of multi-mode rectangular feed horns feeding an array of, for example, TES devices contained in individual integrating cavities. Such TES arrays have been fabricated by SRON Groningen and are currently undergoing comprehensive optical, electrical and thermal verification. In order to fully understand and validate the optical performance of the receiver system, it is necessary to develop comprehensive and robust optical models in parallel. We outline the development and verification of this optical modelling software by means of applying it to a representative multi-mode system operating at 150 GHz in order to obtain sufficiently short execution times so as to comprehensively test the code. SAFARI (SPICA FAR infrared Instrument) is a far infrared imaging grating spectrometer, to be proposed as an ESA M5 mission. It is planned for this mission to be launched on board the proposed SPICA (SPace Infrared telescope for Cosmology and Astrophysics) mission, in collaboration with JAXA. SAFARI is planned to operate in the 1.5-10 THz band, focussing on the formation and evolution of galaxies, stars and planetary systems. The pixel that drove the development of the techniques presented in this paper is typical of one option that could be implemented in the SAFARI focal plane, and so the ability to accurately understand and characterise such pixels is critical in the design phase of the next generation of far IR telescopes.

  14. The study of multilayer anti-reflection coating in InSb focal plane detector

    NASA Astrophysics Data System (ADS)

    Zheng, Kelin; Wei, Peng; Wang, Liwen; Su, Xianjun; Wang, Haizhen

    2016-10-01

    In manufacturing of InSb focal plane detector, InSb chip have to be polished from backside to reduce its thickness and then be plated a layer of coating to decrease its reflection (enhance its transmittance) for infrared ray. Moreover, the anti-reflection coating has to be multilayer for more anti-reflection bandwidth. In this article, it is introduced that the optimal design of triple layer λ/4 anti-reflection coating——the anodic oxide, SiNx and MgF2. The best thickness range of each layer and its theoretical reflective index are calculated from simulation software, until the refractive index of each layer has been measured by ellipsometer. And then the transmissivity and reflectivity of the triple layer coating are measured for testing and verifying its performance on the transmittance and reflection. In the end, the anti-reflective effect of the triple layer coating and monolayer SiNx coating are respectively measured and compared by infrared focal plane array measurement system. And it is showed that this triple layer coating achieved more anti-reflection bandwidth and better anti reflective effect.

  15. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different textures to determine the expected rm J_{c}s. The good agreement between the experimental data and numerical results confirmed that the rm J_{c} improvement directly resulted from the reduction of the number of high-angle grain boundaries in the in-plane aligned polycrystalline YBCO thin films, and provided a guideline on the further improvement of the rm J_ {c}s of polycrystalline YBCO thin films.

  16. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  17. Focal-plane detector system for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  18. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharlamov, Alexey; Bondarenko, Marina, E-mail: mebondarenko@ukr.net; Kharlamova, Ganna

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists ofmore » weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.« less

  19. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  20. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  1. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  2. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  3. Focal-plane detector system for the KATRIN experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.

    Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  4. Focal-plane detector system for the KATRIN experiment

    DOE PAGES

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; ...

    2015-01-09

    Here, the local plane detector system for the KArlsiuhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high vacuum system, a high vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system, It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  5. Thermal architecture for the SPIDER flight cryostat

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.

    2010-07-01

    We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.

  6. Novel mid-infrared silicon/germanium detector concepts

    NASA Astrophysics Data System (ADS)

    Presting, Hartmut; Konle, Johannes; Hepp, Markus; Kibbel, Horst; Thonke, Klaus; Sauer, Rolf; Corbin, Elizabeth A.; Jaros, Milan

    2000-10-01

    Highly p-doped silicon/silicon-germanium (Si/SiGe) quantum well (QW) structures are grown by molecular beam epitaxy on double-sided polished (100)Si substrates for mid-IR (3 to 5 micrometers and 8 to 12 micrometers ) detection. The samples are characterized by secondary ion mass spectroscopy, x-ray diffraction, and absorption measurements. Single mesa detectors are fabricated as well as large-area focal plane arrays with 256 X 256 pixels using standard Si integrated processing techniques. The detectors, based on heterointernal photo-emission (HIP) of photogenerated holes from a heavily p-doped (p++ approximately 5 X 1020 cm-3) SiGe QW into an undoped silicon layer, operate at 77 K. Various novel designs of the SiGe HIP's such as Ge- and B-grading, double- and multi-wells, are realized; in addition, thin doping setback layers between the highly doped well and the undoped Si layer are introduced. The temperature dependence of dark currents and photocurrents are measured up to 225 K. In general, we observe broad photoresponse curves with peak external quantum efficiencies, up to (eta) ext approximately 0.5% at 77 K and 4(mu) , detectivities up to 8 X 1011 cm(root)Hz/W are obtained. We demonstrate that by varying the thickness, Ge content, and doping level of the single- and the multi-QWs of SiGe HIP detectors, the photoresponse peak and the cutoff of the spectrum can be tuned over a wide wavelength range. The epitaxial versatility of the Si/SiGe system enables a tailoring of the photoresponse spectrum which demonstrates the advantages of the SiGe system in comparison over commercially used silicide detectors.

  7. A Physics-Based Approach for Power Integrity in Multi-Layered PCBs

    NASA Astrophysics Data System (ADS)

    Zhao, Biyao

    Developing a power distribution network (PDN) for ASICs and ICs to achieve the low-voltage ripple specifications for current digital designs is challenging with the high-speed and low-voltage ICs. Present methods are typically guided by best engineering practices for low impedance looking into the PDN from the IC. A pre-layout design methodology for power integrity in multi-layered PCB PDN geometry is proposed in the thesis. The PCB PDN geometry is segmented into four parts and every part is modelled using different methods based on the geometry details of the part. Physics-based circuit models are built for every part and the four parts are re-assembled into one model. The influence of geometry details is clearly revealed in this methodology. Based on the physics-based circuit mode, the procedures of using the pre-layout design methodology as a guideline during the PDN design is illustrated. Some common used geometries are used to build design space, and the design curves with the geometry details are provided to be a look up library for engineering use. The pre-layout methodology is based on the resonant cavity model of parallel planes for the cavity structures, and parallel-plane PEEC (PPP) for the irregular shaped plane inductance, and PEEC for the decoupling capacitor connection above the top most or bottom most power-return planes. PCB PDN is analyzed based on the input impedance looking into the PCB from the IC. The pre-layout design methodology can be used to obtain the best possible PCB PDN design. With the switching current profile, the target impedance can be selected to evaluate the PDN performance, and the frequency domain PDN input impedance can be used to obtain the voltage ripple in the time domain to give intuitive insight of the geometry impact on the voltage ripple.

  8. Limit analysis of multi-layered plates. Part I: The homogenized Love-Kirchhoff model

    NASA Astrophysics Data System (ADS)

    Dallot, Julien; Sab, Karam

    The purpose of this paper is to determine Gphom, the overall homogenized Love-Kirchhoff strength domain of a rigid perfectly plastic multi-layered plate, and to study the relationship between the 3D and the homogenized Love-Kirchhoff plate limit analysis problems. In the Love-Kirchhoff model, the generalized stresses are the in-plane (membrane) and the out-of-plane (flexural) stress field resultants. The homogenization method proposed by Bourgeois [1997. Modélisation numérique des panneaux structuraux légers. Ph.D. Thesis, University Aix-Marseille] and Sab [2003. Yield design of thin periodic plates by a homogenization technique and an application to masonry wall. C. R. Méc. 331, 641-646] for in-plane periodic rigid perfectly plastic plates is justified using the asymptotic expansion method. For laminated plates, an explicit parametric representation of the yield surface ∂Gphom is given thanks to the π-function (the plastic dissipation power density function) that describes the local strength domain at each point of the plate. This representation also provides a localization method for the determination of the 3D stress components corresponding to every generalized stress belonging to ∂Gphom. For a laminated plate described with a yield function of the form F(x3,σ)=σu(x3)F^(σ), where σu is a positive even function of the out-of-plane coordinate x3 and F^ is a convex function of the local stress σ, two effective constants and a normalization procedure are introduced. A symmetric sandwich plate consisting of two Von-Mises materials ( σu=σ1u in the skins and σu=σ2u in the core) is studied. It is found that, for small enough contrast ratios ( r=σ1u/σ2u≤5), the normalized strength domain G^phom is close to the one corresponding to a homogeneous Von-Mises plate [Ilyushin, A.-A., 1956. Plasticité. Eyrolles, Paris].

  9. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  10. New approach to analyzing soil-building systems

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.

  11. Electromagnetic field focusing by a plane multilayer structure with a Veselago medium

    NASA Astrophysics Data System (ADS)

    Fisanov, V. V.

    2011-12-01

    The focusing properties of a system of plane layers of a Veselago medium divided by vacuous intervals are investigated by the coordinate transformation method. The role of real and virtual foci in the mechanism of focusing by a multilayered lens is considered.

  12. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  13. A Complex Systems Approach to More Resilient Multi-Layered Security Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nathanael J. K.; Jones, Katherine A.; Bandlow, Alisa

    In July 2012, protestors cut through security fences and gained access to the Y-12 National Security Complex. This was believed to be a highly reliable, multi-layered security system. This report documents the results of a Laboratory Directed Research and Development (LDRD) project that created a consistent, robust mathematical framework using complex systems analysis algorithms and techniques to better understand the emergent behavior, vulnerabilities and resiliency of multi-layered security systems subject to budget constraints and competing security priorities. Because there are several dimensions to security system performance and a range of attacks that might occur, the framework is multi-objective for amore » performance frontier to be estimated. This research explicitly uses probability of intruder interruption given detection (P I) as the primary resilience metric. We demonstrate the utility of this framework with both notional as well as real-world examples of Physical Protection Systems (PPSs) and validate using a well-established force-on-force simulation tool, Umbra.« less

  14. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  15. Effects of torsion on the thermal conductivity of multi-layer graphene

    NASA Astrophysics Data System (ADS)

    Si, Chao; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2017-05-01

    This work employs the equilibrium molecular dynamics method to study the effects of torsion on the thermal conductivity of multi-layer graphene. Thermal conductivities of twisted 10-layer 433.91 × 99.68 Å2 graphene with torsion angles of 0°, 11.25°, 22.5°, 33.75°, 45°, 67.5°, 90°, 112.5°, and 135° are calculated. The corresponding radial distribution functions and nearest atomic distances are calculated to reveal the effects of torsion on lattice structures. The spectral energy density (SED) method is utilized to analyze the phonon transport properties. It is very interesting that the thermal conductivity of multi-layer graphene decreases slightly at first and then increases with the increasing torsion angle, and the valley is located at θG = 22.5° with the lowest thermal conductivity of 4692.40 W m-1 K-1. The torsion effect can be considered as a combination of the compression effect and the dislocation effect. Further SED analysis confirms that the effect of dislocation on thermal conductivities can be negligible, while the compression effect decreases the phonon lifetimes of flexural out-of-plane acoustic (ZA) branches and increases the ZA group velocities and the phonon specific heat. The decrease becomes dominated when the torsion angle is small, whereas the increase becomes more and more dominated when the torsion angle becomes larger, which are responsible for the reported variation of thermal conductivities.

  16. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    NASA Astrophysics Data System (ADS)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  17. Assessment of physical server reliability in multi cloud computing system

    NASA Astrophysics Data System (ADS)

    Kalyani, B. J. D.; Rao, Kolasani Ramchand H.

    2018-04-01

    Business organizations nowadays functioning with more than one cloud provider. By spreading cloud deployment across multiple service providers, it creates space for competitive prices that minimize the burden on enterprises spending budget. To assess the software reliability of multi cloud application layered software reliability assessment paradigm is considered with three levels of abstractions application layer, virtualization layer, and server layer. The reliability of each layer is assessed separately and is combined to get the reliability of multi-cloud computing application. In this paper, we focused on how to assess the reliability of server layer with required algorithms and explore the steps in the assessment of server reliability.

  18. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  19. The Effects of Ground Plane and Parasitic Layer on Linearly Tapered Slot Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1996-01-01

    The effects of a large ground plane and an upper parasitic layer on a linearly tapered slot antenna has been experimentally investigated. Results indicate that the presence of a large ground plane causes the beam to steer by as much as 50 deg from the endfire direction in the H-plane. With the addition of a parasitic layer above the fed antenna, further beam scanning can be achieved when the spacing between the fed and parasitic layers is properly chosen.

  20. NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad

    2016-07-01

    NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.

  1. Detection of morphological changes in cliff face surrounding a waterfall using terrestrial laser scanning and unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2015-04-01

    Waterfall or bedrock knickpoint appears as an erosional front in bedrock rivers forming deep v-shaped valley downstream. Following the rapid fluvial erosion of waterfall, rockfalls and gravita-tional collapses often occur in surrounding steep cliffs. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatio-temporal distribution have been limited due to the difficulties in direct access to such cliffs if with classical measurement methods. However, for the clarification of geomorphological processes oc-curring in the cliffs, multi-temporal mapping of the cliff face at a high resolution is necessary. Re-mote sensing approaches are therefore suitable for the topographic measurements and detection of changes in such inaccessible cliffs. To achieve accurate topographic mapping of cliffs around a wa-terfall, here we perform multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS). The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff, as well as groundwater outflows from its lower portions. The bedrock is composed of alternate layers of andesite lava and conglomerates. Minor rockfalls in the cliffs are often ob-served by local people. The latest major rockfall occurred in 1986, causing ca. 8-m upstream propa-gation of the waterfall lip. This provides a good opportunity to examine the changes in the surround-ing cliffs following the waterfall recession. Multi-time point clouds were obtained by TLS measure-ment over years, and the three-dimensional changes of the rock surface were detected, uncovering the locus of small rockfalls and gully developments. Erosion seems particularly frequent in relatively weak the conglomerates layer, whereas small rockfalls seems to have occurred in the andesite layers. Also, shadows in the TLS point clouds are effectively filled by complementary data of UAS-based SfM-MVS photogrammetry, which can improve the mapping quality of the cliff morphology. The point clouds are also projected on a vertical plane to generate a digital elevation model (DEM). Cross-sectional profiles extracted from the DEM show the presence of a distinct, 5-10-m depression at the mid of the cliff (bottom of the upper andesite layer), which appears to have been formed by freeze-thaw and/or wet-dry weathering following the waterfall recession in 1986.

  2. Outdoor flocking of quadcopter drones with decentralized model predictive control.

    PubMed

    Yuan, Quan; Zhan, Jingyuan; Li, Xiang

    2017-11-01

    In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Multi-segment foot kinematics after total ankle replacement and ankle arthrodesis during relatively long-distance gait.

    PubMed

    Rouhani, H; Favre, J; Aminian, K; Crevoisier, X

    2012-07-01

    This study aimed to investigate the influence of ankle osteoarthritis (AOA) treatments, i.e., ankle arthrodesis (AA) and total ankle replacement (TAR), on the kinematics of multi-segment foot and ankle complex during relatively long-distance gait. Forty-five subjects in four groups (AOA, AA, TAR, and control) were equipped with a wearable system consisting of inertial sensors installed on the tibia, calcaneus, and medial metatarsals. The subjects walked 50-m twice while the system measured the kinematic parameters of their multi-segment foot: the range of motion of joints between tibia, calcaneus, and medial metatarsals in three anatomical planes, and the peaks of angular velocity of these segments in the sagittal plane. These parameters were then compared among the four groups. It was observed that the range of motion and peak of angular velocities generally improved after TAR and were similar to the control subjects. However, unlike AOA and TAR, AA imposed impairments in the range of motion in the coronal plane for both the tibia-calcaneus and tibia-metatarsals joints. In general, the kinematic parameters showed significant correlation with established clinical scales (FFI and AOFAS), which shows their convergent validity. Based on the kinematic parameters of multi-segment foot during 50-m gait, this study showed significant improvements in foot mobility after TAR, but several significant impairments remained after AA. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  5. Strengthening of surface layer of material by wave deformation multi-contact loading

    NASA Astrophysics Data System (ADS)

    Kirichek, A. V.; Barinov, S. V.; Aborkin, A. V.; Yashin, A. V.; Zaicev, A. A.

    2018-03-01

    It has been experimentally established that the possibility of multi-contact shock systems can transmit large total energy of the impact pulse to the deformation center. Thus, an increase in the number of instruments in a shock system from two to four, with the constant energy of the shock pulse, made it possible to increase the depth and the degree of hardening in the surface layer. The performance of multi-contact impact systems can be increased by 50% without degrading the hardening parameters by increasing the distance between the tools.

  6. Smart Grid as Multi-layer Interacting System for Complex Decision Makings

    NASA Astrophysics Data System (ADS)

    Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico

    This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.

  7. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  8. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, Jeffrey E.

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  9. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  10. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  11. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  12. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    DOE PAGES

    Chan, Mun Keat; Harrison, Neil; Mcdonald, Ross David; ...

    2016-07-22

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling ofmore » these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy« less

  13. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  14. Reduced dislocation density in Ga xIn 1–xP compositionally graded buffer layers through engineered glide plane switch

    DOE PAGES

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...

    2016-11-17

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  15. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  16. Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.

    2016-10-01

    A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.

  17. Robust hepatic vessel segmentation using multi deep convolution network

    NASA Astrophysics Data System (ADS)

    Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei

    2017-03-01

    Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.

  18. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  19. Real-time x-ray studies of crystal growth modes during metal-organic vapor phase epitaxy of GaN on c- and m-plane single crystals

    DOE PAGES

    Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...

    2014-08-04

    Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less

  20. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  1. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  2. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  3. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  4. Development of Waterfall Cliff Face: An Implication from Multitemporal High-definition Topographic Data

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y. S.; Obanawa, H.

    2015-12-01

    Bedrock knickpoints (waterfalls) often act as erosional front in bedrock rivers, whose geomorphological processes are various. In waterfalls with vertical cliffs, both fluvial erosion and mass movement are feasible to form the landscape. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatiotemporal distribution have been limited due to poor accessibility to such cliffs. For the clarification of geomorphological processes in such cliffs, multi-temporal mapping of the cliff face at a high resolution can be advantaged by short-range remote sensing approaches. Here we carry out multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS) for accurate topographic mapping of cliffs around a waterfall. The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff and groundwater outflows from its lower portions. The bedrock consists of alternate layers of jointed andesite lava and conglomerates. The latest major rockfall in 1986 caused approximately 8-m recession of the waterfall lip. Three-dimensional changes of the rock surface were detected by multi-temporal measurements by TLS over years, showing the portions of small rockfalls and surface lowering in the bedrock. Erosion was frequently observed in relatively weak the conglomerates layer, whereas small rockfalls were often found in the andesite layers. Wider areas of the waterfall and cliff were also measured by UAS-based SfM-MVS photogrammetry, improving the mapping quality of the cliff morphology. Point clouds are also projected on a vertical plane to generate a digital elevation model (DEM), and cross-sectional profiles extracted from the DEM indicate the presence of a distinct, 5-10-m deep depression in the cliff face. This appears to have been formed by freeze-thaw and/or wet-dry weathering following the recession in 1986. The long-term development of the waterfall cliff face is then discussed comprising various processes of rockfalls, water pressure and weathering.

  5. Wave analysis of a plenoptic system and its applications

    NASA Astrophysics Data System (ADS)

    Shroff, Sapna A.; Berkner, Kathrin

    2013-03-01

    Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.

  6. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  7. On a Minimum Problem in Smectic Elastomers

    NASA Astrophysics Data System (ADS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-07-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.

  8. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  9. Linear shoaling of free-surface waves in multi-layer non-hydrostatic models

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Cheung, Kwok Fai

    2018-01-01

    The capability to describe shoaling over sloping bottom is fundamental to modeling of coastal wave transformation. The linear shoaling gradient provides a metric to measure this property in non-hydrostatic models with layer-integrated formulations. The governing equations in Boussinesq form facilitate derivation of the linear shoaling gradient, which is in the form of a [ 2 P + 2 , 2 P ] expansion of the water depth parameter kd with P equal to 1 for a one-layer model and (4 N - 4) for an N-layer model. The expansion reproduces the analytical solution from Airy wave theory at the shallow water limit and maintains a reasonable approximation up to kd = 1.2 and 2 for the one and two-layer models. Additional layers provide rapid and monotonic convergence of the shoaling gradient into deep water. Numerical experiments of wave propagation over a plane slope illustrate manifestation of the shoaling errors through the transformation processes from deep to shallow water. Even though outside the zone of active wave transformation, shoaling errors from deep to intermediate water are cumulative to produce appreciable impact to the wave amplitude in shallow water.

  10. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  11. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  12. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  13. Simple full micromagnetic model of exchange bias behavior in ferro/antiferromagnetic layered structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1997-04-01

    It is shown using full micromagnetic relaxation calculations that exchange bias behavior is predicted for single-crystal ferro/antiferromagnetic layers with a fully compensated interface. The particular example most fully studied has a bcc/bct lattice structure with a fully compensated (110) interface plane. Only bilinear Heisenberg exchange was assumed, with anisotropy only in the antiferromagnet. In spite of the intuitive notion that exchange coupling between a ferromagnet and an antiferromagnet across a fully compensated plane of the antiferromagnet should be zero, we find strong coupling, comparable to the bilinear exchange, with a 90° angle between the ferromagnetic and antiferromagnetic axes of layers far from the interface in absence of an applied field. Even though the 90° coupling has characteristics resembling "biquadratic" exchange, it originates entirely from frustrated bilinear exchange. The development of exchange bias is found to originate from the formation of a domain wall in the antiferromagnet via the strong 90° exchange coupling and pinning of the wall by the magnetocrystalline anisotropy in the antiferromagnet. Because the large demagnetizing factor of the ferromagnet tends to confine its magnetization to the plane, the exchange bias is found to depend mainly on the strength and the symmetry of the in-plane component of anisotropy. Although little effort was made to analyze specific systems, the model reproduces many of the qualitative features observed in real exchange bias systems and gives reasonable semiquantitative estimates for the bias field when exchange and anisotropy values consistent with real systems are used.

  14. Anisotropic elasticity of quasi-one-component polymer nanocomposites.

    PubMed

    Voudouris, Panayiotis; Choi, Jihoon; Gomopoulos, Nikos; Sainidou, Rebecca; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2011-07-26

    The in-plane and out-of-plane elastic properties of thin films of "quasi-one-component" particle-brush-based nanocomposites are compared to those of "classical" binary particle-polymer nanocomposite systems with near identical overall composition using Brillouin light scattering. Whereas phonon propagation is found to be independent of the propagation direction for the binary particle/polymer blend systems, a pronounced splitting of the phonon propagation velocity along the in-plane and out-of-plane film direction is observed for particle-brush systems. The anisotropic elastic properties of quasi-one-component particle-brush systems are interpreted as a consequence of substrate-induced order formation into layer-type structures and the associated breaking of the symmetry of the film. The results highlight new opportunities to engineer quasi-one-component nanocomposites with advanced control of structural and physical property characteristics based on the assembly of particle-brush materials.

  15. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  16. Buried plastic scintillator muon telescope

    NASA Astrophysics Data System (ADS)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  17. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  18. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  19. Multi-layer compression: comparison of four different four-layer bandage systems applied to the leg.

    PubMed

    Dale, J J; Ruckley, C V; Gibson, B; Brown, D; Lee, A J; Prescott, R J

    2004-01-01

    To compare performance of four commercial four-layer bandage systems when applied to the leg. Four experienced bandagers applied each system: [Profore Regular (Smith and Nephew); Ultra-Four (Robinson); System 4 (Seton) and K Four (Parema)] to the same leg. Bandages were applied as single layers and as completed systems using standard techniques. For each application, 18 pressure measurements were taken using the Borgnis Medical Stocking Tester (MST) at three measuring points (ankle, gaiter and mid-calf) on medial and lateral aspects in three postures: (horizontal, standing and sitting). In all 2304 observations were made, 576 for each bandager, 576 for each bandaging system, 768 for each measuring point, 1152 for each aspect and 768 for each posture. The increase in pressure produced by each additional layer was 65-75% of the pressure of the same bandage when used as a single layer. There were significant differences in the final pressures achieved by the bandagers (means: 45-54 mmHg, p<0.001) and between bandage systems (means: System 4: 46 mmHg, Profore: 47 mmHg, K Four: 52 mmHg, Ultra-Four: 54 mmHg; p=0.005). The relationships between the final pressures achieved at each of the three measuring points, the three postures and the two aspects were not consistent among the bandage systems (p<0.01). When a bandage is applied as part of a multi-layered system it exerts approximately 70% of the pressure exerted when applied alone, thus challenging the commonly-held assumption that the final pressure achieved by a multi-layer bandaging system is the sum of the pressures exerted by each individual layer. Each of the four bandaging systems exerted different final pressures and gradients and different changes with posture change. These differences have important implications, which could influence the selection (or avoidance) of a particular bandage system according to a patient's condition and circumstances.

  20. Development and application of variable angle internal reflection Raman spectroscopy for vibrationally specific depth-profiling of polymer thin films

    NASA Astrophysics Data System (ADS)

    Fontaine, Norman Henry

    1997-10-01

    Techniques which can be used to obtain depth-resolved information on the thermodynamics at polymer-polymer and polymer-wall interfaces, and of small molecule diffusion in polymers, are of particular interest to industry. Optical methods which are sensitive to molecular vibrations (such as internal reflection Raman spectroscopy) are advantageous because they can non- destructively probe molecular content, orientation, and polarity of the local environment in a sample. However, while optical internal reflection depth-profiling methods have been reported, they have never progressed beyond the demonstration stage. In this work, the theory and methodology of internal reflection spectroscopy are developed and optimized into a rigorous field-controlled spectroscopic technique. A novel asymmetric internal reflection element (IRE) is introduced which traps back-reflections, allowing precise evanescent and standing wave probe-field control in the sample for all angles of incidence. It is demonstrated that a Gaussian laser beam will best approximate an infinite homogeneous plane wave when the IRE/sample interface lies in the paraxial-Fraunhofer region (far- field) of the beam path. Calibration methods are presented, sources of systematic errors are identified, and the angular resolution limit (ARL) is introduced as a measure of the field control developed in a sample by any internal reflection method. A general model of Raman scattering and photon detection from multi-layer thin films is developed. A new and generalized operator based transfer matrix method is developed and applied to electromagnetic field and diffusion computations in multi-layer systems. Total internal reflection spectroscopy is extended to include sub-critical angles of incidence, where resonant field enhancements generate large and selective amplification of the probe-field intensity within the layers of the sample. Fitting these resonances to the model spectral intensities allows unique determination of the location of buried interfaces in micron-sized polymer multi-layers with nanometer scale precision and the refractive indices of the layers with precision of /Delta n/approx/pm 0.0001. The Raman active molecular content of each optically distinct layer of the film is determinable simultaneously with the optical properties. Resonant mode VAIRRS studies of poly(methyl methacrylate) films spun-cast from toluene and then dried under ambient conditions have shown evidence for toluene diffusion concurrent with a rotationally hindered relaxation of oriented ester side groups about the polymer backbone. Low temperature annealing (≈87oC) has shown evidence that this hindered rotational relaxation may be reversible. VAIRRS study of a polystyrene/poly(methyl methacrylate) bi-layer has detected evidence for toluene diffusion across the buried polymer-polymer interface.

  1. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  2. Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

    NASA Astrophysics Data System (ADS)

    Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian

    2017-12-01

    Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.

  3. Novel technique for fabrication of multi-layered microcoils in microelectromechanical systems (MEMS) applications

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng

    2002-07-01

    A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.

  4. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  5. Magnetic and electrical control of engineered materials

    DOEpatents

    Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos

    2016-08-16

    Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.

  6. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  7. In-plane chemical pressure essential for superconductivity in BiCh2-based (Ch: S, Se) layered structure

    PubMed Central

    Mizuguchi, Yoshikazu; Miura, Akira; Kajitani, Joe; Hiroi, Takafumi; Miura, Osuke; Tadanaga, Kiyoharu; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    BiCh2-based compounds (Ch: S, Se) are a new series of layered superconductors, and the mechanisms for the emergence of superconductivity in these materials have not yet been elucidated. In this study, we investigate the relationship between crystal structure and superconducting properties of the BiCh2-based superconductor family, specifically, optimally doped Ce1−xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1−ySey)2. We use powder synchrotron X-ray diffraction to determine the crystal structures. We show that the structure parameter essential for the emergence of bulk superconductivity in both systems is the in-plane chemical pressure, rather than Bi-Ch bond lengths or in-plane Ch-Bi-Ch bond angle. Furthermore, we show that the superconducting transition temperature for all REO0.5F0.5BiCh2 superconductors can be determined from the in-plane chemical pressure. PMID:26447333

  8. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.

  9. Impact of Nonlinearity of The Contact Layer Between Elements Joined in a Multi-Bolted System on Its Preload

    NASA Astrophysics Data System (ADS)

    Grzejda, R.

    2017-12-01

    The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.

  10. Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5).

    PubMed

    Li, Zhen; Bauers, Sage R; Poudel, Nirakar; Hamann, Danielle; Wang, Xiaoming; Choi, David S; Esfarjani, Keivan; Shi, Li; Johnson, David C; Cronin, Stephen B

    2017-03-08

    We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe) n (TiSe 2 ) n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe) n (TiSe 2 ) n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe) n (TiSe 2 ) n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 μV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe) n (TiSe 2 ) n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe 2 layers and the effect of tunneling on the cross-plane transport.

  11. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  12. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  13. A new design using GEM-based technology for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Ressegotti, M.

    2017-07-01

    The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than |η|> 2.4. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.

  14. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore » metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe) 1+δ] m(TiSe₂) n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  15. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE PAGES

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; ...

    2015-04-22

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore » metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe) 1+δ] m(TiSe₂) n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  16. Bulk Superconductivity Induced by Se Substitution in BiCh2-Based Layered Compounds Eu0.5Ce0.5FBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Sogabe, Ryota; Mizuguchi, Yoshikazu

    2017-10-01

    We report the effect of Se substitution on the crystal structure and superconductivity of BiCh2-based (Ch: S, Se) layered compounds Eu0.5Ce0.5FBiS2-xSex (x = 0-1). Crystal structure analysis showed that both lattice constants, a and c, increased with increasing x, which is different from the related La-doped system Eu0.5La0.5FBiS2-xSex. This is due to Se substitution at both in-plane and out-of-plane Ch sites in the present Ce-doped system. Zero resistivity was observed for x = 0.2-1 above 2 K. The superconducting properties of Eu0.5Ce0.5FBiS2-xSex were investigated by magnetic susceptibility measurement, and the highest superconducting transition temperature of 3.5 K was obtained for x = 0.6 with a large shielding volume fraction. The emergence of bulk superconductivity and metallic conductivity can be qualitatively described in terms of the increased in-plane chemical pressure effect. A magnetic anomaly below 8 K, probably because of the ferromagnetic order of the magnetic moment of Ce3+ ions, coexists with bulk superconductivity in the BiCh2 layer. Since the effect of Se substitution on the magnetic transition temperature is ignorable, we suggest that the coupling between the magnetic order at the (Eu,Ce)F layer and the superconductivity at the Bi(S,Se)2 layer is weak.

  17. Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites

    PubMed Central

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; Falmbigl, Matthias; Johnson, David C.

    2015-01-01

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe2)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor. PMID:28788045

  18. Common aperture multispectral optics for military applications

    NASA Astrophysics Data System (ADS)

    Thompson, N. A.

    2012-06-01

    With the recent developments in multi-spectral detector technology the interest in common aperture, common focal plane multi-spectral imaging systems is increasing. Such systems are particularly desirable for military applications where increased levels of target discrimination and identification are required in cost-effective, rugged, lightweight systems. During the optical design of dual waveband or multi-spectral systems, the options for material selection are limited. This selection becomes even more restrictive for military applications as material resilience and thermal properties must be considered in addition to colour correction. In this paper we discuss the design challenges that lightweight multi-spectral common aperture systems present along with some potential design solutions. Consideration will be given to material selection for optimum colour correction as well as material resilience and thermal correction. This discussion is supported using design examples that are currently in development at Qioptiq.

  19. Electric-field-induced structural changes in water confined between two graphene layers

    NASA Astrophysics Data System (ADS)

    Sobrino Fernández, Mario; Peeters, F. M.; Neek-Amal, M.

    2016-07-01

    An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.

  20. Tilt to horizontal global solar irradiance conversion: application to PV systems data

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Leloux, Jonathan; Bertrand, Cédric

    2017-04-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane requiring that at least two of the three solar components (i.e. global, direct and diffuse) are known. When only global irradiance measurements are available, the conversion from horizontal to tilted planes is still possible but in this case transposition models have to be coupled with decomposition models (i.e. models that predict the direct and diffuse components from the global one). Here, two different approaches have been considered to solve the reverse process, i.e. the conversion from tilted to horizontal: (i) one-sensor approach and (ii) multi-sensors approach. Because only one tilted plane is involved in the one-sensor approach, a decomposition model need to be coupled with a transposition model to solve the problem. By contrast, at least two tilted planes being considered in the multi-sensors approach, only a transposition model is required to perform the conversion. First, global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle were used to evaluate the performance of both approaches. Four pyranometers (one mounted in the horizontal plane and three on inclined surfaces with different tilts and orientations) were involved in the validation exercise. Second, the inverse transposition was applied to tilted global solar irradiance values retrieved from the energy production registered at residential PV systems located in the vicinity of Belgian radiometric stations operated by RMI (for validation purposes).

  1. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material system is expected to enable achievement of greater densities of QDs and correspondingly greater quantum efficiencies. The host GaAs/AlGaAs MQW structures are highly compatible with mature fabrication processes that are now used routinely in making QWIP FPAs. The hybrid InGaAs-dot/GaAs/AlGaAs-well system also offers design advantages in that the effects of variability of dot size can be partly compensated by engineering quantum-well sizes, which can be controlled precisely.

  2. Investigation of 2-Dimensional Isotropy of Under-Ice Roughness in the Beaufort Gyre and Implications for Mixed Layer Ocean Turbulence

    DTIC Science & Technology

    2008-03-01

    this roughness is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy...is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy increases... Model 1 is based on a sequence of plane parallel layers each with a constant gradient whereas Model 2 is based on a series of flat layers of

  3. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  4. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  5. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  6. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  7. 14 CFR 234.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Cancelled flight means a flight operation that was not operated, but was listed in a carrier's computer... dropped from a carrier's computer reservation system more than seven calendar days before its scheduled... reporting to computer reservations system vendors, flight also means one-stop or multi-stop single plane...

  8. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers are developed to maximize the energy usage from rooftop photovoltaic (PV) generation locally and minimize heat-ventilation and air conditioning (HVAC) consumption while maintaining inside temperature within comfort zone. The performance of the developed multi-layer architecture has been analyzed using test case studies and results show the robustness of developed controller in the presence of uncertainty.

  9. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  10. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  11. System for analysis of explosives

    DOEpatents

    Haas, Jeffrey S [San Ramon, CA

    2010-06-29

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  12. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2017-04-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  13. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  14. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE PAGES

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh; ...

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  15. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator.

    PubMed

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub M; Abu-Heiba, Ahmad

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizations has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. The DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.

  16. Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement

    NASA Astrophysics Data System (ADS)

    White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos

    2003-01-01

    For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.

  17. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  18. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Zhu, Bingcheng; Shi, Zheng; Wang, Jinyuan; Li, Xin; Gao, Xumin; Yuan, Jialei; Li, Yuanhang; Jiang, Yan; Wang, Yongjin

    2017-04-01

    Here, we propose, fabricate and characterize suspended photonic integration of InGaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide and InGaN MQW-photodetector on a single chip. The unique light emission property of InGaN MQW-LED makes it feasible to establish multi-dimensional spatial data transmission using visible light. The in-plane light communication system is comprised of InGaN MQW-LED, waveguide and InGaN MQW-photodetector, and the out-of-plane data transmission is realized by detecting the free-space light emission via a commercial photodiode module. Moreover, a full-duplex light communication is experimentally demonstrated at a data transmission rate of 50 Mbps when both InGaN MQW-diodes operate under simultaneous light emission and detection mode. The in-plane superimposed signals are able to be extracted through the self-interference cancellation method, and the out-of-plane superimposed signals are in good agreement with the calculated signals according to the extracted transmitted signals. These results are promising for the development of on-chip InGaN photonic integration for diverse applications.

  19. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  20. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  1. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  2. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  3. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  4. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  5. A high bandwidth three-axis out-of-plane motion measurement system based on optical beam deflection

    NASA Astrophysics Data System (ADS)

    Piyush, P.; Giridhar, M. S.; Jayanth, G. R.

    2018-03-01

    Multi-axis measurement of motion is indispensable for characterization of dynamic systems and control of motion stages. This paper presents an optical beam deflection-based measurement system to simultaneously measure three-axis out-of-plane motion of both micro- and macro-scale targets. Novel strategies are proposed to calibrate the sensitivities of the measurement system. Subsequently the measurement system is experimentally realized and calibrated. The system is employed to characterize coupled linear and angular motion of a piezo-actuated stage. The measured motion is shown to be in agreement with theoretical expectation. Next, the high bandwidth of the measurement system has been showcased by utilizing it to measure coupled two-axis transient motion of a Radio Frequency Micro-Electro-Mechanical System switch with a rise time of about 60 μs. Finally, the ability of the system to measure out-of-plane angular motion about the second axis has been demonstrated by measuring the deformation of a micro-cantilever beam.

  6. Observations of winds with an incoherent lidar detector

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Hays, Paul B.

    1992-01-01

    A Fabry-Perot interferometer and image-plane detector system to be used as a receiver for a Doppler lidar have been developed. This system incorporates the latest technology in multichannel detectors, and it is an important step toward the development of operational wind profiler systems for the atmosphere. The instrumentation includes a stable high-resolution optically contacted plane etalon and a multiring anode detector to scan the image plane of the Fabry-Perot interferometer spatially. The high wavelength resolution provided by the interferometer permits the aerosol and molecular components of the backscattered signal to be distinguished, and the Doppler shift of either component can then be used to determine the wind altitude profile. The receiver performance has been tested by measuring the wind profile in the boundary layer. The Fabry-Perot interferometer and image-plane detector characteristics are described and sample measurements are presented. The potential of the system as a wind profiler in the troposphere, the stratosphere, and the mesosphere is also considered.

  7. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Namsun; Lee, Jongho; Research Institute for Solar and Sustainable Energies

    2014-12-15

    This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanicalmore » characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.« less

  8. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    NASA Astrophysics Data System (ADS)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  9. Design of the polar neutron-imaging aperture for use at the National Ignition Facility.

    PubMed

    Fatherley, V E; Barker, D A; Fittinghoff, D N; Hibbard, R L; Martinez, J I; Merrill, F E; Oertel, J A; Schmidt, D W; Volegov, P L; Wilde, C H

    2016-11-01

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  10. Compression-triggered instabilities of multi-layer systems: From thin elastic membranes to lipid bilayers on flexible substrates

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.

    2013-03-01

    Instabilities are triggered when elastic materials are subjected to compression. We explore new features of two distinct systems of this type. First, we describe a two-layer polymeric system under biaxial compressive stress, which exhibits a repetitive wrinkle-to-fold transition that subsequently generates a hierarchical network of folds during reorganization of the stress field. The folds delineate individual domains, and each domain subdivides into smaller ones over multiple generations. By modifying the boundary conditions and geometry, we demonstrate control over the final network morphology. Some analogies to the venation pattern of leaves are indicated. Second, motivated by the confined configurations common to cells, which are wrapped in lipid bilayer membranes, we study a lipid bilayer, coupled to an elastic sheet, and demonstrate that, upon straining, the confined lipid membrane is able to passively regulate its area. In particular, by stretching the elastic support, the bilayer laterally expands without rupture by fusing adhered lipid vesicles; upon compression, lipid tubes grow out of the membrane plane, thus reducing its area. These transformations are reversible, as we show using cycles of expansion and compression, and closely reproduce membrane processes found in cells during area regulation. The two distinct systems illustrate the influence of the substrate on finite amplitude shape changes, for which we describe the time-dependent shape evolution as the stress relaxes. This talk describes joint research with Manouk Abkarian, Marino Arroyo, Pilnam Kim, Mohammad Rahimi and Margarita Staykova.

  11. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  12. Assessment of suturing in the vertical plane shows the efficacy of the multi-degree-of-freedom needle driver for neonatal laparoscopy.

    PubMed

    Takazawa, Shinya; Ishimaru, Tetsuya; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi

    2013-11-01

    We have developed a thin needle driver with multiple degrees-of-freedom (DOFs) for neonatal laparoscopic surgery. The tip of this needle driver has three DOFs for grasp, deflection and rotation. Our aim was to evaluate the performance of the multi-DOF needle driver in vertical plane suturing. Six pediatric surgeons performed four directional suturing tasks in the vertical plane using the multi-DOF needle driver and a conventional one. Assessed parameters were the accuracy of insertion and exit, the depth of suture, the inclination angle of the needle and the force applied on the model. In left and right direction sutures, the inclination angle of the needle with the multi-DOF needle driver was significantly smaller than that with the conventional one (p = 0.014, 0.042, respectively). In left and right direction sutures, the force for pulling the model with the multi-DOF needle driver was smaller than that with the conventional one (p = 0.036, 0.010, respectively). This study showed that multi-directional suturing on a vertical plane using the multi-DOF needle driver had better needle trajectories and was less invasive as compared to a conventional needle driver.

  13. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  14. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  15. 6TH Saint Petersburg International Conference on Integrated Navigation Systems.

    DTIC Science & Technology

    1999-10-01

    France and Germany. RLGs of different architectures are considered: those with planar and nonplanar resonators, mirrors and totally reflecting...unless the possibility to use magnetic mirrors [21-25], based on the nonreciprocal transverse Kerr effect [23-25], for frequency separation of the...is in the plane of the magnetic mirror and normal to the plane of incidence. The magnetic mirror consists of a very thin transparent layer of

  16. Large-Scale Integration of Solid-State Microfluidic Valves With No Moving Parts

    DTIC Science & Technology

    2005-01-01

    compact and diffuse layer is called outer Helmholtz plane ( OHP ). Potential drop across the diffusion layer is called the zeta potential, ζ. As the...Gouy-Chapman model. This is shown in Fig. 3. The plane at x2 is called the outer Helmholtz plane ( OHP ). Then the total double layer capacitance Cd...Enhanced Electro-Osmotic Pumping With Liquid Bridge and Field Effect Flow Rectification, ” Presented in IEEE MEMS 2004 Conference, Maastricht, The

  17. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hutchins, N.; Hambleton, W. T.; Marusic, Ivan

    2005-10-01

    This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall awake description of turbulent boundary layers.

  18. Interoperability In Multi-Layered Active Defense:The Need For Commonality And Robustness Between Active Defense Weapon Systems

    DTIC Science & Technology

    2016-02-16

    into areas where there is no access to maritime platforms. Sea-based interceptor platforms have the ability to intercept targets at each stage of the...argues that the most efficient concept for integrating active defense weapon systems is a multi- layered architecture with redundant intercept ...faster data transfer and will prevent data loss. The need for almost 100% interception successes is increasing as the threat becomes more

  19. Anisotropy of Earth's D'' layer and stacking faults in the MgSiO3 post-perovskite phase.

    PubMed

    Oganov, Artem R; Martonák, Roman; Laio, Alessandro; Raiteri, Paolo; Parrinello, Michele

    2005-12-22

    The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earth's lowermost mantle (the D'' layer). Its properties explain numerous geophysical observations associated with this layer-for example, the D'' discontinuity, its topography and seismic anisotropy within the layer. Here we use a novel simulation technique, first-principles metadynamics, to identify a family of low-energy polytypic stacking-fault structures intermediate between the perovskite and post-perovskite phases. Metadynamics trajectories identify plane sliding involving the formation of stacking faults as the most favourable pathway for the phase transition, and as a likely mechanism for plastic deformation of perovskite and post-perovskite. In particular, the predicted slip planes are {010} for perovskite (consistent with experiment) and {110} for post-perovskite (in contrast to the previously expected {010} slip planes). Dominant slip planes define the lattice preferred orientation and elastic anisotropy of the texture. The {110} slip planes in post-perovskite require a much smaller degree of lattice preferred orientation to explain geophysical observations of shear-wave anisotropy in the D'' layer.

  20. Exploratory study of in-plane streamline curvature effects on a turbulent boundary layer at a Mach number of 3

    NASA Technical Reports Server (NTRS)

    Bogdonoff, Seymour M.

    1991-01-01

    This report on a program to study in-plane streamline curvature effects in a turbulent boundary layer at a Mach number of 3. The original proposal, for a 3-year program to explore in-plane streamline curvature effects on a supersonic turbulent boundary layer using three-dimensional pressure fields generated by fins and wall geometry, ended after one year. The purpose of these tests was to compare these streamline curvature effects to the more classical two-dimensional curvature generated by wall shape and imposed pressure gradients, previously considered primarily in a plane normal to the floor. The studies were carried out in the Mach number of 3, 8 x 8 inch High Reynolds Number Supersonic Tunnel. The usual surface visualization and mean wall static pressures were supplemented by the use of many small high frequency wall static pressure gauges (Kulites) to get some indication of the amplification of boundary layer disturbances by the in-plane streamline curvature caused by the three-dimensional pressure fields imposed on the boundary layer.

  1. Spectroscopic Studies of Double Beta Decays and MOON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555

    2007-10-12

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.

  2. Electrostatic formation of liquid marbles and agglomerates

    NASA Astrophysics Data System (ADS)

    Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.

    2013-07-01

    We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.

  3. Descriptions of selected digital spatial data for Ravenna Army Ammunition Plant, Ohio

    USGS Publications Warehouse

    Schalk, C.W.; Darner, R.A.

    1998-01-01

    Digital spatial data of Ravenna Army Ammunition Plant (RVAAP), in northeastern Ohio, were compiled or generated from existing maps for U.S. Army Industrial Operations Command. The data are in the Ohio north state-plane coordinate system (North American Datum of 1983) in an ARC/INFO geographic information system format. The data comprise 15 layers, which include boundaries, topography, and natural and cultural features. An additional layer comprises scanned and rectified aerial photographs of RVAAP.

  4. Adaptive Multi-Layer LMS Controller Design and Application to Active Vibration Suppression on a Truss and Proposed Impact Analysis Technique

    DTIC Science & Technology

    2001-06-01

    Setup and Initiation ........................................................ 83 2. Simulation 1 (19 Hz, Y-axis of Node 18, Piezo #2...175 INITIAL DISTRIBUTION LIST ................................................................................... 187 ix...system for the sake of testing and simplicity. The Adaptive Multi-Layered LMS Controller was developed one piece at a time. After initial experimental

  5. Stress state of a piecewise uniform layered space with doubly periodic internal cracks

    NASA Astrophysics Data System (ADS)

    Hakobyan, V. N.; Dashtoyan, L. L.

    2018-04-01

    The present paper deals with the stress state of a piecewise homogeneous plane formed by alternation junction of two distinct strips of equal height manufactured of different materials. There is a doubly periodic system of cracks on the plane. The governing system of singular integral equations of the first kind for the density of the crack dislocation is derived. The solution of the problem in the case where only one of the repeated strips contains one doubly-periodic crack is obtained by the method of mechanical quadratures.

  6. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. I Analysis. II - Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M.-C.; Erdogan, F.

    1983-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429

  7. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  8. A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn

    2011-06-03

    Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Thermoelectric properties of Zn4Sb3/CeFe(4-x)CoxSb12 nano-layered superlattices modified by MeV Si ion beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Minamisawa, R. A.; Muntele, C. I.; Ila, D.

    2014-08-01

    We prepared multilayers of superlattice thin film system with 50 periodic alternating nano-layers of semiconducting half-Heusler β-Zn4Sb3 and skutterudite CeFe2Co2Sb12 compound thin films using ion beam assisted deposition (IBAD) with Au layers deposited on both sides as metal contacts. The deposited multilayer thin films have alternating layers about 5 nm thick. The total thickness of the multilayer system is 275 nm. The superlattices were then bombarded by 5 MeV Si ion at six different fluences to form nano-cluster structures. The film thicknesses and composition were monitored by Rutherford backscattering spectrometry (RBS) before and after MeV ion bombardment. We have measured the thermoelectric efficiency, Figure of Merit ZT, of the fabricated device by measuring the cross plane thermal conductivity by the 3rd harmonic (3ω) method, the cross plane Seebeck coefficient, and the electrical conductivity using the van der Pauw method before and after the MeV ion bombardments. We reached the remarkable thermoelectric Figure of Merit results at optimal fluences.

  10. Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti 2C and Mo 2C MXenes

    DOE PAGES

    Fredrickson, Kurt D.; Anasori, Babak; Seh, Zhi Wei; ...

    2016-12-09

    Here, two-dimensional transition metal carbides and nitrides, also known as MXenes, represent an attractive class of materials for a multitude of electrochemical and other applications. While single sheets of MXenes have been widely studied theoretically, there have been much fewer studies on layered bulk MXenes, which are more representative of multi- or few-layer MXenes used in actual applications. Herein, we investigate the structural and electronic effects of water intercalation, multiple functional groups and applied potential on layered bulk Ti 2C and Mo 2C MXenes using density functional theory. The out-of plane lattice parameter, c, was found to vary significantly withmore » the functional group, and is greatly increased upon intercalation of water. Experimental results confirm the change in lattice constant due to addition or removal of intercalated water. Under zero applied potential, both Ti 2C and Mo 2C were found to be functionalized by one monolayer of O; bare MXenes were never found to be stable, regardless of the applied potential. Applying a potential changed the adsorbate coverage, changing the systems from O covered to H covered at negative potentials and, in some cases, giving rise to a metal–insulator transition. Understanding of the effects of surface functionalization and water intercalation of MXenes provides a better insight of their use for catalytic and electronic applications.« less

  11. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  12. Multi-Stream Saline-Jet Dissection Using a Simple Irrigation System Defines Difficult Tissue Planes

    PubMed Central

    Ng, Philip CH

    2010-01-01

    Introduction: Single-stream hydro-jet dissection is increasingly used in various laparoscopic procedures, but its use requires special equipment. We describe a simple method for using an irrigation system for saline-jet tissue dissection as a useful adjunct prior to adhesiolysis. Material and Methods: Intraabdominal adhesions prolong laparoscopic procedures, because tissue planes are difficult to identify. We performed multi-jet saline dissection (MSSJ) between 2000 and 2009 in more than 500 patients during laparoscopy involving hernias, gallbladders, appendices, and intestinal obstructions. We use a standard suction irrigation probe, which is attached to a 1-liter saline bag with an inflatable cuff around to create a pressure of 250mm Hg to 300mm Hg. In effect, this is the standard setup generally used for irrigation. After using saline dissection, tissue planes can be better defined and the structures can then be separated. Result and Discussion: Using this method, we have successfully identified tissue planes in spite of dense adhesions, and our conversion rates to open have been reduced dramatically. This method is relatively safer than other modalities of tissue dissection, such as diathermy, ultrasonic, blunt or sharp dissection. The disadvantage is that with tissues saturated with saline it becomes more difficult to use diathermy hemostasis. Care has to be exercised in monitoring the temperature and volume of the fluid used. PMID:20529528

  13. Iontophoretic transdermal drug delivery: a multi-layered approach.

    PubMed

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  15. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    PubMed

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  16. Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns

    NASA Astrophysics Data System (ADS)

    Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc

    Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation, telecommunication and multimedia satellite systems. In particular, a new design pattern with very efficient properties in terms of robustness to satellite failures is presented and compared with classical Walker patterns.

  17. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  18. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  19. The Study of Indicatrices of Space Object Coatings in a Controlled Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Koshkin, N.; Burlak, N.; Petrov, M.; Strakhova, S.

    The indicatrices of light scattering by radiation balance coatings used on space objects (SO) were determined in the laboratory experiment in a controlled condition. The laboratory device for the physical simulation of photometric observations of space objects in orbit, which was used in this case to study optical properties of coating samples, is described. The features of light reflection off plane coating samples, including multi-layer insulation (MLI) blankets, metal surfaces coated with several layers of enamel EP-140, special polyacrylate enamel AK-512 and matte finish Tp-CO-2, were determined. The indicated coatings are compound reflectors which exhibit both diffuse and specular reflections. The data obtained are to be used in the development of computer optical-geometric models of space objects or their fragments (space debris) to interpret the photometry results for real space objects.

  20. Lateral conduction infrared photodetector

    DOEpatents

    Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  1. Synthesis and Characterization of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.

    Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.

  2. Cylindrical Organic Solar Cells with Carbon Nanotube Charge Collectors

    NASA Astrophysics Data System (ADS)

    Zakhidov, Dante; Lou, Raymond; Ravi, Nav; Mielczarek, Kamil; Cook, Alexander

    2009-10-01

    Traditional organic photovoltaic devices (OPV) are built on a flat glass substrates coated by ITO. The maximum area covered by the solar cells is limited to a two dimensional plane. Moreover the light absorption is not maximized for a very thin photoactive layer. We suggest here a cylindrical design which has a vertical structure of optical fiber coated by OPV, with light incident from the side and from edge. The sunlight, entering via a smaller area is captured into optical fiber, which allows more sunlight to be absorbed by a cylindrical OPV overcoating with multiple reflections inside the optical fiber. Instead of using brittle ITO as a hole collecting layer in the cylindrical OPV, transparent sheets of multi-walled carbon nanotubes are applied. Their highly conductive nature and 3-D collection of carriers from the P3HT/PCBM photoactive layer allows for increased efficiency over a planar geometry while keeping the device transparent. Aluminum is used as the electron collecting layer and as a cylindrical mirror. [4pt] [1] Ulbricht, et.al, phys. stat. sol. (b) 243, No. 13, 3528 - 3532 (2006) / DOI 10.1002/pssb.200669181

  3. The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model

    NASA Astrophysics Data System (ADS)

    Lord, C. E.; Rongong, J. A.; Hodzic, A.

    2012-06-01

    Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.

  4. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  5. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grin, A.; Lstiburek, J.

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues weremore » discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.« less

  6. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    PubMed

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  8. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  9. SU-F-J-41: Experimental Validation of a Cascaded Linear System Model for MVCBCT with a Multi-Layer EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Y; Rottmann, J; Myronakis, M

    2016-06-15

    Purpose: The purpose of this study was to validate the use of a cascaded linear system model for MV cone-beam CT (CBCT) using a multi-layer (MLI) electronic portal imaging device (EPID) and provide experimental insight into image formation. A validated 3D model provides insight into salient factors affecting reconstructed image quality, allowing potential for optimizing detector design for CBCT applications. Methods: A cascaded linear system model was developed to investigate the potential improvement in reconstructed image quality for MV CBCT using an MLI EPID. Inputs to the three-dimensional (3D) model include projection space MTF and NPS. Experimental validation was performedmore » on a prototype MLI detector installed on the portal imaging arm of a Varian TrueBeam radiotherapy system. CBCT scans of up to 898 projections over 360 degrees were acquired at exposures of 16 and 64 MU. Image volumes were reconstructed using a Feldkamp-type (FDK) filtered backprojection (FBP) algorithm. Flat field images and scans of a Catphan model 604 phantom were acquired. The effect of 2×2 and 4×4 detector binning was also examined. Results: Using projection flat fields as an input, examination of the modeled and measured NPS in the axial plane exhibits good agreement. Binning projection images was shown to improve axial slice SDNR by a factor of approximately 1.4. This improvement is largely driven by a decrease in image noise of roughly 20%. However, this effect is accompanied by a subsequent loss in image resolution. Conclusion: The measured axial NPS shows good agreement with the theoretical calculation using a linear system model. Binning of projection images improves SNR of large objects on the Catphan phantom by decreasing noise. Specific imaging tasks will dictate the implementation image binning to two-dimensional projection images. The project was partially supported by a grant from Varian Medical Systems, Inc. and grant No. R01CA188446-01 from the National Cancer Institute.« less

  10. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    PubMed

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  11. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  12. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  13. Giant magneto-optical Raman effect in a layered transition metal compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe

    2016-02-16

    Here, we report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS 2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique methodmore » to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.« less

  14. Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.

    2005-01-01

    A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.

  15. Multi criteria evaluation for universal soil loss equation based on geographic information system

    NASA Astrophysics Data System (ADS)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  16. Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil.

    PubMed

    Petelet-Giraud, Emmanuelle; Cary, Lise; Cary, Paul; Bertrand, Guillaume; Giglio-Jacquemot, Armelle; Hirata, Ricardo; Aquilina, Luc; Alves, Lincoln Muniz; Martins, Veridiana; Melo, Ana Maria; Montenegro, Suzana; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel

    2018-03-15

    Coastal water resources are a worldwide key socio-environmental issue considering the increasing concentration of population in these areas. Here, we propose an integrative transdisciplinary approach of water resource, water management and water access in Recife (NE Brazil). The present-day water situation is conceptualized as an imbricated multi-layered system: a multi-layered water resource, managed by a multi-layered governance system and used by a multi-layered social population. This allows identifying processes of quantitative, qualitative, and sanitary conflicts between governance and population strategies regarding water supply, as well as the institutional and individual denials of these conflicts. Based on this model, we anticipate future water-related problematic fates. Concerning the water resource system, the rapid groundwater level decrease due to unsustainable water predatory strategies, and the very low recharge rate have drastically modified the aquifer system functioning, inducing hydraulic connection between shallow groundwater (contaminated and locally salty) and deep ones (mostly fresh, with local inherited salinity), threatening the deep strategic water resource. Concerning the water governance system, the investments to increase the capacity storage of surface water, the water regulation agencies and the public/private partnership should shortly improve the water supply and wastewater issue. Nevertheless, the water situation will remain highly fragile due to the expected water demand increase, the precipitation decrease and the sea-level increase. Concerning the water access system, the population variably perceives these current and further effects and the possible mitigation policies, and develops alternative individual strategies. Authorities, policymakers and water managers will have to implement a well-balanced water governance, taking into account the specificities of the PPP, public and private groundwater users, and with a strong political willingness for a sustainable water management to ensure water supply for all the population. In other words, an anticipatory and integrated vision is necessary to reduce the discrepancies in this complex system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Ni, Jincheng; Chu, Jiaru; Huang, Wenhao; Wu, Dong

    2014-12-01

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ˜0.02 to ˜0.6 according to our simulation. The fabricated two series of letters "HELLO" and "USTC" under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems.

  18. Multi-spectral antireflection coating on zinc sulphide simultaneously effective in visible, eye safe laser wave length and MWIR region

    NASA Astrophysics Data System (ADS)

    Awasthi, Suman; Nautiyal, B. B.; Kumar, Rajiv; Bandyopadhyay, P. K.

    2012-09-01

    In recent years multi-spectral device is steadily growing popularity. Multi-spectral antireflection coating effective in visible region for sighting system, laser wavelength for ranging and MWIR region for thermal system can use common objective/receiver optics highly useful for state of art thermal instrumentation. In this paper, design and fabrication of antireflection coating simultaneously effective in visible region (450-650 nm), Eye safe laser wave length (1540 nm) and MWIR region (3.6-4.9 μm) has been reported. Comprehensive search method of design was used and the number of layers in the design was optimised with lowest evaluated merit function studied with respect to various layers. Finally eight-layer design stack was established using hafnium oxide as high index layer and silicon-di-oxide as low index coating material combination. The multilayer stack had been fabricated by using electron beam gun evaporation system in Symphony 9 vacuum coating unit. During layer deposition the substrate was irradiated with End-Hall ion gun. The evaporation was carried out in presence of oxygen and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 85% average transmission from 450 to 650 nm in visible region, 95% transmission at 1540 nm and 96% average transmission from 3.6 to 4.9 μm in MWIR region.

  19. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.

    2016-11-15

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and themore » final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.« less

  20. Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics

    NASA Astrophysics Data System (ADS)

    Kuokstis, E.; Chen, C. Q.; Yang, J. W.; Shatalov, M.; Gaevski, M. E.; Adivarahan, V.; Khan, M. Asif

    2004-04-01

    Photoluminescence (PL) and optical gain (OG) spectra of a-plane GaN layers have been analyzed over a wide range of excitation intensities. The samples were fully coalesced layers grown by metalorganic chemical vapor deposition over r-plane sapphire substrates using epitaxial layer overgrowth (ELOG) and selective area lateral epitaxy (SALE) procedures. ELOG and SALE a-plane samples showed a strong stimulated emission line in backscattering-geometry PL spectra along with extremely high OG coefficient values (in SALE samples more than 2000 cm-1). Structures prepared with natural cleaved facet cavities based on these films were used to demonstrate optically pumped room-temperature lasing.

  1. Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system

    NASA Technical Reports Server (NTRS)

    White, W. J.; Wasa, S.

    1977-01-01

    The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined.

  2. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  3. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  4. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  5. A method for building low loss multi-layer wiring for superconducting microwave devices

    NASA Astrophysics Data System (ADS)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  6. Pre-experiment testing of the Multi Channel Systems 16-channel preamplifier CPA16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patin, J B; Stoyer, M A; Moody, K J

    2003-11-03

    The 16-channel preamplifier model CPA16 from Multi Channel Systems was studied. The CPA16 preamplifier/amplifier module is a candidate to be used as the preamplifiers and amplifiers for the focal plane detectors of the Mass Analyzer of Super Heavy Atoms (MASHA). The equipment used to test the CPA16, the results of testing the CPA16 with a pulser, a mixed {sup 229}Th/{sup 148}Gd source and a {sup 252}Cf source, and a summary of the results will be presented.

  7. Formation of Multi-Layer Structures in Bi3Pb7 Intermetallic Compounds under an Ultra-High Gravitational Field

    NASA Astrophysics Data System (ADS)

    Mashimo, T.; Iguchi, Y.; Bagum, R.; Sano, T.; Sakata, O.; Ono, M.; Okayasu, S.

    2008-02-01

    Ultra-high gravitational field (Mega-gravity field) can promote sedimentation of atoms (diffusion) even in solids, and is expected to form a compositionally-graded structure and/or nonequilibrium phase in multi-component condensed matter. We had achieved sedimentation of substitutional solute atoms in miscible systems (Bi-Sb, In-Pb, etc.). In this study, a mega-gravity experiment at high temperature was performed on a thin-plate sample (0.7 mm in thickness) of the intermetallic compound Bi3Pb7. A visible four-layer structure was produced, which exhibited different microscopic structures. In the lowest-gravity region layer, Bi phase appeared. In the mid layers, a compositionally-graded structure was formed, with differences observed in the powder X-ray diffraction patterns. Such a multi-layer structure is expected to exhibit unique physical properties such as superconductivity.

  8. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  9. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  10. Onboard autonomous mission re-planning for multi-satellite system

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  11. Inter-layer synchronization in non-identical multi-layer networks

    NASA Astrophysics Data System (ADS)

    Leyva, I.; Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S.

    2017-04-01

    Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.

  12. Modeling the transition between upper plane bed regime and sheet flow without an active layer formulation. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Blom, A.

    2015-12-01

    A perusal of the literature on bedload transport revealed that, notwithstanding the large number of studies on bedform morphology performed in the past decades, the upper plane bed regime has not been thoroughly investigated and the distinction between the upper plane bed and sheet flow transport regimes is still poorly defined. Previous experimental work demonstrated that the upper plane bed regime is characterized by long wavelength and small amplitude bedforms that migrate downstream. These bedforms, however, were not observed in experiments on sheet flow transport suggesting that the upper plane bed and the sheet flow are two different regimes. We thus designed and performed experiments in a sediment feed flume in the hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina at Columbia to study the transition from upper plane bed to sheet flow regime. Periodic measurements of water surface and bed elevation, bedform geometry and thicknesses of the bedload layer were performed by eyes, and with cameras, movies and a system of six ultrasonic probes that record the variations of bed elevation at a point over time. We used the time series of bed elevations to determine the probability functions of bed elevation. These probability functions are implemented in a continuous model of river morphodynamics, i.e. a model that does not use the active layer approximation to describe the sediment fluxes between the bedload and the deposit and that should thus be able to capture the details of the vertical and streamwise variation of the deposit grain size distribution. This model is validated against the experimental results for the case of uniform material. We then use the validated model in the attempt to study if and how the spatial distribution of grain sizes in the deposit changes from upper plane bed regime to sheet flow and if these results are influenced by the imposed rates of base level rise.

  13. High power blue laser diodes on semipolar (202¯1¯) GaN substrates

    NASA Astrophysics Data System (ADS)

    Pourhashemi, Seyed Arash

    High power blue laser didoes (LDs), among other applications, show the promise of realizing efficient and reliable solid state lighting systems. Since first GaN optoelectronic devices were demonstrated in early 1990s, GaN LDs were traditionally fabricated on polar c-plane. However in recent years there has been a growing interest in nonpolar and semipolar planes. Nonpolar and semipolar devices offer the prospect of achieving higher efficiencies though elimination or reduction of polarization-related electric fields. In this project I investigated semipolar (202 ¯1 ¯) plane of GaN for blue LDs fabrication. Results include blue LD (Lambda=450 nm) with highest output power, differential quantum efficiency (?d) and external quantum efficiency (EQE) reported for a GaN LD on a semipolar plane to date. Output power of 2.52 W, etad=50% and EQE=39% were achieved in pulsed mode and output power of 1.71 W was achieved in true CW mode. Moreover, use of indium tin oxide (ITO) as cladding layer in order to reduce the thickness of Mg-doped p-GaN layer was investigated. Blue LDs with ITO cladding were demonstrated in this work with highest output power, etad and EQE reported for a GaN LD with transparent conducting oxide (TCO) cladding layer to date. The lack of any natural cleavage plane orthogonal to the in-plane projection of the c-axis on semipolar planes has made Cl2-based dry etch processes the most common way to form mirror facets for semipolar LDs. However, mirror facets fabricated by dry etching can be inclined or rough. For this work, mechanical polishing was used to form LD mirror facets. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high power CW semipolar LDs.

  14. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  15. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  16. The 2016 groundwater flow model for Dane County, Wisconsin

    USGS Publications Warehouse

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along the Yahara River valley and in northeastern Dane County. Layer 12 represents the Mount Simon sandstone as the lowermost model layer. It directly overlies the Precambrian crystalline basement rock, whose top surface forms the lower boundary of the model. The model uses the USGS MODFLOW-NWT finite-difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. MODFLOW-NWT improves the handling of unconfined conditions by smoothing the transition from wet to dry cells. The model explicitly simulates groundwater–surface-water interaction with streamflow routing and lake-level fluctuation. Model input included published and unpublished hydrogeologic data from recent estimates of aquifer hydraulic conductivities. A spatial groundwater recharge distribution was obtained from a recent GIS-based, soil-water-balance model for Dane County. Groundwater withdrawals from pumping were simulated for 572 wells across the entire model domain, which includes Dane County and portions of seven neighboring counties—Columbia, Dodge, Green, Iowa, Jefferson, Lafayette, and Rock. These wells withdrew an average of 60 million gallons per day (mgd) over the 5-year period from 2006 through 2010. Within Dane County, 385 wells were simulated with an average withdrawal rate of 52 mgd.Model calibration used the parameter estimation code PEST, and calibration targets included heads, stream and spring flows, lake levels, and borehole flows. Steady-state calibration focused on the period 2006 through 2010; the transient calibration focused on the 7-week drought period from late May through July 2012. This model represents a significant step forward from previous work because of its finer grid resolution, improved hydrostratigraphic discretization, transient capabilities, and more sophisticated representation of surface-water features and multi-aquifer wells.Potential applications of the model include evaluation of potential sites for and impacts of new high-capacity wells, development of wellhead protection plans, evaluating the effects of changing land use and climate on groundwater, and quantifying the relationships between groundwater and surface water.

  17. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  18. Asymmetric bi-layer PFSA membranes as model systems for the study of water management in the PEMFC.

    PubMed

    Peng, Z; Peng, A Z; Morin, A; Huguet, P; Lanteri, Y; Deabate, S

    2014-10-14

    New bi-layer PFSA membranes made of Nafion® NRE212 and Aquivion™ E79-05s with different equivalent weights are prepared with the aim of managing water repartition in the PEMFC. The membrane water transport properties, i.e. back-diffusion and electroosmosis, as well as the electrochemical performances, are compared to those of state-of-art materials. The actual water content (the inner water concentration profile across the membrane thickness) is measured under operation in the fuel cell by in situ Raman microspectroscopy. The orientation of the equivalent weight gradient with respect to the water external gradient and to the proton flow direction affects the membrane water content, the water transport ability and, thus, the fuel cell performances. Higher power outputs, related to lower ohmic losses, are observed when the membrane is assembled with the lower equivalent weight layer (Aquivion™) at the anode side. This orientation, corresponding to enhanced water transport by back-flow while electroosmosis remains unaffected, results in the higher hydration of the membrane and of the anode active layer during operation. Also, polarization data suggest a different water repartition in the fuel cell along the on-plane direction. Even if the interest in multi-layer PFSA membranes as perspective electrolytes for PEMFCs is not definitively attested, these materials appear to be excellent model systems to establish relationships between the membrane transport properties, the water distribution in the fuel cell and the electrochemical performances. Thanks to the micrometric resolution, in situ Raman microspectroscopy proves to be a unique tool to measure the actual hydration of the membrane at the surface swept by the hydrated feed gases during operation, so that it can be used as a local probe of the water concentration evolution along the gas distribution channels according to changing working conditions.

  19. Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David F.

    Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA)more » representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and is acknowledged as the originator of the concept underpinning a recent patent grant (Aldridge and Bartel, 2016) involving electromagnetic wave scattering.« less

  20. The effects of the laminar/turbulent boundary layer states on the development of a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Foss, J. F.

    1977-01-01

    The effect of the laminar/turbulent boundary layer state on the mean and rms velocities of a developing plane mixing layer was investigated. The use of commonly accepted nondimensional representations of the data confirm (at least) an approximately self-preserving condition. It is suggested that the effects of the laminar/turbulent initial condition persist in the self-preserving region.

  1. Photonic band gaps from a stack of right- and left-hand chiral photonic crystal layers.

    PubMed

    Gevorgyan, A H

    2012-02-01

    In the present paper we investigated the optical properties of a stack of right- and left- hand chiral photonic crystal layers. The problem is solved by Ambartsumian's layer addition modified method. We investigated the reflection spectra peculiarities of this system and showed that in contrast to a single cholesteric liquid crystal (CLC) layer this system has multiple photonic band gaps (PBGs) (at light normal incidence). We showed that this system has unique polarization properties, particularly the eigenpolarizations (EPs) of the system are degenerated (i.e., the two EPs coincide) for an even number of layers and, in contrast to ordinary gyrotropic systems, the polarization plane rotation decreases if the system thickness is increased, the rotation sign depends on the first sublayer chirality sign, the system is very sensitive to the change of the sublayer number in the system, etc. We also investigated the influence of sublayer thicknesses, incidence angle, the sublayer local dielectric anisotropies, the sublayer helix pitches on the reflection peculiarities, and other optical parameters of the system. © 2012 American Physical Society

  2. Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping

    2008-05-01

    Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.

  3. Longitudinal analysis on the development of hospital quality management systems in the Netherlands.

    PubMed

    Dückers, Michel; Makai, Peter; Vos, Leti; Groenewegen, Peter; Wagner, Cordula

    2009-10-01

    Many changes have been initiated in the Dutch hospital sector to optimize health-care delivery: national agenda-setting, increased competition and transparency, a new system of hospital reimbursement based on diagnosis-treatment combinations, intensified monitoring of quality and a multi-layered organizational development programme based on quality improvement collaboratives. The objective is to answer the question as to whether these changes were accompanied by a further development of hospital quality management systems and to what extent did the development within the multi-layered programme hospitals differ from that in other hospitals. Longitudinal data were collected in 1995, 2000, 2005 and 2007 using a validated questionnaire. Descriptive analyses and multi-level modelling were applied to test whether: (1) quality management system development stages in hospitals differ over time, (2) development stages and trends differ between hospitals participating or not participating in the multi-layered programme and (3) hospital size has an effect on development stage. Dutch hospital sector between 1995 and 2007. Hospital organizations. Changes through time. Quality management system development stage. Since 1995, hospital quality management systems have reached higher development levels. Programme participants have developed their quality management system more rapidly than have non-participants. However, this effect is confounded by hospital size. Study results suggest that the combination of policy measures at macro level was accompanied by an increase in hospital size and the further development of quality management systems. Hospitals are entering the stage of systematic quality improvement.

  4. Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release

    PubMed Central

    Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde

    2016-01-01

    The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138

  5. Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru

    2016-12-15

    Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.

  6. Effect of heat treatment on interface driven magnetic properties of CoFe films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kr.; Hsu, Jen-Hwa

    2017-06-01

    We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.

  7. Evaluation of multi-layer cloud detection based on MODIS CO2-slicing algorithm with CALIPSO-CloudSat measurements.

    NASA Astrophysics Data System (ADS)

    Viudez-Mora, A.; Kato, S.; Smith, W. L., Jr.; Chang, F. L.

    2016-12-01

    Knowledge of the vertical cloud distribution is important for a variety of climate and weather applications. The cloud overlapping variations greatly influence the atmospheric heating/cooling rates, with implications for the surface-troposphere radiative balance, global circulation and precipitation. Additionally, an accurate knowledge of the multi-layer cloud distribution in real-time can be used in applications such safety condition for aviation through storms and adverse weather conditions. In this study, we evaluate a multi-layered cloud algorithm (Chang et al. 2005) based on MODIS measurements aboard Aqua satellite (MCF). This algorithm uses the CO2-slicing technique combined with cloud properties determined from VIS, IR and NIR channels to locate high thin clouds over low-level clouds, and retrieve the τ of each layer. We use CALIPSO (Winker et. al, 2010) and CloudSat (Stephens et. al, 2002) (CLCS) derived cloud vertical profiles included in the C3M data product (Kato et al. 2010) to evaluate MCF derived multi-layer cloud properties. We focus on 2 layer overlapping and 1-layer clouds identified by the active sensors and investigate how well these systems are identified by the MODIS multi-layer technique. The results show that for these multi-layered clouds identified by CLCS, the MCF correctly identifies about 83% of the cases as multi-layer. However, it is found that the upper CTH is underestimated by about 2.6±0.4 km, because the CO2-slicing technique is not as sensitive to the cloud physical top as the CLCS. The lower CTH agree better with differences found to be about 1.2±0.5 km. Another outstanding issue for the MCF approach is the large number of multi-layer false alarms that occur in single-layer conditions. References: Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62. Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115. Stephens, G. L., et al. (2002), The CloudSat mission and A-Train, Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91.

  8. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon

    2014-05-01

    In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.

  9. Out-of-plane permeability of multilayer 0°/90° non-crimp fabrics

    NASA Astrophysics Data System (ADS)

    Fang, Liangchao; Wu, Wenyu; Xu, Chunting; Zhang, Hui

    2018-03-01

    Layer shift is the main source of the variations in permeability values for multilayer fabrics. This phenomenon could change the flow path and cause inadequate infiltration. In this paper, the out-of-plane permeability of multilayer 0°/90° non-crimp fabrics was analyzed statistically. Based on the prediction models of 2-layer fabrics, every two adjacent layers were regarded as porous media with different permeabilities. The out-of-plane permeability of multilayer fabrics was then modeled with the electrical resistance analogy. Analytical results were compared with experiment data. And the effect of number of layer on permeability was thoroughly researched based on the statistical point of view.

  10. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  11. Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2005-03-01

    This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.

  12. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  13. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  14. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    PubMed

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  15. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  16. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  17. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant.

    PubMed

    Hung, Pao Chen; Lo, Wei Chiao; Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been

    2011-01-01

    A laboratory-scale multi-layer system was developed for the adsorption of PCDD/Fs from gas streams at various operating conditions, including gas flow rate, operating temperature and water vapor content. Excellent PCDD/F removal efficiency (>99.99%) was achieved with the multi-layer design with bead-shaped activated carbons (BACs). The PCDD/F removal efficiency achieved with the first layer adsorption bed decreased as the gas flow rate was increased due to the decrease of the gas retention time. The PCDD/F concentrations measured at the outlet of the third layer adsorption bed were all lower than 0.1 ng I-TEQ Nm⁻³. The PCDD/Fs desorbed from BAC were mainly lowly chlorinated congeners and the PCDD/F outlet concentrations increased as the operating temperature was increased. In addition, the results of pilot-scale experiment (real flue gases of an iron ore sintering plant) indicated that as the gas flow rate was controlled at 15 slpm, the removal efficiencies of PCDD/F congeners achieved with the multi-layer reactor with BAC were better than that in higher gas flow rate condition (20 slpm). Overall, the lab-scale and pilot-scale experiments indicated that PCDD/F removal achieved by multi-layer reactor with BAC strongly depended on the flow rate of the gas stream to be treated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  19. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Nicoleta Georgiana, E-mail: nicoleta.apostol@infim.ro

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics aremore » covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.« less

  20. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers.

    PubMed

    Tan, Chih-Shan; Huang, Michael Hsuan-Yi

    2018-05-21

    To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Techno-economic performance evaluation of solar tower plants with integrated multi-layered PCM thermocline thermal energy storage - A comparative study to conventional two-tank storage systems

    NASA Astrophysics Data System (ADS)

    Guedéz, Rafael; Ferruzza, Davide; Arnaudo, Monica; Rodríguez, Ivette; Perez-Segarra, Carlos D.; Hassar, Zhor; Laumert, Björn

    2016-05-01

    Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.

  2. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  3. Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's Group Team; Hui Pan's Group Team

    With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number  = +/- 1 whereas additional phases with Chern number  = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from  = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.

  4. Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jinno, Daiki; Otsuki, Shunya; Sugimori, Shogo; Daicho, Hisayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2018-02-01

    To reduce the number of threading dislocations (TDs) in nonpolar a-plane GaN (a-GaN) epi-layers grown on flat r-plane sapphire substrates (r-FSS), we investigated the effects on the crystalline quality of the a-GaN epi-layers of high-density patterned r-plane sapphire substrates (r-HPSS), the patterns of which were placed at intervals of several hundred nanometers. Two types of r-HPSS, the patterns of which had diameters and heights on the order of several hundred nanometers (r-NHPSS) or several micrometers (r-MHPSS), were prepared with conventional r-FSS. The effect of these r-HPSS on the a-GaN epi-layers was demonstrated by evaluating the surface morphology and the crystalline quality of the epi-layers. The surfaces of the a-GaN epi-layer grown on r-FSS and r-NHPSS were pit-free and mirror-like, whereas the surface of the a-GaN epi-layer grown on r-MHPSS was very rough due to the large, irregular GaN islands that grew on the patterns, mainly at the initial growth stage. The crystalline quality of the a-GaN epi-layer grown on r-NHPSS was better than that of the a-GaN epi-layer grown on r-FSS. We confirmed that there were fewer TDs in the a-GaN epi-layer grown on r-NHPSS than there were in the a-GaN epi-layer grown on r-FSS. The TDs propagating to the surface in a-GaN epi-layer grown on r-NHPSS were mainly generated on the flat sapphire regions between the patterns. Interestingly, it was also found that the TDs that propagated to the surface concentrated with a periodic pitch along the c-axis direction. The TD densities of a-GaN epi-layers grown on r-FSS and r-NHPSS were estimated to be approximately 5.0 × 1010 and 1.5 × 109 cm-2, respectively. This knowledge will contribute to the further development of a-GaN epi-layers for high-performance devices.

  5. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    NASA Astrophysics Data System (ADS)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  6. Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Chuss, David T.; Moseley, Samuel

    2006-01-01

    Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.

  7. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  8. Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Walker, J. D. A.

    1989-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.

  9. Interface spins in polycrystalline FeMn/Fe bilayers with small exchange bias

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.

    2018-04-01

    The magnetic moments at the interface between ferromagnetic and antiferromagnetic layers play a central role in exchange biased systems, but their behavior is still not completely understood. In this work, the FeMn/Fe interface in polycrystalline thin films has been studied using conversion electron Mössbauer spectroscopy (CEMS), magneto-optic Kerr effect (MOKE) and micromagnetic simulations. Samples were prepared with 57Fe layers at two distinct depths in order to probe the interface and bulk behaviors. At the equilibrium, the interface moments are randomly oriented while the bulk of the Fe layer has an in-plane magnetic anisotropy. Several models for the interface and anisotropies of the layers were used in the simulations of spin configurations and hysteresis loops. From the whole set of simulations, one can conclude the direct analysis of hysteresis curves is not enough to infer whether the interface has a configuration with spins tilted out of the film plane at equilibrium since different choices of parameters provide similar curves. The simulations have also shown the occurrence of spin clusters at the interface is compatible with CEMS and MOKE measurements.

  10. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  11. Centaurus Star-Forming Field Revisited

    NASA Astrophysics Data System (ADS)

    Kaltcheva, Nadia; Golev, V.; Moran, K.

    2013-01-01

    We analyze the structure of the star-forming field in Centaurus based on intermediate-band uvbyβ photometry of a large sample of O-B9 -stars. The derived precise homogeneous photometric distances and color excesses allow us to reveal spatially coherent groups and layers and to revise the membership and distance of the Cen OB1 association. In particular, we are seeking a correlation between the distribution of the massive OB-stars and that of ionized and neutral interstellar material that would allow a better understanding of the interactions among various ISM components in the Galactic stars-forming fields. For the purpose we combine the photometric findings with several multi-wavelength surveys (Wisconsin H-Alpha Mapper Northern Sky Survey, Southern H-Alpha Sky Survey Atlas, MSX Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and Southern Galactic Plane Survey). This allows us to map the OB-star distribution together with the super-shells of neutral and ionized material located toward Centaurus. Acknowledgments. This work was supported by NSF grant AST-0708950.

  12. Secure coherent optical multi-carrier system with four-dimensional modulation space and Stokes vector scrambling.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun

    2015-06-15

    A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.

  13. How does the canine paw pad attenuate ground impacts? A multi-layer cushion system.

    PubMed

    Miao, Huaibin; Fu, Jun; Qian, Zhihui; Ren, Luquan; Ren, Lei

    2017-12-15

    Macroscopic mechanical properties of digitigrade paw pads, such as non-linear elastic and variable stiffness, have been investigated in previous studies; however, little is known about the micro-scale structural characteristics of digitigrade paw pads, or the relationship between these characteristics and the exceptional cushioning of the pads. The digitigrade paw pad consists of a multi-layered structure, which is mainly comprised of a stratified epithelium layer, a dermis layer and a subcutaneous layer. The stratified epithelium layer and dermal papillae constitute the epidermis layer. Finite element analyses were carried out and showed that the epidermis layer effectively attenuated the ground impact across impact velocities of 0.05-0.4 m/s, and that the von Mises stresses were uniformly distributed in this layer. The dermis layer encompassing the subcutaneous layer can be viewed as a hydrostatic system, which can store, release and dissipate impact energy. All three layers in the paw pad work as a whole to meet the biomechanical requirements of animal locomotion. These findings provide insights into the biomechanical functioning of digitigrade paw pads and could be used to facilitate bio-inspired, ground-contacting component development for robots and machines, as well as contribute to footwear design. © 2017. Published by The Company of Biologists Ltd.

  14. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  15. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less

  16. An improved multi-exposure approach for high quality holographic femtosecond laser patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chenchu; Hu, Yanlei, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn; Li, Jiawen, E-mail: huyl@ustc.edu.cn, E-mail: jwl@ustc.edu.cn

    High efficiency two photon polymerization through single exposure via spatial light modulator (SLM) has been used to decrease the fabrication time and rapidly realize various micro/nanostructures, but the surface quality remains a big problem due to the speckle noise of optical intensity distribution at the defocused plane. Here, a multi-exposure approach which used tens of computer generate holograms successively loaded on SLM is presented to significantly improve the optical uniformity without losing efficiency. By applying multi-exposure, we found that the uniformity at the defocused plane was increased from ∼0.02 to ∼0.6 according to our simulation. The fabricated two series ofmore » letters “HELLO” and “USTC” under single-and multi-exposure in our experiment also verified that the surface quality was greatly improved. Moreover, by this method, several kinds of beam splitters with high quality, e.g., 2 × 2, 5 × 5 Daman, and complex nonseperate 5 × 5, gratings were fabricated with both of high quality and short time (<1 min, 95% time-saving). This multi-exposure SLM-two-photon polymerization method showed the promising prospect in rapidly fabricating and integrating various binary optical devices and their systems.« less

  17. IMRT sequencing for a six-bank multi-leaf system.

    PubMed

    Topolnjak, R; van der Heide, U A; Lagendijk, J J W

    2005-05-07

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 degrees . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments.

  18. Interactive orbital proximity operations planning system instruction and training guide

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1994-01-01

    This guide instructs users in the operation of a Proximity Operations Planning System. This system uses an interactive graphical method for planning fuel-efficient rendezvous trajectories in the multi-spacecraft environment of the space station and allows the operator to compose a multi-burn transfer trajectory between orbit initial chaser and target trajectories. The available task time (window) of the mission is predetermined and the maneuver is subject to various operational constraints, such as departure, arrival, spatial, plume impingement, and en route passage constraints. The maneuvers are described in terms of the relative motion experienced in a space station centered coordinate system. Both in-orbital plane as well as out-of-orbital plane maneuvering is considered. A number of visual optimization aids are used for assisting the operator in reaching fuel-efficient solutions. These optimization aids are based on the Primer Vector theory. The visual feedback of trajectory shapes, operational constraints, and optimization functions, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool is an example of operator-assisted optimization of nonlinear cost functions.

  19. Improved HgCdTe detectors with novel antireflection coating

    NASA Astrophysics Data System (ADS)

    Babu, Sachi R.; Hu, Kelley; Manthripragada, Sridhar; Martineau, Robert J.; Kotecki, C. A.; Peters, F. A.; Burgess, A. S.; Krebs, Danny J.; Mott, David B.; Ewin, Audrey J.; Miles, A.; Nguyen, Trang L.; Shu, Peter K.

    1996-10-01

    The composite infrared spctrometer (CIRS) is an important instrument for the upcoming Cassini mission for sensing infrared (IR) radiation from the Saturanian planetary system. We have delivered a linear, ten element, mercury cadmium telluride (HgCdTe) photoconductive detector array for use on focal plane 3 (FP3), which is responsible for detecting radiation from the 9.1 micrometer to 16.6 micrometer wavelength range. Reliable HgCdTe detectors require robust passivation, a low-stress zinc sulfide (ZnS) anti-reflection (AR) coating with good adhesion, and a proper optical cavity design to smooth out the resonance in the detector spectral response. During the development of CIRS flight array, we have demonstrated the potential of using an in-situ interfacial layer, such as SiN(subscript x), between ZnS and the anodic oxide. Such an interfacial layer drastically improves the adhesion between the ZnS and oxide, without degrading the minority carrier lifetime. We have also demonstrated the feasibility of applying a SiN(subscript x) 'rain coat' layer over the ZnS to prevent moisture and other chemicals from attacking the AR coating, thus improving the long term reliability. This also enables device operation in a hazardous environment. The alumina/epoxy/HgCdTe/oxide/ZnS structure is a complicated multi-cavity optical system. We have developed an extensive device simulation, which enables us to make the optimal choice of individual cavity thickness for minimizing the resonance and maximizing the quantum efficiency. We have also used 0.05 micrometer alumina powder loaded epoxy to minimize the reflections at the epoxy/HgCdTe interface, thus minimizing the resonance.

  20. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  1. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  2. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  3. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  4. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  5. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  6. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  7. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  8. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles.

    PubMed

    Carles, R; Bayle, M; Bonafos, C

    2018-04-27

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  9. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  10. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe

    2017-06-01

    Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.

  11. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  12. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali

    2017-12-15

    Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.

  13. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates

    DOE PAGES

    Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...

    2016-02-01

    The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less

  14. Studies of Low-Current Back-Discharge in Point-Plane Geometry with Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Jaworek, Anatol; Rajch, Eryk; Krupa, Andrzej; Czech, Tadeusz; Lackowski, Marcin

    2006-01-01

    The paper presents results of spectroscopic investigations of back-discharges generated in the point-plane electrode geometry in ambient air at atmospheric pressure, with the plane electrode covered with a dielectric layer. Fly ash from an electrostatic precipitator of a coal-fired power plant was used as the dielectric layer in these investigations. The discharges for positive and negative polarities of the needle electrode were studied by measuring optical emission spectra at two regions of the discharge: near the needle electrode and dielectric layer surface. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. The back-arc discharge was of particular interest in these studies due to its detrimental effects it causes in electrostatic precipitators.

  15. Coupling structures for out-of-plane coupling in optical PCBs

    NASA Astrophysics Data System (ADS)

    Hendrickx, N.; Van Erps, J.; Bosman, E.; Thienpont, H.; Van Daele, P.

    2008-04-01

    Coupling structures are critical building blocks that have a big influence on the performance of board-level optical interconnections. 45° micro-mirrors deflect the light beam over 90° and are used for out-of-plane coupling in single layer structures and out-of-plane and inter-plane coupling in multilayer structures. Two different approaches are being presented: a micro-mirror that is directly integrated with the multimode waveguides and a discrete coupling element that can be plugged into a cavity in the optical layer. The advantage of the integrated micro-mirror is the high achievable alignment accuracy. The discrete couplers on the other hand have the advantage that they can be characterized and measured prior to the insertion into the optical layer. Both mirror configurations are discussed and the performance is evaluated at wavelength 850nm.

  16. Apparatus and methods for memory using in-plane polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Junwei; Chang, Kai; Ji, Shuai-Hua

    A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process ismore » non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.« less

  17. Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui

    2018-06-01

    Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.

  18. Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer.

    PubMed

    Cong, W T; Tang, Z; Zhao, X G; Chu, J H

    2015-03-23

    Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers.

  19. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    DOE PAGES

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; ...

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr 2-xLa xNb 2O 7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO 3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr 2Nb 2O 7 parent structure. We also compare our experimental results with two variations of the minimum-limit modelmore » for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less

  20. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  1. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  2. Magnetic and thermodynamic properties of a ferromagnetic mixed-spin (1/2, 1, 3/2) three-layer film superlattice

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Ma, Ye; Jiang, Wei; Si, Xiu-li; Gao, Wei-chun

    2018-07-01

    Using the Monte Carlo simulation, we have studied the magnetic and thermodynamic properties of a ferromagnetic three-layer film mixed-spin (1/2, 1, 3/2) system. We have discussed the influence of intralayer and interfacial exchange couplings, film thickness, magnetic atom concentration and temperature on the magnetization of the superlattice system, magnetic susceptibility, internal energy and specific heat of the system. The phase diagrams in various parameters planes are obtained. Loads of interesting magnetic behaviors have been found, such as double-peak and triple-peak phenomena in the susceptibility and specific heat curves as well as obvious finite size effects for small layer thickness. Through a comparison, there is qualitatively a good agreement between our results and those of other theoretical and experimental studies.

  3. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Yin, Xiao

    2016-06-01

    A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.

  4. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  5. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  6. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  7. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media

    PubMed Central

    Tsamis, Alkiviadis; Phillippi, Julie A.; Koch, Ryan G.; Pasta, Salvatore; D'Amore, Antonio; Watkins, Simon C.; Wagner, William R.; Gleason, Thomas G.; Vorp, David A.

    2013-01-01

    It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The outer and inner-media of CTRL-ATA, BAV-ATAA and TAV-ATAA were imaged using multi-photon microscopy in the Z-RAD and Θ-RAD planes to observe collagen and elastin. Micrographs were processed using an image-based tool to quantify several micro-architectural characteristics. In the outer-media of BAV-ATAA, elastin was more undulated and less aligned about the Θ-axis when compared with CTRL-ATA, which is consistent with increased tensile stretch at inflection point of Θ-strips of adventitial-medial half of BAV-ATAA (1.28) when compared with CTRL-ATA (1.13). With increasing age, collagen became more undulated about the Z-axis within the outer-media of TAV-ATAA, and elastin became more oriented in the Z-axis and collagen less radially-oriented within the inner-media of TAV-ATAA. This discrepancy in the micro-architecture with fibers in the inner layers being more stretched and with disrupted radially-oriented components than fibers in the outer layers may be associated with the development, progression and vascular remodeling in aneurysms arising in TAV patients. PMID:24075403

  8. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media.

    PubMed

    Tsamis, Alkiviadis; Phillippi, Julie A; Koch, Ryan G; Pasta, Salvatore; D'Amore, Antonio; Watkins, Simon C; Wagner, William R; Gleason, Thomas G; Vorp, David A

    2013-11-15

    It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The outer and inner-media of CTRL-ATA, BAV-ATAA and TAV-ATAA were imaged using multi-photon microscopy in the Z-RAD and Θ-RAD planes to observe collagen and elastin. Micrographs were processed using an image-based tool to quantify several micro-architectural characteristics. In the outer-media of BAV-ATAA, elastin was more undulated and less aligned about the Θ-axis when compared with CTRL-ATA, which is consistent with increased tensile stretch at inflection point of Θ-strips of adventitial-medial half of BAV-ATAA (1.28) when compared with CTRL-ATA (1.13). With increasing age, collagen became more undulated about the Z-axis within the outer-media of TAV-ATAA, and elastin became more oriented in the Z-axis and collagen less radially-oriented within the inner-media of TAV-ATAA. This discrepancy in the micro-architecture with fibers in the inner layers being more stretched and with disrupted radially-oriented components than fibers in the outer layers may be associated with the development, progression and vascular remodeling in aneurysms arising in TAV patients. © 2013 Elsevier Ltd. All rights reserved.

  9. Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging.

    PubMed

    Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.

  10. Computational insight into the capacitive performance of graphene edge planes

    DOE PAGES

    Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...

    2017-02-01

    Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less

  11. Synthesis, crystal structure and optical properties of two new layered cadmium iodates: Cd(IO{sub 3})X (X=Cl, OH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bing-Ping, E-mail: ybp@fjirsm.ac.cn; Mao, Jiang-Gao

    Systematic explorations of new compounds in the cadmium iodate system by hydrothermal reactions led to two layered iodates, namely, Cd(IO{sub 3})X (X=Cl, OH). Cd(IO{sub 3})Cl crystallizes in the orthorhombic space group Cmca (No. 64) whereas Cd(IO{sub 3})(OH) crystallizes in the orthorhombic space group Pnma (No. 62). Cd(IO{sub 3})Cl displays a unique double layered structure composed of {sup 1}{sub ∞}[Cd−O{sub 3}Cl]{sub n} chains. Cadmium octahedrons form a 1D chain along the a-axis through edge sharing, and such chains are further interconnected via IO{sub 3} groups to form a special double layer on (020) plane. Cd(IO{sub 3})(OH) also exhibits a layered structuremore » that is composed of cadmium cations, IO{sub 3} groups and hydroxyl ions. Within a layer, chains of CdO{sub 6} edge-shared octahedra are observed along the b-axis. And these chains are connected by IO{sub 3} groups into a layer parallel to the bc plane. Spectroscopic characterizations, elemental analysis, and thermogravimetric analysis for the reported two compounds are also presented. - Graphical abstract: Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. Cd(IO{sub 3})Cl features a unique double layered structure whereas Cd(IO{sub 3})(OH) displays an ordinary layered structure. - Highlights: • Two new layered cadmium iodates Cd(IO{sub 3})X (X=Cl, OH) are reported. • Cd(IO{sub 3})Cl features a unique double layered structure. • Cd(IO{sub 3})(OH) displays an ordinary layered structure. • The spectroscopic and thermal properties have been studied in detail.« less

  12. Research and development of a control system for multi axis cooperative motion based on PMAC

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  13. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  14. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.

    PubMed

    Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J

    2018-06-13

    Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.

  15. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    PubMed

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  16. Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films

    DOE PAGES

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; ...

    2014-11-06

    The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less

  17. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

    NASA Astrophysics Data System (ADS)

    Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li

    2016-09-01

    Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).

  18. Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.

    PubMed

    Zhang, Baochang; Yang, Yun; Chen, Chen; Yang, Linlin; Han, Jungong; Shao, Ling

    2017-10-01

    Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.

  19. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    NASA Astrophysics Data System (ADS)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  20. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  1. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    PubMed

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  2. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  3. Design and proof of concept for multi degree of freedom hydrostatically coupled dielectric elastomer actuators with roto-translational kinematics for object handling

    NASA Astrophysics Data System (ADS)

    De Acutis, A.; Calabrese, L.; Bau, A.; Tincani, V.; Pugno, N. M.; Bicchi, A.; De Rossi, D. E.

    2018-07-01

    In this article we present an upgraded design of the existing push–pull hydrostatically coupled dielectric elastomer actuator (HC-DEA) for use in the field of soft manipulators. The new design has segmented electrodes, which stand as four independent elements on the active membrane of the actuator. When properly operated, the actuator can generate both out of plane and in-plane motions resulting in a multi-degrees of freedom soft actuator able to exert both normal pushes (like a traditional HC-DEA) and tangential thrusts. This novel design makes the actuator suitable for delicate flat object transportation. In order to use the actuator in soft systems, we experimentally characterized its electromechanical transduction and modeled its contact mechanics. Finally, we show that the proposed actuator can be employed as a modular unit to develop active surfaces for flat object roto-translation.

  4. General image method in a plane-layered elastostatic medium

    NASA Technical Reports Server (NTRS)

    Fares, N.; Li, V. C.

    1988-01-01

    The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.

  5. Optimization, Characterization and Commissioning of a Novel Uniform Scanning Proton Beam Delivery System

    NASA Astrophysics Data System (ADS)

    Mascia, Anthony Edward

    Purpose: To develop and characterize the required detectors for uniform scanning optimization and characterization, and to develop the methodology and assess their efficacy for optimizing, characterizing and commissioning a novel proton beam uniform scanning system. Methods and Materials: The Multi Layer Ion Chamber (MLIC), a 1D array of vented parallel plate ion chambers, was developed in-house for measurement of longitudinal profiles. The Matrixx detector (IBA Dosimetry, Germany) and XOmat V film (Kodak, USA) were characterized for measurement of transverse profiles. The architecture of the uniform scanning system was developed and then optimized and characterized for clinical proton radiotherapy. Results: The MLIC detector significantly increased data collection efficiency without sacrificing data quality. The MLIC was capable of integrating an entire scanned and layer stacked proton field with one measurement, producing results with the equivalent spatial sampling of 1.0mm. The Matrixx detector and modified 1D water phantom jig improved data acquisition efficiency and complemented the film measurements. The proximal, central and distal proton field planes were measured using these methods, yielding better than 3% uniformity. The binary range modulator was programmed, optimized and characterized such that the proton field ranges were separated by approximately 5.0mm modulation width and delivered with an accuracy of 1.0mm in water. Several wobbling magnet scan patterns were evaluated and the raster pattern, spot spacing, scan amplitude and overscan margin were optimized for clinical use. Conclusion: Novel detectors and methods are required for clinically efficient optimization and characterization of proton beam scanning systems. Uniform scanning produces proton beam fields that are suited for clinical proton radiotherapy.

  6. Graphene-coated coupling coil for AC resistance reduction

    DOEpatents

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  7. Near-field Pressure Distributions to Enhance Sounds Transmission into Multi-layer Materials

    DTIC Science & Technology

    2013-12-01

    all contributed in some way to this document, whether they wanted to or not. Jelena Paripovic, Jake Miller, Chris Watson, and Daniel Woods worked on the...speeds labeled. . . . . . . . . . . . . . . . . . . . . . . . 97 5.10 Intensity in the center of the middle (surrogate) layer of the plastic - bounded...surrogate system. . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.11 Intensity in the middle layer of middle (surrogate) layer of the plastic

  8. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  9. Framework of distributed coupled atmosphere-ocean-wave modeling system

    NASA Astrophysics Data System (ADS)

    Wen, Yuanqiao; Huang, Liwen; Deng, Jian; Zhang, Jinfeng; Wang, Sisi; Wang, Lijun

    2006-05-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed. The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  10. Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3.

    PubMed

    Xue, Fei; Zhang, Junwei; Hu, Weijin; Hsu, Wei-Ting; Han, Ali; Leung, Siu-Fung; Huang, Jing-Kai; Wan, Yi; Liu, Shuhai; Zhang, Junli; He, Jr-Hau; Chang, Wen-Hao; Wang, Zhong Lin; Zhang, Xixiang; Li, Lain-Jong

    2018-05-22

    Piezoelectric materials have been widely used for sensors, actuators, electronics, and energy conversion. Two-dimensional (2D) ultrathin semiconductors, such as monolayer h-BN and MoS 2 with their atom-level geometry, are currently emerging as new and attractive members of the piezoelectric family. However, their piezoelectric polarization is commonly limited to the in-plane direction of odd-number ultrathin layers, largely restricting their application in integrated nanoelectromechanical systems. Recently, theoretical calculations have predicted the existence of out-of-plane and in-plane piezoelectricity in monolayer α-In 2 Se 3 . Here, we experimentally report the coexistence of out-of-plane and in-plane piezoelectricity in monolayer to bulk α-In 2 Se 3 , attributed to their noncentrosymmetry originating from the hexagonal stacking. Specifically, the corresponding d 33 piezoelectric coefficient of α-In 2 Se 3 increases from 0.34 pm/V (monolayer) to 5.6 pm/V (bulk) without any odd-even effect. In addition, we also demonstrate a type of α-In 2 Se 3 -based flexible piezoelectric nanogenerator as an energy-harvesting cell and electronic skin. The out-of-plane and in-plane piezoelectricity in α-In 2 Se 3 flakes offers an opportunity to enable both directional and nondirectional piezoelectric devices to be applicable for self-powered systems and adaptive and strain-tunable electronics/optoelectronics.

  11. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex

    PubMed Central

    Zilles, Karl; Palomero-Gallagher, Nicola

    2017-01-01

    We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785

  12. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

    PubMed

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

    2017-07-03

    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.

  13. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    PubMed

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.

  14. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    PubMed Central

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  15. The equilibrium and stability of the gaseous component of the galaxy, 2

    NASA Technical Reports Server (NTRS)

    Kellman, S. A.

    1971-01-01

    A time-independent, linear, plane and axially-symmetric stability analysis was performed on a self-gravitating, plane-parallel, isothermal layer of nonmagnetic, nonrotating gas. The gas layer was immersed in a plane-stratified field isothermal layer of stars which supply a self-consistent gravitational field. Only the gaseous component was perturbed. Expressions were derived for the perturbed gas potential and perturbed gas density that satisfied both the Poisson and hydrostatic equilibrium equations. The equation governing the size of the perturbations in the mid-plane was found to be analogous to the one-dimensional time-independent Schrodinger equation for a particle bound by a potential well, and with similar boundary conditions. The radius of the neutral state was computed numerically and compared with the Jeans' and Ledoux radius. The inclusion of a rigid stellar component increased the Ledoux radius, though only slightly. Isodensity contours of the neutrual or marginally unstable state were constructed.

  16. Fast voltage-sensitive dye imaging of excitatory and inhibitory synaptic transmission in the rat granular retrosplenial cortex.

    PubMed

    Nixima, Ken'ichi; Okanoya, Kazuo; Ichinohe, Noritaka; Kurotani, Tohru

    2017-09-01

    Rodent granular retrosplenial cortex (GRS) has dense connections between the anterior thalamic nuclei (ATN) and hippocampal formation. GRS superficial pyramidal neurons exhibit distinctive late spiking (LS) firing property and form patchy clusters with prominent apical dendritic bundles. The aim of this study was to investigate spatiotemporal dynamics of signal transduction in the GRS induced by ATN afferent stimulation by using fast voltage-sensitive dye imaging in rat brain slices. In coronal slices, layer 1a stimulation, which presumably activated thalamic fibers, evoked propagation of excitatory synaptic signals from layers 2-4 to layers 5-6 in a direction perpendicular to the layer axis, followed by transverse signal propagation within each layer. In the presence of ionotropic glutamate receptor antagonists, inhibitory responses were observed in superficial layers, induced by direct activation of inhibitory interneurons in layer 1. In horizontal slices, excitatory signals in deep layers propagated transversely mainly from posterior to anterior via superficial layers. Cortical inhibitory responses upon layer 1a stimulation in horizontal slices were weaker than those in the coronal slices. Observed differences between coronal and horizontal planes suggest anisotropy of the intracortical circuitry. In conclusion, ATN inputs are processed differently in coronal and horizontal planes of the GRS and then conveyed to other cortical areas. In both planes, GRS superficial layers play an important role in signal propagation, which suggests that superficial neuronal cascade is crucial in the integration of multiple information sources. NEW & NOTEWORTHY Superficial neurons in the rat granular retrosplenial cortex (GRS) show distinctive late-spiking (LS) firing property. However, little is known about spatiotemporal dynamics of signal transduction in the GRS. We demonstrated LS neuron network relaying thalamic inputs to deep layers and anisotropic distribution of inhibition between coronal and horizontal planes. Since deep layers of the GRS receive inputs from the subiculum, GRS circuits may work as an integrator of multiple sources such as sensory and memory information. Copyright © 2017 the American Physiological Society.

  17. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  18. Heat transfer and phase transitions of water in multi-layer cryolithozone-surface systems

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Nigametyanova, G. A.; Nazmutdinov, F. F.

    2018-01-01

    A mathematical model for calculating the distribution of temperature and the dynamics of the phase transfor-mations of water in multilayer systems on permafrost-zone surface is proposed. The model allows one to perform calculations in the annual cycle, taking into account the distribution of temperature on the surface in warm and cold seasons. A system involving four layers, a snow or land cover, a top layer of soil, a layer of thermal-insulation materi-al, and a mineral soil, is analyzed. The calculations by the model allow one to choose the optimal thickness and com-position of the layers which would ensure the stability of structures built on the permafrost-zone surface.

  19. The role of Euler buckling instability in the fabrication of nanoelectromechanical systems on the basis of GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Shevyrin, A. A.; Pogosov, A. G.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Ishutkin, S. V.; Shesterikov, E. V.; Kozhukhov, A. S.; Kosolobov, S. S.; Gavrilova, T. A.

    2012-12-01

    Mechanical stresses are investigated in suspended nanowires made on the basis of GaAs/AlGaAs heterostructures. Though there are no intentionally introduced stressor layers in the heterostructure, the nanowires are subject to Euler buckling instability. In the wide nanowires, the out-of-plane buckling is observed at length significantly smaller (3 times) than the theoretically estimated critical value, while in the narrow nanowires, the experimentally measured critical length of the in-plane buckling coincides with the theoretical estimation. The possible reasons for the obtained discrepancy are considered. The observed peculiarities should be taken into account in the fabrication of nanomechanical and nanoelectromechanical systems.

  20. Modelling mass diffusion for a multi-layer sphere immersed in a semi-infinite medium: application to drug delivery.

    PubMed

    Carr, Elliot J; Pontrelli, Giuseppe

    2018-04-12

    We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  2. Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects

    NASA Astrophysics Data System (ADS)

    Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash

    2017-05-01

    This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.

  3. Comparison between Gaussian-type orbitals and plane wave ab initio density functional theory modeling of layer silicates: Talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}] as model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulian, Gianfranco; Valdrè, Giovanni, E-mail: giovanni.valdre@unibo.it; Tosoni, Sergio

    2013-11-28

    The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, andmore » phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.« less

  4. Dense, layered membranes for hydrogen separation

    DOEpatents

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  5. Size distribution of carbon layer planes in biochar from different plant type of feedstock with different heating temperatures.

    PubMed

    Lu, Guan-Yang; Ikeya, Kosuke; Watanabe, Akira

    2016-11-01

    Biochar application to soil is a strategy to decelerate the increase in the atmospheric carbon concentration. The composition of condensed aromatic clusters appears to be an important determinant of the degradation rate of char in soil. The objective of the present study was to determine the size distribution of carbon layer planes in biochars produced from different types of feedstock (a broadleaf and a coniferous tree and two herbs) using different heating treatment temperatures (HTT; 400 °C-800 °C) using X-ray diffraction 11 band profile analysis. (13)C nuclear magnetic resonance with the phase-adjusted spinning side bands of the chars indicated different spectral features depending on the HTT and similar carbon composition among the plant types at each HTT. Both the content and composition of carbon layer planes in biochar produced using the same HTT were also similar among the plant types. The carbon layer plane size in the 400 °C and 600 °C chars was distributed from 0.24 to 1.68 or 1.92 nm (corresponding to 37 or 52 rings) with the mean size of 0.79-0.92 and 0.80-1.14 nm, respectively. The carbon layer planes in the 800 °C chars ranged from 0.72-0.96 nm (7-14 rings) to 2.64-3.60 nm (91-169 rings) and the mean values were 1.47-1.89 nm. The relative carbon layer plane content in the 600 °C and 800 °C chars was typically 2 and 3 times that in the 400 °C chars. These results indicate the progression of the formation and/or the size development of graphite-like structures, suggesting that a char produced at a higher HTT would have better carbon sequestrating characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multi-layer assemblies with predetermined stress profile and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2003-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  7. Thermal and microstructural effects of nanosecond pulsed Nd:YAG laser irradiation on tooth root surface

    NASA Astrophysics Data System (ADS)

    Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.; Grill, G.; Liaw, Lih-Huei L.; Berns, Michael W.

    1995-05-01

    Plaque, calculus and altered cementum removal by scaling and root planing is a fundamental procedure in periodontal treatment. However, the residual smear layer contains cytotoxic and inflammatory mediators which adversely affect healing. Chemical smear layer removal is also problematic. In previous investigations effective smear layer removal was achieved using long pulsed irradiation at 1.06 (mu) . However, laser irradiation was not adequate as an alternative to scaling and root planing procedures and concurrent temperature rises exceeded thermal thresholds for pulpal and periodontal safety. It was the aim of this study to determine whether nanosecond pulsed irradiation at 1.06 (mu) could be used as an alternative or an adjunct to scaling and root planing. Sixty freshly extracted teeth were divided as follows: 5 control, 5 root planed only, 25 irradiated only, 25 root planed and irradiated. Irradiation was performed at fluences of 0.5 - 2.7 J/cm2, total energy densities of 12 - 300 J/cm2, frequencies of 2 - 10 Hz using the Medlite (Continuum) laser. Irradiation-induced thermal events were recorded using a thermocouple within the root canal and a thermal camera to monitor surface temperatures. SEM demonstrated effective smear layer removal with minimal microstructural effects. Surface temperatures increased minimally (< 3 C) at all parameters, intrapulpal temperature rises remained below 4 C at 2 and 5 Hz, F < 0.5 J/cm2. Without prior scaling and root planing, laser effects did not provide an adequately clean root surface.

  8. Analysis of Double Layer and Adsorption Effects at the Alkaline Polymer Electrolyte-Electrode Interface

    DTIC Science & Technology

    2011-10-05

    anion exchange mem - branes (AEM) are an attractive alternative to proton exchange mem - brane (PEM) fuel cells.1, 2 From electrocatalysts standpoint...gener- ally broken down into three distinct regions: the inner Helmholtz plane (IHP), the outer Helmholtz plane ( OHP ), and the diffuse layer. Figure 11...closest approach and is defined as OHP at a distance, x2. Nonspecifically adsorbed ions are distributed in a three dimensional region, called diffuse layer

  9. Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    NASA Technical Reports Server (NTRS)

    Sirbu, D.; Thomas, S.; Belikov, R.

    2017-01-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).

  10. Epitaxial growth of (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on a-plane sapphire with an MgO/ZnO bridge layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Bo; Liu Hongrui; Avrutin, Vitaliy

    2009-11-23

    High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less

  11. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  12. Use of hydrogen etching to remove existing dislocations in GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yeh, Yen-Hsien; Chu, Chung-Ming; Wu, Yin-Hao; Hsu, Ying-Chia; Yu, Tzu-Yi; Lee, Wei-I.

    2015-08-01

    In this paper, based on the anisotropic nature of hydrogen (H2) etching on GaN, we describe a new approach to the removal of threading dislocations in GaN layers. The top surfaces of c-plane (Ga-face) and a-plane GaNs are considered stable in H2; therefore, H2 etches only crystal imperfections such as dislocation and basal plane stacking fault (BSF) sites. We used H2 to etch undoped c-plane GaN, n-type c-plane GaN, a-plane GaN, and an InGaN/GaN multiple quantum well structure. Several examinations were performed, indicating deep cavities on the c-plane GaN samples after H2 etching; furthermore, gorge-like grooves were observed on the a-plane GaN samples. The deep cavities on the c-plane GaN were considered the etched dislocation sites, and the gorge-like grooves on the a-plane GaN were considered the etched BSF sites. Photoluminescence measurements were performed and the results indicated that the H2-etched samples demonstrate superior optoelectronic properties, probably because of the elimination of dislocations.

  13. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    PubMed

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  14. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    PubMed

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  15. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.

  16. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed. Extension to 3D volumes is straightforward but the next challenge is to accommodate images at lower spatial resolution, e.g., from MISR/Terra. G. Bal, J. Chen, and A.B. Davis (2015). Reconstruction of cloud geometry from multi-angle images, Inverse Problems in Imaging (submitted).

  17. Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system

    NASA Astrophysics Data System (ADS)

    Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.

    2017-04-01

    We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.

  18. Influence of AZO stair-like transparent layers on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liou, Syuan-Hao; Tsai, Jung-Hui; Liu, Wen-Chau; Lin, Pao-Sheng; Chen, Yu-Chi

    2017-10-01

    The GaN-based light-emitting diodes (LEDs) with various height ratios of aluminum-doped zinc oxide (AZO) stair-like transparent layers are fabricated and comparatively investigated. The characteristics of the LEDs with conventional plane AZO transparent layer (device A) and AZO stair-like transparent layers having height ratios of 1:1:1 (device B), 1.5:1:0.5 (device C), and 0.5:1:1.5 (device D) are compared. Attributed that the lower resistance is formed in the thinner AZO film of the stair-like structure, the current crowding effect is improved for extending the whole current-spreading area. Experimentally, the forward turn-on voltages of the LEDs are reduced from 3.68 V to 3.42 V as the plane AZO transparent layer is processed to form the stair-like transparent layers with height ratio of 1:1:1. In addition, the light luminous flux, output power, external quantum efficiency, and wall-plug efficiency of the device B are enhanced by 30.5, 12.1, 22.2, and 20.7%, respectively, as compared to the traditional device with plane AZO transparent layer.

  19. Highly localized, fully 3-D disruptions of the reconnection layer in the Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth

    2011-10-01

    Magnetic reconnection is a fundamental process in plasmas which converts magnetic energy to plasma kinetic and thermal energy through topological changes. One of the important goals in magnetic reconnection research is to explain the fast reconnection rate observed in real three-dimensional laboratory and astrophysical systems. In the Magnetic Reconnection Experiment (MRX), an enhancement of the reconnection electric field is often associated with a wholesale disruption of the reconnection current layer, an intrinsically 3-D phenomena observed in the presence of out-of-plane gradients of local quantities such as reconnection layer current and density. During a disruption, the out-of-plane current decreases as current carrying electrons are redirected in the outflow direction. Observed ``O-point'' signatures and density striations suggest that this redirection often occurs though the ejection of 3-D flux rope structures. Large fluctuations in the lower hybrid frequency range are also routinely seen, but the ratio of the phase speed to the diamagnetic drift speed does not match what is predicted by 3-D kinetic simulations without disruptions. A 2-D Hall MHD analysis of the out-of-plane gradients is consistent with the buildup of magnetic energy leading to the event, but variation in all three spacial dimensions is required in order to obtain results in agreement with the disruptive behavior observed. Analysis and comparison with 3-D simulations is ongoing to determine if the fluctuations and/or disruptive behavior are responsible for the corresponding discrepancies in the layer structure between the experiments and 2-D kinetic simulations,,. Supported by DOE, NASA, and NSF.

  20. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  1. Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces

    PubMed Central

    2015-01-01

    We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale. PMID:26405466

  2. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  3. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.

  4. Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A system for controlling the direction of magnetization of materials comprising a ferromagnetic device with first and second ferromagnetic layers. The ferromagnetic layers are disposed such that they combine to form an interlayer with exchange coupling. An insulating layer and a spacer layer are located between the first and second ferromagnetic layers. A direct bias voltage is applied to the interlayer exchange coupling, causing the direction of magnetization of the second ferromagnetic layer to change. This change of magnetization direction occurs in the absence of any applied external magnetic field.

  5. Turbulent Convection in an Anelastic Rotating Sphere: A Model for the Circulation on the Giant Planets

    DTIC Science & Technology

    2008-06-01

    exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane , where the colum- nar interior is therefore represented by a...116 5.4 The evolution of the ’it’ field in the weakly nonlinear run ........ .. 117 5.5 The zonal mean zonal velocity on the equatorial plane in...turbulence on a 8 plane . These two approaches have been in debate ever since. 1.3.1 Shallow Models The first to apply the "shallow" approach to

  6. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  7. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  8. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  9. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    NASA Astrophysics Data System (ADS)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.

  10. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.

  11. Thermal conductivity of microporous layers: Analytical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid

    2015-11-01

    A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

  12. Real-time ultrasound-guided spinal anesthesia using the SonixGPS ultrasound guidance system: a feasibility study.

    PubMed

    Niazi, A U; Chin, K J; Jin, R; Chan, V W

    2014-08-01

    Real-time ultrasound-guided neuraxial blockade remains a largely experimental technique. SonixGPS® is a new needle tracking system that displays needle tip position on the ultrasound screen. We investigated if this novel technology might aid performance of real-time ultrasound-guided spinal anesthesia. Twenty patients with body mass index < 35 kg/m(2) undergoing elective total joint arthroplasty under spinal anesthesia were recruited. Patients with previous back surgery and spinal abnormalities were excluded. Following a pre-procedural ultrasound scan, a 17G proprietary needle-sensor assembly was inserted in-plane to the transducer in four patients and out-of-plane in 16 patients. In both approaches, the trajectory of insertion was adjusted in real-time until the needle tip lay just superficial to the ligamentum flavum-dura mater complex. At this point, a 25G 120 mm Whitacre spinal needle was inserted through the 17G SonixGPS® needle. Successful dural puncture was confirmed by backflow of cerebrospinal fluid from the spinal needle. An overall success rate of 14/20 (70%) was seen with two failures (50%) and four failures (25%) in the in-plane and out-of-plane groups respectively. Dural puncture was successful on the first skin puncture in 71% of patients and in a single needle pass in 57% of patients. The median total procedure time was 16.4 and 11.1 min in the in-plane and out-of-plane groups respectively. The SonixGPS® system simplifies real-time ultrasound-guided spinal anesthesia to a large extent, especially the out-of-plane approach. Nevertheless, it remains a complex multi-step procedure that requires time, specialized equipment, and a working knowledge of spinal sonoanatomy. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Magnetic droplet soliton nucleation in oblique fields

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  14. Influence of free surface curvature on the Pearson instability in Marangoni convection

    NASA Astrophysics Data System (ADS)

    Hu, W. R.

    The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper

  15. Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model

    NASA Astrophysics Data System (ADS)

    Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man

    2017-03-01

    Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.

  16. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  17. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO2/SiO2:Ag thin films

    NASA Astrophysics Data System (ADS)

    Güner, S.; Budak, S.; Gibson, B.; Ila, D.

    2014-08-01

    We have deposited five periodic SiO2/SiO2 + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO2:Ag layers were 2.7-5 nm and SiO2 buffer layers were 1-15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO2 were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO2 was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 1014 and 1 × 1016 ions/cm2 values. Optical absorption spectra were recorded in the range of 200-900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  18. Steady groundwater flow through many cylindrical inhomogeneities in a multi-aquifer system

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2003-06-01

    A new approach is presented for the simulation of steady-state groundwater flow in multi-aquifer systems that contain many cylindrical inhomogeneities. The hydraulic conductivity of all aquifers and the resistance of all leaky layers may be different inside each cylinder. The approach is based on separation of variables and combines principles of the theory for multi-aquifer flow with principles of the analytic element method. The solution fulfills the governing differential equations exactly everywhere; the head, flow, and leakage between aquifers may be computed analytically at any point in the aquifer system. The boundary conditions along the circumference of the cylinder are satisfied approximately, but may be met at any precision. Two examples are discussed to illustrate the accuracy of the approach and the significance of inhomogeneities in multi-aquifer systems. The first application simulates the vertical and horizontal, advective spreading of a conservative tracer in a homogeneous aquifer that is overlain by an aquifer with cylindrical inclusions of higher permeability. The second application concerns the three-dimensional shape of the capture zone of a well that is screened in the bottom aquifer of a three-aquifer system. The capture zone extends to the top aquifer due to cylindrical holes of lower resistance in the separating clay layers.

  19. Development of multi-layer crystal detector and related front end electronics

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.

    2014-05-01

    A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.

  20. Real-time visual target tracking: two implementations of velocity-based smooth pursuit

    NASA Astrophysics Data System (ADS)

    Etienne-Cummings, Ralph; Longo, Paul; Van der Spiegel, Jan; Mueller, Paul

    1995-06-01

    Two systems for velocity-based visual target tracking are presented. The first two computational layers of both implementations are composed of VLSI photoreceptors (logarithmic compression) and edge detection (difference-of-Gaussians) arrays that mimic the outer-plexiform layer of mammalian retinas. The subsequent processing layers for measuring the target velocity and to realize smooth pursuit tracking are implemented in software and at the focal plane in the two versions, respectively. One implentation uses a hybrid of a PC and a silicon retina (39 X 38 pixels) operating at 333 frames/second. The software implementation of a real-time optical flow measurement algorithm is used to determine the target velocity, and a closed-loop control system zeroes the relative velocity of the target and retina. The second implementation is a single VLSI chip, which contains a linear array of photoreceptors, edge detectors and motion detectors at the focal plane. The closed-loop control system is also included on chip. This chip realizes all the computational properties of the hybrid system. The effects of background motion, target occlusion, and disappearance are studied as a function of retinal size and spatial distribution of the measured motion vectors (i.e. foveal/peripheral and diverging/converging measurement schemes). The hybrid system, which tested successfully, tracks targets moving as fast as 3 m/s at 1.3 meters from the camera and it can compensate for external arbitrary movements in its mounting platform. The single chip version, whose circuits tested successfully, can handle targets moving at 10 m/s.

  1. Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.

    2017-07-01

    The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of  -5.13  ×  104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.

  2. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    PubMed

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  3. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  4. Sound transmission through a poroelastic layered panel

    NASA Astrophysics Data System (ADS)

    Nagler, Loris; Rong, Ping; Schanz, Martin; von Estorff, Otto

    2014-04-01

    Multi-layered panels are often used to improve the acoustics in cars, airplanes, rooms, etc. For such an application these panels include porous and/or fibrous layers. The proposed numerical method is an approach to simulate the acoustical behavior of such multi-layered panels. The model assumes plate-like structures and, hence, combines plate theories for the different layers. The poroelastic layer is modelled with a recently developed plate theory. This theory uses a series expansion in thickness direction with subsequent analytical integration in this direction to reduce the three dimensions to two. The same idea is used to model either air gaps or fibrous layers. The latter are modeled as equivalent fluid and can be handled like an air gap, i.e., a kind of `air plate' is used. The coupling of the layers is done by using the series expansion to express the continuity conditions on the surfaces of the plates. The final system is solved with finite elements, where domain decomposition techniques in combination with preconditioned iterative solvers are applied to solve the final system of equations. In a large frequency range, the comparison with measurements shows very good agreement. From the numerical solution process it can be concluded that different preconditioners for the different layers are necessary. A reuse of the Krylov subspace of the iterative solvers pays if several excitations have to be computed but not that much in the loop over the frequencies.

  5. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  6. Multi-model approach to characterize human handwriting motion.

    PubMed

    Chihi, I; Abdelkrim, A; Benrejeb, M

    2016-02-01

    This paper deals with characterization and modelling of human handwriting motion from two forearm muscle activity signals, called electromyography signals (EMG). In this work, an experimental approach was used to record the coordinates of a pen tip moving on the (x, y) plane and EMG signals during the handwriting act. The main purpose is to design a new mathematical model which characterizes this biological process. Based on a multi-model approach, this system was originally developed to generate letters and geometric forms written by different writers. A Recursive Least Squares algorithm is used to estimate the parameters of each sub-model of the multi-model basis. Simulations show good agreement between predicted results and the recorded data.

  7. Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wu, Wei

    2014-06-01

    We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.

  8. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  9. Nanomusical systems visualized and controlled in 4D electron microscopy.

    PubMed

    Baskin, J Spencer; Park, Hyun Soon; Zewail, Ahmed H

    2011-05-11

    Nanomusical systems, nanoharp and nanopiano, fabricated as arrays of cantilevers by focused ion beam milling of a layered Ni/Ti/Si(3)N(4) thin film, have been investigated in 4D electron microscopy. With the imaging and selective femtosecond and nanosecond control combinations, full characterization of the amplitude and phase of the resonant response of a particular cantilever relative to the optical pulse train was possible. Using a high repetition rate, low energy optical pulse train for selective, resonant excitation, coupled with pulsed and steady-state electron imaging for visualization in space and time, both the amplitude on the nanoscale and resonance of motion on the megahertz scale were resolved for these systems. Tilting of the specimen allowed in-plane and out-of-plane cantilever bending and cantilever torsional motions to be identified in stroboscopic measurements of impulsively induced free vibration. Finally, the transient, as opposed to steady state, thermostat effect was observed for the layered nanocantilevers, with a sufficiently sensitive response to demonstrate suitability for in situ use in thin-film temperature measurements requiring resolutions of <10 K and 10 μm on time scales here mechanically limited to microseconds and potentially at shorter times.

  10. Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution.

    PubMed

    Li, Zifeng; Van Dyk, Antony K; Fitzwater, Susan J; Fichthorn, Kristen A; Milner, Scott T

    2016-01-19

    Charged particles in aqueous suspension form an electrical double layer at their surfaces, which plays a key role in suspension properties. For example, binder particles in latex paint remain suspended in the can because of repulsive forces between overlapping double layers. Existing models of the double layer assume sharp interfaces bearing fixed uniform charge, and so cannot describe aqueous binder particle surfaces, which are soft and diffuse, and bear mobile charge from ionic surfactants as well as grafted multivalent oligomers. To treat this industrially important system, we use atomistic molecular dynamics simulations to investigate a structurally realistic model of commercial binder particle surfaces, informed by extensive characterization of particle synthesis and surface properties. We determine the interfacial profiles of polymer, water, bound and free ions, from which the charge density and electrostatic potential can be calculated. We extend the traditional definitions of the inner and outer Helmholtz planes to our diffuse interfaces. Beyond the Stern layer, the simulated electrostatic potential is well described by the Poisson-Boltzmann equation. The potential at the outer Helmholtz plane compares well to the experimental zeta potential. We compare particle surfaces bearing two types of charge groups, ionic surfactant and multivalent oligomers, with and without added salt. Although the bare charge density of a surface bearing multivalent oligomers is much higher than that of a surfactant-bearing surface at realistic coverage, greater counterion condensation leads to similar zeta potentials for the two systems.

  11. On stress analysis of a crack-layer

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.

    1984-01-01

    This work considers the problem of elastic interaction of a macrocrack with an array of microcracks in the vicinity of the macrocrack tip. Using the double layer potential techniques, the solution to the problem within the framework of the plane problem of elastostatics has been obtained. Three particular problems of interest to fracture mechanics have been analyzed. It follows from analysis that microcrack array can either amplify or reduce the resulting stress field of the macrocrack-microcrack array system depending on the array's configuration. Using the obtained elastic solution the energy release rate associated with the translational motion of the macrocrack-microcrack array system has been evaluated.

  12. Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems

    NASA Astrophysics Data System (ADS)

    Davis, Brynmor J.

    Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively). This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then exploited to show that such instruments can operate at a sub-Nyquist scanning rate but still produce images largely free of aliasing effects. Multi-channel analysis is also used to show how light typically discarded in confocal and 4Pi systems can be collected and usefully incorporated into the measured image.

  13. A diagram retrieval method with multi-label learning

    NASA Astrophysics Data System (ADS)

    Fu, Songping; Lu, Xiaoqing; Liu, Lu; Qu, Jingwei; Tang, Zhi

    2015-01-01

    In recent years, the retrieval of plane geometry figures (PGFs) has attracted increasing attention in the fields of mathematics education and computer science. However, the high cost of matching complex PGF features leads to the low efficiency of most retrieval systems. This paper proposes an indirect classification method based on multi-label learning, which improves retrieval efficiency by reducing the scope of compare operation from the whole database to small candidate groups. Label correlations among PGFs are taken into account for the multi-label classification task. The primitive feature selection for multi-label learning and the feature description of visual geometric elements are conducted individually to match similar PGFs. The experiment results show the competitive performance of the proposed method compared with existing PGF retrieval methods in terms of both time consumption and retrieval quality.

  14. Spin-dependence of the electron scattering cross section by a magnetic layer system and the magneto-resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.T.; Tang, F.; Brown, W.D.

    1998-12-20

    The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less

  15. Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: large area, thickness control and tuneable morphology.

    PubMed

    Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A

    2018-05-10

    Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.

  16. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  17. Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Listopad, A.; Davydenko, V.; Ivanov, A.

    2012-02-15

    The upgrade of the diagnostic neutral beam injector RUDI in 2010 was performed to increase the beam density at the focal plane in accordance with the requirements of charge-exchange recombination spectroscopy diagnostics. A new focusing ion-optical system (IOS) with slit beamlets and an enlarged aperture was optimized for 50% higher nominal beam current and reduced angular divergence with respect to the previous multi-aperture IOS version. The upgraded injector provides the beam current up to 3 A, the measured beam divergence in the direction along the slits is 0.35 deg. Additionally, the plasma generator was modified to extend the beam pulsemore » to 8 s.« less

  18. Applications of neural network methods to the processing of earth observation satellite data.

    PubMed

    Loyola, Diego G

    2006-03-01

    The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.

  19. Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-San José, V.

    2008-11-01

    We applied positron annihilation spectroscopy to study the effect of growth polarity on the vacancy defects in ZnO grown by metal-organic vapor phase deposition on sapphire. Both c-plane and a-plane ZnO layers were measured, and Zn vacancies were identified as the dominant defects detected by positrons. The results are qualitatively similar to those of earlier experiments in GaN. The Zn vacancy concentration decreases in c-plane ZnO by almost one order of magnitude (from high 1017 cm-3 to low 1017 cm-3) when the layer thickness is increased from 0.5 to 2 μm. Interestingly, in a-plane ZnO the Zn vacancy concentration is constant at a level of about 2×1017 cm-3 in all the samples with thicknesses varying from 0.6 to 2.4 μm. The anisotropy of the Doppler broadening of the annihilation radiation parallel and perpendicular to the hexagonal c-axis was also measured.

  20. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  1. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  2. Resonant tunneling modulation in quasi-2D Cu(2)O/SnO(2) p-n horizontal-multi-layer heterostructure for room temperature H(2)S sensor application.

    PubMed

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu(2)O/SnO(2) p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu(2)O and SnO(2) selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H(2)S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing.

  3. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    PubMed

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  4. Multilayered tissues model for wave propagation loss assessment in cochlear implants

    NASA Astrophysics Data System (ADS)

    Paun, Maria-Alexandra; Dehollain, Catherine

    2017-05-01

    In this paper, a study of the power loss attenuation of the plane wave travelling through the tissue layers, from the outside to the inside of the skull within a cochlear implant, is performed. Different implantation depths of the internal antenna from 10 to 30 mm are considered. To this purpose, the gain and attenuation in dB are studied. A multilayer tissue model is developed, consisting of mainly skin, mastoid bone and brain. An s-parameter analysis is also carried out, using loop antennas and simulated head tissue. Ansoft Ansys® HFSS software is used for electro-magnetic simulations of the antennas, placed in different types of human tissues. Smith charts for antenna placed in both skin and multi-tissue model are included.

  5. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  6. Wrinkles in reinforced membranes

    NASA Astrophysics Data System (ADS)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  7. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  8. Electrostatic repulsive out-of-plane actuator using conductive substrate.

    PubMed

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-10-07

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.

  9. Electrostatic repulsive out-of-plane actuator using conductive substrate

    PubMed Central

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-01-01

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542

  10. A precise laboratory goniometer system to collect spectral BRDF data of materials

    NASA Astrophysics Data System (ADS)

    Jiao, Guangping; Jiao, Ziti; Wang, Jie; Zhang, Hu; Dong, Yadong

    2014-11-01

    This paper presents a precise laboratory goniometer system to quickly collect bidirectional reflectance distribution factor(BRDF)of typical materials such soil, canopy and artificial materials in the laboratory. The system consists of the goniometer, SVC HR1024 spectroradiometer, and xenon long-arc lamp as light source. the innovation of cantilever slab can reduce the shadow of the goniometer in the principle plane. The geometric precision of the footprint centre is better than +/-4cm in most azimuth directions, and the angle-controlling accuracy is better than 0.5°. The light source keeps good stability, with 0.8% irradiance decrease in 3 hours. But the large areal heterogeneity of the light source increase the data processing difficulty to capture the accurate BRDF. First measurements are taken from soil in a resolution of 15° and 30° in zenith and azimuth direction respectively, with the +/-50° biggest view angle. More observations are taken in the hot-spot direction. The system takes about 40 minutes to complete all measurements. A spectralon panel is measured at the beginning and end of the whole period. A simple interactive interface on the computer can automatically control all operations of the goniometer and data-processing. The laboratory experiment of soil layer and grass lawn shows that the goniometer can capture the the multi-angle variation of BRDF.

  11. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  12. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    NASA Astrophysics Data System (ADS)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  13. 2-({4-[4-(1H-Benzimidazol-2-yl)phen­yl]-1H-1,2,3-triazol-1-yl}meth­oxy)ethanol

    PubMed Central

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Lazrek, Hassan B.; Bats, Jan W.; Engels, Joachim W.

    2012-01-01

    In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, mol­ecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H⋯(N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H⋯O contacts, forming a three-dimensional network. PMID:22719663

  14. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  15. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  16. Real-time sensor validation and fusion for distributed autonomous sensors

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.

    2004-04-01

    Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.

  17. High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Kim, Hyun-Jung (Inventor); Lee, Kunik (Inventor)

    2017-01-01

    An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K

    A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less

  19. Integrated power passives

    NASA Technical Reports Server (NTRS)

    Xie, Huikai (Inventor); Ngo, Khai D. T. (Inventor)

    2013-01-01

    A multi-layer film-stack and method for forming the multilayer film-stack is given where a series of alternating layers of conducting and dielectric materials are deposited such that the conducting layers can be selectively addressed. The use of the method to form integratable high capacitance density capacitors and complete the formation of an integrated power system-on-a-chip device including transistors, conductors, inductors, and capacitors is also given.

  20. A layered abduction model of perception: Integrating bottom-up and top-down processing in a multi-sense agent

    NASA Technical Reports Server (NTRS)

    Josephson, John R.

    1989-01-01

    A layered-abduction model of perception is presented which unifies bottom-up and top-down processing in a single logical and information-processing framework. The process of interpreting the input from each sense is broken down into discrete layers of interpretation, where at each layer a best explanation hypothesis is formed of the data presented by the layer or layers below, with the help of information available laterally and from above. The formation of this hypothesis is treated as a problem of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-based problem-solving approach to the analysis of perception, treating perception as a kind of compiled cognition. The bottom-up passing of information from layer to layer defines channels of information flow, which separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs where channels converge from more than one sense. This model has not yet been implemented, though it is based on systems which have been successful in medical and mechanical diagnosis and medical test interpretation.

  1. Methods for making a multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2007-05-29

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  2. Magnetic Catheter Manipulation in the Interventional MRI Environment

    PubMed Central

    Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.

    2013-01-01

    Purpose To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional MRI environment. Materials and Methods Copper coils were mounted on the tips of commercially available 2.3 – 3.0 Fr microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (solenoid) and saddle-shaped (Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5T clinical MRI scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane utilizing a “real-time” steady-state free precession (SSFP) MRI sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusion Controlled catheter deflection is possible with laser lithographed multi-axis coil tipped catheters in the MRI environment. PMID:23707097

  3. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  4. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  5. A Designed Room Temperature Multilayered Magnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team

    2015-03-01

    A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.

  6. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  7. Strain mapping in single-layer two-dimensional crystals via Raman activity

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.

    2018-03-01

    By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.

  8. Comparison of the effectiveness of compression stockings and layer compression systems in venous ulceration treatment

    PubMed Central

    Jawień, Arkadiusz; Cierzniakowska, Katarzyna; Cwajda-Białasik, Justyna; Mościcka, Paulina

    2010-01-01

    Introduction The aim of the research was to compare the dynamics of venous ulcer healing when treated with the use of compression stockings as well as original two- and four-layer bandage systems. Material and methods A group of 46 patients suffering from venous ulcers was studied. This group consisted of 36 (78.3%) women and 10 (21.70%) men aged between 41 and 88 years (the average age was 66.6 years and the median was 67). Patients were randomized into three groups, for treatment with the ProGuide two-layer system, Profore four-layer compression, and with the use of compression stockings class II. In the case of multi-layer compression, compression ensuring 40 mmHg blood pressure at ankle level was used. Results In all patients, independently of the type of compression therapy, a few significant statistical changes of ulceration area in time were observed (Student’s t test for matched pairs, p < 0.05). The largest loss of ulceration area in each of the successive measurements was observed in patients treated with the four-layer system – on average 0.63 cm2/per week. The smallest loss of ulceration area was observed in patients using compression stockings – on average 0.44 cm2/per week. However, the observed differences were not statistically significant (Kruskal-Wallis test H = 4.45, p > 0.05). Conclusions A systematic compression therapy, applied with preliminary blood pressure of 40 mmHg, is an effective method of conservative treatment of venous ulcers. Compression stockings and prepared systems of multi-layer compression were characterized by similar clinical effectiveness. PMID:22419941

  9. Stress-free end problem in layered materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1977-01-01

    In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.

  10. Research on networked manufacturing system for reciprocating pump industry

    NASA Astrophysics Data System (ADS)

    Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun

    2005-12-01

    Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.

  11. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  12. Orchestrating Distributed Resource Ensembles for Petascale Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less

  13. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    NASA Astrophysics Data System (ADS)

    Dam, J. S.; Perch-Nielsen, I.; Palima, D.; Gluckstad, J.

    2009-11-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for all trapped particles with high tracking range and high reliability without requiring user calibration. Through deconvolving of the red, green, and blue colour planes to correct for bleeding between colour planes, we show that we can extend the system to also utilize green illumination, in addition to the blue and red. Applying the green colour as on-axis illumination yields redundant information for enhanced error correction, which is used to verify the gathered data, resulting in reliable coordinates as well as producing visually attractive images.

  14. Acoustics-turbulence interaction

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.; Zaman, K. B. M. O.

    1977-01-01

    An investigation of the instability frequency was undertaken. Measurements revealed that the hot wire probe induces and sustains stable upstream oscillation of the free shear layer. The characteristics of the free shear layer tone are found to be different from the slit jet wedge edgetone phenomenon. The shear tone induced by a plane wedge in a plane free shear layer was then examined in order to further document the phenomenon. The eigenvalues and eigenfunctions of the tone fundamental show agreement with the spatial stability theory. A comprehensive summary of the results is also included.

  15. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS

    NASA Astrophysics Data System (ADS)

    Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.

    2003-04-01

    Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.

  16. Interface-Enhanced Spin-Orbit Torques and Current-Induced Magnetization Switching of Pd /Co /AlOx Layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro

    2017-01-01

    Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.

  17. Extended depth of field integral imaging using multi-focus fusion

    NASA Astrophysics Data System (ADS)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  18. Mathematical modeling of the kinetics of deposition of particles during their pulse introduction through the free surface of a mixed-medium plane layer

    NASA Astrophysics Data System (ADS)

    Boger, A. A.; Ryazhskikh, V. I.; Slyusarev, M. I.

    2012-01-01

    Based on diffusion concepts of transfer of slightly concentrated polydisperse suspensions in the gravity field, we propose a mathematical model of the kinetics of deposition of such suspensions in a plane layer of a homogeneously mixed medium through the free surface of which Stokesian particles penetrate according to the rectangular pulse law.

  19. Retrieval of phase information in neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Haan, V.; van Well, A.A.; Adenwalla, S.

    Neutron reflectometry can determine unambiguously the chemical depth profile of a thin film if both phase and amplitude of the reflectance are known. The recovery of the phase information is achieved by adding to the unknown layered structure a known ferromagnetic layer. The ferromagnetic layer is magnetized by an external magnetic field in a direction lying in the plane of the layer and subsequently perpendicular to it. The neutrons are polarized either parallel or opposite to the magnetic field. In this way three measurements can be made, with different (and known) scattering-length densities of the ferromagnetic layer. The reflectivity obtainedmore » from each measurement can be represented by a circle in the (complex) reflectance plane. The intersections of these circles provide the reflectance.« less

  20. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  1. An Investigation of a Thermal Ice-Prevention System for a C-40 Cargo Airplane. 1 - Analysis of the Thermal Design for Wings, Empennage and Windshield

    DTIC Science & Technology

    1945-02-01

    flights wore made at a nreesure alt engine- power setting to approximate plane, and the pressure dlstrlbutlo stations of the wing and the horlso...allowed to reach equilibrium, photographed to record the readings ar thermal ice-croventIon satisfactory assumed de- ngine power for maximum 000 feet...boundary-layer thickness, feet X constant dependent on shape of boundary-layer velocity profile •pP» 5 ! _,’ -55 - •* •• —« ’ . "T^nsea ’A

  2. A four-panel enclosure protects from explosion

    NASA Technical Reports Server (NTRS)

    King, P. V.

    1972-01-01

    Development of multi-layered baffle as enclosure to protect personnel from effects of explosion during production of ammunition is discussed. Advantages of new system over previous systems are described. Illustration of typical panel structure is provided.

  3. National Response System

    EPA Pesticide Factsheets

    The NRS, a multi-layered system of individuals and teams, routinely and effectively responds to a wide range of oil and hazardous substance releases. The National Contingency Plan (NCP) provides the framework for NRS and establishes how it works.

  4. Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-x Se x

    NASA Astrophysics Data System (ADS)

    Nagasaka, K.; Jinno, G.; Miura, O.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y.

    2017-07-01

    Eu0.5La0.5FBiS2-x Se x is a new BiS2-based superconductor system. In Eu0.5La0.5FBiS2-x Se x , electron carriers are doped to the BiS2 layer by the substitution of Eu by La. Bulk superconductivity in this system is induced by increasing the in-plane chemical pressure, which is controlled by the Se concentration (x). In this study, we have analysed the crystal structure of Eu0.5La0.5FBiS2-x Se x using synchrotron powder diffraction and the Rietveld refinement. The precise determination of the structural parameters and thermal factors suggest that the emergence of bulk superconductivity in Eu0.5La0.5FBiS2-x Se x is achieved by the enhanced in-plane chemical pressure and the decrease in in-plane disorder.

  5. Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning

    NASA Astrophysics Data System (ADS)

    Ng, A.; Sutto, T. E.; Matis, B. R.; Deng, Y.; Ye, P. D.; Stroud, R. M.; Brintlinger, T. H.; Bassim, N. D.

    2017-04-01

    Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.

  6. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    PubMed

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  7. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    NASA Astrophysics Data System (ADS)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  8. Kiso Multi-Fiber Spectroscope Project (C)

    NASA Astrophysics Data System (ADS)

    Yadoumaru, Yasushi; Itoh, Nobunari; Nakada, Yoshikazu; Tarusawa, Ken'ichi; Soyano, Takao; Mito, Hiroyuki

    A Multi-FIBER Spectroscope at Kiso Observatory is under consideration as our next instrument. In this paper we report an overview of our instrument and a scientific target of our survey project. We are going to attach multi-fiber system at the prime focus of Kiso 105cm Schmidt telescope. This telescope has some advantages for our project. First, the efficiency in survey for the object, which number density is 0.1 to 10 degree2, is higher than other multi object system due to the wide field of view (6 degree x 6 degree). Second, an optics of telescope is well-matched to fiber numerical aperture (NA) at an input end of fiber. Moreover, taking a focal ratio degradation (FRD) and scrambling property into account, since the light from object dose not move at the entrance slit of spectroscope, we could get spectroscopic data stably with this system. We select a fiber with 100 micron meter core which is correspond to 6 arcsec on focal plane, that is matched with a typical seeing (about 3 arcsec) of Kiso Observatory and set 150 fibers to one field. For efficient observations, it is necessary to arrange fibers accurately within an accuracy of +/- 25 micron meter on the curved focal plane during a typical exposure time (1 hour). Therefore we examine a particular positioner specialized for curved surface. We also develop a spectroscope that is suited for a fast focal ratio and proceed with making its design. One of our main key projects with this system is a non-biased metallicity survey for solar neighbor stars. We are now establishing a new metallicity determination method that easily and reliably measures a metallicity from low-dispersion spectra. (see Itoh et al.). As we consider our main target as Galactic objects and low resolution (R is around 1000), we could observe a star with 17 mag at V-band (1 hour exposure).

  9. Crystallographic structure and superconductive properties of Nb-Ti films with an artificially layered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, N.

    1990-06-15

    Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the filmmore » for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.« less

  10. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    NASA Astrophysics Data System (ADS)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  11. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  12. Investigation of a broadband coherent perfect absorber in a multi-layer structure by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Noh, Heeso

    2018-01-01

    We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.

  13. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  14. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  15. Influence of initial sulfur content in precursor solution for the growth of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Tan, A. L.; Ng, S. S.; Abu Hassan, H.

    2018-04-01

    This work investigated the influence of initial sulfur content in the precursor solution for the growth of molybdenum disulfide (MoS2) films by thermal vapour sulfurization (TVS) with sol-gel spin coating as pre-deposition technique. The early introduction of sulfur shows the presence of grains are uniformly distributed and homogeneous on the surface of the film. MoS2 (002) planes are detected for both films with and without initial sulfur conditions, however, the presence of initial sulfur contents gives slightly higher intensity of diffraction peak. Two phonon modes for MoS2, namely the E2g 1 (in-plane) and the A1g (out-of plane), are well detected from which the frequency difference of Raman peaks between E2g 1 and A1g suggest the grown MoS2 consisted of multi-layers. There is a slight shift of E2g 1 which is caused by the carbon impurities but no shift for A1g. Besides, MoS2 film with the presence of initial sulfur content shows better crystal as indicated by its narrower Raman peaks linewidth. Two broad absorption peaks of MoS2 are detected at 614nm and 665nm. Hence, the early introduction of sulfur content in prepared precursor solution is one way of optimizing the growth of MoS2 films.

  16. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range.

    PubMed

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; De Angelis, Francesco

    2016-06-27

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution.

  17. A Drift Chamber to Measure Charged Particles at COMPASS-II

    NASA Astrophysics Data System (ADS)

    Heitz, Robert; Compass Collaboration

    2013-10-01

    A new drift chamber (DC05) will be constructed to replace two tracking detector stations based on straw tubes, ST02 and ST03 in the COMPASS spectrometer. DC05 uses the designs from DC04, a previous drift chamber designed at CEA-Saclay, France, but adds the addition of more wires for improved acceptance. In addition to more wires DC05 will also change its front end electronics using a new pre-amplifier-discriminator chip (CMAD). DC05 consists of 8 layers of anode planes and 21 layers of G-10 material frames carrying cathode planes and gas windows. The wires are orientated with two layers in the vertical x-direction, two layers in the horizontal y-direction, two layers offset +10 deg of the vertical x-direction, and two layers offset -10 deg of the vertical x-direction. The wires in parallel directions are offset half a pitch to resolve left-right ambiguities. The purpose for different wire orientations is to reconstruct the 3D space particle trajectory to fit a particle track. Each layer of wires is covered on the top and bottom by a cathode plane of carbon coated mylar. All these layers are sandwiched between two steel stiffening frames for support and noise reduction. A future drift chamber, DC06, is also being designed based off of DC05. Research funded by NSF-PHY-12-05-671 Medium Energy Nuclear Physics.

  18. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-Hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  20. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE PAGES

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul; ...

    2017-12-11

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

Top