A plane strain analysis of the blunted crack tip using small strain deformation plasticity theory
NASA Technical Reports Server (NTRS)
Mcgowan, J. J.; Smith, C. W.
1976-01-01
A deformation plasticity analysis of the tip region of a blunted crack in plane strain is presented. The power hardening material is incompressible both elastically and plastically, in order to simulate behavior of a stress freezing material above critical temperature. Stress and displacement fields surrounding the crack tip are presented. The results indicate that the maximum stress seen at the crack tip is indeed limited and is determined by the tensile properties; however, the scale over which the stresses act is dependent on the loading. Comparisons are good between the forward crack tip displacement and micro-fractographic measurments of stretch zones observed in plane strain fracture toughness tests.
Comparison of experiment and theory for elastic-plastic plane strain crack growth
Hermann, L; Rice, J R
1980-02-01
Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.
Plane strain crack growth models for fatigue crack growth life predictions
Bloom, J.M.; Daniewicz, S.R.; Hechmer, J.L.
1996-02-01
Experimental data and analytical models have shown that a growing fatigue crack produces a plastic wake. This, in turn, leads to residual compressive stresses acting over the crack faces during the unloading portion of the fatigue cycle. This crack closure effect results in an applied stress intensity factor during unloading which is greater than that associated with the K{sub min}, thus producing a crack-driving force which is less than {Delta}K = K{sub max} {minus} K{sub min}. Life predictions which do not account for this crack closure effect give inaccurate life estimates, especially for fully reversed loadings. This paper discusses the development of a crack closure expression for the 4-point bend specimen using numerical results obtained from a modified strip-yield model. Data from tests of eight 4-point bend specimens were used to estimate the specimen constraint factor (stress triaxiality effect). The constraint factor was then used in the estimation of the crack opening stresses for each of the bend tests. The numerically estimated crack opening stresses were used to develop an effective stress intensity factor range, {Delta}K{sub eff}. The resulting crack growth rate data when plotted versus {Delta}K{sub eff} resulted in a material fatigue crack growth rate property curve independent of test specimen type, stress level, and R-ratio. Fatigue crack growth rate data from center-cracked panels using Newman`s crack closure model, from compact specimens using Eason`s R-ratio expression, and from bend specimens using the model discussed in this paper are all shown to fall along the same straight line (on log-log paper) when plotted versus {Delta}K{sub eff}, even though crack closure differs for each specimen type.
Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity
NASA Astrophysics Data System (ADS)
Gourgiotis, P. A.; Georgiadis, H. G.
2009-11-01
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed
NASA Astrophysics Data System (ADS)
Graba, M.
2016-12-01
This paper presents a numerical analysis of the relationship between in-plane constraints and the crack tip opening displacement (CTOD) for single-edge notched bend (SEN(B)) specimens under predominantly plane strain conditions. It provides details of the numerical model and discusses the influence of external load and in-plane constraints on the CTOD. The work also reviews methods for determining the CTOD. The new formula proposed in this paper can be used to estimate the value of the coefficient dn as a function of the relative crack length, the strain hardening exponent and the yield strength - dn(n, σ0/E, a/W), with these parameters affecting the level of in-plane constraints. Some of the numerical results were approximated using simple mathematical formulae.
NASA Astrophysics Data System (ADS)
Baxevanis, T.; Chemisky, Y.; Lagoudas, D. C.
2012-09-01
The plane strain mechanical fields near a stationary crack tip in a pseudoelastic shape memory alloy (SMA) are analyzed via the finite element method. The small scale transformation assumption is employed for the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law used adopts the classical rate-independent small strain flow theory for the evolution equations of both the transformation and plastic strains. Results on the size and shape of the stress-induced transformation and plastic zone formed near the stationary crack are obtained and a fracture toughness criterion based on the J-integral is discussed in view of the observed path-dependence of J. Moreover, the obtained results are discussed in relation to results for stationary cracks in conventional elastic-plastic materials.
1980-07-01
certain properties of the solution to the analogous crack problem in the linearized theory. We then show that, at least for the Mooney - Rivlin material...an incompressible material con- forming to (1.18) is supplied by the Mooney - Rivlin material, with the complete plane-strain elastic potential (I) R... Mooney - Rivlin material, a solution with this parity cannot possibly exist. To this end suppose o0 !now that W is given by (1.19). Eliminating a between
NASA Technical Reports Server (NTRS)
Dorward, R. C.; Hasse, K. R.
1977-01-01
A comparison is made between fracture toughness KIc as measured by recommended ASTM procedures and crack arrest toughness KIa as measured on more than 100 bolt-loaded double-cantilever beam (DCB) specimens from 7075, 7050, and 7049 alloy plates. Close agreement was found between the two values, KIa being on the average less than KIc over a specified range. This indicates that a simplified test based on a bolt-loaded DCB specimen could be used for quality control, lot release, and screening purposes. Measurements of crack length and specimen deflection are all that are required. The specimens do not have to be fatigue precracked, nor is a tensile machine needed.
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Strain rate effects in stress corrosion cracking
Parkins, R.N. . Dept. of Metallurgy and Engineering Materials)
1990-03-01
Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.
Closure of fatigue cracks at high strains
NASA Technical Reports Server (NTRS)
Iyyer, N. S.; Dowling, N. E.
1985-01-01
Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.
Dynamic Stability of Crack Fronts: Out-Of-Plane Corrugations
NASA Astrophysics Data System (ADS)
Adda-Bedia, Mokhtar; Arias, Rodrigo E.; Bouchbinder, Eran; Katzav, Eytan
2013-01-01
The dynamics and stability of brittle cracks are not yet fully understood. Here we use the Willis-Movchan 3D linear perturbation formalism [J. Mech. Phys. Solids 45, 591 (1997)] to study the out-of-plane stability of planar crack fronts in the framework of linear elastic fracture mechanics. We discuss a minimal scenario in which linearly unstable crack front corrugations might emerge above a critical front propagation speed. We calculate this speed as a function of Poisson’s ratio and show that corrugations propagate along the crack front at nearly the Rayleigh wave speed. Finally, we hypothesize about a possible relation between such corrugations and the long-standing problem of crack branching.
Anti-plane interface cracks between two dissimilar orthotropic layers
NASA Astrophysics Data System (ADS)
Ayatollahi, M.; Varasteh, S.
2017-05-01
The problem of an anti-plane crack situated in the interface between two bonded dissimilar orthotropic layers is considered. Fourier transforms are used to reduce the problem to a system of singular integral equations with simple Cauchy kernel. The integral equations are solved numerically by converting to a system of linear algebraic equations and by using a collocation technique. The equations are solved for various crack length, material combinations, and external loads. The numerical results given in the paper include the stress intensity factors of several interfacial cracks
Biaxial load effects on the crack border elastic strain energy and strain energy rate
NASA Technical Reports Server (NTRS)
Eftis, J.; Subramonian, N.; Liebowitz, H.
1977-01-01
The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.
NASA Technical Reports Server (NTRS)
Shbeeb, N.; Binienda, W. K.; Kreider, K.
1999-01-01
The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.
Turbulent Plane Wakes Subjected to Successive Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.
2003-01-01
Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases
NASA Astrophysics Data System (ADS)
Ayatollahi, M.
2017-05-01
This study deals with the problem of multiple edge cracks in an elastic orthotropic half-plane under transient loading. The dislocation solution is utilized to derive integral equations for multiple interacting edge cracks in an orthotropic half-plane. These equations are solved numerically thereby obtaining the dislocation density function on the crack faces and stress intensity factors at crack tips. Numerical results are obtained to illustrate the variation of the dynamic stress intensity factors as a function of crack length and material properties.
Plane Stress Crack-Line Fields for Crack Growth in an Elastic Perfectly-Plastic Material.
1983-09-01
system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the cleavage...plane of the crack), to obtain ordinary differential equations with respect to x for the co- efficients in the expansions. Functions of time that...yields a system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1979-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1978-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
Plane Strain Deformation in Generalized Thermoelastic Diffusion
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Kumar, Rajneesh; Ram, Paras
2008-08-01
The present investigation is concerned with plane strain deformation in homogeneous isotropic generalized thermoelastic diffusion subjected to a normal force, thermal source, and chemical potential source. Laplace and Fourier transform techniques are employed to solve the problem. The integral transform have been inverted by using a numerical technique to obtain the displacements, stresses, temperature distribution, and chemical potential distribution. The numerical results of these quantities are illustrated graphically to depict the response of various sources in the theories of thermoelastic diffusion and thermoelasticity for a particular model. Some particular cases have been deduced from the present investigation.
Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals
Zheng, Lili; Gao, Yanfei; Lee, Sooyeol; Barabash, Rozaliya; Lee, Jinhaeng; Liaw, Peter K
2011-01-01
The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.
Intergranular strain evolution near fatigue crack tips in polycrystalline metals
NASA Astrophysics Data System (ADS)
Zheng, L. L.; Gao, Y. F.; Lee, S. Y.; Barabash, R. I.; Lee, J. H.; Liaw, P. K.
2011-11-01
The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.
Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Herman, Dave J.; James, Mark A.
2003-01-01
Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).
A half plane and a strip with an arbitrarily located crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Arin, K.
1973-01-01
A technique is presented for dealing with the problem of an elastic domain containing an arbitrarily oriented internal crack. The problem is formulated as a system of integral equations for a fictitious layer of body forces imbedded in the plane along a closed smooth curve encircling the original domain. The problems of a half plane with a crack in the neighborhood of its free boundary and of an infinite strip containing a symmetrically located internal crack with an arbitrary orientation are considered as examples. In each case the stress intensity factors are computed and are given as functions of the crack angle.
NASA Astrophysics Data System (ADS)
Dineva, Petia; Rangelov, Tsviatko
2016-12-01
Elastic wave scattering by cracks at macro- and nano-scale in anisotropic plane under conditions of plane strain is studied in this work. Furthermore, time-harmonic loads due to incident plane longitudinal P- or shear SV- wave are assumed to hold. In a subsequent step, the elastodynamic fundamental solution for general anisotropic continua derived in closed-form via the Radon transform is implemented in a numerical scheme based on the traction boundary integral equation method (BIEM). The surface elasticity effect in the case of nano-crack is taken into consideration via non-classical boundary condition along the crack surface proposed by Gurtin and Murdoch [1]. The numerical results obtained herein reveal substantial differences between anisotropic materials containing a macro- and a nano-crack in terms of their dynamic stress response, where the latter case demonstrates clearly the strong influence of the size-effects. Finally, these types of examples serve to illustrate the present approach and to show its potential for evaluating the stress concentration fields (SCF) inside cracked nanocomposites. The obtained results concern the reliability and safety of the advancing nanomaterials.
Out-of-plane deviation of a mode I+III crack encountering a tougher obstacle
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Ponson, Laurent
2016-07-01
One possible explanation of out-of-plane deviations of cracks loaded in mode I+III was suggested by Gao and Rice in 1986. These authors noted that small in-plane undulations of the crack front, arising from fluctuations of the fracture toughness, should generate a small local mode-II component, causing the crack to depart from planarity. Their analysis is completed here by explicitly calculating the evolution in time of the out-of-plane deviation of a mode-I+III crack encountering a tougher obstacle. The calculation is based on (i) first-order formulae for the stress intensity factors of a crack slightly perturbed within and out of its plane; and (ii) a ;double; propagation criterion combining a Griffith condition on the local energy-release rate and a Goldstein-Salganik condition on the local stress intensity factor of mode II. It is predicted that the crack must evolve toward a stationary state, wherein the orthogonal distance from the average fracture plane to the perturbed crack front is constant outside the obstacle and varies linearly across it. We hope that this theoretical prediction will encourage comparison with experiments, and propose a fracture test involving propagation of a mode-I+III crack through a 3D-printed specimen containing some designed obstacle. xml:lang="fr"
Strain-age cracking in Rene 41 alloy
NASA Technical Reports Server (NTRS)
Prager, M.; Thompson, E. G.
1969-01-01
Weldability test determines the effects of material and process variables on the occurrence of strain-age cracking, and demonstrates effective and practical means for its reduction. Studies consist of tensile, impact, and stress-rupture tests.
Fatigue crack identification method based on strain amplitude changing
NASA Astrophysics Data System (ADS)
Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang
2017-09-01
Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.
Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.
1986-01-01
Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.
Near tip stress and strain fields for short elastic cracks
NASA Technical Reports Server (NTRS)
Soediono, A. H.; Kardomateas, G. A.; Carlson, R. L.
1994-01-01
Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short cracks. To investigate the reasons for this unexpected behavior, the present paper focuses on identifying the crack length circumstances under which the requirements for a single parameter (K(sub I) or delta K(sub I) if cyclic loading is considered) characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two configurations, the single-edge-cracked and the centrally-cracked specimen. It is postulated that a two-parameter characterization by K and T (or B) is needed for the adequate description of the stress and strain field around a short crack. To further verify the validity of this postulate, the influence of the third term of the Williams series on the stress, strain and displacement fields around the crack tip and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the third term effects are included in both geometries. The study is conducted using the finite element method with linearly elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width, a/w; it should instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed.
Dynamic crack propagation in a 2D elastic body: The out-of-plane case
NASA Astrophysics Data System (ADS)
Nicaise, Serge; Sandig, Anna-Margarete
2007-05-01
Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.
Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading
NASA Technical Reports Server (NTRS)
Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto
1999-01-01
Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack
Lee, S.Y.; Huang, E.-W.; Wu, W.; Liaw, P.K.; Paradowska, A.M.
2013-05-15
In-situ neutron diffraction was employed to directly measure the crystallographic-orientation-dependent (i.e. hkl) internal strains as a function of distance from the crack tip on the pre-cracked Hastelloy C-2000 compact-tension specimen. Both in-plane (IP) and through-thickness (TT) strain evolutions for various grain orientations were examined during tensile overloading and compressive underloading cycles. After overloading, underloading and their combination loadings were applied and unloaded, the significantly different (hkl) residual strain profiles were obtained in the vicinity of the crack tip. The load responses of the (200) grain orientation in both the IP and TT directions were more significant than those of any other orientations. It is suggested that the different orientation-dependent strain distributions around the crack tip are caused by the combined effects of elastic and plastic anisotropy of each (hkl) reflection upon loading and the subsequent development of residual stresses generated near the crack tip during unloading as a result of the plastic deformation. - Highlights: ► (hkl) strains are examined in situ using neutron diffraction. ► Distinct strain responses are developed around the crack tip under loading. ► The strain response of the (200) grain orientation is more significant. ► Possible mechanisms for the orientation-dependent strain responses are provided.
Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy
NASA Astrophysics Data System (ADS)
Cicek, E.; McClintock, R.; Vashaei, Z.; Zhang, Y.; Gautier, S.; Cho, C. Y.; Razeghi, M.
2013-02-01
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1-xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ˜97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging.
NASA Astrophysics Data System (ADS)
Nibur, Kevin A.; Somerday, Brian P.; Marchi, Chris San; Foulk, James W.; Dadfarnia, Mohsen; Sofronis, Petros
2013-01-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. Thresholds for crack extension under rising displacement, K THi, for crack extension under constant displacement, K_{{THi}}^{*} , and for crack arrest under constant displacement K THa, were identified. These values were not found to be equivalent, i.e. K THi < K THa < K_{{THi}}^{*} . The hydrogen assisted fracture mechanism was determined to be strain controlled for all of the alloys in this study, and the micromechanics of strain controlled fracture are used to explain the observed disparities between the different threshold measurements. K THa and K THi differ because the strain singularity of a stationary crack is stronger than that of a propagating crack; K THa must be larger than K THi to achieve equivalent crack tip strain at the same distance from the crack tip. Hydrogen interacts with deformation mechanisms, enhancing strain localization and consequently altering both the nucleation and growth stages of strain controlled fracture mechanisms. The timing of load application and hydrogen exposure, i.e., sequential for constant displacement tests and concurrent for rising displacement tests, leads to differences in the strain history relative to the environmental exposure history and promotes the disparity between K_{{THi}}^{*} and K THi. K THi is the only conservative measurement of fracture threshold among the methods presented here.
Plane-strain tension tests on aluminum alloy sheet
Taha, F.; Hosford, W.; Graf, A.
1995-04-01
A simple way of making plane-strain tension tests on sheet specimens has been developed. This method was used to test sheets of aluminum alloy 2008 T4 and the results were analyzed in terms of a high exponent yield criterion and isotropic hardening. Experimentally measured forces agreed with those calculated from strain measurements using uniaxial tension test curves.
NASA Astrophysics Data System (ADS)
Sciumè, Giuseppe; Benboudjema, Farid
2016-09-01
A post-processing technique which allows computing crack width in concrete is proposed for a viscoelastic damage model. Concrete creep is modeled by means of a Kelvin-Voight cell while the damage model is that of Mazars in its local form. Due to the local damage approach, the constitutive model is regularized with respect to finite element mesh to avoid mesh dependency in the computed solution (regularization is based on fracture energy). The presented method is an extension to viscoelasticity of the approach proposed by Matallah et al. (Int. J. Numer. Anal. Methods Geomech. 34(15):1615-1633, 2010) for a purely elastic damage model. The viscoelastic Unitary Crack-Opening (UCO) strain tensor is computed accounting for evolution with time of surplus of stress related to damage; this stress is obtained from decomposition of the effective stress tensor. From UCO the normal crack width is then derived accounting for finite element characteristic length in the direction orthogonal to crack. This extension is quite natural and allows for accounting of creep impact on opening/closing of cracks in time dependent problems. A graphical interpretation of the viscoelastic UCO using Mohr's circles is proposed and application cases together with a theoretical validation are presented to show physical consistency of computed viscoelastic UCO.
The inspection of crack initiation in mid-plane by ultrasonic method
NASA Astrophysics Data System (ADS)
Liu, Quanliang; Jiang, Yuejin; Ge, Sen; Guo, Wanlin
2010-03-01
Ultra-sonic is one of the major methods to inspect and locate the damage or flaws of materials in the components or structures in engineering1. The technique to inspect the crack initiation in mid-plane by ultrasonic in real time is presented and developed upon the requirement of detecting the initiation of cracks for thick compact tension specimen (CTS) to set up the I-II mixed mode fracture criterion. The paper is concerned with the application of an ultra-sonic scheme to detect initiation or growth of through-thickness crack at mid-plane from the surface during the loading. The technique in relation to the inspection of crack initiation in mid-plane by ultra-sonic is described in detail. The principles of the technique, and the equipment required to facilitate it are reviewed. The verification of the technique which is supported by a specific example of a CTS inspection performed on an I-II mixed mode fracture test shows that the method is valid and the technique can be capable of detecting delaminations, disbonds and lack-of-adhesion in a wide diversity of coated and uncoated materials. It is also capable of assessing the quality of composites.
The inspection of crack initiation in mid-plane by ultrasonic method
NASA Astrophysics Data System (ADS)
Liu, Quanliang; Jiang, Yuejin; Ge, Sen; Guo, Wanlin
2009-12-01
Ultra-sonic is one of the major methods to inspect and locate the damage or flaws of materials in the components or structures in engineering1. The technique to inspect the crack initiation in mid-plane by ultrasonic in real time is presented and developed upon the requirement of detecting the initiation of cracks for thick compact tension specimen (CTS) to set up the I-II mixed mode fracture criterion. The paper is concerned with the application of an ultra-sonic scheme to detect initiation or growth of through-thickness crack at mid-plane from the surface during the loading. The technique in relation to the inspection of crack initiation in mid-plane by ultra-sonic is described in detail. The principles of the technique, and the equipment required to facilitate it are reviewed. The verification of the technique which is supported by a specific example of a CTS inspection performed on an I-II mixed mode fracture test shows that the method is valid and the technique can be capable of detecting delaminations, disbonds and lack-of-adhesion in a wide diversity of coated and uncoated materials. It is also capable of assessing the quality of composites.
NASA Astrophysics Data System (ADS)
Tian, Wenxiang; Zhong, Zheng; Li, Yaochen
2016-01-01
A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading.
In-plane strain capability of cellulose EAPap material
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Jung, Woochul; Kang, Yukeun; Jang, Sang-Dong
2006-03-01
Electro-Active Paper (EAPap) has been interested in due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage, low power consumption and biodegradability. EAPap actuator has been made with cellulose material. Cellulose fibers are dissolved into a solution and extruded in a sheet form, and thin gold electrodes are made on it. This out-of-plane bending deformation is useful for achieving flapping wings, micro-insect robots, and smart wall papers. On the other hand, in-plane strains, such as extension and contraction of EAPap materials are also promising for artificial muscle applications since the Young's modulus of EAPap materials is large. Therefore, we intended to investigate the in-plane strain of EAPap materials in the presence of electric fields. The EAPap samples preparation and the in-plane strain measurement are explained. The test results are shown in terms of electric field, frequency and the orientation of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap materials, this in-plane strain may be useful for artificial muscle applications.
Effects of Be and Fe content on plane strain fracture toughness in A357 alloys
Tan, Y.H.; Lee, S.L.; Lin, Y.L.
1995-11-01
The effect of Be and Fe content on the plane strain fracture toughness K{sub IC} of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicron-strengthening particles. The effect of Be on increasing K{sub IC} is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.
Effects of be and fe content on plane strain fracture toughness in A357 alloys
NASA Astrophysics Data System (ADS)
Tan, Yen-Hung; Lee, Sheng-Long; Lin, Yu-Lom
1995-11-01
The effect of Be and Fe content on the plane strain fracture toughness K IC of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicronstrengthening particles. The effect of Be on increasing K IC is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.
Luo, P.F.; Wang, J.S.; Chao, Y.J.; Sutton, M.A.
1996-12-31
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, the near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.
Real-time measurement system for in-plane displacement and strain based on vision
NASA Astrophysics Data System (ADS)
Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao
2013-08-01
In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.
Sarkar, Biporjoy; Satapathy, Dillip K; Jaiswal, Manu
2017-08-16
We investigate charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) films on functionalized polydimethylsiloxane (PDMS) substrates under varying uniaxial strain up to 16%. Strong anisotropy in transport is observed at a large applied strain (ε > 4%), which is understood in terms of an extrinsic process, involving a change in density of cracks from a few cracks per mm at ε = 4% to >100 cracks per mm at ε = 16%. The quasi-periodic cracks are aligned perpendicular to the stretching direction. A strain-history dependent response of the resistance of PEDOT:PSS films cycled through a uniaxial strain up to 4% is also observed, for current paths which are both parallel and perpendicular to the direction of stretching. The resistance-strain plots of strained PEDOT:PSS films for the second and subsequent few strain cycles follow the reverse path of the previous strain cycle. This unique strain-history dependence of resistance helps to identify the source of resistance changes at a low strain (ε < 4%). We demonstrate that the out-of-plane uniaxial wrinkle arrays that appear in a direction parallel to stretching have the same hysteresis response as the resistance, and therefore wrinkle formation governs the low-strain resistance changes. These phenomena are extensively investigated with dc-conductivity and frequency-dependent-ac-conductivity measurements, and surface morphological studies of the films under various applied strains. Our work quantitatively identifies the contributions of wrinkles and cracks to the change in resistance of PEDOT:PSS under an applied strain.
Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates
NASA Astrophysics Data System (ADS)
Horner, Allison Lynne
The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-03
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future.
Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Shuey, R. T.; Barlat, F.; Karabin, M. E.; Chakrabarti, D. J.
2009-02-01
Data are presented on plane strain fracture toughness, yield strength, and strain hardening for three orientations of samples from quarter-thickness ( t/4) and midthickness ( t/2) locations of alloy 7085 plates with different gages aged past peak strength with different 2nd step aging times (T7X). These data are fit to an expression adapted from Hahn and Rosenfield (1968), in which toughness is proportional to strain hardening, the square root of yield strength, and the square root of a critical strain ɛ c . Strain-hardening exponent n is replaced by an alternative measure, since the stress-strain data do not follow a power law. With increased overaging, the increase of strain hardening dominates the decrease of strength, such that toughness increases. The critical strain, which represents the influence of the microstructure on toughness, has no trend with overaging time. Constituents and grain boundary precipitates, thought to be the microstructural elements most differentiating alloy 7085 from alloy 7050, are quantified at t/4 and at t/2 on one plate. From this the greater critical strain at t/2 than at t/4 is mainly attributed to greater effective spacing of constituents. Critical strain is also greater with longitudinal loading and crack propagating in the long transverse direction, but definite understanding of this will require better anisotropic fracture mechanics and further microstructural characterization.
The plane strain tests in the PROMETRA program
NASA Astrophysics Data System (ADS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-04-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.
Sakorikar, Tushar; Kavitha, Maheswari Kavirajan; Vayalamkuzhi, Pramitha; Jaiswal, Manu
2017-06-01
We demonstrate that crack propagation in uniaxially strained reduced graphene oxide (rGO) films is substantially dependent on the film thickness, for films in the sub-micron regime. rGO film on flexible polydimethylsiloxane (PDMS) substrate develop quasi-periodic cracks upon application of strain. The crack density and crack width follow contrasting trends as film thickness is increased and the results are described in terms of a sequential cracking model. Further, these cracks also have a tendency to relax when the strain is released. These features are also reflected in the strain-dependent electrical dc and ac conductivity studies. For an optimal thickness (3-coat), the films behave as strain-resistant, while for all other values it becomes strain-responsive, attributed to a favorable combination of crack density and width. This study of the film thickness dependent response and the crack propagation mechanism under strain is a significant step for rationalizing the application of layered graphene-like systems for flexible optoelectronic and strain sensing applications. When the thickness is tuned for enhanced extent of crack propagation, strain-sensors with gauge factor up to ∼470 are realized with the same material. When thickness is chosen to suppress the crack propagation, strain-resistive flexible TiO2- rGO UV photoconductor is realized.
Fracture angle and strain-energy-density-factor of a crack at hole at an arbitrary angle
NASA Technical Reports Server (NTRS)
Hsu, Y. C.; Forman, R. G.
1975-01-01
For both the maximum stress criterion and strain-energy-density-factor (S) theory, fracture angle (the initial angle of crack growth) is predicted by using opening and sliding mode stress intensity factors. These theoretical predictions are consistent with experimental fracture angles. For the S theory, the crack spreads in the direction of the negative fracture angle in a plane for which S is a minimum. This quantity was obtained analytically. The experimental data of the critical S on plexiglass fracture specimens remains essentially constant.
The effect of an overload on the rate of fatigue crack propagation under plane stress conditions
Bao, H.; McEvily, A.J.
1995-07-01
It has been shown that the retardation in the rate of fatigue crack growth following an overload is largely the result of surface-related, plane-stress deformation. In the present article, in order to isolate the plane-stress behavior, the effect of an overload on the subsequent rate of fatigue crack growth of 0.3-mm-thick specimens of 9Cr-1Mo steel has been investigated and compared to results obtained using 6.35-mm-thick specimens. It was found that for the 0.3-mm thickness, as with thicker specimens, two opening load levels were associated with the overload process. The upper opening load is associated with plane-stress deformation in the overload plastic zone, and this opening process is more clearly observed with thin as compared to thicker specimens. Based upon the determined level of the upper opening load, a semiempirical analysis is developed for calculating the number of delay cycles due to an overload as a function of thickness.
Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Karabin, M. E.; Barlat, F.; Shuey, R. T.
2009-02-01
In this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves ( i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson-Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,[3] were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K Ic . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K Ic .
1982-07-01
which makes no use of the hodograph transformation. The advantage of the procedure used here lies in its applicability to the plane strain Mode I problem...solutions of the displacement equation of equilibrium valid on overlapping domains . The final solution is then generated by a consistent matching...y(x)=x+u(x) for all xE%, (1.1)1 is a mappi;: of 9 onto a domain 6* in which u(x) is the displace- ment field. We assume the transformation (1.1) to be
A large-area strain sensing technology for monitoring fatigue cracks in steel bridges
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-08-01
This paper presents a novel large-area strain sensing technology for monitoring fatigue cracks in steel bridges. The technology is based on a soft elastomeric capacitor (SEC), which serves as a flexible and large-area strain gauge. Previous experiments have verified the SEC’s capability to monitor low-cycle fatigue cracks experiencing large plastic deformation and large crack opening. Here an investigation into further extending the SEC’s capability for long-term monitoring of fatigue cracks in steel bridges subject to traffic loading, which experience smaller crack openings. It is proposed that the peak-to-peak amplitude (pk-pk amplitude) of the sensor’s capacitance measurement as the indicator of crack growth to achieve robustness against capacitance drift during long-term monitoring. Then a robust crack monitoring algorithm is developed to reliably identify the level of pk-pk amplitudes through frequency analysis, from which a crack growth index (CGI) is obtained for monitoring fatigue crack growth under various loading conditions. To generate representative fatigue cracks in a laboratory, loading protocols were designed based on constant ranges of stress intensity to limit plastic deformations at the crack tip. A series of small-scale fatigue tests were performed under the designed loading protocols with various stress intensity ratios. Test results under the realistic fatigue crack conditions demonstrated the proposed crack monitoring algorithm can generate robust CGIs which are positively correlated with crack lengths and independent from loading conditions.
Critical plane analysis of multiaxial fatigue experiments leading to White Etching Crack formation
NASA Astrophysics Data System (ADS)
Averbeck, S.; Kerscher, E.
2017-05-01
Various researchers have shown that rolling contact fatigue can be reproduced with cyclic compression-torsion experiments, with the load components either in-phase or out of phase. As reported previously, the authors used such experiments to reproduce the rolling contact fatigue phenomenon “White Etching Cracks” which can cause premature failures of rolling element bearings. It is characterized by subsurface crack initiation and propagation coupled with microstructural changes alongside the crack flanks. Surprisingly, only in-phase load superposition caused these microstructural changes to occur. This suggests that White Etching Crack formation is somehow linked to the multiaxial stress state in the specimens, as this was the only variable that changed between in-phase and out-of-phase testing. In this study, the multiaxial stress state in the two experiments is analysed and compared using different critical plane criteria. In contrast to common ways of characterizing the stress state, e.g. equivalent stress approaches, this class of criteria is explicitly designed for multiaxial stress states. Special attention is given to the Dang Van criterion, which has been used in a number of rolling contact fatigue studies.
Catalogue of maximum crack opening stress for CC(T) specimen assuming large strain condition
NASA Astrophysics Data System (ADS)
Graba, Marcin
2013-06-01
In this paper, values for the maximum opening crack stress and its distance from crack tip are determined for various elastic-plastic materials for centre cracked plate in tension (CC(T) specimen) are presented. Influences of yield strength, the work-hardening exponent and the crack length on the maximum opening stress were tested. The author has provided some comments and suggestions about modelling FEM assuming large strain formulation.
The role of crack tip strain rate in the stress corrosion cracking of high strength steels in water
NASA Astrophysics Data System (ADS)
Rieck, R. M.; Atrens, A.; Smith, I. O.
1989-05-01
Creep tests have been performed on fracture mechanics specimens of as-quenched 4340 and 3.5NiCrMoV rotor steel to confirm the importance of crack tip strain rate in causing stress corrosion cracking. By allowing creep in a noncracking environment, dry air for the high strength steels tested, cracking did not occur when water, the corrosive solution, was later added to the system. Thus, it is possible to inhibit stress corrosion in spite of conditions otherwise conducive to crack growth. Conditions necessary to restart cracking were also tested. The importance of this result in terms of the mechanism of stress corrosion and difficulties in measuring KISCC is discussed.
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.
To Crack or Not to Crack: Strain in High TemperatureSuperconductors
Godeke, Arno
2007-08-22
Round wire Bi 2212 is emerging as a viable successor ofNb3Sn in High Energy Physics and Nuclear Magnetic Resonance, to generatemagnetic fields that surpass the intrinsic limitations of Nb3Sn. Ratherbold claims are made on achievable magnetic fields in applications usingBi 2212, due to the materials' estimated critical magnetic field of 100 Tor higher. High transport currents in high magnetic fields, however, leadto large stress on, and resulting large strain in the superconductor. Theeffect of strain on the critical properties of Bi-2212 is far fromunderstood, and strain is, as with Nb3Sn, often treated as a secondaryparameter in the design of superconducting magnets. Reversibility of thestrain induced change of the critical surface of Nb3Sn, points to anelectronic origin of the observed strain dependence. Record breaking highfield magnets are enabled by virtue of such reversible behavior. Straineffects on the critical surface of Bi-2212, in contrast, are mainlyirreversible and suggest a non-electronic origin of the observed straindependence, which appears to be dominated by the formation of cracks inthe superconductor volumes. A review is presented of available results onthe effects of strain on the critical surface of Bi-2212, Bi-2223 andYBCO. It is shown how a generic behavior emerges for the (axial) straindependence of the critical current density, and how the irreversiblereduction of the critical current density is dominated by strain inducedcrack formation in the superconductor. From this generic model it becomesclear that magnets using high temperature superconductors will be strainlimited far before the intrinsic magnetic field limitations will beapproached, or possibly even before the magnetic field limitation ofNb3Sn can be surpassed. On a positive note, in a very promising recentresult from NIST on the axial strain dependence of the critical currentdensity in extremely well aligned YBCO, reversible behavior was observed.This result emphasizes the need
Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Young, Erin C.; Romanov, Alexey E.; Gallinat, Chad S.; Hirai, Asako; Beltz, Glenn E.; Speck, James S.
2010-01-01
AlxGa1-xN films grown on nonpolar m {11¯00} and {112¯2} semipolar orientations of freestanding GaN substrates were investigated over a range of stress states (x≤0.17). Cracking on the (0001) plane was observed beyond a critical thickness in the {11¯00} oriented films, while no cracking was observed for {112¯2} films. Theoretical analysis of tensile stresses in AlxGa1-xN for the relevant planes revealed that anisotropy of in-plane biaxial stress for the nonpolar {11¯00} planes results in the highest normal stresses on the c-planes, consistent with experimental observations. Shear stresses are significant in the semipolar case, suggesting that misfit dislocation formation provides an alternative mechanism for stress relief.
Characterization of a soft elastomeric capacitive strain sensor for fatigue crack monitoring
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Laflamme, Simon; Bennett, Caroline; Matamoros, Adolfo
2015-04-01
Fatigue cracks have been one of the major factors for the deterioration of steel bridges. In order to maintain structural integrity, monitoring fatigue crack activities such as crack initiation and propagation is critical to prevent catastrophic failure of steel bridges due to the accumulation of fatigue damage. Measuring the strain change under cracking is an effective way of monitoring fatigue cracks. However, traditional strain sensors such as metal foil gauges are not able to capture crack development due to their small size, limited measurement range, and high failure rate under harsh environmental conditions. Recently, a newly developed soft elastomeric capacitive sensor has great promise to overcome these limitations. In this paper, crack detection capability of the capacitive sensor is demonstrated through Finite Element (FE) analysis. A nonlinear FE model of a standard ASTM compact tension specimen is created which is calibrated to experimental data to simulate its response under fatigue loading, with the goal to 1) depict the strain distribution of the specimen under the large area covered by the capacitive sensor due to cracking; 2) characterize the relationship between capacitance change and crack width; 3) quantify the minimum required resolution of data acquisition system for detecting the fatigue cracks. The minimum resolution serves as a basis for the development of a dedicated wireless data acquisition system for the capacitive strain sensor.
NASA Astrophysics Data System (ADS)
Shanyavskij, A. A.; Karaev, K. Z.; Grigor'ev, V. M.; Koronov, M. Z.; Orlov, E. F.
1991-07-01
The kinetics of fatigue crack growth in the case of a complex stress state is investigated with particular reference to D16T aluminum alloy. By using simulation models in the form of plane cruciform specimens, the characteristics of fatigue crack growth are investigated under conditions of uniaxial and biaxial tension-compression, with the ratio of the main stresses varying from -1 to 1.5. An algorithm is developed which makes it possible to predict the kinetics of fatigue crack growth and the equivalent stress level under conditions of multiparametric loading.
On the topological derivative due to kink of a crack with non-penetration. Anti-plane model
Khludnev, A.M.; Kovtunenko, V.A.; Tani, A.
2010-01-01
A topological derivative is defined, which is caused by kinking of a crack, thus, representing the topological change. Using variational methods, the anti-plane model of a solid subject to a non-penetration condition imposed at the kinked crack is considered. The objective function of the potential energy is expanded with respect to the diminishing branch of the incipient crack. The respective sensitivity analysis is provided by a Saint-Venant principle and a local decomposition of the solution of the variational problem in the Fourier series. PMID:22163369
Cartamil-Bueno, S. J. E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S. E-mail: rbolivar@ugr.es
2015-06-28
The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focused on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.
Crack growth measured on flat and curved surfaces at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Orange, T. W.; Sullivan, T. L.
1967-01-01
Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
NASA Astrophysics Data System (ADS)
Gherrous, M.; Ferdjani, H.
2016-11-01
The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.
Shear Band Formation in Plane Strain Experiments of Sand
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
Shear Band Formation in Plane Strain Experiments of Sand
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
NASA Astrophysics Data System (ADS)
Hedan, S.; Pop, O.; Valle, V.; Cottron, M.
2006-08-01
We propose in this paper, to analyse, the evolution of out-of-plane displacement fields for a crack propagation in brittle materials. As the crack propagation is a complex process that involves the deformation mechanisms, the out-of-plane displacement measurement gives pertinent information about the 3D effects. For investigation, we use the interferometric method. The optical device includes a laser source, a Michelson interferometer and an ultra high-speed CCD camera. To take into account the crack velocity, we dispose of a maximum frame rate of 1Mfps. The experimental tests have been carried out for a SEN (Single Edge Notch) specimen of PMMA material. The crack propagation is initiated by adding a dynamic energy given by the impact of a cutter on the initial crack. The obtained interferograms are analysed with a new phase extraction method entitled MPC [6]. This analysis, which has been developed specially for dynamic studies, gives the out-of-plane displacement with an accuracy of about 10 nm.
Cracking of III-nitride layers with strain gradients
NASA Astrophysics Data System (ADS)
Romanov, A. E.; Beltz, G. E.; Cantu, P.; Wu, F.; Keller, S.; DenBaars, S. P.; Speck, J. S.
2006-10-01
Experimental results are demonstrated for the cracking of nominally compressed AlyGa1-yN layers grown on AlxGa1-xN buffer layers with smaller lattice constants (y
NASA Astrophysics Data System (ADS)
Hiraoka, Naoki; Matsuzaki, Ryosuke; Todoroki, Akira
In order to improve performance of anti lock brake system (ABS) and detect condition of road surface, intelligent tires that monitor strain of interior surface and rolling radius of tire are demanded. However, the high stiffness of an attached sensor like a strain gauge causes debonding of sensors from tire rubber. In the present study, noncontact concurrent monitoring method is proposed using digital image correlation method (DICM) and spotlight projection. In-plane strain and out-of-plane displacement (rolling radius) are calculated by using image processing with an image of interior surface of tire that is taken with a single CCD camera fixed on wheel rim. New monitoring system is applied to Al beam and commercially available radial tire. As a result, this monitoring system is proved to be able to measure in-plane strain and out-of-plane displacement with high accuracy, and confirmed to be effective for concurrent monitoring of tires.
Strained layer superlattice focal plane array having a planar structure
Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J
2012-10-23
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Ulaganathan, Jaganathan Newman, Roger C.
2014-06-01
The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.
Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining
Kondo, Yoshiyuki; Bodai, Masaru; Takei, Mao; Sugita, Yuji; Inagaki, Hironobu
1997-12-01
Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining was investigated in water environments at 60 C. Effects of strain range, strain rate, strain hold tie and impurities in the water on the crack initiation life were investigated. The effects of long strain hold time up to 100 hours were studied and found to be especially significant. Lower strain rate, longer strain hold time and higher electric conductivity resulted in shorter crack initiation life. The corrosion current from the strained metal was measured in a simulated electrochemical system to clarify the root cause of the life reduction. Test results showed that higher strain range, lower strain rate, longer strain hold time and higher electric conductivity caused increased charge transfer, which caused shorter crack initiation life. A prediction model for the crack initiation life was proposed based on the charge transfer.
Evidence concerning crack-tip constraint and strain-rate effects in fracture-toughness testing
Merkle, J.G.
1986-01-01
The procedures for measuring the plane strain fracture toughness, K/sub Ic/, of metals were originally developed for relatively high yield strength materials, the toughnesses of which were not affected by stain rate. The application of these procedures to lower yield strength and higher toughness structural and pressure vessel steels have since revealed a perplexing combination of problems involving the effects of geometry, stable crack growth and strain rate on the measured values of toughness. Only the geometric problems were encountered in the development of the procedures for measuring K/sub Ic/. For fracture in the linear elastic range of the load-displacement curve, these problems were overcome by specifying specimen dimensions sufficiently large with respect of the plastic zone size at fracture. However, in the case of structural and pressure vessel steels, it is not always possible to test specimens large enough for fracture to occur prior to general yielding. Therefore, in these cases, the effects of large-scale yielding prior to fracture cannot be avoided, but since they presently have no analytical explanation they are being treated empirically.
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1998-01-01
Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.
NASA Astrophysics Data System (ADS)
Graba, M.
2017-02-01
This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening displacement, and the load line displacement were determined using the numerical method to propose the new hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the plate geometry and the material characteristics on the parameters under consideration. This paper is a continuation of the author's previous studies and simulations in the field of elastic-plastic fracture mechanics.
Three-dimensional measurements of fatigue crack closure
NASA Technical Reports Server (NTRS)
Grandt, A. F., Jr.
1984-01-01
Three dimensional fatigue crack opening profiles in transparent polymer test specimens were determined. The load required to separate crack faces was measured along the crack profile at various positions through the specimens thickness. Crack opening loads at the specimen surface (under plane stress conditions) were compared with measurements made under plane strain conditions the specimen interior. The fatigue crack opening load was correlated with fatigue crack retardation behavior caused by peak overloads, and the results discussed in terms of three dimensional aspects of the fatigue crack closure mechanism for fatigue crack retardation.
Back-Face Strain for Monitoring Stable Crack Extension in Precracked Flexure Specimens
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Calibrations relating back-face strain to crack length in precracked flexure specimens were developed for different strain gage sizes. The functions were verified via experimental compliance measurements of notched and precracked ceramic beams. Good agreement between the functions and experiments occurred, and fracture toughness was calculated via several operational methods: maximum test load and optically measured precrack length; load at 2 percent crack extension and optical precrack length; maximum load and back-face strain crack length. All the methods gave vary comparable results. The initiation toughness, K(sub Ii) , was also estimated from the initial compliance and load.The results demonstrate that stability of precracked ceramics specimens tested in four-point flexure is a common occurrence, and that methods such as remotely-monitored load-point displacement are only adequate for detecting stable extension of relatively deep cracks.
Extent of validity of three-parameter crack-tip strain fields
NASA Astrophysics Data System (ADS)
Berger, J. R.; Dally, J. W.; Sanford, R. J.
Error maps showing the differences in strains determined from three-term series representation of the strain field are developed for several different crack lengths in a SEN fracture specimen. To assess the validity of the three-parameter strain field model, a series of FEM analyses was conducted to determine the series coefficients in a large-order expansion of the strain field. Through knowledge of the higher-order (nonsingular) terms, the error was examined over a reasonably sized area between strain calculated from a three-parameter model and a strain calculated using a large-order model. This error is studied by choosing a point in the field, calculating the strain at this point using both three- and large-parameter models, and comparing the two strain values. The gage inclusion/exclusion criteria are determined by performing this analysis for a variety of crack lengths.
Characterization of network parameters for UHMWPE by plane strain compression.
Abreu, E L; Ngo, H D; Bellare, A
2014-04-01
Ultra-high molecular weight polyethylene (PE) is used as a bearing material for total joint replacement prostheses since it is a tough, wear-resistant semicrystalline polymer. Despite its high resistance to wear, PE components have shown measureable wear in vivo, which can cause wear-particle induced osteolysis. Crosslinking of PE using ionizing radiation has been shown to increase wear resistance since both chemical crosslinks and physical entanglements provide high resistance to wear. Molecular characterization of crosslinked PEs is usually conducted using equilibrium swelling or by quantifying gel content. In this study, we compared crosslink densities and molecular weight between crosslinks derived from equilibrium swelling to those obtained by applying the Gaussian and Eight-Chain model to describe plane strain compression of the PE melt. The latter approach has the advantage of accounting for contributions of entanglements to the overall crosslink density, which solvent-based techniques largely neglect. As expected, the crosslink density calculated from model fitting increased monotonically with increase in radiation dose in a 0-200kGy dose range, with a corresponding monotonic decrease in molecular weight between crosslinks, but provided higher values of crosslink density and correspondingly lower values of molecular weight between crosslinks compared to the equilibrium swelling technique.
Langford, G.
1980-05-01
The strain hardening of iron at high strains in plane strain elongation (strip drawing) is shown to fall increasingly below that of drawn iron wires at true strains above 2, going through zero strain hardening at epsilon = 3.0, and becoming strongly negative thereafter, at least up to epsilon = 4.1. High resolution selected area electron diffraction has been used to map the size, shape and crystallographic orientations of a group of about 50 contiguous cells centered around an incipient shear band in an edge section of a strip drawn to epsilon = 1.8. This map shows no textural instability or change in orientation associated with the shear band, although it does show substantial misorientations throughout the group of cells, the axis of these misorientations lying in the same direction as the trace of the shear band. No other large misorientations (i.e. 5/sup 0/ or so) are present. The only instability seen in this shear band is microstructural: the slip distances in the two primary slip directions are quite anisotropic, being much longer along the trace of the shear band. Note that this shear band has appeared during the linear hardening portion of the high-strain hardening curve of the drawn strip. It is therefore considered a direct weakening mechanism rather than a result of another weakening effect. Further such orientation maps have been or are being prepared for more highly deformed strip, and for wire and pure-shear specimens as well.
Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO
NASA Astrophysics Data System (ADS)
Matsui, Hiroaki; Tabata, Hitoshi
2012-12-01
In-plane lattice strains in a-plane zinc oxide (ZnO) homoepitaxial layers were selectively introduced by changing substrate type and growth conditions. Strain-free layers were observed when using a Crystec ZnO substrate, which resulted in atomically flat surfaces with nano-facets consisting of the m-plane (10-10) at atomic scale. In contrast, ZnO layers on Goodwill ZnO substrates possessed in-plane lattice strains due to generation of basal-plane stacking faults. The degree of lattice strains was systematically changed by the oxygen pressure, which clarified the close correlation between photoluminescence (PL) polarization and lattice strains. The polarization ratio of PL enhanced with the lattice strains.
Castelluccio, Gustavo M.; McDowell, David L.
2015-09-16
Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loading conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.
Castelluccio, Gustavo M.; McDowell, David L.
2015-09-16
Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less
In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum
NASA Astrophysics Data System (ADS)
Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.
2016-06-01
In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).
Mapping of crack tip strains and twinned zone in a hexagonal close packed zirconium alloy.
Kerr, M.; Daymond, M. R.; Holt, R. A.; Almer, J. D.
2010-03-01
This paper describes the use of synchrotron X-ray diffraction to map crack tip strain field evolution and initiation of twinning under applied load in a fatigue pre-cracked zirconium alloy. Compact tension specimens were machined in two orientations from a textured rolled plate and loaded along the normal direction and the transverse direction to rolling. Residual strains due to fatigue and the strains introduced at applied K, of approximately 10 and 30 MPa{radical}m were measured for the two specimen orientations. Maps of the region of twinned material were determined. The experimental data is compared to finite element (FE) calculations for the crack tip strain fields and a prediction of the size of the twinned region using a multiscale model based on combining an FE approach with an elastoplastic self-consistent polycrystalline plasticity model.
Surface strain gradient effects in the torsion of a circular bar with radial cracks
NASA Astrophysics Data System (ADS)
Xu, Yang; Wang, Xu
2016-12-01
We study the contribution of surface strain gradient elasticity to the Saint-Venant torsion problem of a circular cylinder containing a radial crack. The surface strain gradient elasticity is incorporated by using an enriched version of the continuum-based surface/interface model of Gurtin and Murdoch. By using Green's function method, the original boundary value problem is reduced to a Cauchy singular integro-differential equation which can be numerically solved by using the Gauss-Chebyshev integration formula, the Chebyshev polynomials and the collocation method. Due to the presence of surface strain gradient elasticity on the crack faces, the stresses are bounded at the crack tips. The torsion problem of a circular cylinder containing two symmetric collinear radial cracks of equal length with surface strain gradient elasticity is also solved by using a similar method. Numerical results indicate that the surface strain gradient effect exerts a significant influence on the torsional rigidity and the jump in warping function. In particular, the jump in warping function forms a cusp shape with zero enclosed angle at the crack tips.
NASA Astrophysics Data System (ADS)
Benaoun, Zine El Abidine
In this study, we investigate the effects of elasticity and nonsingular stress terms on the asymptotic plane-stress mode 1 crack-tip fields for pressure-sensitive materials under small scale yielding. Perfectly plastic behavior is assumed and plastic dilatancy is introduced by the normality flow rule. A closed-form general asymptotic solution for singular centered fan sectors is given as a function of mu which is a pressure sensitivity parameter introduced in the yield condition. When elastic perfectly plastic behavior is considered, the results of finite element computations show the existence of elastic sectors bordering the stress-free crack faces. The near-tip stresses of the finite element results agree well with those of the corresponding asymptotic analysis. The angular spans of the elastic and plastic sectors vary with the value of mu. They also vary, for a specific pressure sensitivity parameter, with the value of the nonsingular stress term (T-stress) in the asymptotic expansion of the linear elastic crack-tip stresses, which is the normal stress in the direction of the crack line. In particular, the elastic sector span is in general shown to decrease with increasing T-stress. The parameter mu as well as the nonsingular stress term also have significant effects on the sizes and shapes of the plastic zones. The contribution of hydrostatic stress in the yield criterion for this class of pressure-sensitive materials extends the boundary of the plastic zone much farther in front of the crack-tip than that for incompressible Mises materials. Also, as the T-stress increases, the height of the plastic zone increases substantially for materials with a large pressure sensitivity. In zirconia ceramics, the dilatational phase transformation strain from tetragonal to monoclinic phase is limited to 4 percent. This condition is also considered in our study. Our computational results show that the phase transformation zones for strong transformation zirconia ceramics
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Yao, Yao; Glisic, Branko
2015-01-01
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407
The strain energy release approach for modeling cracks in rotors: A state of the art review
NASA Astrophysics Data System (ADS)
Papadopoulos, Chris A.
2008-05-01
The strain energy release rate (SERR) theory, combined with Linear Fracture Mechanics and Rotordynamics theories, has been widely used over the last three decades in order to calculate the compliance that causes a transverse surface crack in a rotating shaft. In this paper, the basic theory of this approach is presented, along with some extensions and limitations of its usage. The SERR theory is applied to a rotating crack and gives good results. The linear or nonlinear cracked rotor behavior depends on the mechanism of opening and closure of the crack during the shaft rotation. A brief history of the SERR theory is presented. In the 1970s, this theory met with rotordynamics as a result of research conducted on the causes of rotor failures in power industries. The main goal of this research was to give the engineer an early warning about the cracked situation of the rotor—in other words, to make the identification of the crack possible. Different methods of crack identification are presented here as well as those for multi-crack identification.
... are harmless, but sometimes producers add ingredients like amphetamines to make crack cheaper. These added ingredients raise ... For Kids For Parents MORE ON THIS TOPIC Amphetamines Drugs: What to Know Dealing With Addiction Cocaine ...
... is cocaine that has been processed into rock crystal form. Like cocaine, crack is a powerful and ... with things that cause powdered cocaine to form crystals. Many of these are harmless, but sometimes producers ...
Plane stress-strain state of a circular cylindrical bushing due to a finite out-of-plane shear
NASA Astrophysics Data System (ADS)
Zhukov, B. A.
2017-01-01
The paper deals with the determination of the stress-strain state due to a finite longitudinal shear in a circular cylindrical bushing manufactured from the Mooney-Rivlin material. Some expressions for the internal stresses and displacements in the plane perpendicular to the longitudinal shear are obtained.
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Sun, Y.; An, K.; Choo, H.; Hubbard, C. R.; Liaw, P. K.
2010-01-01
Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.
1986-11-01
See also Clements, et al. (1978) and Dhaliwal and Singh (1978).) In the situation that the crack tip terminates at a bimaterial interface between...34The Crack Problem for a Nonhomogeneous Plane," Journal of Applied Mechanics, Vol. 50, pp. 609-614. Dhaliwal , R.S., and Singh, B.M., 1978, "On the
The role of local strains from prior cold work on stress corrosion cracking
NASA Astrophysics Data System (ADS)
Ulaganathan, Jaganathan
Several studies have recently reported that cold working exacerbates stress corrosion cracking (SCC) of materials in various environments, including those in which they were previously thought to be immune. While these studies usually consider cold work as a homogeneous effect, the presence of grain boundaries results in local strain concentrations that are inhomogeneously distributed within the microstructure. In order to understand the underlying mechanisms by which the local strains generated by cold work influences SCC, α-brass and Alloy 600 were used in this study. The microscopic changes in the local strains caused by cold work and by SCC were measured using electron backscatter diffraction (EBSD) and polychromatic X-ray microdiffraction (PXM). While the plastic strains were qualitatively expressed through the local misorientation calculated from the orientation data measured by both EBSD and PXM, the elastic strains were determined from the Laue patterns measured by PXM. The interaction between the local strains, and the crack initiation and propagation during SCC was studied by comparing the strain distribution from the same area measured before cold work, after cold work, and again after SCC. In this way, apart from obtaining insights on the interaction, the relative importance of pre-existing strain concentrations and those created by crack propagation can be identified. Additionally, statistical analysis of the EBSD data from uncracked and cracked grain boundaries in Alloy 600 showed the susceptibility of the boundaries to increase when they were surrounded by high local strain concentrations and when the grains sharing the boundary had similar deformation tendency, but to be independent of the grain boundary angle. Finally, one of the contributors for the changes in the strain distribution during SCC can be the corrosion process itself which was examined by intermittently measuring the changes in local strains caused by intergranular corrosion on an
NASA Astrophysics Data System (ADS)
Hedan, S.; Valle, V.; Cottron, M.
2010-06-01
Contrary to J-integral values calculated from the 2D numerical model, calculated J-integrals [1] in the 3D numerical and 3D experimental cases are not very close with J-integral used in the literature. We can note a problem of structure which allows three-dimensional effects surrounding the crack tip to be seen. The aim of this paper is to determine the zone where the Jintegral formulation of the literature is sufficient to estimate the energy release rate (G) for the 3D cracked structure. For that, a numerical model based on the finite element method and an experimental setup are used. A grid method is adapted to experimentally determine the in-plane displacement fields around a crack tip in a Single-Edge-Notch (SEN) tensile polymer (PMMA) specimen. This indirect method composed of experimental in-plane displacement fields and of 2 theoretical formulations, allows the experimental J-integral on the free-surface to be determined and the results obtaining by the 3D numerical simulations to be confirmed.
Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.
2015-03-15
This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.
Investigation of the stress distribution around a mode 1 crack with a novel strain gradient theory
NASA Astrophysics Data System (ADS)
Lederer, M.; Khatibi, G.
2017-01-01
Stress concentrations at the tip of a sharp crack have extensively been investigated in the past century. According to the calculations of Inglis, the stress ahead of a mode 1 crack shows the characteristics of a singularity. This solution is exact in the framework of linear elastic fracture mechanics (LEFM). From the viewpoint of multiscale modelling, however, it is evident that the stress at the tip of a stable crack cannot be infinite, because the strengths of atomic bonds are finite. In order to prevent the problem of this singularity, a new version of strain gradient elasticity is employed here. This theory is implemented in the commercial FEM code ABAQUS through user subroutine UEL. Convergence of the model is proved through consecutive mesh refinement. In consequence, the stresses ahead of a mode 1 crack become finite. Furthermore, the model predicts a size effect in the sense “smaller is stronger”.
Stress-strain state in the vicinity of a crack tip under mixed loading
NASA Astrophysics Data System (ADS)
Stepanova, L. V.; Adylina, E. M.
2014-09-01
A method is proposed to calculate the eigenvalues of the class of nonlinear eigenvalue problems resulting from the problem of determining the stress-strain state in the vicinity of a crack tip in power-law materials over the entire range of mixed modes of deformation, from the opening mode to pure shear. The proposed approach was used to found eigenvalues of the problem that differ from the well-known eigenvalue corresponding to the Hutchinson-Rice-Rosengren solution. The resulting asymptotic form of the stress field is a self-similar intermediate asymptotic solution of the problem of a crack in a damaged medium under mixed loading. Using the new asymptotic form of the stress field and introducing a self-similar variable, we obtained an asymptotic solution of the problem of a crack in a damaged medium and constructed the regions of dispersed material near the crack.
1992-10-01
increasing the loading rate, specimens smaller in dimensions can be employed in KIC tests at high loading rates. An example of correlation between B and...difficulties arise in numerical simulation of crack behavior at high loading rates. An analytic solution for the stress field at a stationary crack tip in...with prime attention paid to use adequate stress-strain, strain-rate, temperature constitutive relations governing material behavior at the crack tip
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite
NASA Astrophysics Data System (ADS)
Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani
2017-01-01
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.
Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani
2017-01-28
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique
NASA Astrophysics Data System (ADS)
Murkute, Pratik; Ramkumar, J.; Mondal, K.
2016-07-01
An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.
Detection of Cracks in a Cantilever Beam Using Signal Processing and Strain Energy Based Model
NASA Astrophysics Data System (ADS)
Mehta, P.; Kureshi, A.; Lad, S.; Patel, N.; Sharma, D.
2017-09-01
Structure health monitoring is one of the most important aspects in an industry, as structures should work safely during their service life. Cracks are the most common damage that initiates a breakdown phase and hence timely and accurate detection of these cracks is imperative. In this article, a vibration based non-destructive technique is presented to detect one or multiple edge cracks in beam like structures. This model is based on variation in mode shapes and natural frequencies that provide accuracy in results as well as ease in practical applications. The crack location is identified using mode shapes of damaged beam wherein an appropriate signal processing technique is implemented by using which the noise in the signal can be reduced. Along with this, the crack severity is also determined using a strain energy based mathematical model. The model presented in this study is capable of detecting an arbitrary number of cracks in cantilever or simply supported configuration. The results obtained using the proposed method is also validated by considering few case studies.
Assumed strain formulation for the four-node quadrilateral with improved in-plane bending behaviour
NASA Astrophysics Data System (ADS)
Stolarski, Henryk K.; Chen, Yung-I.
1995-04-01
A new assumed strain quadrilateral element with highly accurate in-plane bending behavior is presented for plane stress and plane strain analysis. The basic idea of the formulation consists in identification of various modes of deformation and then in proper modification of the strain field in some of these modes. In particular, the strain operator corresponding to the in-plane bending modes is modified to simulate the strain field resulting from the assumptions usually made in structural mechanics. The modification of the strain field leads to the assumed strain operator on the element level. As a result, the so-called shear and membrane locking phenomena are alleviated. The element exhibits remarkable success in bending-dominated problems even when severely distorted and high aspect ratio meshes are used. Another advantage of the present assumed strain element is that locking for nearly incompressible materials is also mitigated. While this assumed strain element passes the patch test only for the parallelogram shapes, the element provides convergent solutions as long as the initially general form of the element approaches a parallelogram shape with the refinement of the mesh.
Method for measuring compliances and crack length by strain gauge and 3D finite element calculation
Riedle, J.; Wulf, J.; Schmauder, S.
1995-05-01
A method for determining compliances and crack lengths of round CT specimen geometries (RCT) by measuring the notch opening displacement (NOD) with strain gauges, combined with 3D finite element calculations to correlate the NOD to the loading point displacements, is presented. The method has been verified for tungsten and it is shown that measured and calculated compliances are in excellent agreement. A general equation is presented correlating compliances and NOD which allows to implicitly determine crack lengths by simply measuring the NOD of RCT specimens. 5 refs.
Lee, Chan-Jae; Park, Keum Hwan; Han, Chul Jong; Oh, Min Suk; You, Banseok; Kim, Young-Seok; Kim, Jong-Woong
2017-08-11
Crack-based strain sensor systems have been known for its high sensitivity, but suffer from the small fracture strain of the thin metal films employed in the sensor which results in its negligible stretchability. Herein, we fabricated a transparent (>90% at 550 nm wavelength), stretchable (up to 100%), and sensitive (gauge factor (GF) of 30 at 100% strain) strain gauge by depositing an encapsulated crack-induced Ag nanowire (AgNW) network on a hydroxylated poly(dimethylsiloxane) (PDMS) film. Stretching the encapsulated AgNWs/PDMS resulted in the formation of a percolation network of nanowire ligaments with abundant percolation paths. The encapsulating polymer was designed to adhere strongly to both the AgNW and PDMS. The improved adhesion ensured the resistance of the crack-induced network of AgNWs varied reversibly, stably, and sensitively when stretched and released, at strains of up to 100%. The developed sensor successfully detected human motions when applied to the skin.
NASA Astrophysics Data System (ADS)
Ontiveros, Victor Luis
A critical challenge to the continued use of engineering structures as they are asked to perform longer than their design life is the prediction of an initiating crack and the prevention of damage, estimation of remaining useful life, schedule maintenance and to reduce costly downtimes and inspections. The research presented in this dissertation explores the cumulative plastic strain energy density and thermodynamic entropy generation up to crack initiation. Plastic strain energy density and thermodynamic entropy generation are evaluated to investigate whether they would be capable of providing a physical basis for fatigue life and structural risk and reliability assessments. Navy aircraft, specifically, the Orion P-3C, which represent an engineered structure currently being asked to perform past is design life, which are difficult and time consuming to inspect from carrier based operations and are currently evaluated using an empirically based damage index the, fatigue life expended, is used as an example in this investigation. A set of experimental results for aluminum alloy 7075-T651, used in airframe structures, are presented to determine the correlation between plastic strain energy dissipation and the thermodynamic entropy generation versus fatigue crack initiation over a wide range of fatigue loadings. Cumulative plastic strain energy and thermodynamic entropy generation measured from hysteresis energy and temperature rise proved to be valid physical indices for estimation of the probability of crack initiation. Crack initiation is considered as a major evidence of fatigue damage and structural integrity risk. A Bayesian estimation and validation approach is used to determine systematic errors in the developed models as well as other model uncertainties. Comparisons of the energy-based and entropy-based models are presented and benefits of using one over the other are discussed.
Hall, M.M. Jr.; Symons, D.M.
1996-05-01
A strain energy density-distance criterion was previously developed and used to correlate rising-load K{sub c} initiation data for notched and fatigue precracked specimens of hydrogen precharged Alloy X-750. This criterion, which was developed for hydrogen embrittlement (HE) cracking, is used here to correlate static-load stress corrosion cracking (SCC) initiation times obtained for smooth geometry, notched and fatigue precracked specimens. The onset of SCC crack growth is hypothesized to occur when a critical strain, which is due to environment-enhanced creep, is attained within the specimen interior. For notched and precracked specimens, initiation is shown by analysis to occur at a variable distance from notch and crack tips. The initiation site varies from very near the crack tip, for highly loaded sharp cracks, to a site that is one grain diameter from the notch, for lower loaded, blunt notches. The existence of hydrogen gradients, which are due to strain-induced hydrogen trapping in the strain fields of notch and crack tips, is argued to be controlling the site for initiation of cracking. By considering the sources of the hydrogen, these observations are shown to be consistent with those from the previous HE study, in which the characteristic distance for crack initiation was found to be one grain diameter from the notch tip, independent of notch radius, applied stress intensity factor and hydrogen level.
Hall, M.M. Jr.; Symons, D.M.; Kearns, J.J.
1991-12-31
A criterion for initiation of subcritical crack growth at blunt notches and sharp defects was developed and applied to hydrogen- induced cracking of the Ni-base superalloy X-750. Onset of crack growth is shown to occur when a critical strain energy density is attained at a distance from the notch and crack tips characteristic of the microstructure along the prospective crack path. Rising load crack growth initiation data were obtained using homogeneous hydrogen precharged notched and fatigue precracked bend specimens. Notch root radius, grain size and hydrogen concentration were varied. Crack growth initiation loads were dependent on both notch root radius and bulk precharged hydrogen concentration. These data were shown to be correlated using a critical strain energy at-a-distance (SEDAD) criterion. Furthermore, an elastic-plastic analysis of the strain energy distributions showed that the critical strain energy density value is attained at one grain diameter from the notch and fatigue precrack tips. Mechanical and microstructural aspects of crack growth process and relevance to hydrogen-induced cracking are discussed.
Young, Erin C.; Gallinat, Chad S.; Hirai, Asako; Speck, James S.; Romanov, Alexey E.; Beltz, Glenn E.
2010-01-25
Al{sub x}Ga{sub 1-x}N films grown on nonpolar m (1100) and (1122) semipolar orientations of freestanding GaN substrates were investigated over a range of stress states (x<=0.17). Cracking on the (0001) plane was observed beyond a critical thickness in the (1100) oriented films, while no cracking was observed for (1122) films. Theoretical analysis of tensile stresses in Al{sub x}Ga{sub 1-x}N for the relevant planes revealed that anisotropy of in-plane biaxial stress for the nonpolar (1100) planes results in the highest normal stresses on the c-planes, consistent with experimental observations. Shear stresses are significant in the semipolar case, suggesting that misfit dislocation formation provides an alternative mechanism for stress relief.
Imaging in-plane and normal stresses near an interface crack using traction force microscopy
Xu, Ye; Engl, Wilfried C.; Jerison, Elizabeth R.; Wallenstein, Kevin J.; Hyland, Callen; Wilen, Larry A.; Dufresne, Eric R.
2010-01-01
Colloidal coatings, such as paint, are all around us. However, we know little about the mechanics of the film-forming process because the composition and properties of drying coatings vary dramatically in space and time. To surmount this challenge, we extend traction force microscopy to quantify the spatial distribution of all three components of the stress at the interface of two materials. We apply this approach to image stress near the tip of a propagating interface crack in a drying colloidal coating and extract the stress intensity factor. PMID:20696929
Imaging in-plane and normal stresses near an interface crack using traction force microscopy.
Xu, Ye; Engl, Wilfried C; Jerison, Elizabeth R; Wallenstein, Kevin J; Hyland, Callen; Wilen, Larry A; Dufresne, Eric R
2010-08-24
Colloidal coatings, such as paint, are all around us. However, we know little about the mechanics of the film-forming process because the composition and properties of drying coatings vary dramatically in space and time. To surmount this challenge, we extend traction force microscopy to quantify the spatial distribution of all three components of the stress at the interface of two materials. We apply this approach to image stress near the tip of a propagating interface crack in a drying colloidal coating and extract the stress intensity factor.
Texture development and hardening characteristics of steel sheets under plane-strain compression
Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.
1999-04-01
Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
NASA Astrophysics Data System (ADS)
Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.
2015-04-01
The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
NASA Astrophysics Data System (ADS)
Seifert, H. P.; Ritter, S.
2008-09-01
The strain-induced corrosion cracking (SICC) behaviour of different low-alloy reactor pressure vessel (RPV) and piping steels and of a RPV weld filler/weld heat-affected zone (HAZ) material was characterized under simulated boiling water reactor (BWR)/normal water chemistry (NWC) conditions by slow rising load (SRL) and very low-frequency fatigue tests with pre-cracked fracture mechanics specimens. Under highly oxidizing BWR/NWC conditions (ECP ⩾+50 mV SHE, ⩾0.4 ppm dissolved oxygen), the SICC crack growth rates were comparable for all materials (hardness <350 HV5) and increased (once initiated) with increasing loading rates and with increasing temperature with a possible maximum/plateau at 250 °C. A minimum KI value of 25 MPa m 1/2 had to be exceeded to initiate SICC in SRL tests. Above this value, the SICC rates increased with increasing loading rate d KI/d t, but were not dependent on the actual KI values up to 60 MPa m 1/2. A maximum in SICC initiation susceptibility occurred at intermediate temperatures around 200-250 °C and at slow strain rates in all materials. In contrast to crack growth, the SICC initiation susceptibility was affected by environmental and material parameters within certain limits.
NASA Astrophysics Data System (ADS)
Shatskii, I. P.; Makoviichuk, N. V.
2011-05-01
The problem of closure of collinear cracks during bending of a shallow shell is considered within the framework of the Kirchhoff theory. Crack closure is described using the model of contact along a line on one of the shell faces. Strain and moment intensity factors and fracture load are studied as functions of shell curvature and defect location, and the distribution of contact forces along the cracks is investigated.
NASA Astrophysics Data System (ADS)
Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team
Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.
Sudden bending of cracked laminates
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang; Zhou, Weidong; Gong, Shaoqin
2015-05-25
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
Optical Strain and Crack-Detection Measurements on a Rotating Disk
NASA Technical Reports Server (NTRS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle M.; Fralick, Gustave
2013-01-01
The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was
Optical Strain and Crack-Detection Measurements on a Rotating Disk
NASA Technical Reports Server (NTRS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle; Fralick, Gustave
2013-01-01
The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011-2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated
Stretch bending - the plane within the sheet where strains reach the forming limit curve
NASA Astrophysics Data System (ADS)
Neuhauser, F. M.; Terrazas, O. R.; Manopulo, N.; Hora, P.; Van Tyne, C. J.
2016-11-01
Finite element analysis (FEA) was used to model the angular stretch bend test, where a strip of sheet metal is locked at both ends and a tool with a radius stretches and bends the center of the strip until failure. The FEA program used in the study was Abaqus. The FEA model was verified by experimental work using a dual phase steel (DP600) and with a simplified analytical analysis. The FEA model was used to simulate the experimental test for various frictional conditions and various radii of an upward moving tool. The primary objective of the study was to evaluate the concave-side rule, which states that during stretch bending the forming limit occurs when the strains on the concave surface plane of the bent sheet (i.e. bottom plane) reach the forming limit curve (FLC). The verification with experimental data indicates that the FEA model represents the process very well. Only conditions where failure occurred on or near the tooling are included in the results. The FEA simulations showed that the actual forming limit of the sheet occurs when the strains on the bottom plane of the sheet (i.e. concave side of the bend) reach the forming limit curve for high friction and small tool radii. For lower friction and for larger tool radii the actual forming limit occurs when strains on other planes in the sheet (i.e. mid planes or top surface plane) reach the forming limit curve. The implications of these results suggest that care must be taken in assessing forming operations when both stretch and bending occur. Although it is known that the FLC cannot predict the forming limit for small bend radii, the common assumption that the forming limit occurs when the strains for the middle thickness plane of the sheet reach the forming limit curve or that the concave side rule is often made. Understanding the limits of this assumption needs to be carefully and critically evaluated.
NASA Astrophysics Data System (ADS)
Jen, Shih-Hui; Bertrand, Jacob A.; George, Steven M.
2011-04-01
Al2O3 atomic layer deposition (ALD) is a model ALD system and Al2O3 ALD films are excellent gas diffusion barrier on polymers. However, little is known about the response of Al2O3 ALD films to strain and the potential film cracking that would restrict the utility of gas diffusion barrier films. To understand the mechanical limitations of Al2O3 ALD films, the critical strains at which the Al2O3 ALD films will crack were determined for both tensile and compressive strains. The tensile strain measurements were obtained using a fluorescent tagging technique to image the cracks. The results showed that the critical tensile strain is higher for thinner thicknesses of the Al2O3 ALD film on heat-stabilized polyethylene naphthalate (HSPEN) substrates. A low critical tensile strain of 0.52% was measured for a film thickness of 80 nm. The critical tensile strain increased to 2.4% at a film thickness of 5 nm. In accordance with fracture mechanics modeling, the critical tensile strains and the saturation crack densities scaled as (1/h)1/2 where h is the Al2O3 ALD film thickness. The fracture toughness for cracking, KIC, of the Al2O3 ALD film was also determined to be KIC = 2.30 MPa m1/2. Thinner Al2O3 ALD film thicknesses also had higher critical strains for cracking from compressive strains. Field-emission scanning electron microscopy (FE-SEM) images revealed that Al2O3 ALD films with thicknesses of 30-50 nm on Teflon fluorinated ethylene propylene (FEP) substrates cracked at a critical compressive strain of ˜1.0%. The critical compressive strain increased to ˜2.0% at a film thickness of ˜20 nm. A comparison of the critical tensile strains on HSPEN substrates and critical compressive strains on Teflon FEP substrates revealed some similarities. The critical strain was ˜1.0% for film thicknesses of 30-50 nm for both tensile and compressive strains. The critical compressive strain then increased more rapidly than the critical tensile strain for thinner films with thicknesses
Reversed polarized emission in highly strained a -plane GaN/AlN multiple quantum wells
NASA Astrophysics Data System (ADS)
Mata, R.; Cros, A.; Budagosky, J. A.; Molina-Sánchez, A.; Garro, N.; García-Cristóbal, A.; Renard, J.; Founta, S.; Gayral, B.; Bellet-Amalric, E.; Bougerol, C.; Daudin, B.
2010-09-01
The polarization of the emission from a set of highly strained a -plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite c axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the c axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been performed to determine the three components of the strain tensor in the active region. Moreover, the experimental results have been compared with the strain values computed by means of a model based on the elastic continuum theory. A high anisotropic compressive in-plane strain has been found, namely, -0.6% and -2.8% along the in-plane directions [11¯00] and [0001], respectively, for the thickest quantum well. The oscillator strength of the lowest optical transition has been calculated within the framework of a multiband envelope function model for various quantum well widths and strain values. The influence of confinement and strain on the degree of polarization is discussed and compared with experiment considering various sets of material parameters.
NASA Astrophysics Data System (ADS)
Gloeckner, Paul James
The quantitative measurement of whole plane deformation fields has been approached by using methods such as moire interferometry, speckle interferometry and conventional holography. These methods have been used with success, but when isolation of deformation components is necessary and harsh environments exist some may not be practical. Conjugate Wave Holographic Interferometry (CWHI) is a non-contact method for measuring in-plane deformations on ordinary surfaces. By projecting the conjugate images from a hologram onto a deformed object, fringes can be observed that correlate to the object deformation. Its advantages include submicron resolution, whole field visualization, and isolation of individual in-plane components. Additionally, because CWHI is non-contacting it does not require special preparation of optically diffuse surfaces. Despite these apparent advantages, CWHI has not been widely used as an analysis tool. In this study, CWHI is used in conjunction with fringe skeletonizing and interpolation to obtain quantitative deformation and strain information for a simply supported beam. Additionally, the crack mouth opening displacement for a notched specimen was obtained. Experimentally obtained values agreed well with those predicted by theory. Furthermore, CWHI was applied to a ceramic thermal barrier coating subjected to localized 200°C heating at the surface and quantitative results for deformation and strain were obtained. An interesting phenomenon was observed during the crack measurements as well as the thermal loading study. Illumination of the object with a single conjugate image produced a dark spot at the crack, thus making it easily detectable. In the thermal loading study a dark spot was observed near the heated area in the ceramic layer. Several experiments were performed to identify the cause of the dark spot, but they were inconclusive.
NASA Astrophysics Data System (ADS)
Tung, S.-T.; Glisic, B.
2016-12-01
Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.
Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds
Zeng, Songshan; Zhang, Dianyun; Huang, Wenhan; Wang, Zhaofeng; Freire, Stephan G.; Yu, Xiaoyuan; Smith, Andrew T.; Huang, Emily Y.; Nguon, Helen; Sun, Luyi
2016-01-01
A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns. PMID:27389480
Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds
NASA Astrophysics Data System (ADS)
Zeng, Songshan; Zhang, Dianyun; Huang, Wenhan; Wang, Zhaofeng; Freire, Stephan G.; Yu, Xiaoyuan; Smith, Andrew T.; Huang, Emily Y.; Nguon, Helen; Sun, Luyi
2016-07-01
A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.
Analysis of crack propagation as an energy absorption mechanism in metal matrix composites
NASA Technical Reports Server (NTRS)
Adams, D. F.; Murphy, D. P.
1981-01-01
The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.
Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi
2014-09-21
In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.
The Unloading Modulus of Akdq Steel after Uniaxial and Near Plane-Strain Plastic Deformation
NASA Astrophysics Data System (ADS)
Pavlina, E. J.; Levy, B. S.; van Tyne, C. J.; Kwon, S. O.; Moon, Y. H.
Springback is a problem in the manufacture of a variety of automotive components. To determine springback, it is necessary to know the strength of the material after plastic deformation and the slope of the unloading curve (i.e. the unloading modulus). Prior investigations have shown that the unloading modulus for steels after plastic deformation has a slope that is lower than the normally accepted value for Young's modulus. Previous studies on the slope of the unloading curve were after uniaxial tensile plastic deformation. In the present study, the unloading modulus for an aluminum killed drawing quality (AKDQ) steel was evaluated after both uniaxial and near plane strain deformation. A tube hydroforming system was used for near plane-strain deformation. The average unloading modulus following uniaxial deformation for the AKDQ steel is approximately 168 GPa. The average unloading modulus for the circumferential stress component after near plane-strain deformation is lower than after uniaxial deformation. For a given amount of overall plastic deformation, the axial component of the unloading modulus is greater than the circumferential component, and with increased plastic strain, the unloading modulus for both components decreases. These results demonstrate that the components of the unloading modulus are dependent on the strain path of the prior plastic deformation.
NASA Astrophysics Data System (ADS)
Zhou, X. P.; Cheng, H.; Feng, Y. F.
2014-11-01
Experiments on man-made flawed rock-like materials are applied extensively to study the mechanical behaviour of rock masses as well as crack initiation modes and crack coalescence types. A large number of experiments on specimens containing two or three pre-existing flaws were previously conducted. In the present work, experiments on rock-like materials (formed from a mixture of sand, plaster, limestone and water at mass ratio of 126:9:9:16) containing multiple flaws subjected to uniaxial compression were conducted to further research the effects of the layout of pre-existing flaws on mechanical properties, crack initiation modes and crack coalescence types. Compared with previous experiments in which only three types of cracks were found, the present experiments on specimens containing multiple flaws under uniaxial compression revealed five types of cracks, including wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane tensile cracks and out-of-plane shear cracks. Ten types of crack coalescence occurred through linkage among wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane shear cracks and out-of-plane tensile cracks. Moreover, the effects of the non-overlapping length and flaw angle on the complete stress-strain curves, the stress of crack initiation, the peak strength, the peak strain and the elastic modulus were also investigated in detail.
A numerical method for determining the strain rate intensity factor under plane strain conditions
NASA Astrophysics Data System (ADS)
Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.
2016-07-01
Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin
2014-01-01
Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720, ATI 718Plus alloy, Haynes 282, and Inconel 740. Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.
Stress corrosion cracking of alloy 600 using the constant strain rate test
Bulischeck, T. S.; van Rooyen, D.
1980-01-01
The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.
The plane strain shear fracture of the advanced high strength steels
NASA Astrophysics Data System (ADS)
Sun, Li
2013-12-01
The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.
The plane strain shear fracture of the advanced high strength steels
Sun, Li
2013-12-16
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.
NASA Astrophysics Data System (ADS)
Kim, Young Suk; Kim, Sung Soo
2016-09-01
We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.
Biologically inspired crack delocalization in a high strain-rate environment
Knipprath, Christian; Bond, Ian P.; Trask, Richard S.
2012-01-01
Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an ‘engineered’ nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the
Daymond, M. R.; Young, M. L.; Almer, J. D.; Dunand, D. C.; Queen's Univ.; Northwestern Univ.
2007-06-01
In situ synchrotron X-ray diffraction measurements are used to create two-dimensional maps of elastic strain and texture, averaged over a compact-tension specimen thickness, near a crack tip in a martensitic NiTi alloy. After fatigue crack propagation, the material ahead of the crack and in its wake exhibits a strong texture, which is eliminated by subsequent shape-memory heat treatment, indicating that this texture is due to detwinning, the main deformation mechanism of NiTi. Upon subsequent application of a static tensile stresses, the highly textured zone reappears and grows around the crack tip as the applied stress is increased. At the highest applied stress intensity of 35MPam1/2, large tensile strains are measured ahead of the crack tip and considerable elastic anisotropy is observed. This detwinning zone is similar to the plastic zone produced by dislocation slip present around cracks in other metals. The texture in this zone is not significantly altered after mechanical unloading, despite the development of substantial triaxial compressive residual strains in this zone.
Fatigue crack closure: a review of the physical phenomena
Pippan, R.
2017-01-01
Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624
The unique effect of in-plane anisotropic strain in the magnetization control by electric field
NASA Astrophysics Data System (ADS)
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.
2016-05-01
The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.
Influence of load interactions on crack growth as related to state of stress and crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.
1985-01-01
Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.
NASA Astrophysics Data System (ADS)
Akira, Sasamoto; Krutitskii, P. A.
2012-09-01
Non destructive testing (NDT) has been used to ensure safety in public structure and public space. D.C. potential difference method, one of the NDT, can detect crack in conductive material. According to study for material, depth of crack in metal is most important parameter to judge if the crack will lead catastrophic failure in short time. Therefore estimation of crack depth by measured voltage on surface is key process in the method. However, as authors as know, exact solution of model equation for the method that is Laplace equation with prescribed boundary condition and crack has not been known so far. In this paper we show exact expression of solution and computational results for model problem described in two space dimensional lower half-space with crack vertically propagating from the surface.
NASA Astrophysics Data System (ADS)
EL-Bealy, Mostafa Omar
2012-06-01
In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon
2016-12-01
A large-area electronics in the form of a soft elastomeric capacitor (SEC) has shown great promise as a strain sensor for fatigue crack monitoring in steel structures. The SEC sensors are inexpensive, easy to fabricate, highly stretchable, and mechanically robust. It is a highly scalable technology, capable of monitoring deformations on mesoscale systems. Preliminary experiments verified the SEC sensor’s capability in detecting, localizing, and monitoring crack growth in a compact specimen. Here, a numerical simulation method is proposed to simulate accurately the sensor’s performance under fatigue cracks. Such a method would provide a direct link between the SEC’s signal and fatigue crack geometry, extending the SEC’s capability to dense network applications on mesoscale structural components. The proposed numerical procedure consists of two parts: (1) a finite element (FE) analysis for the target structure to simulate crack growth based on an element deletion method; (2) an algorithm to compute the sensor’s capacitance response using the FE analysis results. The proposed simulation method is validated based on test data from a compact specimen. Results from the numerical simulation show good agreement with the SEC’s response from the laboratory tests as a function of the crack size. Using these findings, a parametric study is performed to investigate how the SEC would perform under different geometries. Results from the parametric study can be used to optimize the design of a dense sensor network of SECs for fatigue crack detection and localization.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
Effect of sagittal plane mechanics on ACL strain during jump landing.
Bakker, Ryan; Tomescu, Sebastian; Brenneman, Elora; Hangalur, Gajendra; Laing, Andrew; Chandrashekar, Naveen
2016-09-01
The relationships between non-contact anterior cruciate ligament injuries and the underlying biomechanics are still unclear, despite large quantities of academic research. The purpose of this research was to study anterior cruciate ligament strain during jump landing by investigating its correlation with sagittal plane kinetic/kinematic parameters and by creating an empirical model to estimate the maximum strain. Whole-body kinematics and ground reaction forces were measured from seven subjects performing single leg jump landing and were used to drive a musculoskeletal model that estimated lower limb muscle forces. These muscle forces and kinematics were then applied on five instrumented cadaver knees using a dynamic knee simulator system. Correlation analysis revealed that higher ground reaction force, lower hip flexion angle and higher hip extension moment among others were correlated with higher peak strain (p < 0.05). Multivariate regression analyses revealed that intrinsic anatomic factors account for most of the variance in strain. Among the extrinsic variables, hip and trunk flexion angles significantly contributed to the strain. The empirical relationship developed in this study could be used to predict the relative strain between jumps of a participant and may be beneficial in developing training programs designed to reduce an athlete's risk of injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1636-1644, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Analysis of plane-plastic stress problems with axial symmetry in strain-hardening range
NASA Technical Reports Server (NTRS)
Wu, M H Lee
1951-01-01
A simple method is developed for solving plane-plastic-stress problems with axial symmetry in the strain-hardening range which is based on the deformation theory of plasticity employing the finite-strain concept. The equations defining the problems are first reduced to two simultaneous nonlinear differential equations involving two dependent variables: (a) the octahedral shear strain, and (b) a parameter indicating the ratio of principal stresses. By multiplying the load and dividing the radius by an arbitrary constant, it is possible to solve these problems without iteration for any value of the modified load. The constant is determined by the boundary condition. This method is applied to a circular membrane under pressure, a rotating disk without and with a central hole, and an infinite plate with a circular hole. Two materials, inconel x and 16-25-6, the octahedral shear stress-strain relations of which do not follow the power law, are used. Distributions of octahedral shear strain, as well as of principal stresses and strains, are obtained. These results are compared with the results of the same problems in the elastic range.
Band gap modulation of transition-metal dichalcogenide MX2 nanosheets by in-plane strain
NASA Astrophysics Data System (ADS)
Su, Xiangying; Ju, Weiwei; Zhang, Ruizhi; Guo, Chongfeng; Yong, Yongliang; Cui, Hongling; Li, Xiaohong
2016-10-01
The electronic properties of quasi-two-dimensional honeycomb structures of MX2 nanosheets (M=Mo, W and X=S, Se) subjected to in-plane biaxial strain have been investigated using first-principles calculations. We demonstrate that the band gap of MX2 nanosheets can be widely tuned by applying tensile or compressive strain, and these ultrathin materials undergo a universal reversible semiconductor-metal transition at a critical strain. Compared to WX2, MoX2 need a smaller critical tensile strain for the band gap close, and MSe2 need a smaller critical compressive strain than MS2. Taking bilayer MoS2 as an example, the variation of the band structures was studied and the semiconductor-metal transition involves a slightly different physical mechanism between tensile and compressive strain. The ability to tune the band gap of MX2 nanosheets in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of application.
In-plane displacement and strain measurements using a camera phone and digital image correlation
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2014-05-01
In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.
Gilbert, C.J.; McNaney, J.M.; Dauskardt, R.H.; Ritchie, R.O. . Dept. of Materials Science and Mineral Engineering)
1994-03-01
Back-face strain compliance and electrical-potential crack length calibrations have been experimentally determined for the disk-shaped compact-tension DC(T) specimen. Finite-element modeling was used to ascertain the back-face strain distribution at several crack lengths to determine the significance of inconsistent gage placement. The numerical solutions demonstrated good agreement with experiment, especially at smaller crack lengths when the back-face strain gradients are minimal. It is concluded that precise gage placement is only critical when the crack tip closely approaches the back of the test specimen.
Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel
NASA Astrophysics Data System (ADS)
Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.
2007-04-01
An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.
Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel
Suarez, L.; Houbaert, Y.; Eynde, X. van den; Lamberigts, M.
2007-04-07
An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 {mu}m) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050 deg. C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050 deg. C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050 deg. C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.
NASA Technical Reports Server (NTRS)
Obrien, T. K.
1991-01-01
An analysis utilizing laminated plate theory is developed to calculate the strain energy release rate associated with local delaminations originating at off-axis, single ply, matrix cracks in laminates subjected to uniaxial loads. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. Examples are calculated for the strain energy release rate associated with local delaminations originating at 90 degrees and angle-ply (non-90 degrees) matrix ply cracks in glass epoxy and graphite epoxy laminates. The solution developed may be used to assess the relative contribution of mechanical, residual thermal, and moisture stresses on the strain energy release rate for local delamination for a variety of layups and materials.
Asymptotic crack tip fields of surface cracked panels under non-hardening bending loads
NASA Astrophysics Data System (ADS)
Latiff, Rizman Hariz Abdul; Yusof, Feizal
2017-07-01
In this paper, the investigation of in-plane constraint loss in a semi-elliptical surface cracked panel(SCP) specimen based on a detailed non-hardening finite element analysis with aspect ratios a/c of 0.5 and relative depths a/t of 1.33 and 0.5 under bending loads. The asymptotic stress field solutions were compared to the fully constrained Prandtl field for the plane-strain case and Sham & Hancock crack tip plane-stress fields. The asymptotic solutions of the semi-elliptical shallow and the deep cracked bars were found to be contained within a Prandtl crack tip field at the centre of the specimen. Loss of constraint was observed at the free surface of the semi-elliptical surface crack.
Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksel, B.
1986-01-01
The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.
NASA Astrophysics Data System (ADS)
Salvo, Maxime; Sercombe, Jérôme; Helfer, Thomas; Sornay, Philippe; Désoyer, Thierry
2015-05-01
In this paper, the behavior of a dense UO2 (porosity less than 2%) was studied experimentally on a range of temperatures (1100-1700 °C) and strain rates (10-4-10-1 /s) representative of RIA loading conditions. The yield stress was found to increase with strain rate and to decrease with temperature. Macroscopic cracking of the samples was apparent after the tests at 1100 °C. Scanning Electron Microscopy (SEM) image analyses revealed a pronounced grain boundary cracking in the core of the samples tested at 10-1 /s and at 1550-1700 °C. A hyperbolic sine model for the viscoplastic strain rate with a clear dependency on porosity was first developed. It was completed by a Drucker-Prager yield criterion with associated plastic flow to account for the porosity increase induced by grain boundary cracking. Finite Elements simulations of the compression tests on the dense UO2 were then successfully compared to the stress-strain curves, post-test diameter profiles and porosities at the pellets' center, periphery and top extremity. The response of the grain boundary cracking model was then studied in biaxial compression, this condition being closer to that of the pellet during a RIA power transient.
Evaluation of Instability Phenomena in Sands: Plane Strain Versus Triaxial Conditions
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.
2001-01-01
Extensive research was carried out in the 1950s on theories of plasticity to extend the concepts developed for metals to materials that failed according to the Mohr-Coulomb criterion. The new ideas made it possible to merge the two distinct concepts (strength and deformation techniques) into one that relies on better understanding of plasticity and resulted in a rapid growth in the field of constitutive modeling of soil behavior. At the same time advanced experimental apparatuses and laboratory procedures were developed to calibrate the models. However, most laboratory experiments on granular materials are performed under Conventional Triaxial Conditions (CTC) for the purposes of evaluating constitutive behavior and stability properties, whereas most geotechnical field problems are closer to the Plane Strain (PS) condition. The triaxial tests performed in most laboratories comprise a simplification over in situ states and allow easier and robust experimentation. Most landslide problems, failure of soils beneath shallow and deep foundations, and failure of retaining structures, are cases that can generally be considered as plane strain. Strength and deformation characteristics of granular materials loaded in plane strain may be considerably different from those observed in CTC. Most studies on sands were limited to evaluating the constitutive behavior and in some cases extended to briefly describing the associated instability phenomena. This paper presents the results of a series of PS and CTC experiments performed on fine uniform silica sand known as F-75 Ottawa sand. Advanced analysis techniques were used to study the instability phenomena, which yielded very accurate measurements of shear bands occurrences and patterns. Destructive thin-sectioning technique along with monitoring the specimen surface deformation was used in the PS experiments and Computed Tomography (CT) was used to investigate the progress of primary and secondary shear bands in specimens
Revision of Standard Method of Test for Plane Strain Fracture Toughness
NASA Technical Reports Server (NTRS)
Shannon, John L., Jr.
1998-01-01
The purpose of this grant is to revise ASTM Standard Method of Test E-399 for Plane Strain Fracture Toughness of Metallic Materials based on users' experience, and to harmonize the Method with international standards in the interest of U. S. competitive participation in the global marketplace. Rewriting and reformatting the Method are well along. Research laboratories here and abroad have been engaged in developing technical bases for the Method's novel revision items. Close liaison is being maintained with experts in the field here and abroad to ensure consensus agreement on all substantive matters in anticipation of an eventual circulation of the document for ASTM worldwide approval.
NASA Astrophysics Data System (ADS)
Bao, Yi; Chen, Genda
2016-01-01
This study aims at evaluating the feasibility of strain measurement and crack detection in thin unbonded concrete pavement overlays with pulse prepump Brillouin optical time domain analysis. Single-mode optical fibers with two-layer and three-layer coatings, respectively, were applied as fully distributed sensors, their performances were compared with analytical predictions. They were successfully protected from damage during concrete casting of three full-scale concrete panels when 5 to 10-cm-thick protective mortar covers had been set for 2 h. Experimental results from three-point loading tests of the panels indicated that the strain distributions measured from the two types of sensors were in good agreement, and cracks can be detected at sharp peaks of the measured strain distributions. The two-layer and three-layer coated fibers can be used to measure strains up to 2.33% and 2.42% with a corresponding sensitivity of 5.43×10-5 and 4.66×10-5 GHz/μɛ, respectively. Two cracks as close as 7 to 9 cm can be clearly detected. The measured strains in optical fiber were lower than the analytical prediction by 10% to 25%. Their difference likely resulted from strain transfer through various coatings, idealized point loading, varying optical fiber embedment, and concrete heterogeneity.
NASA Astrophysics Data System (ADS)
West, Elaine Ann
The objective of this study was to determine how the deformation propensities of individual grains of 316L stainless steel influence intergranular cracking behavior in supercritical water (SCW). The grain-to-grain variations in deformation propensities were estimated from the Schmid and Taylor factors of grains. Resulting stress inhomogeneities and strain incompatibilities which were evaluated to determine the conditions that promoted intergranular cracking in SCW. Proton irradiation of 316L caused hardening and radiation induced depletion of chromium at grain boundaries and was found to increase intergranular cracking severity. The SCW environment increased the crack density on the gage surfaces of the specimen by a factor of 18 compared to a 400°C argon environment. Intergranular cracks preferentially occurred along grain boundaries oriented perpendicular to the tensile axis and adjacent to grains with low Schmid factors. The Schmid-Modified Grain Boundary Stress (SMGBS) model was developed to analyze local grain boundary stresses. The model was validated by showing that the Schmid factor dependence of cracking in SCW could be predicted from the trace inclination distribution, and confirmed that cracking was driven by the normal stresses acting on grain boundaries. The similar dependencies of slip discontinuity and intergranular cracking on trace inclination, Schmid factor, Taylor factor, and grain boundary character suggest that slip discontinuity contributes to intergranular cracking. Grains with low Taylor factors decreased slip discontinuity propensity at grain boundaries with trace inclinations >50° because they provided multiple favorably oriented slip systems on which deformation could occur. Grain boundary engineering reduced the intergranular cracking propensity of 316L stainless steel in SCW by virtue of the fact that special grain boundaries were more resistant to intergranular cracking in SCW than random high angle grain boundaries. The findings of
Acoustic Emission Analysis of Plane Strain-Compressed Mg Single Crystals
NASA Astrophysics Data System (ADS)
Drozdenko, Daria; Dobroň, Patrik; Knapek, Michal; Letzig, Dietmar; Bohlen, Jan; Chmelík, František
Mg single crystals with three different crystallographic orientations have been channel die (plane strain) compressed at applied rate of 10-3s-1 and at room temperature. The concurrent acoustic emission (AE) measurement was used as a method to analyze the dislocation dynamic during plastic deformation of Mg single crystals. The AE count rate and the maximum amplitudes of the AE event were correlated with stress-strain curves to determine the activity of various deformation mechanisms. The presence of large AE signals in the first stage of plastic deformation in single crystals with favorable orientation for (10.2)-twinning indicates twin nucleation and subsequent decrease of the AE activity, which can be connected with twin growth and collective dislocation processes. Compression along the c-axis (hard deformation mode) produces almost no AE activity.
Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra
2013-01-01
Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications. PMID:24255113
Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra
2013-12-03
Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.
Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory
NASA Astrophysics Data System (ADS)
Xiao, Weiwei; Li, Li; Wang, Meng
2017-06-01
The behaviors of monolayer graphene sheet have attracted increasing attention of many scientists and researchers. In this study, the propagation behaviors of in-plane wave in viscoelastic monolayer graphene are investigated. The constitutive equation and governing equation for in-plane wave propagation is developed by employing Hamilton's principle and nonlocal strain gradient theory. By solving the governing equation of motion, the closed-form dispersion relation between phase velocity and wave number is derived and an asymptotic phase velocity can be acquired. The effects of wave number, material length scale parameter, nonlocal parameter and damping coefficient on in-plane wave propagation behaviors are discussed in the numerical studies. It is found that, when exciting wavelengths or structural dimensions become comparable to the material length scale parameters and nonlocal parameters, the scaling effects on wave propagation behaviors are significant. For nanoscaled graphene sheet, the effects of nonlocal parameter, material length scale parameter and damping coefficient on phase velocity are tiny at low wave numbers while significant at high wave numbers. The phase velocity would increase with the increase of material length scale parameter or the decrease of nonlocal parameter and damping coefficient. Furthermore, results indicate that the asymptotic phase velocity can be increase by increasing material length scale parameter or decreasing nonlocal parameter.
Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.
Vasudeva, R Y; Sudheer, G; Vema, Anu Radha
2008-06-01
Dispersion spectra of circumferential waves along the periphery of circular pipes made of layered anisotropic materials do not seem to be available in literature. This note attempts to partially fill this gap by providing the dispersion spectra in two and three layered cylindrically anisotropic pipes in plane strain motion. The spectra for pipes executing time harmonic vibrations in plane strain condition are obtained as roots of a numerical characteristic equation derived extending a weighted residual method of solution of the governing equations for a single layer pipe [Towfighi et al., J. Appl. Mech. 69, 283-291 (2002)] to a general N layered pipe. The anisotropic elastic coefficients are considered to be independent of position coordinates and the bond condition at interfaces of the layers is assumed to be perfect. Numerical illustrations are presented for two and three layered pipes with anisotropy directions differing in adjacent layers. Increase in curvature of the pipe and inclination of the fiber orientation in the outermost layers to propagation direction are factors that seem to influence the mode number and pattern within the limited examples worked out.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
NASA Astrophysics Data System (ADS)
Li, Huichao; Koyama, Motomichi; Sawaguchi, Takahiro; Tsuzaki, Kaneaki; Noguchi, Hiroshi
2015-06-01
We investigated the roles of deformation-induced ε-martensitic transformation on strain-controlled low-cycle fatigue (LCF) through crack-propagation analysis involving a notching technique that used a focused ion beam (FIB) setup on Fe-30Mn-4Si-2Al austenitic steel. Using the FIB notch, we separated the microstructure evolution into macroscopic cyclic deformation-induced and crack-propagation-induced microstructures. Following this, we clarified the fatigue crack-propagation-induced ε-martensitic transformation to decelerate crack propagation at a total strain range of 2%, obtaining an extraordinary LCF life of 1.1 × 104 cycles.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Koyama, Motomichi; Tsuzaki, Kaneaki
2017-06-12
Aimed at the low accuracy problem of shear strain measurement in Moiré methods, a two-dimensional (2D) Moiré phase analysis method is proposed for full-field deformation measurement with high accuracy. A grid image is first processed by the spatial phase-shifting sampling Moiré technique to get the Moiré phases in two directions, which are then conjointly analyzed for measuring 2D displacement and strain distributions. The strain especially the shear strain measurement accuracy is remarkably improved, and dynamic deformation is measurable from automatic batch processing of single-shot grid images. As an application, the 2D microscale strain distributions of a titanium alloy were measured, and the crack occurrence location was successfully predicted from strain concentration.
Fracture Analysis of Semi-Elliptical Surface Cracks in Ductile Materials
NASA Technical Reports Server (NTRS)
Daniewicz, S. R.; Newman, J. C., Jr.; Leach, A. M.
2004-01-01
Accurate life assessment of structural components may require advanced life prediction criteria and methodologies. Structural components often exhibit several different types of defects, among the most prevalent being surface cracks. A semi-elliptical surface crack subjected to monotonic loading will exhibit stable crack growth until the crack has reached a critical size, at which the crack loses stability and fracture ensues (Newman, 2000). The shape and geometry of the flaw are among the most influential factors. When considering simpler crack configurations, such as a through-the-thickness crack, a three-dimensional (3D) geometry may be modeled under the approximation of two-dimensional (2D) plane stress or plane strain. The more complex surface crack is typically modeled numerically with the Finite Element Method (FEM). A semi-elliptical surface crack is illustrated in Figure 1-1.
Cracked shells under skew-symmetric loading. [Reissner theory
NASA Technical Reports Server (NTRS)
Delale, F.
1981-01-01
The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.
Uniqueness of the interior plane strain time-harmonic viscoelastic inverse problem
NASA Astrophysics Data System (ADS)
Zhang, Yixiao; Barbone, Paul E.; Harari, Isaac; Oberai, Assad A.
2016-07-01
Elasticity imaging has emerged as a promising medical imaging technique with applications in the detection, diagnosis and treatment monitoring of several types of disease. In elasticity imaging measured displacement fields are used to generate images of elastic parameters of tissue by solving an inverse problem. When the tissue excitation, and the resulting tissue motion is time-harmonic, elasticity imaging can be extended to image the viscoelastic properties of the tissue. This leads to an inverse problem for the complex-valued shear modulus at a given frequency. In this manuscript we have considered the uniqueness of this inverse problem for an incompressible, isotropic linear viscoelastic solid in a state of plane strain. For a single measured displacement field we conclude that the solution is infinite dimensional, and the data required to render it unique is determined by the measured strain field. In contrast, for two independent displacement fields such that the principal directions of the resulting strain fields are different, the space of possible solutions is eight dimensional, and given additional data, like the value of the shear modulus at four locations, or over a calibration region, we may determine the shear modulus everywhere. We have also considered simple analytical examples that verify these results and offer additional insights. The results derived in this paper may be used as guidelines by the practitioners of elasticity imaging in designing more robust and accurate imaging protocols.
Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
NASA Astrophysics Data System (ADS)
Ridzuan, M. J. M.; Hafis, S. M.; Saifullah, K. N.; Syahrullail, S.
2012-06-01
Large quantities of lubricant are being widely used in the metal forming industry and this high consumption is negatively affecting the environment. Finding an alternative to this current situation is getting more serious and urgent in response to environmental and operational cost pressures. This paper deals with an experimental investigation to obtain the minimum quantity of lubricant (MQL) of RBD palm stearin, which is used as lubricant between the contact sliding surfaces of the taper die and billet via plane-strain-extrusion apparatus. The symmetrical workpieces are designed as combined billets made from pure aluminium A1100. The dies of the apparatus are made of SKD 11 steel. The extrusion ratio of the processes is 3 and the workpieces are extruded by hydraulic press machine. Four conditions of the quantity selected are 0.1 mg, 1 mg, 5 mg, and 20 mg. The analysis of the result shows that the conditions of the quantity are in the load reducing order from 0.1 mg, 1mg and 5 mg. The highest distribution of surface roughness is at 0.1 mg, whereby for others, the conditions are quite similar. However, the distribution of velocity and effective strain are lowest at 5 mg. The minimum quantity of lubricant (MQL) of the RBD palm stearin as lubricant on the contact sliding surfaces in planestrain-extrusion is determined based on the results of load, surface roughness, velocity and effective strain.
Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
Zaitsev, V Yu; Matveev, L A
2012-01-01
Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view of their importance for material characterization, nondestructive testing, and geophysics. Due to the progress in measurement techniques in recent years, it has been revealed that rocks can demonstrate extremely high strain sensitivity of seismoacoustic loss. In particular, it has been found that strains of order 10(-8) produced by lunar and solar tides are capable of causing variations in the seismoacoustic decrement on the order of several percent. Some laboratory data (although obtained for higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in fluid-saturated ones) do not suffice to interpret such data. Here the dissipation at individual cracks is revised taking into account the influence of wavy asperities of their surfaces quite typical of real cracks, which can drastically change the values of the relaxation frequencies and can result in giant strain sensitivity of the dissipation without the necessity of assuming the presence of unrealistically thin (and, therefore, unrealistically soft) cracks. In particular, these mechanisms suggest interpretation for observations of pronounced amplitude modulation of seismo-acoustic waves by tidal strains.
Golub, Mikhail V; Zhang, Chuanzeng
2015-01-01
This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.
Strained-layer superlattice focal plane array having a planar structure
Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM; Gin, Aaron [Albuquerque, NM; Marsh, Phillip F [Lowell, MA; Young, Erik W [Albuquerque, NM; Cich, Michael J [Albuquerque, NM
2010-07-13
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)
2002-01-01
A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.
NASA Astrophysics Data System (ADS)
Kroon, M.
2011-11-01
Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.
Andrews, D.J.
1985-01-01
A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.
1988-09-01
properties.> Moreover, it is found that whether or not a failure zone is incorporated into the model si nif icantly influences both quantitatively and...Moreover, it is found that whether or not a failure zone is incorporated into the model significantly influences both quantitatively and...Hopf technique, Willis constructed the dynamic stress intensity factor (SIP) for a standard linear solid material model and general crack face
Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor)
2014-01-01
A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.
NASA Astrophysics Data System (ADS)
Benito, L.; Ballesteros, C.; Ward, R. C. C.
2014-04-01
We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.
Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy
NASA Astrophysics Data System (ADS)
Cervera, M.; Barbat, G. B.; Chiumenti, M.
2017-07-01
This paper discusses the finite element modeling of cracking in quasi-brittle materials. The problem is addressed via a mixed strain/displacement finite element formulation and an isotropic damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D and 3D. Also, it is independent of the specific finite element discretization considered; it can be equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms. The feasibility and accuracy of the method is assessed through extensive comparison with experimental evidence. The correlation with the experimental tests shows the capacity of the mixed formulation to reproduce the experimental crack path and the force-displacement curves with remarkable accuracy. Both 2D and 3D examples produce results consistent with the documented data. Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh bias, as well as other related to the physical model, like structural size effect and the influence of Poisson's ratio, are also investigated. The enhanced accuracy of the computed strain field leads to accurate results in terms of crack paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without the need of auxiliary tracking techniques or other computational schemes that alter the continuum mechanical problem.
Dynamic crack propagation in a viscoelastic strip
NASA Astrophysics Data System (ADS)
Popelar, C. H.; Atkinson, C.
1980-04-01
THE DYNAMIC PROPAGATION of a semi-infinite crack in a finite linear viscoelastic strip subjected to Mode I loading is investigated. Through the use of integral transforms the problem is reduced to solving a Wiener-Hopf equation. The asymptotic properties of the transforms are exploited to establish the stress intensity factor. Plane-stress and plane-strain stress intensity factors as a function of crack speed for both fully-clamped and shear-free lateral boundaries are presented for the standard linear viscoelastic solid. Comparisons are made with previously obtained asymptotic stress intensity factors and with stress intensity factors for the equivalent elastic strips.
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial
Cracking phenomena in In{sub 0.25}Ga{sub 0.75}As films on InP substrates
Wu, X.; Weatherly, G.C.
1999-09-29
The strain relaxation of a series of In{sup 0.25}Ga{sub 0.75}As films grown on (100) InP substrates (lattice mismatch = 2%) has been studied by electron microscopy. The mechanisms of strain relief (in the first stages of growth) occurred by cracking on (0{bar 1}1), and by twinning on (111) and ({bar 1}11) planes. Cracking was a transitory process with the density of cracks being highest in a 20 nm thick film, while a 500 nm thick film was crack-free. These results are discussed in the context of different cracking and crack-healing models.
NASA Astrophysics Data System (ADS)
Kistanov, Andrey A.; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V.; Zhou, Kun
2017-03-01
By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from ‑7% (compression) to +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H2O molecule. It shows that compressive/tensile strain is able to increase the binding energy of H2O compared with the adsorption on a planar surface, and the charge transfer between the water molecule and the graphene/silicene sheet can be modulated by strain. Moreover, the presence of the boron-nitride (BN)-substrate significantly influences the chemical activity of the graphene/silicene heterostructure upon its interaction with the H2O molecule and may cause an increase/decrease of the charge transfer between the H2O molecule and the heterostructure. These findings provide insights into the modulation of electronic properties of the in-plane free-standing/substrate-supported graphene/silicene heterostructure, and render possible ways to control its electronic structure, carrier density and redox characteristics, which may be useful for its potential applications in nanoelectronics and gas sensors.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin
2014-01-01
Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.
Cold Cracking During Direct-Chill Casting
NASA Astrophysics Data System (ADS)
Eskin, D. G.; Lalpoor, M.; Katgerman, L.
Cold cracking phenomenon is the least studied, yet very important defect occurring during direct chill casting. The spontaneous nature of this defect makes its systematic study almost impossible, and the computer simulation of the thermomechanical behavior of the ingot during its cooling after the end of solidification requires constitutive parameters of high-strength aluminum alloys in the as-cast condition, which are not readily available. In this paper we describe constitutive behavior of high strength 7xxx series aluminum alloys in the as-cast condition based on experimentally measured tensile properties at different strain rates and temperatures, plane strain fracture toughness at different temperatures, and thermal contraction. In addition, fracture and structure of the specimens and real cold-cracked billets are examined. As a result a fracture-mechanics-based criterion of cold cracking is suggested based on the critical crack length, and is validated upon pilot-scale billet casting.
NASA Astrophysics Data System (ADS)
Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.
2010-05-01
Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.
NASA Astrophysics Data System (ADS)
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W; Fragapane, Alex H; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C; Abild-Pedersen, Frank; Nørskov, Jens K; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Li, Hong; Tsai, Charlie; Koh, Ai Leen; ...
2015-11-09
As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposedmore » Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.« less
NASA Astrophysics Data System (ADS)
Simonov, M. Yu.; Georgiev, M. N.; Shaimanov, G. S.; Simonov, Yu. N.; Zaporozhan, R. S.
2016-05-01
Comparative analysis of zones of plastic strain, dynamic crack resistance, structure, and micromechanisms of crack propagation in structural steels 09G2S, 25 and 40 in high-toughness condition is performed. The structure, the micromechanisms of crack growth, and the dynamic crack resistance of steels 09G2S, 25 and 40 are studied. Complete zones of plastic stain (CPSZ) under fracture surfaces are plotted after quenching and high tempering at 650°C. The levels of microhardness in the CPSZ are mapped for specially-designed specimens with additional 1-mm-deep side notches and relative crack length of 0.4 - 0.5. The sizes of the zones of plastic strain in the starting region are determined. Special features of the distribution of microhardness in local volumes of the CPSZ are determined. The structure under fracture surfaces of steels 09G2S, 25 and 40 is studied over the whole of the path of propagation of a dynamic crack.
Crack-grain boundary interactions in zinc bicrystals
NASA Astrophysics Data System (ADS)
Catoor, D.; Kumar, K. S.
2011-06-01
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
An orthotropic laminate composite containing a layer with a crack
NASA Technical Reports Server (NTRS)
Arin, K.
1974-01-01
A laminate composite containing an orthotropic layer with a crack situated normal to the interfaces, and bonded to two orthotropic half-planes of dissimilar materials was considered. The solutions for two different classes of orthotropic materials are presented. In each case, the problem was first reduced to a system of dual integral equations, then to a singular integral equation which was subsequently solved numerically for the stress intensity factors at the tip of the crack. The effect of the material properties on the stress intensity factor was investigated. The generalized plane stress and the plane strain were treated simultaneously.
NASA Astrophysics Data System (ADS)
Fan, CuiYing; Zhao, MingHao; Wang, JiaPeng; Pan, Ernian
2013-04-01
In this paper, we analyze an arbitrarily oriented crack in a finite two-dimensional piezoelectric medium with the polarization saturation model near the crack tip. We first derive the extended Green's functions corresponding to the extended point-displacement discontinuities of an arbitrarily oriented crack based on the Green's functions of the extended point forces and the Somigliana identity. Then, the extended field intensity factors and the local J-integral near the crack tip are expressed in terms of the extended displacement discontinuity on crack faces. Finally, the nonlinear hybrid extended displacement discontinuity-fundamental solution method is proposed to analyze an electrically nonlinear crack in a finite piezoelectric medium. Numerical examples are carried out for both linear and nonlinear fracture models of the crack under electrically impermeable boundary conditions. The influence of the crack orientation and geometric size on the fracture behaviors of the crack is investigated.
NASA Technical Reports Server (NTRS)
James, Mark Anthony
1999-01-01
A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.
Crack propagation and arrest in CFRP materials with strain softening regions
NASA Astrophysics Data System (ADS)
Dilligan, Matthew Anthony
Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified
Use of Carbon Nano-Fiber Foams as Strain Gauges to Detect Crack Propagation
2015-06-01
by exposure to a reactive environment. As a failure mode, fatigue crack propagation is the predominant mode of failure in metals and accounts for 90...the ship passes over a wave crest. Ship structural fatigue resulting from cyclic loading, mostly occurs at welds. When a repeated load is heavy ...mixtures of ethylene and oxygen, at moderate temperatures (ca. between 500 and 700°C), graphite structure will form on certain metal catalysts
NASA Astrophysics Data System (ADS)
Besuelle, P.
2012-04-01
Failure by strain localization is commonly observed in geomaterials. Generaly, experimental characterization of the localization in a porous sandstone are performed with classical axisymmetric triaxial compression tests. The effect of the confining pressure is observed on several aspects: onset of localization, pattern of localization, porosity evolution inside bands, grain scale mechanisms of deformation. Complex patterns of localization can be observed at high confining pressure in the transition between the brittle and ductile regime, showing several deformation bands in the specimens ([1]). However the history (time evolution) of the localization is not accessible because the observations are post-mortem. Strain field measurement and evolution in time of the strain field are particularly useful to study the strain localization (initiation of the deformation bands) and the post-localization regime. Such tools have been developed for soils (e.g., sand specimens in plane strain condition [2] or in triaxial conditions using X-ray tomography [3]). Similar developments for rocks are still difficult, especially because the pertinent confining pressure to reproduce in situ stresses are higher than for soils. We present here first results obtained in a new true triaxial apparatus that allows observation of the rock specimen under loading and especially the complex development of deformation bands and faults. As for [4] and [5], the three principal stresses are different, however the intermediate stress is controlled in order to impose a plane strain condition (zero strain in this direction). Observation of a specimen under load is possible as one surface of the prismatic specimen, which is orthogonal to the plane strain direction, is in contact with a hard transparent window. The deformation of this surface is representative of the deformation in the whole specimen, up to and beyond strain localization. Therefore the evolution of the strain field in the sample can be
NASA Astrophysics Data System (ADS)
Llana-Funez, S.; Rutter, E. H.
2006-12-01
The condition of simultaneous operation of five slip systems to produce homogeneous deformation by intracrystalline plasticity in polycrystalline aggregates is frequently simplified when applied to studying deformation in nature by considering other deformation mechanisms that relax the strict geometric condition. Insufficient knowledge of how these complementary mechanisms interact and accommodate geometrically non-plane strain situations obscure somehow subsequent interpretation of slip patterns in relation to principal strain axes. We ran an experimental program isolating intracrystalline plasticity from other deformation mechanisms with the aim of testing the effect of non-plane strain geometries in the 3D arrangement of crystallographic elements from which we inferred the orientation of active slip systems. We use a fine grained polycrystalline aggregate (Solnhofen Limestone), naturally doped at grain boundaries with organic matter preventing grain growth, that deforms plastically at the experimental conditions used (600 °C, 200 MPa confining pressure and 10^{- 4}s-1 strain rates). To maximize the number of strain geometries we used different experimental configurations (axi-symmetric shortening and extension, and direct shear) and also study in detail volumes where deformation is heterogeneous but still relatively simple. The aim of the work is to relate strain geometry and the development of crystallographic fabrics in different strain paths. We produced constrictional, flattening, and nearly plane strain deformations. We were also able to obtain strain geometries where the vorticity axis in a non-coaxial deformation was either perpendicular to the extension direction (as in simple and sub-simple shear) or parallel to it. We measured the crystallographic preferred orientation (CPO) of calcite in deformed specimens by electron back-scattered diffraction techniques (EBSD), which allowed us to scan relatively small areas within already small specimens
C-shaped specimen plane strain fracture toughness tests. [metallic materials
NASA Technical Reports Server (NTRS)
Buzzard, R. T.; Fisher, D. M.
1977-01-01
Test equipment, procedures, and data obtained in the evaluation of C-shaped specimens are presented. Observations reported on include: specimen preparation and dimensional measurement; modifications to the standard ASTM E 399 displacement gage, which permit punch mark gage point engagement; and a measurement device for determining the interior and exterior radii of ring segments. Load displacement ratios were determined experimentally which agreed with analytically determined coefficients for three different gage lengths on the inner surfaces of radially-cracked ring segments.
Residual strength of cracked 7075 T6 Al-alloy sheets under high loading rates
NASA Astrophysics Data System (ADS)
Vasek, A.; Schijve, J.
1995-04-01
Dynamic tests were carried out on long sheet specimens with two collinear cracks. First the ligament between the two cracks fails, which implies that the cracks are linked up to a single crack. Linking up did increase the loading rate (dK/dt) of the outer crack tips up to 2 x 10(exp 4) MPa (sq root) m/s. COD measurements during the fast running crack were made. The residual strength was decreased by about 10 percent as compared to the quasi-static result. Fractographic evidence indicates that a high dK/dt has some effect on the shear lips. It promotes some plane-strain influence, associated with an increased yield stress, due to the high plastic strain rate in the crack tip zone. The results were evaluated in terms of fracture mechanics. The results are bearing on the damage tolerance of aircraft structures built up from 7075-T6 sheet material.
Deformation fields near a steady fatigue crack with anisotropic plasticity
Gao, Yanfei
2015-11-30
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.
Deformation fields near a steady fatigue crack with anisotropic plasticity
Gao, Yanfei
2015-11-30
In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less
Shimada, T; Okuno, J; Ishii, Y; Kitamura, T
2012-03-07
We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy.
Orientation control of the orbital ordering plane in epitaxial LaMnO3 thin films by misfit strain
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Lee, Jin Hong; Kim, Sang-Woo; Koo, Tae Yeong; Yang, Chan-Ho
2016-10-01
We investigate the effects of misfit strain on the orbital order of epitaxial lanthanum manganite thin films grown on (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT) and GdScO3 (GSO) substrates. Resonant X-ray scattering near the Mn K-edge is employed to identify the cooperative Jahn-Teller distortion at room temperature and determine the orientation of the orbital-ordered plane (OOP). We find that coherent growth on LSAT (GSO) makes the OOPs be vertical (parallel) to the film surface. This finding not only offers useful insight into the interplay between misfit strain and orbital order, but also holds promise for strain control of orbital-dependent physical properties.
The cracking mechanism of silicon particles in an A357 aluminum alloy
NASA Astrophysics Data System (ADS)
Yeh, Jien-Wei; Liu, Wen-Pin
1996-11-01
The cracking of Si particles in an A357 Al alloy has been investigated over a spectrum of stress and strain by varying aging strength and applying different tensile strains. The variation of the fraction of broken Si particles with stress, strain, and cleavage plane orientation has been obtained. The features of cracking reveal that cracking of Si particles is a very localized event. A dislocation pileup mechanism is the most probable one among all crack-initiation theories for explaining the behavior. Based on this mechanism, further deduction has been made to obtain the relationship between the fraction of broken particles and metallurgical factors. The present data, along with Gurlandrss and that of Low et al., have been found to verify this relationship for the effect of stress, strain, and cleavage plane orientation.
Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach
NASA Astrophysics Data System (ADS)
Lunt, Alexander J. G.; Salvati, Enrico; Ma, Lifeng; Dolbyna, Igor P.; Neo, Tee K.; Korsunsky, Alexander M.
2016-09-01
Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding of residual stress and mechanical failure in many applications. This study outlines the first Focused Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of performing precise, reliable and rapid quantification of this behaviour. The nature of semi-destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor quantification: unstrained lattice parameter estimates are not required, analysis is performed in within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be studied and access to X-ray/neutron facilities is not required. The FIST FIB milling and DIC experimental technique is based on extending the ring-core milling geometry to quantify the strain variation with angle and therefore benefits from the excellent precision and simple analytical approach associated with this method. In this study in-plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. The two methods sample different gauge volumes and mechanical states: approximately plane stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using complex analysis methods and Finite Element (FE) modelling that valid comparisons can be drawn between these two stress states. Excellent agreement was obtained between principal stress orientation and magnitudes, leading to realistic residual stress estimates that agree well with the literature (σAv ≈ 460 MPa) . As a measure of validity of the matching approach we report the upper and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the range 2.9586 - 2.9596 Å , closely matching published values.
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
Analysis of fatigue crack growth in terms of crack closure and energy
Ranganathan, N.
1999-07-01
The fatigue crack growth behavior of the aluminum alloy 2024 is analyzed using the crack closure and an energy-based concept. The different test conditions studied include load ratio and environmental effects, crack growth retardation following a single overload, and crack propagation under block load tests. Crack opening loads using the compliance technique permit the effect of load ratio to be taken into account. After an overload, in the deceleration phase, the evolution of the crack opening load is not compatible with that of the crack growth rate. The measured crack opening levels under constant-amplitude loading conditions are comparable to those predicted under plane strain conditions for moderate {Delta}K levels. It is shown that most of the effects usually attributed to closure can be successfully explained using energy concepts. In particular, it is shown that there exists a linear relationship between the crack growth rate and the energy dissipated per cycle at high growth rates, which is valid for both the environments studied, and it corresponds to a crack growth mechanism characterized by striation formation during each cycle. For lower growth rates a power law relationship can be proposed between these two parameters. The above-mentioned linear relationship holds also for the block loading conditions based on total energy dissipated per block. Certain experimental facts bring out the effect of closure on the energy dissipated. It is further shown that the possible existence of a mixed (Mode I and Mode II) mode crack opening at the crack tip has to be taken into account to correctly evaluate the energy dissipated near the crack tip.
Strain compensated superlattices on m-plane gallium nitride by ammonia molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Fireman, Micha N.; Bonef, Bastien; Young, Erin C.; Nookala, Nishant; Belkin, Mikhail A.; Speck, James S.
2017-08-01
The results of tensile strained AlN/GaN, AlGaN/GaN, and compressive strained InGaN/GaN superlattices (SLs) grown by Ammonia MBE (NH3-MBE) are presented. A combination of atom probe tomography and high-resolution X-ray diffraction confirms that periodic heterostructures of high crystallographic quality are achieved. Strain induced misfit dislocations (MDs), however, are revealed by cathodoluminescence (CL) of the strained AlN/GaN, AlGaN/GaN, and InGaN/GaN structures. MDs in the active region of a device are a severe problem as they act as non-radiative charge recombination centers, affecting the reliability and efficiency of the device. Strain compensated SL structures are subsequently developed, composed of alternating layers of tensile strained AlGaN and compressively strained InGaN. CL reveals the absence of MDs in such structures, demonstrating that strain compensation offers a viable route towards MD free active regions in III-Nitride SL based devices.
NASA Astrophysics Data System (ADS)
Dustin, Joshua S.
A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of
Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C
Li, H.X.; Kurtz, R.J.; Jones, R.H.
1997-04-01
The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.
NASA Astrophysics Data System (ADS)
Dakin, John P.; Austin, Timothy S. P.; Gregson, Peter J.; Guerrier, Daniel J.; Trundle, Keith J.
1999-02-01
As part of a project to optimize hybrid laminates for resistance to fatigue failure, arrays of fiber Bragg gratings are being used to monitor small-scale strain perturbations in composite materials. A remote multiplexed sensing system with 40 remote sensing sties using fiber optic technology, has been developed to monitor the strain field developed across the composite lamina of a hybrid laminate in the vicinity of a fatigue crack. Developed primarily for fatigue-critical aerospace applications, i.e. fuselage and lower wing skins, the hybrid laminates are orthotropic materials having lower density and higher strength than a simple alloy monolith without reinforcement. Fatigue crack growth in hybrid laminates is a complex process that involves a combination of delamination and fiber bridging. The fiber optic system has been applied to the problem of characterizing delamination zone development about a fatigue crack, initiated at a through-thickness fastener hole.
NASA Technical Reports Server (NTRS)
Finger, R. W.
1978-01-01
Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.
Yu, K. Y.; Chen, Y.; Li, J.; ...
2016-11-28
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
Yu, K. Y.; Chen, Y.; Li, J.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.
2016-11-28
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
Albocher, U; Barbone, P E; Richards, M S; Oberai, A A; Harari, I
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems.
Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085
NASA Technical Reports Server (NTRS)
Fisher, D. M.; Buzzard, R. J.
1979-01-01
Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long armed displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders.
Carvalho, M.S.; Scriven, L.E.
1997-12-01
In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.
NASA Astrophysics Data System (ADS)
Mirzana, Ishrat M.; Krishna Mohana Rao, G.; Rama Murthy, G.
2013-01-01
A rapid calculation procedure is presented for the analysis of a functionally graded tube subjected to internal pressure under plane strain condition. The exact analysis for the problem involves derivation of a hyper-geometric differential equation whose solution is a hyper-geometric function. The exact analysis involves the use of complicated terms and is time-consuming. In order to simplify the calculations, a procedure based on an approximation of variation of modulus of elasticity by an integral average value has been studied which resulted in faster calculation and results obtained have been in close agreement with exact solution highlighting the effect of material properties on stresses.
Effect of crack meandering on dynamic, ductile fracture
NASA Astrophysics Data System (ADS)
Tvergaard, V.; Needleman, A.
DYNAMIC crack growth is analyzed numerically for a plane strain edge cracked specimen subject to impulsive tensile loading at one end. An elastic—viscoplastic constitutive relation for a porous plastic solid is used to model ductile fracture by the nucleation and subsequent growth of voids to coalescence. Two populations of second-phase particles are represented: large inclusions with low strength, which result in large voids near the crack tip at an early stage, and small second-phase particles, which require large strains before cavities nucleate. Adiabatic heating due to plastic dissipation and the resulting thermal softening are accounted for in the analyses. Various two-dimensional distributions of the larger inclusions in front of the crack tip are considered, while the small second-phase particles are taken to be uniformly distributed. It is found that in most cases cracks grow in a zig-zag manner, dependent on the distribution of larger inclusions. Predictions for the dynamic crack growth behavior and for the time variation of crack tip characterizing parameters are obtained for each case analyzed. The computed crack growth paths and speeds are entirely based on the ductile failure predictions of the material model, so that the present study is free from ad hoc assumptions regarding appropriate dynamic crack growth criteria.
Stress-strain state of an anisotropic plate with curved cracks and thin rigid inclusions
NASA Astrophysics Data System (ADS)
Maksimenko, V. N.; Podruzhin, E. G.; Ryabchikov, P. E.
2007-04-01
We solve the bending problem for an anisotropic plate with flaws like smooth curved nonoverlapping through cracks and rigid inclusions. The problem is solved by the method of Lekhnitskii complex potentials specified as Cauchy type integrals over the flaw contours with an unknown integrand density function. We use the Sokhotskii—Plemelj formulas to reduce the boundary-value problem to a system of singular integral equations with the additional conditions that the displacements in the plate are single-valued when going around the cut contours and the equilibrium conditions for stress-free rigid inclusions. After the singular integrals are approximated by the Gauss-Chebyshev quadrature formulas, the problem is reduced to solving a system of linear algebraic equations. We study the local stress distribution near flaw tips. We analyze the mutual influence of flaws on the stress distribution character near their vertices and compare the well-known solutions for isotropic plates with the solutions obtained by passing to the limit in the anisotropy parameters ("weakly anisotropic material") and by using the method proposed here.
NASA Astrophysics Data System (ADS)
Ma, Ninshu; Takada, Kenji; Sugimoto, Nao
2016-08-01
To investigate the local strain and stress at the crack initiation position in shear fracture test pieces of ultra-high strength steels, a butterfly shear fracture specimen was employed. The crack initiation position and propagation direction were observed during shear fracture tests by high speed cameras and investigated through analysing the fracture surface by scanning electron microscope. Further, the finite element method was employed and the stress-triaxiality at the crack initiation position was investigated. It can be obtained that the crack initiated at the position where the stress state is close to uniaxial tensile state or plane strain state more than pure shear stress state.
Constructing generalized Cesàro formulas for finite plane strains
NASA Astrophysics Data System (ADS)
Georgievskii, D. V.
2014-05-01
The problem of finding the displacement vector from a system of nonlinear differential equations which includes displacement gradient components is studied. Expressions on the right side of this system for certain parameter values have the kinematic sense of Lagrange and Euler finite strain tensors. The task is to construct generalized Cesàro formulas for finite strains. The construction of the solution consists of two stages (algebraic and differential), and the second is performed for space whose dimension is greater than or equal to two. An algorithm for the inversion of the original system is proposed, and analytical constructions for the case of two-dimensional space are performed. The problem is solved at the first (algebraic) stage, i.e., an exact analytical expression for the displacement vector components is derived through the known finite strain tensor and an unknown scalar function having the kinematic sense of rotation. Necessary conditions for the existence of this relationship are formulated.
Limit loads for centrally cracked square plates under biaxial tension
NASA Astrophysics Data System (ADS)
Graba, Marcin
2016-12-01
This paper is concerned with the determination of limit loads for centrally cracked square plates subjected to biaxial tension. It briefly discusses the concept of limit loads and some aspects of numerical modelling. It presents results of numerical calculations conducted for two-dimensional (plane strain state and plane stress state) and three-dimensional cases. It also considers the relationship between the limit load and the crack length, the specimen thickness, the yield strength and the biaxial load factor, defined for the purpose of this work. The paper includes approximation formulae to calculate the limit load.
Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys
NASA Astrophysics Data System (ADS)
Gupta, Vipul K.
crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the
In-plane anisotropy of electrical resistivity in strain-detwinned SrFe[subscript 2]As[subscript 2
Blomberg, E.C.; Tanatar, M.A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Budko, S.L.; Canfield, P.C.; Goldman, A.I.; Prozorov, R.
2011-12-09
Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe{sub 2}As{sub 2} above and below the temperature of the coupled structural/magnetic transition, T{sub TO}. Resistivity is smaller for electrical current flow along the orthorhombic a{sub o} direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the b{sub o} direction (direction of ferromagnetic chains), which is similar to CaFe{sub 2}As{sub 2} and BaFe{sub 2}As{sub 2} compounds. A strongly first-order structural transition in SrFe{sub 2}As{sub 2} was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above T{sub TO}. With the increase of strain, the resistivity anisotropy starts to develop above T{sub TO}, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.
In-plane anisotropy of electrical resistivity in strain-detwinned SrFe2As2
NASA Astrophysics Data System (ADS)
Blomberg, E. C.; Tanatar, M. A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Bud'Ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.
2011-04-01
Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe2As2 above and below the temperature of the coupled structural/magnetic transition, TTO. Resistivity is smaller for electrical current flow along the orthorhombic ao direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the bo direction (direction of ferromagnetic chains), which is similar to CaFe2As2 and BaFe2As2 compounds. A strongly first-order structural transition in SrFe2As2 was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above TTO. With the increase of strain, the resistivity anisotropy starts to develop above TTO, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.
Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich
2012-01-01
Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup. PMID:28817026
Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich
2012-06-19
Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
Nanomechanical modeling of a (100)[001] crack in a single crystal bcc iron cantilever beam
NASA Astrophysics Data System (ADS)
Skogsrud, Jørn; Jørum, Marie; Thaulow, Christian
2017-02-01
An atomistic model of a fully 3D, nano-sized, pre-cracked cantilever beam has been made and MD simulations have been performed to deflect the beam and initiate crack growth. The crucial process zone in front of the crack has been investigated with respect to linear elastic and elastic-plastic fracture mechanics and plastic deformation mechanisms such as dislocations and twinning. The effect of crack geometry and loading rate has been studied. Two crack geometries were compared, one atomically sharp and one blunted. The sharper crack was shown to lead to a cleaner crack extension on (110)-planes, while the rounded crack showed extension along the initial (100)-plane in accordance with experiments on micro-sized 3 wt% Si α-Fe cantilevers. The effect of strain rate was also investigated, and it was found that lower strain rate correlated better with experimental observations. However, the strain rate used is still several magnitudes higher than for experiments, limiting the usefulness of strain rate observations for predicting behavior in experiments. A brief post-deformation comparison between simulations and SEM-images of focused ion beam-fabricated micro-cantilevers was also done, showing possible signs of similar deformation mechanisms and dislocation systems between them.
The mode I crack growth resistance of metallic foams
NASA Astrophysics Data System (ADS)
Chen, C.; Fleck, N. A.; Lu, T. J.
2001-02-01
A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance ( R-curve) of metallic foams, with the fracture process characterised by an idealised traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.
Peters, P.W.M.; Andersen, S.I.; Forsogsanlaeg Riso, Roskilde )
1989-09-01
The effects of matrix fracture strain and interface strength on cross-ply cracking in CFRP composites were investigated using specimens of a graphite/epoxy laminate, 0/90(4)/0, tested at -100 C, -40 C, room temperature (RT), 60 C, and 100 C. It is shown that the fracture strain (mechanical + thermal strain) distribution can be described by two-parameter Weibull distributions. It was found that, at increasing test temperature, two phenomena influenced the transverse fracture strain and the strength of the interface. From -100 C to RT, ply failure proved to be dominated by the increasing fracture strain of the matrix. Above RT, the influence of the decrease in the interface strength dominates over that of the increased matrix fracture strain. 17 refs.
Thermal-Mechanical Response of Cracked Satin Weave CFRP Composites at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.
2008-03-01
This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.
THERMAL-MECHANICAL RESPONSE OF CRACKED SATIN WEAVE CFRP COMPOSITES AT CRYOGENIC TEMPERATURES
Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.
2008-03-03
This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.
Cryogenic mechanical response of multilayer satin weave CFRP composites with cracks
NASA Astrophysics Data System (ADS)
Watanabe, S.; Shindo, Y.; Takeda, T.; Narita, F.
2008-07-01
We deal with the thermomechanical response of multilayer satin weave carbon-fiber-reinforced polymer (CFRP) laminates with internal and/or edge cracks and temperature-dependent material properties subjected to tensile loading at cryogenic temperatures. The composite material is assumed to be under the generalized plane strain. Cracks are located in the transverse fiber bundles and extend to the interfaces between two fiber bundles. A finite-element model is employed to study the influence of residual thermal stresses on the mechanical behavior of multilayer CFRP woven laminates with cracks. Numerical calculations are carried out, and Young's modulus and stress distributions near the crack tip are shown graphically.
The Mode 1 mechanical crack tip stress field in hyperelastic and incompressible materials
NASA Technical Reports Server (NTRS)
Quigley, Claudia J.
1995-01-01
The finite deformation field of a plane strain Mode 1 crack in a hyperelastic and incompressible material was examined under the assumptions of small scale nonlinearity. Finite element analyses were performed for two different material laws, a Neo-Hookean material and a third order invariant of a Rivlin material. The numerical results for both materials were compared to the appropriate theoretical asymptotic solution. A local cavitation locus surrounding the crack tip was identified for the Neo-Hookean material. For the third order invariant Rivlin material, maximum values of the dominant stress component were found close to the surface of the crack, above and below the deformed crack tip.
The Mode 1 mechanical crack tip stress field in hyperelastic and incompressible materials
NASA Technical Reports Server (NTRS)
Quigley, Claudia J.
1995-01-01
The finite deformation field of a plane strain Mode 1 crack in a hyperelastic and incompressible material was examined under the assumptions of small scale nonlinearity. Finite element analyses were performed for two different material laws, a Neo-Hookean material and a third order invariant of a Rivlin material. The numerical results for both materials were compared to the appropriate theoretical asymptotic solution. A local cavitation locus surrounding the crack tip was identified for the Neo-Hookean material. For the third order invariant Rivlin material, maximum values of the dominant stress component were found close to the surface of the crack, above and below the deformed crack tip.
NASA Astrophysics Data System (ADS)
Larsen, James M.; Allison, John E.
This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.
Fatigue crack closure behavior at high stress ratios
NASA Technical Reports Server (NTRS)
Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.
1988-01-01
Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.
Wang, J.S.; Evans, A.G.
1999-01-15
Strain cycling has been used to study various events that occur in association with an alumina thin layer thermally grown on a Ni-based bond coat. There are three main findings. (i) Buckles propagate with a growth per cycle suggestive of effects of cycling on the friction acting at the separated interfaces. (ii) Cracking of the thermally grown oxide (TGO) occurs within buckles having high ellipticity, subject to a flexural strength typical of fine-grained Al{sub 2}O{sub 3}, with small stressed volume. Such cracking has implications for oxygen ingress and rapid degradation. (iii) Spalling occurs preferentially in those buckles that previously crack. The measurements are analyzed using the mechanics of buckle propagation, bending and kinking.
NASA Astrophysics Data System (ADS)
Poling, Joel; Desai, Niranjan
2017-04-01
This investigation determined the smallest strain accurately measurable by a state-of-the-art digital image correlation (DIC) - based tool used in structural health monitoring, in a specimen subjected to out-of-plane movement, building upon a study that concluded that out-of-plane specimen movement results in noise in DIC-based strain measurements. This study was motivated by initially undetected damage at low strains in connections of a real-world bridge, whose detection would have prevented its propagation, resulting in lower repair costs. The smallest strains accurately measurable using the state-of-the-art DIC tool, over a range of specimen out-of-plane displacement amplitudes, were determined.
Residual strength of thin panels with cracks
NASA Technical Reports Server (NTRS)
Madenci, Erdogan
1994-01-01
The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.
Residual strength of thin panels with cracks
NASA Astrophysics Data System (ADS)
Madenci, Erdogan
1994-12-01
The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.
NASA Astrophysics Data System (ADS)
Paul, H.; Tarasek, A.; Wajda, W.; Berent, K.
2014-08-01
Crystal lattice rotations induced by shear bands developed in an AA1050 aluminium alloy have been examined in order to investigate the influence of the finegrained structure on the slip propagation across the grain boundaries and the resulting texture evolution. Samples of the AA1050 alloy were pre-deformed in ECAP up to 6 passes via route C, then machined and further compressed in a channel-die up to ~25% at room temperature. The microstructure and texture were characterized by SEM equipped with a high resolution EBSD facility. The ECAP-processing leads to the formation of a fine grained structure. The grains were grouped into nearly complementarily oriented layers. During the secondary straining in the channel-die, the layers of fine grains, initially situated almost parallel to the compression plane, undergo deflection within some narrow areas. This is the beginning stage of the macroscopic shear band (MSB) formation. In all the deformed grains examined (within MSB) a strong tendency for strain-induced re-orientation could be observed. The SEM orientation mapping shows how the layers of flattened grains are incorporated into the MSB area, and what kinds of mechanisms are responsible for the strain accommodation at the macro-scale. Finally, a crystallographic description of the mechanism of MSB formation in AA1050 aluminium alloy is proposed based on the local lattice re-orientations due to localized kinking.
The strain in the array is mainly in the plane (waves below ~1 Hz)
Gomberg, J.; Pavlis, G.; Bodin, P.
1999-01-01
We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering
NASA Astrophysics Data System (ADS)
Harikumar, M.; Sankar, N.; Chandrakaran, S.
2015-09-01
Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack
NASA Technical Reports Server (NTRS)
Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.
1998-01-01
The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth
Gerstein, Gregory; Klusemann, Benjamin; Bargmann, Swantje; Schaper, Mirko
2015-01-15
In the current work, the evolutions of grain and dislocation microstructures are investigated on the basis of plane strain tension and simple shear tests for an interstitial free steel (DC06) and a 6000 series aluminum alloy (AA6016-T4). Both materials are commonly-used materials in the automobile industry. The focus of this contribution is on the characterization and comparison of the microstructure formation in DC06 and AA6016-T4. Our observations shed light on the active mechanisms at the micro scale governing the macroscopic response. This knowledge is of great importance to understand the physical deformation mechanisms, allowing the control and design of new, tailor-made materials with the desired material behavior.
Gerstein, Gregory; Klusemann, Benjamin; Bargmann, Swantje; Schaper, Mirko
2015-01-01
In the current work, the evolutions of grain and dislocation microstructures are investigated on the basis of plane strain tension and simple shear tests for an interstitial free steel (DC06) and a 6000 series aluminum alloy (AA6016-T4). Both materials are commonly-used materials in the automobile industry. The focus of this contribution is on the characterization and comparison of the microstructure formation in DC06 and AA6016-T4. Our observations shed light on the active mechanisms at the micro scale governing the macroscopic response. This knowledge is of great importance to understand the physical deformation mechanisms, allowing the control and design of new, tailor-made materials with the desired material behavior. PMID:28787938
Vibrations in a Fluid-Loaded Poroelastic Hollow Cylinder Surrounded by a Fluid in Plane-Strain Form
NASA Astrophysics Data System (ADS)
Shanker, B.; Nath, C. N.; Shah, S. A.; Reddy, P. M.
2013-03-01
Plane-strain vibrations in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid are investigated employing Biot's theory of wave propagation in poroelastic media. The poroelastic hollow cylinder is homogeneous and isotropic, while the inner and outer fluids are homogeneous, isotropic and inviscid. The frequency equation of the fluid-loaded poroelastic cylinder surrounded by a fluid is obtained along with several particular cases, namely, fluid-loaded poroelastic cylinder, fluid-loaded bore, poroelastic cylinder surrounded by a fluid and poroelastic solid cylinder submerged in a fluid. The frequency equations are obtained for axially symmetric, flexural and anti-symmetric vibrations each for a pervious and an impervious surface. Nondimensional frequency for propagating modes is computed as a function of the ratio of thickness to the inner radius of the core. The results are presented graphically for two types of poroelastic cylinders and then discussed.
A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E.
2009-01-01
A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.
The surface and through crack problems in layered orthotropic plates
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Wu, Binghua
1991-01-01
An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.
Mapping and load response of overload strain fields: Synchrotron X-ray measurements
Shukla, V; Jisrawi, N M; Sadangi, R K; Pao, P S; Horvath, K; Sadananda, K; Ignatov, A; Skaritka, J; Tsakalakos, T
2009-02-05
High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.
Frefer, Abdulbaset Ali; Raddad, Bashir S.
2013-12-16
In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations.
Crack tip mechanics in periodically layered composites
NASA Astrophysics Data System (ADS)
Jha, Mahendra
In this work, the plane strain problems of periodically layered composites consisting of alternate matrix and fiber layers weakened by a crack perpendicular or parallel to the interfaces are considered. Elasto-static analytical solutions for the crack-tip micromechanical fields under mode-I, mode-II and mixed-mode loading are developed using principles of asymptotic homogenization and the method of complex elastic potentials. In a separate formulation, the mode-I crack-tip fields for a crack normal to the interfaces are also obtained using the method of non-standard analysis. The analytical model predictions are compared with the numerical solutions obtained through refined near-tip micro-macro hybrid finite element analyses. Extensive numerical studies addressing the crack-tip location effects on the near-tip fields are presented. In all cases considered, the zero-order micro-stresses obtained from the analytical solutions are found to exhibit an overall rsp{{-}{1/2}} singularity. The numerical studies have revealed that the near-tip micro-stress field in cracked layered systems is structured in three distinct zones. In systems with isotropic layers, the stress field in the matrix phase surrounding the immediate vicinity of crack-tip is found to exhibit a universal isotropic field behavior dominated by a matrix material dependent stress intensity factor. In the far-field region, the admissible discontinuous micro-stress field is observed to depend on the microstructural heterogeneity and the global anisotropy of the system. The transition from the universal isotropic to the far field behavior takes place within a relatively small region. Crack tip amplification or shielding are shown to take place for a crack approaching a bimaterial interface. The mode-I near-tip fields for a crack normal to the interface in a laminate consisting of alternate brittle and ductile layers are also studied numerically. The Gurson constitutive model that accounts for the ductile
Mesoscale modelling of crack-induced diffusivity in concrete
NASA Astrophysics Data System (ADS)
Nilenius, Filip; Larsson, Fredrik; Lundgren, Karin; Runesson, Kenneth
2015-02-01
Cracks have large impact on the diffusivity of concrete since they provide low-resistance pathways for moisture and chloride ions to migrate through the material. In this work, crack-induced diffusivity in concrete is modelled on the heterogeneous mesoscale and computationally homogenized to obtain macroscale diffusivity properties. Computations are carried out using the finite element method on three-dimensional statistical volume elements (SVEs) comprising the mesoscale constituents in terms of cement paste, aggregates and the interfacial transition zone (ITZ). The SVEs are subjected to uni-axial tension loading and cracks are simulated by use of an isotropic damage model. In a damaged finite element, the crack plane is assumed to be perpendicular to the largest principle strain, and diffusivity properties are assigned to the element only in the in-plane direction of the crack by anisotropic constitutive modelling. The numerical results show that the macroscale diffusivity of concrete can be correlated to the applied mechanical straining of the SVE and that the macroscale diffusivity increases mainly in the transversal direction relative to the axis of imposed mechanical straining.
Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei
2015-07-13
Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.
Omote, Kazuhiko
2010-12-01
We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.
Time dependent stress fields ahead of the interface cracks in creep regime
Biner, S.B.
1996-12-31
In this study the behavior of stationary interface cracks in layered materials at creep regime in plane-strain condition and pure opening dominated mode-I load state was studied numerically. The results indicate that the introduction of a transitional layer to the interface of the elastic-creeping bimaterials significantly elevates the stress values ahead of the interface cracks under identically applied load levels at creep regime.
Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates
NASA Technical Reports Server (NTRS)
Adams, D. S.; Bowles, D. E.; Herakovich, C. T.
1983-01-01
The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.
NASA Astrophysics Data System (ADS)
Savruk, Mikhailo P.; Danilovich, A. M.
1992-06-01
The elastic-plastic equilibrium of a thin semiinfinite plate with a rectilinear crack of arbitrary orientation is analyzed assuming that local strains are localized along a narrow band originating at the crack tip. The elastic-plastic problem is reduced to that of solving a plane elasticity problem with a broken-line edge crack with loaded faces. The problem is solved by the singular integral equation method. Numerical results are obtained for the cases where the crack faces are loaded by a tensile force at infinity or by constant pressure. The effect of the free edge of the plate on the magnitude and orientation of the plasticity band is estimated.
Wu, Huaping; Chai, Guozhong; Zhou, Ting; Zhang, Zheng; Kitamura, Takayuki; Zhou, Haomiao
2014-03-21
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship among ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.
NASA Astrophysics Data System (ADS)
Khan, D.; Singh, S.; Needleman, A.
2016-11-01
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.
NASA Astrophysics Data System (ADS)
Khan, D.; Singh, S.; Needleman, A.
2017-02-01
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.
NASA Technical Reports Server (NTRS)
Smith, Robert W.; Smith, Gordon T.
1960-01-01
Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.
Stable Crack Growth During Thermal Actuation of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Jape, S.; Baxevanis, T.; Lagoudas, D. C.
2016-03-01
A finite element analysis of crack growth is carried out in shape memory alloys subjected to thermal variations under plane strain, mode I, constant applied loading. The crack is assumed to propagate at a critical level of the crack-tip energy release rate which is modeled using the virtual crack closure technique. The load level, applied at a high temperature at which the austenite phase is stable, is assumed sufficiently low so that the resulting crack-tip energy release rate is smaller than the critical value but sufficiently high so that the critical value is reached during cooling, initiating crack growth (Baxevanis and Lagoudas in Int J Fract 191:191-213, 2015). Stable crack growth is observed, mainly associated with the shielding effect of the transformed material left in the wake of the advancing crack. Results pertaining to the near-tip mechanical fields and fracture toughness are presented and their sensitivity to phase transformation metrics and bias load levels is investigated.
NASA Astrophysics Data System (ADS)
Zeng, Xiaguang; Wei, Yujie
Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
Elasto-plastic bending of cracked plates, including the effects of crack closure. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jones, D. P.
1972-01-01
A capability for solving elasto-plastic plate bending problems is developed using assumptions consistent with Kirchhoff plate theory. Both bending and extensional modes of deformation are admitted with the two modes becoming coupled as yielding proceeds. Equilibrium solutions are obtained numerically by determination of the stationary point of a functional which is analogous to the potential strain energy. The stationary value of the functional for each load increment is efficiently obtained through use of the conjugate gradient. This technique is applied to the problem of a large centrally through cracked plate subject to remote circular bending. Comparison is drawn between two cases of the bending problem. The first neglects the possibility of crack face interference with bending, and the second includes a kinematic prohibition against the crack face from passing through the symmetry plane. Results are reported which isolate the effects of elastoplastic flow and crack closure.
NASA Astrophysics Data System (ADS)
Nakashima, Takaaki; Ichinose, Daichi; Ehara, Yoshitaka; Shimizu, Takao; Kobayashi, Takeshi; Yamada, Tomoaki; Funakubo, Hiroshi
2017-03-01
(100)/(001)-oriented epitaxial lead titanate (PbTiO3) films with various thicknesses were grown on (100) KTaO3 substrates by pulsed metal-organic chemical vapor deposition. The change of crystal structure with film thickness and deposition temperature was investigated. The paraelectric phase of 50 and 1000 nm-thick films had a tensile strain of 0.5% and almost 0% at 700 °C, respectively. The phase change temperature from the paraelectric phase to the ferroelectric phase, the Curie temperature (Tc), increased with the in-plane strain of the paraelectric phase; that is, Tc increased with decreasing film thickness. In contrast, room-temperature tetragonal distortion decreased as the film became thinner. This study reveals the effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films with higher Tc and smaller tetragonal distortion at room temperature.
NASA Astrophysics Data System (ADS)
Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi
2016-08-01
Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.
Mode II fatigue crack propagation.
NASA Technical Reports Server (NTRS)
Roberts, R.; Kibler, J. J.
1971-01-01
Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.
Energy absorption mechanisms during crack propagation in metal matrix composites
NASA Technical Reports Server (NTRS)
Murphy, D. P.; Adams, D. F.
1979-01-01
The stress distributions around individual fibers in a unidirectional boron/aluminum composite material subjected to axial and transverse loadings are being studied utilizing a generalized plane strain finite element analysis. This micromechanics analysis was modified to permit the analysis of longitudinal sections, and also to incorporate crack initiation and propagation. The analysis fully models the elastoplastic response of the aluminum matrix, as well as temperature dependent material properties and thermal stress effects. The micromechanics analysis modifications are described, and numerical results are given for both longitudinal and transverse models loaded into the inelastic range, to first failure. Included are initially cracked fiber models.
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin
2015-11-09
As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS_{2}) is known to contain active edge sites and an inert basal plane. Activating the MoS_{2} basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS_{2} for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔG_{H}) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔG_{H} = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Nonlinear Crack Growth Monitoring
Welch, DE
2001-03-27
Oak Ridge National Laboratory has developed a new technique to monitor the growth of cracks in structural members, and to predict when failure due to this damage is imminent. This technique requires the measurement of global loadings and local deflections/strains at critical locations to indicate the increasing growth of hidden cracks with sufficient warning time prior to failure to take preventative action to correct the problem or retire the structure before failure. The techniques, as described in the referenced report have been proven on a laboratory scale to successfully detect the onset of failure due to fatigue cracking (including cracking of corroded samples), stress corrosion cracking, and low temperature creep crack growth, with a reasonable degree of warning before failure.
1984-04-01
OVERLOAD EFFECTS [27,32,36,55,65,80-94] 104 4.3 SHORT CRACK BEHAVIOUR 113 4.4 SURFACE CRACK BEHAVIOUR 116 4.5 EFFECT OF RESIDUAL STRESS 117 4.6...Compressive Stresses Developed 16 on a Growing Fatigue Crack During a Constant Amplitude Cyclic Load Control Test. 4 Plastic Zone and Residual Compressive... Stresses Developed 18 on a Saw Cut Sharp Crack During a Constant Amplitude Cyclic Load Control Test. Residual Stresses Developed in the Plane of Crack
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.
1988-01-01
A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.
Crack Turning Mechanics of Composite Wing Skin Panels
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Reeder, James R. (Technical Monitor)
2001-01-01
crack plane in generally anisotropic solids under plane deformation has been studied; (6) The role of T-stress and the higher-order term of sigma(sub y) on the crack turning and stability of the kinked crack has been quantified; (7) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner plate theory) in an anisotropic plate under bending, twisting moments, and transverse shear loads has been presented; (8) The expression of the path-independent J-integral in terms of the generalized stress and strain has been derived; (9) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner shallow shell theory) in a general anisotropic shell has been developed; (10) The Stroh formalism was used to characterize the crack tip fields in shells up to the second term and the energy release rate was expressed in a very compact form.
Crack growth of 10M Ni-Mn-Ga material in cyclic mechanical loading
NASA Astrophysics Data System (ADS)
Aaltio, I.; Ge, Y.; Pulkkinen, H.; Sjöberg, A.; Söderberg, O.; Liu, X. W.; Hannula, S.-P.
The 10M martensitic Ni-Mn-Ga single crystal materials are usually applied in the magneto-mechanical actuators. Therefore, it is important to know the possible effect of the long-term cyclic shape changes on their structure and behavior. This can be evaluated with the mechanical fatigue testing. In the present study, the single crystal 10M Ni-Mn-Ga samples of different compositions were applied to strain-controlled uniaxial mechanical cycling in the multivariant state at ambient temperature. The experiments revealed distinctive changes of the twin variant structure, especially in the mobile twin area, density of twin boundaries, and in the tendency for fatigue crack growth. Characterization of the crack surface showed that the cracks in the microscale grow in a step-wise manner on specific crystallographic planes, i.e, twin boundary planes, but that the macroscopic crack does not occur only along crystallographic directions.
Domain structure and in-plane switching in a highly strained Bi0.9Sm0.1FeO3 film
NASA Astrophysics Data System (ADS)
Chen, Weigang; Ren, Wei; You, Lu; Yang, Yurong; Chen, Zuhuang; Qi, Yajun; Zou, Xi; Wang, Junling; Sritharan, Thirumany; Yang, Ping; Bellaiche, L.; Chen, Lang
2011-11-01
We report the domain structure and ferroelectric properties of a 32 nm-thick Bi0.9Sm0.1FeO3 film epitaxially grown on a LaAlO3 (LAO) substrate. This film exhibits a monoclinic Mc phase, with its monoclinic distortion and anisotropy of in-plane (IP) lattice parameters being both smaller than those of pure BiFeO3 (BFO) grown on LaAlO3. Polarization hysteresis loops measured using a quasi-planar capacitor show an in-plane polarization up to 30 μC/cm2. Piezoresponse force microcopy demonstrates that a 180° in-plane polarization switching accompanied by a 90° domain wall rotation takes place after electric poling. First-principles calculations suggest the differences between highly strained Sm-substituted and pure BiFeO3.
NASA Astrophysics Data System (ADS)
Qiao, Liang; Bi, Xiaofang
2008-02-01
Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.
NASA Astrophysics Data System (ADS)
Krishnan, Govinda; Varshney, A.; Parameswaran, Venkitanarayanan; Mondal, K.
2017-05-01
The current work analyzes the effect of the dynamic change in strain rate during tensile loading of a mild steel on its mechanical and stress corrosion behavior in 3.5 wt.% NaCl solution. The sample experiences high strain rate (10-2 s-1) up to 10, 15 and 20% of total deformation and then very low strain rate of 10-6 s-1 till fracture without any unloading in between. The behavioral characteristics of the steel under these circumstances are found to be different from that exhibited during complete loading till fracture both at high and slow strain rates separately. Total strain increases with the increase in the strain at which change in strain rate happens, and this is attributed to the generation of large number of dislocations at higher strain rate and subsequently release of dislocation at low strain rate during change over due to more time available for dynamic recovery. This observation is common for both in air and corrosive environment. One unique observation in this study is the higher total strain and lower strength observed during dynamic change in strain rate in the corrosive environment compared to that in air, which is attributed to the hydrogen-induced plasticity mechanism.
NASA Technical Reports Server (NTRS)
Ghosn, L. J.
1988-01-01
Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.
NASA Technical Reports Server (NTRS)
Ghosn, L. J.
1988-01-01
Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.
Creep crack-growth: A new path-independent T sub o and computational studies
NASA Technical Reports Server (NTRS)
Stonesifer, R. B.; Atluri, S. N.
1981-01-01
Two path independent integral parameters which show some degree of promise as fracture criteria are the C* and delta T sub c integrals. The mathematical aspects of these parameters are reviewed. This is accomplished by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects and large deformations. Two principal conclusions are that delta T sub c is a valid crack tip parameter during nonsteady as well as steady state creep and that delta T sub c has an energy rate interpretation whereas C* does not. An efficient, small displacement, infinitestimal strain, displacement based finite element model is developed for general elastic/plastic material behavior. For the numerical studies, this model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations.
Zhang, T.Y.; Hack, J.E.
1999-01-01
Calculations of the equilibrium hydrogen concentration profiles about a mixed ode I-mode III crack in single crystal iron were performed. Both material anisotropy and the tetragonal nature of the distortion induced in the iron crystal structure by interstitial hydrogen were incorporated. Results show that, unlike the case of a spherical distortion, a strong coupling exists between the strain field of the interstitial hydrogen and the stress field of the crack for orientations of the crack plane that are not coincident with the cube axes of the lattice. As a result, the predicated enhancement of hydrogen in the crack tip region increases with increasing levels of mode III loading for those orientations. The results may help reconcile conflicting observations concerning the potential role of shear stresses in hydrogen embrittlement and preferential cracking of grains ahead of loaded crack tips in sustained load cracking experiments.
Three-dimensional crack closure behavior
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Grandt, A. F., Jr.; Newman, J. C., Jr.
1990-01-01
A crack closure measurement technique involving fatigue striations was used to produce a three-dimensional crack opening load profile for 2024-T351 aluminum alloy. The crack opening load profile, determined through the specimen thickness, was compared with crack opening load measurements made with strain gages and displacement gages. The results of this study indicate that a significant three-dimensional variation in crack closure behavior occurs in the alloy examined. An understanding of this phehomenon is important in understanding crack growth behavior, predicting crack shape changes, and interpreting 'standard' crack closure measurement techniques.
Computational Contour of Mixed Mode Crack-Tip Plastic Zone for Aluminum Alloy 2024T351
NASA Astrophysics Data System (ADS)
Do, Tien Dung; Leroy, Rene; Joly, Damien
2013-07-01
The studies on mixed mode crack-tip plastic zones are one of the fundamental importance in describing the process of failure and in evaluation of the material life. The approach is also applied to predict crack initiation under mixed mode loading. The objective of this work is to study the contour of mixed mode crack-tip plastic zones, the minimum plastic zone radius (MPZR) and the direction of initial crack for aluminum alloy 2024T351 in Compact tension specimen by using Matlab software. This paper computed the shape, size of plastic zone at crack-tip and the minimum plastic zone radius with reference to the loading angle and stress intensity factor in linear elastic fracture mechanics regime for plane strain condition according to Von Mises yield criteria, the study is conducted for various loading angle. We found that the mixed mode loading (β = 60°) can lead to material fracture earlier than any mode loading.
A comparison study between scalar and multi-plane microcracking ceramic damage models
NASA Astrophysics Data System (ADS)
Grove, D. J.; Rajendran, A. M.
1997-07-01
The Rajendran-Grove (RG) ceramic damage model is based on an elastic-plastic-cracking description. A crack density parameter g (Na3) describes the scalar damage. The number of flaws N is assumed to be constant and the crack size parameter ``a'' evolves according to a strain energy release based evolution law. Crack orientation is not considered in this model. However, the microcracking multi-plane model considers crack orientations in nine pre-selected directions and computes damage by summing up the crack density contribution from all nine cracks. Both models account for crack opening and sliding. These two models have been implemented in the 1995 version of the EPIC code. We simulated an experiment in which an aluminum plate impacts a long slender ceramic bar. The experimental data consisted of particle velocities (in the radial direction) at two lateral locations on the surface of the bar and the particle velocity (in the longitudinal direction) at the back face of the bar. This paper compares the results from the EPIC code simulations using the RG and multi-plane ceramic models.
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Jiang, Q.
2007-02-01
A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.
Goel, V.S.
1985-01-01
This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600.
NASA Astrophysics Data System (ADS)
Kuklja, Maija M.; Rashkeev, Sergey N.
2007-03-01
First-principles calculations of the structural and electronic properties of the deformed molecular crystal 1,1-diamino-2,2-dinitroethylene (FOX-7) under shear-strain loading are presented. The reaction of the crystal to applied shear-strain loading is found to be highly anisotropic. When the external loading is removed, the relaxation of the system is mainly defined by stretching, bending, and rotations of the NO2 groups of neighboring molecules from the two adjacent zigzag-shaped crystalline planes that were initially shifted. In general, the deformed molecular crystal relaxes to its initial, ideal crystalline FOX-7 structure. However, different planes remain shifted relatively to each other on vectors, which are typically incommensurated with any translational vector of the ideal crystal. This fact makes an existence of ideal crystals of this material quite problematic. We also found that no metallization occurs under shear-strain loading. We suggest that the considered mechanisms of the shear-strain relaxation of the structural and electronic degrees of freedom are typical for layered anisotropic molecular crystals, and that they should significantly affect their chemical reactivity, conductivity, optical properties, and initiation of detonation in energetic materials.
Crack tip process zone domain switching in a soft lead zirconate titanate ceramics.
Jones, J. L.; Motahari, S. M.; Varlioglu, M.; Lienert, U.; Bernier, J. V.; Hoffman, M.; Ustundag, E.; Univ. of Florida; Iowa State Univ.; The Univ. of New South Wales
2007-09-01
Non-180{sup o} domain switching leads to fracture toughness enhancement in ferroelastic materials. Using a high-energy synchrotron X-ray source and a two-dimensional detector in transmission geometry, non-180{sup o} domain switching and crystallographic lattice strains were measured in situ around a crack tip in a soft tetragonal lead zirconate titanate ceramic. At K{sub 1} = 0.71 MPa m{sup 1/2} and below the initiation toughness, the process zone size, spatial distribution of preferred domain orientations, and lattice strains near the crack tip are a strong function of direction within the plane of the compact tension specimen. Deviatoric stresses and strains calculated using a finite element model and projected to the same directions measured in diffraction correlate with the measured spatial distributions and directional dependencies. Some preferred orientations remain in the crack wake after the crack has propagated; within the crack wake, the tetragonal 0 0 1 axis has a preferred orientation both perpendicular to the crack face and toward the crack front.
1990-09-27
tip fields along with a correspondence of these fields to the well characterized small strain (HRR) fields in homogeneous media . In particular, it...crack dimension. Our results showed that for cases involving two elastic-plastic media that the fields, in both materials, are parts of a single...of an geneous media (e.g., Hutchinson, 1983). In one sense the work infinite crack embedded in an infinite bimaterial body (see Fig. complimented
Formation and interpretation of dilatant echelon cracks.
Pollard, D.D.; Segall, P.; Delaney, P.T.
1982-01-01
The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors
Rathke, Jörn; Müller, Ulrich; Konnerth, Johannes; Sinn, Gerhard
2012-01-01
This paper is the third part of a study dealing with the mechanical and fracture mechanical characterization of Medium Density Fiberboards (MDF). In the first part, an analysis of internal bond strength testing was performed and in the second part MDF was analyzed by means of the wedge splitting experiment; this part deals with the double cantilever I beam test, which is designed for measuring the fracture energy as well as stress intensity factor in Mode I. For a comparison of isotropic and orthotropic material behavior, finite element modeling was performed. In addition to the calculation of fracture energy the stress intensity factor was analyzed by means of finite elements simulation and calculation. In order to analyze strain deformations and the process zone, electronic speckle pattern interferometry measurements were performed. The results revealed an elongated process zone and lower results for KIC if compared to the wedge splitting experiment. The Gf numbers are higher compared to the wedge splitting results and can be explained by the thicker process zone formed during the crack propagation. The process zone width on its part is influenced by the stiff reinforcements and yields a similar crack surface as with the internal bond test.
Takeda, T.; Shindo, Y.; Narita, F.
2004-06-28
This paper presents the thermo-mechanical response of multi-layered G-11 woven glass/epoxy laminates with internal and/or edge cracks under tensile loading at cryogenic temperatures obtained from a two-dimensional finite element analysis. A condition of generalized plane strain is assumed to exist in the composite. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. The finite element model accounts for the temperature-dependent constituent properties. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Nam, Yoon Sung; Lee, Sang Wook; Baek, K. S.; Chang, S. K.; Song, Jae-Ho; Song, Jung-Hoon; Han, Seok Kyu; Hong, Soon-Ku; Yao, Takafumi
2008-05-01
We have investigated the polarization dependence of the near-band-edge photoluminescence and photoreflectance spectra in nonpolar (A-plane) ZnO films under strong biaxial compressive strain. We show that anisotropic strain and the orientation of the nonpolar plane play an important role in determining the polarization selectivity and properties of excitonic transitions. We identified four distinct band-edge transitions at 3.449, 3.420, 3.386, and 3.326eV. They were identified as E2 and E1 free excitons, E1 excitons bound to a donor, and free-electron-to-bound-hole transition, respectively. Unlike previously reported results on relatively thick nonpolar films, the E1 exciton (lowest energy) was mainly polarized to E ⊥c and weakly polarized to E ∥c under strong biaxial compressive strain in the 100nm thick film. The E2 exciton (next higher energy) was exclusively polarized to E ∥c. The localization energy of DX is 34meV, which is much larger than that in polar ZnO, and the DX was not thermally delocalized even at room temperature.
Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-21
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia
2017-10-01
Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn
2012-01-01
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
NASA Astrophysics Data System (ADS)
Guz, A. N.
2014-01-01
The basic results of establishing the foundations of the mechanics of fracture of homogeneous materials compressed along cracks and inhomogeneous (composite) materials compressed along interface cracks are analyzed. These results were obtained using elastic, plastic, and viscoelastic material models. This review consists of three parts. The first part discusses the basic concept that the start (onset) of fracture is the mechanism of local instability near the cracks located in a single plane or parallel planes. The fracture criterion and the basic problems arising in this division of fracture mechanics are also formulated. Two basic approaches to establishing the foundations of the mechanics of fracture of materials compressed along cracks are outlined. One approach, so-called beam approximation, is based on various applied theories of stability of thin-walled systems (including the Bernoulli, Kirchhoff-Love, Timoshenko-type hypotheses, etc.). This approach is essentially approximate and introduces an irreducible error into the calculated stresses. The other approach is based on the basic equations and methods of the three-dimensional linearized theory of stability of deformable bodies for finite and small subcritical strains. This approach does not introduce major errors typical for the former approach and allows obtaining results with accuracy acceptable for mechanics. The second part offers a brief analysis of the basic results obtained with the first approach and a more detailed analysis of the basic results obtained with the second approach, including the consideration of the exact solutions for interacting cracks in a single plane and in parallel planes and results for some structural materials. The third part reports new results for interacting cracks in very closely spaced (or coinciding, as an asymptotic case) planes. These results may be considered a transition from the second approach (three-dimensional linearized theory of elastic stability) to the
Initiation and propagation of small corner cracks
NASA Technical Reports Server (NTRS)
Ellyin, Ferdnand; Kujawski, Daniel; Craig, David F.
1994-01-01
The behaviour of small corner cracks, inclined or perpendicular to loading direction, is presented. There are two aspects to this investigation: initiation of small cracks and monitoring their subsequent growth. An initial pre-cracking procedure under cyclic compression is adopted to minimize the residual damage at the tip of the growing and self-arresting crack under cyclic compression. A final fatigue specimen, cut from the larger pre-cracked specimen, has two corner flaws. The opening load of corner flaw is monitored using a novel strain gauge approach. The behaviour of small corner cracks is described in terms of growth rate relative to the size of the crack and its shape.
Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films
Matzen, Sylivia; Nesterov, Okeksiy; Rispens, Gregory; Heuver, J. A.; Bark, C; Biegalski, Michael D; Christen, Hans M; Noheda, Beatriz
2014-01-01
Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Forien, Jean-Baptiste; Fleck, Claudia; Cloetens, Peter; Duda, Georg; Fratzl, Peter; Zolotoyabko, Emil; Zaslansky, Paul
2015-06-10
The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. Synchrotron-based diffraction methods, utilizing micro- and nanofocused X-ray beams, reveal that the nm-sized mineral particles aligned with collagen are precompressed and that the residual strains vanish upon mild annealing. We show the link between the mineral nanoparticles and known damage propagation trajectories in dentin, suggesting a previously overlooked compression-mediated toughening mechanism.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan
2017-09-01
Optical gain characteristics of a-plane (11 2 bar 0) AlGaN/GaN quantum well (QW) lasers grown on a GaN buffer with strain anisotropy using a strain-engineered MgZnO layer were investigated using the multiband effective mass theory. The calculated transition energies for QW structures grown on MgZnO layer are in good agreement with experimental results. The optical gain of the QW structure grown on the MgZnO substrate is dominated by the z ‧ -polarization because the dominant states constituting the topmost valence subband for the QW structure changes from | Y ‧ > - to | Z ‧ > -like and carriers occupy higher states above k∥ = 0 at a higher carrier density. On the other hand, the optical gain of the QW structure grown on conventional GaN buffer is dominated by both y ‧ - and z ‧ -polarizations. Thus, the optical polarization characteristics of a-plane AlGaN/GaN QW lasers can be engineered by using MgZnO substrate.
Measuring Crack Length in Coarse Grain Ceramics
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.
Steady-state crack growth in single crystals under Mode I loading
NASA Astrophysics Data System (ADS)
Juul, K. J.; Nielsen, K. L.; Niordson, C. F.
The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities at the crack tip predicted by Rice [Rice J.R., 1987. Tensile crack tip fields in elastic-ideally plastic crystals. Mech. Mater. 6, pp. 317-335] for quasi-static crack growth are confirmed through the numerical simulations and highly refined details are revealed. Through a detailed study, it is demonstrated that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities monotonically increases the crack tip shielding, whereas the opposite behaviour is observed at high velocities. This observation leads to the existence of a characteristic velocity at which the crack tip shielding becomes independent of the rate-sensitivity.
Subcritical crack growth under mode I, II, and III loading for Coconino sandstone
NASA Astrophysics Data System (ADS)
Ko, Tae Young
In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range
The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media
NASA Astrophysics Data System (ADS)
Friedman, Avner; Hu, Bei; Velazquez, Juan J. L.
When a crack Γs propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γs. In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γs) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A1(s), A2(s), as functions of s, satisfy:
Limitations to the small scale yielding approximation for crack tip plasticity
NASA Technical Reports Server (NTRS)
Rice, J. R.
1974-01-01
Recent finite-element results by S. G. Larsson and A. J. Carlsson suggest a limited range of validity to the 'small scale yielding approximation,' whereby small crack tip plastic zones are correlated in terms of the elastic stress intensity factor. It is shown with the help of a model for plane strain yielding that their results may be explained by considering the non-singular stress, acting parallel to the crack at its tip, which accompanies the inverse square-root elastic singularity. Further implications of the non-singular stress term for crack tip deformations and fracturing are examined. It is suggested that its effect on crack tip parameters, such as the opening displacement and J-integral, is less pronounced than its effect on the yield zone size.
Crack nucleation near stress concentrators in quasi-brittle materials
NASA Astrophysics Data System (ADS)
Demeshkin, A. G.; Kornev, V. M.; Kurguzov, V. D.
2012-02-01
The results of combined tension (compression) and shear experiments with plexiglass specimens are used to construct a Coulomb-Mohr-type strength curve. Fracture experiments were performed with plexiglass square plates with internal through cuts. The specimens were subjected to compression on a Zwick/Roell testing machine until cracks appeared. In the process of testing, nucleation of symmetric cracks was observed, which propagated as the load was further increased. The fracture character (tensile or shear) could not be decided until a subsequent numerical analysis of the plate stress-strain state was performed by the finite elementmethod. The stress concentration loci were found to coincide with the crack nucleation loci. In the plane ( σ, τ ), Mohr's circles were constructed for the stress states at the stress concentration points. If the point at which Mohr's curve touches the limit curve is known, then one can determine the plane on which the normal and tangential stresses attain critical values, and hence one can determine the crack propagation direction. The experimental results and numerical solutions were found to be in good agreement.
Lagattu, Fabienne . E-mail: lagattu@lmpm.ensma.fr; Bridier, Florent; Villechaise, Patrick; Brillaud, Jean
2006-01-15
The purpose of this paper is to present a method based on the correlation of digital images obtained on a microscopic scale. A specific grainy pattern has been developed. The use of the scanning electron microscopy (SEM) allowed the determination of full-field 2D displacements on an object surface with a spatial resolution of about 1 {mu}m. Validation tests were performed in order to quantify performances and limits of this method. An example of its application is presented for a Ti-6Al-4V titanium alloy. Results show that it is possible to obtain in-plane displacement values on the object surface with efficient spatial resolution and accuracy. Thus, such a technique can be used to highlight on a relevant scale the role of the microstructure in material deformation processes.
Strain effects on in-plane conductance of the topological insulator Bi{sub 2}Te{sub 3}
Heui Hwang, Jin; Kwon, Sangku; Hun Kim, Jong; Young Park, Jeong; Park, Joonbum; Sung Kim, Jun; Lee, Jhinhwan; Lyeo, Ho-Ki
2014-04-21
We investigated the correlation between electrical transport and mechanical stress in a topological insulator, Bi{sub 2}Te{sub 3}, using conductive probe atomic force microscopy in an ultrahigh vacuum environment. After directly measuring charge transport on the cleaved Bi{sub 2}Te{sub 3} surface, we found that the current density varied with applied load. Current mapping revealed a variation of the current on different terraces. The current density increased in the low-pressure regime and then decreased in the high-pressure regime. This variation of current density was explained in light of the combined effect of changes in the in-plane conductance due to spin–orbit coupling and hexagonal warping.
Yang, Nicholas H; Canavan, Paul K; Nayeb-Hashemi, Hamid
2010-11-01
Subject-specific models were developed and finite element analysis was performed to observe the effect of the frontal plane tibiofemoral angle on the normal stress, Tresca shear stress and normal strain at the surface of the knee cartilage. Finite element models were created for three subjects with different tibiofemoral angle and physiological loading conditions were defined from motion analysis and muscle force mathematical models to simulate static single-leg stance. The results showed that the greatest magnitude of the normal stress, Tresca shear stress and normal strain at the medial compartment was for the varus aligned individual. Considering the lateral knee compartment, the individual with valgus alignment had the largest stress and strain at the cartilage. The present investigation is the first known attempt to analyze the effects of tibiofemoral alignment during single-leg support on the contact variables of the cartilage at the knee joint. The method could be potentially used to help identify individuals most susceptible to osteoarthritis and to prescribe preventive measures.
Warren, N.
1980-09-01
Compressional and shear velocities, static strain, and permeabilities were measured for a suite of 7 rocks from LASL. The sample included two gneisses (cored parallel and perpendicular to the plane of foliation), a diorite, a granite, two quartzites and a marble. This interim report is a partial compilation of data, presented simply as a useable inventory and as a reference source of data for other studies in the future. The import of this data set is that for each sample it consists of measurements of four physical properties all of which are controlled by the sample's microstructure. Therefore, the sets of data for any one rock are expected to show strong cross-correlations, and to provide insight into the inverse problem of predicting physical properties from petrostructural models.
Ii, Seiichiro; Iwamoto, Chihiro; Matsunaga, Katsuyuki; Yamamoto, Takahisa; Ikuhara, Yuichi
2004-01-01
Inter- and/or transgranular crack paths in sintered silicon nitride (Si3N4) during fracture were investigated by in situ straining experiments in a transmission electron microscope at room temperature, using a high-precision micro-indenter. By this technique, cracks introduced in an in situ manner were observed to propagate in the grain interior and along grain boundaries. High-resolution electron microscopy (HREM) observation revealed that the crack propagation takes place at an interface between Si3N4 grains and an intergranular glassy film (IGF) in the case of intergranular fractures. According to the results by previous molecular dynamics simulations, a number of dangling bonds are present at the Si3N4/IGF interface, which should result in the observed fracture behavior at the interface. On the other hand, the crack path introduced during transgranular fracture of Si3N4 grains was found to be sharp and straight. The observed crack propagated towards [1120] inside the Si3N4 grain with the crack surface parallel to the (1100) plane. The HREM observations of crack walls revealed them to be atomically flat. The atomic termination of the crack walls was identified in combination with image simulations based on atomic models of the cleaved crack walls.
NASA Astrophysics Data System (ADS)
Toni Liong, Rugerri; Proppe, Carsten
2013-04-01
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.
The effect of non-singular stresses on crack-tip constraint
NASA Astrophysics Data System (ADS)
Du, Z.-Z.; Hancock, J. W.
T HE EFFECT of the T-stress on the small-scale yielding field of a crack in plane strain conditions has been examined using modified boundary layer formulations. The numerically calculated stresses at the crack tip are represented by slip line fields for small-strain theory. Positive T-stresses cause plasticity to envelop the crack tip and exhibit a Prandtl field, corresponding to the limiting solution of the HRR field for a nonhardening material. Moderate compressive T-stresses reduce the direct stresses within the plastic zone by decreasing the hydrostatic stress by T. This causes a loss of J-dominance, and a stress distribution represented by an incomplete Prandtl field.
Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section
Keeney, J.A.; Bass, B.R.; McAfee, W.J.
1995-04-01
A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data.
Polak, M.; Parrell, J.A.; Polyanskii, A.A.; Pashitski, A.E.; Larbalestier, D.C.
1997-02-01
Studies of the transport critical current (I{sub c}), magnetization, magnetic flux penetration, and microstructure of pressed and rolled Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes (2223) have been made as a function of bending strain. Pressed tapes exhibited markedly less degradation of I{sub c} from strain than did rolled tapes, while the magnetization of pressed tapes declined much more rapidly with bending strain than did either of the transport currents. Magneto-optical imaging of nonbent pressed samples revealed a network of flux-penetrated defect channels that were primarily oriented parallel to the tape axis. Bending such samples to a small strain increased the visibility of these defects, believed to be cracks. This network correlates well to the cracks produced in intermediate thermomechanical processing deformation steps. The greater sensitivity of the transport current of rolled samples to bending is further direct proof of the fact that the tape {open_quotes}remembers{close_quotes} the cracks induced in the core during intermediate deformation and that heat treatment after the deformation does not heal all damage. {copyright} {ital 1997 American Institute of Physics.}
Shindo, Y.; Ueda, S.
1997-06-01
We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically.
Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels
NASA Astrophysics Data System (ADS)
Arendt, Cory; Sun, C. T.
1994-09-01
The bending effects of unsymmetrically bonded composite repairs on cracked aluminum panels were quantified using a plate linear finite element model. Stress intensity factors and strain energy release rates were obtained from the model twice, once with out-of-plane displacement suppressed and another time without these restrictions. Several configurations were examined, crack growth stability was identified, and the effect of a debond was considered. The maximum stress intensity factor was also analyzed. Previous work by other authors was found to underpredict the bending effect.
NASA Astrophysics Data System (ADS)
Baik, Youl; Choi, Yong
2014-12-01
The effects of pre-charged hydrogen inside steel and the hydrogen ions on its surface on the sulfide stress corrosion cracking (SSCC) behavior was studied by slow strain rate tests. The specimen had an ASTM grain size number of about 11. Most of precipitates were 30-50 nm in size, and their distribution density was about 106 mm-2. The crystallographic texture consisted of major α-fiber (<110>//RD) components with a maximum peak at {115}<110> relatively close to {001}<110>, and minor γ-fiber (<111>//ND) components with a peak slightly shifted from {111}<112> to {332}<113>. Hydrogen was pre-charged inside the steel by a high-temperature cathodic hydrogen charging (HTCHC) method. SSCC and corrosion tests were carried out in an electrolytic solution (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7). The corrosion potentials and the corrosion rates of the specimen without hydrogen charging for 24 hours were -490 mVSHE and 1.2 × 10-4 A cm-2, and those with charging were -520 mVSHE and 2.8 × 10-4 A cm-2, respectively. The corrosion resistance in the solution with 1000 ppm iron chloride added was decreased significantly, such that the corrosion potential and corrosion rate were -575 mVSHE and 3.5 × 10-4 A cm-2, respectively. Lower SSCC resistance of the pin-hole pre-notched specimen was observed at the open circuit potential than at the 100 mV cathodically polarized condition. Pre-charged hydrogen inside of the specimen had a greater influence on the SSCC behavior than hydrogen ions on the surface of the specimen during the slow strain rate test.
Sengupta, A.; Putatunda, S.K. . Dept. of Materials Science and Engineering)
1994-11-01
In recent years, the design requirements of advanced gas turbine engines have led to the development of directionally solidified single crystal nickel-based superalloys. Among these alloys, CMSX-4 is a new second-generation single crystal nickel-based superalloy containing rhenium. This alloy has been developed from the first-generation CMSX alloys. It has superior hot corrosion resistance and higher creep-rupture strength than first-generation single crystal nickel-based superalloys and is an attractive candidate for complex components that require continuous exposure to very high temperatures. Due to its potential applications in turbine blades, rotors and nuclear reactors, etc., the fatigue crack growth rate (FCGR) and fatigue threshold (FT) data of this material are extremely important for safe life prediction as well as failure safe design at elevated temperatures. Preliminary studies by these authors have indicated that this material is probably undergoing dynamic strain aging (DSA) in the temperature range of 260 to 800 C. However, the effect of DSA on FCGR and FT is not well known or established for single crystal nickel-based superalloys. The objective of this investigation was to determine the effect of DSA on FCGR and FT of CMSX-4 at the temperature range of 650 and 800 C.
FREEZING AND THAWING RESISTANCE OF CONCRETE WITH INITIAL CRACK
NASA Astrophysics Data System (ADS)
Naito, Hideki; Hayashi, Hiroshi; Saiki, Yusuke; Sando, Koichi; Koga, Hideyuki; Suzuki, Motoyuki
Freezing and thawing resistance of concrete with an initial crack was investigated. The specimens were classified into plane concrete, fiber reinforced concrete, and reinforced concrete. In the tests of plane concrete with an initial crack, the crack grows seriously by the frozen expansion pressure of the water infiltrated into the crack, though the concrete material had high resistance to freezing and thawing. In the experimental results of fiber reinforced concrete, the long polypropylene fiber was useful to prevent the spalling of concrete cover, though the crack growth was not prevented. Moreover, in the experimental results of reinforced concrfete, it was shown that the crack growth was effectively prevented by steel reinforcing bar.
Analysis of the interaction of two parallel surface cracks
NASA Astrophysics Data System (ADS)
Hahn, Jeeyeon
The objective of this research is to analyze and predict the interaction of surface cracks that occur in parallel planes. Multiple cracks may form in aging aircraft that forms at stress concentrations such as fastener holes and notched components by stress corrosion and fatigue cracking. The lifetime of the structures are significantly affected by the interaction between these cracks. Depending on relative positions and orientations of neighboring cracks, local stress fields and crack driving forces can be affected by the presence of adjacent cracks. Even small subcritical cracks may rapidly grow to a size that will cause failure in service due to interaction and coalescence with other cracks. The interaction behavior and crack propagation direction of two parallel surface cracks is studied using three-dimensional finite element analysis (FEA). FEA models with wide range of crack configurations in a finite plate under tension are evaluated to investigate the correlation between the crack shapes and the separation distance between two cracks. The relative distance (vertical and horizontal) between two cracks and size and shape of these cracks are varied to create different stress interaction fields. Stress intensity factors (SIF) along the crack fronts are obtained from FEA, and then, cracking behaviors of the cracks are predicted by considering the influence of the interaction on the SIF and the coalescence of two cracks. The results obtained are then compared with existing experimental and analytical data for validation. All of the data analyses are presented in tabular forms and figures.
NASA Astrophysics Data System (ADS)
Tanuma, Ryohei; Mori, Daisuke; Kamata, Isaho; Tsuchida, Hidekazu
2012-06-01
This paper demonstrates the X-ray microbeam three-dimensional (3D) topography of basal-plane dislocations (BPDs) and threading edge dislocations (TEDs) in 4H-SiC. Stereographic images showing the propagation of BPDs from a substrate to an epilayer and the conversion of BPDs into TEDs near the epilayer/substrate interface are successfully obtained. The narrowing of BPD images is observed just before the BPD-TED conversion points. The images of effective misorientations Δω provide a spatial resolution of 1-2 µm for a TED, and the range of Δω corresponds to strains on the order of +/-10-5. We also discuss the image-formation mechanism in 3D topography.
Crack problems in cylindrical and spherical shells
NASA Technical Reports Server (NTRS)
Erdogan, F.
1976-01-01
Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.
Ma, R.; Negahban, M.
1995-12-31
The objective of this study is to investigate the effect of crystallization on the mechanical response of a polymer containing a rigid cylindrical inclusion under different loading conditions and under the plane strain restriction. As will be shown, external loading and crystallization can both induce an inhomogeneous distribution of stress and deformation in the vicinity of a cylindrical inclusion and can also interact with each other. Crystallization is a process of transition of the polymer`s microstructure from disordered state to an ordered one. This transition occurs in many polymers, such as polyethylene, polypropylene, nylon, and natural rubber. The process of crystallization gives rise to a macroscopic deformation, reducing the macroscopic volume, and it can increase the toughness and rigidity of a polymer. For example, for natural rubber crystallization causes a two order of magnitude increase in the elastic moduli. Moreover, crystallization can result in stress relaxation under constant uniaxial extension and creep under constant load. These effects have been captured in a constitutive model developed by Negahban, Wineman and Ma, which has been shown to be in good agreement with experimental results. This presentation provides (1) a theoretical evaluation of the effect of crystallization on the distribution of stress and mechanical moduli under axisymmetric loading and an estimation of the idual stress resulting from crystallization in the vicinity of a cylindrical inclusion; and (2) a numerical simulation of the stress distribution in the vicinity of an inclusion due to crystallization under both constant displacement loading and constant traction loading. All results are for plane strain conditions. Results show that an inhomogeneous distribution of stress and deformation is developed in the vicinity of the inclusion due to the external loading and/or due to crystallization.
Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo
2017-07-03
In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga1-x N layer releases through surface roughening and the 3D growth-mode.
Variation of strain energy release rate with plate thickness. [fracture mode transition
NASA Technical Reports Server (NTRS)
Sih, G. C.; Hartranft, R. J.
1973-01-01
An analytical model of a through-thickness crack in a statically stretched plate is presented in which the crack front stress state is permitted to vary in the direction of the plate thickness. The amplitude or intensity of this stress field can be made nearly constant over a major portion of the interior crack front which is in a state of plane strain. The average amount of work available for extending a small segment of the crack across the thickness is associated with an energy release rate quantity in a manner similar to the two-dimensional Griffith crack model. The theoretically calculated energy release rate is shown to increase with increasing plate thickness, indicating that available work for crack extension is higher in a thicker plate.
Crack damage evolution in rocks deformed under true triaxial loading
NASA Astrophysics Data System (ADS)
Browning, John; Meredith, Philip; Stuart, Chris; Healy, David; Harland, Sophie; Mitchell, Tom
2017-04-01
Microcrack damage in rocks evolves in response to differential loading. However, the vast majority of experimental studies investigate damage evolution using conventional triaxial stress states (σ1 > σ2 = σ3), whereas in nature the stress state is in general truly triaxial (σ1 > σ2 > σ3). We present a comparative study of conventional triaxial vs. true triaxial stress conditions using results from measurements made on cubic samples of sandstone deformed in three orthogonal directions with independently controlled stress paths. We have measured, simultaneously with stress and strain, the changes in ultrasonic compressional and shear wave velocities in the three principal directions, together with the bulk acoustic emission (AE) output. Changes in acoustic wave velocities are associated with both elastic closure and opening of pre-existing cracks, and the formation of new, highly oriented, cracks by inelastic processes. By contrast, AE is associated only with the inelastic growth of new cracks. Crack growth is shown to be a function of differential stress regardless of the mean stress. New cracks can form due to a decrease in the minimum principal stress, which reduces mean stress but increases the differential stress. We measure the AE, in both conventional triaxial and true triaxial tests and find an approximately fivefold decrease in the number of events in the true triaxial case. In essence, we create two end-member crack distributions; one displaying cylindrical transverse isotropy (conventional triaxial) and the other planar transverse isotropy (true triaxial). By measuring the acoustic wave velocities throughout each test we were able to model comparative crack densities and orientations. When taken together the AE data, the velocities and the crack density data indicate that the intermediate principal stress plays a key role in suppressing the total amount of crack growth and concentrates it in a single plane, but the size of individual cracks remains
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Newman, J. C.
1994-01-01
Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied
NASA Astrophysics Data System (ADS)
Yusoff, Norwahida; Yusof, Feizal
2017-07-01
A detailed of finite element analysis of an elastic perfectly-plastic thin boundary layer formulations has been used to determine the crack-tip constraint in a through-thickness crack subjected to mode I loading under small scale yielding conditions. The variations of the degree of plane strain, Tz with respect to the radial distance ahead of the crack, r, the angles around the crack, θ, and the out-of-plane direction, x3 are examined and compared to an existing analytical solution based on a deformation plasticity for the given crack problem. The results show that Tz is strongly dependent on angles with significant variation observed on the planes near the free-surface, which is in contrast to the current understanding of Tz that is claimed to be independent of angles. Apparent deviations have been observed between the current results and the analytical analyse of Tz for non-hardening material in a contained yielding condition particularly in the region close to the crack tip within the quarter-plane and the free-surface.
The crack problem in bonded nonhomogeneous materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.
A comparison study between scalar and multi-plane microcracking ceramic damage models
NASA Astrophysics Data System (ADS)
Grove, D. J.; Rajendran, A. M.
1998-07-01
The Rajendran-Grove (RG) ceramic damage model is based on an elastic-plastic-cracking description. A crack density parameter γ(=No*a3) describes the scalar damage. The number of flaws No* is assumed to be constant and the crack size parameter "a" evolves according to a strain energy release based evolution law. Crack orientation is not considered in this model. However, Espinosa's multi-plane (MP) microcracking model considers crack orientations in nine pre-selected directions and computes damage by summing up the crack density contribution from all nine directions. Both models account for crack opening and sliding. These two models have been implemented in the 1995 version of the EPIC code. We simulated plate impact experiments in which a thin alumina flyer plate impacted a thick alumina plate. The experimental data consisted of particle velocities recorded at the back face of the target plate. This paper compares the results from the EPIC code simulations using the RG and MP ceramic models.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
A study of crack closure in fatigue
NASA Technical Reports Server (NTRS)
Shih, T. T.; Wei, R. P.
1973-01-01
Crack closure phenomenon in fatigue was studied by using a Ti-6Al-4V titanium alloy. The occurrence of crack closure was directly measured by an electrical-potential method, and indirectly by load-strain measurement. The experimental results showed that the onset of crack closure depends on both the stress ratio, and the maximum stress intensity factor. No crack closure was observed for stress ratio, greater than 0.3 in this alloy. A two-dimensional elastic model was used to explain the behavior of the recorded load-strain curves. Closure force was estimated by using this model. Yield level stress was found near the crack tip. Based on this estimated closure force, the crack opening displacement was calculated. This result showed that onset of crack closure detected by electrical-potential measurement and crack-opening-displacement measurement is the same. The implications of crack closure on fatigue crack are considered. The experimental results show that crack closure cannot fully account for the effect of stress ratio, on crack growth, and that it cannot be regarded as the sole cause for delay.
Cracking in Drying Colloidal Films
NASA Astrophysics Data System (ADS)
Singh, Karnail B.; Tirumkudulu, Mahesh S.
2007-05-01
It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.
1985-01-01
The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.
Effects of friction and high torque on fatigue crack propagation in Mode III
NASA Astrophysics Data System (ADS)
Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are
Predicting crack growth direction in unidirectional composites
NASA Technical Reports Server (NTRS)
Gregory, M. A.; Herakovich, C. T.
1986-01-01
The purpose of this study is to gain a better understanding of the parameters affecting crack growth direction in unidirectional composite materials. To achieve this, the effect of anisotropy and biaxial, far field, loading on the direction of crack growth in unidirectional off-axis composite materials is investigated. Specific emphasis is placed on defining the crack-tip-stress field and finding a consistent criterion for predicting the direction of crack growth. An anisotropic crack-tip-stress analysis was implemented using three criteria (the normal stress ratio theory, the tensor polynomial failure criterion, and the strain energy density theory) to predict the direction of crack extension in unidirectional off-axis graphite-epoxy. The theoretically predicted crack extension directions were then compared with experimental results. It was determined that only the normal stress-ratio criterion correctly predicts the direction of crack extension.
van Kessel, Marco; Seaton, David; Chan, Jonathan; Yamada, Akira; Kermeen, Fiona; Butler, Thomas; Sabapathy, Surendran; Morris, Norman
2016-06-01
Pulmonary hypertension (PH) is a progressively fatal disease having a significant impact on right ventricular (RV) function, a major determinant of long-term outcome in PH patients. In our clinic we frequently noticed the combination of PH and reduced RV function, but with discordant Tricuspid Annular Plane Systolic Excursion (TAPSE) values. The present study focuses on whether RV free wall strain measured using 2-dimensional speckle-tracking echocardiography is able to predict mortality in this subgroup of PH patients. 57 patients with PH and RV dysfunction (visual echocardiographic assessment of ≥2) and pseudo-normalized TAPSE values (defined as ≥16 mm) were retrospectively evaluated. Patients were divided by RV free -20 % as cut-off value. Follow-up data on all-cause mortality were registered after a median follow-up time of 27.9 ± 1.7 months. RV free of ≥-20 % was predictive of all-cause mortality after a median follow-up time of 27.9 ± 1.7 months (HR 3.76, 95 % CI 1.02-13.92, p = 0.05). RV free ≥-20 % remained a significant predictor of all-cause mortality (HR 4.30, 95 % CI 1.11-16.61, p = 0.04) after adjusting for PH-specific treatment. On the contrary, TAPSE was not a significant predictor of all-cause mortality. RV free wall strain provides prognostic information in patients with PH and RV dysfunction, but with normal TAPSE values. Future studies with larger cohorts, longer follow-up periods and inclusion of more echocardiographic parameters measuring LV and RV function could confirm the strength of RV free ≥-20 % as a predictor of mortality for this subgroup of patients with PH.
Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth
NASA Astrophysics Data System (ADS)
Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.
2011-05-01
The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.
Crack modeling of rotating blades with cracked hexahedral finite element method
NASA Astrophysics Data System (ADS)
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Daiuto, R. A.; Hillberry, B. M.
1984-01-01
Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.
Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui
2016-12-01
The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui
2016-11-01
The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.
Otterstedt, J. E. A.; Jaras, S. G.; Pudas, R.; Upson, L. L.
1985-05-07
A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina--silica and may contain for example, an SO /SUB x/ eliminating additive such as Al/sub 2/O/sub 3/, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 ..mu..m and the finer particle size fractions a mean particle size of from 30 to 75 ..mu..m. The coarser particle size fractions have a zeolite content of at least 20 weight % and may have a zeolite content of up to 100 weight %, the remainder consisting essentially of material which has relatively lower or no or insignificant cracking-catalyzing activity and which consists of kaolin and amorphous alumina-silica. The catalyst mass as a whole may have a zeolite content of up to 50 weight %.
Subcritical crack growth of selected aerospace pressure vessel materials
NASA Technical Reports Server (NTRS)
Hall, L. R.; Bixler, W. D.
1972-01-01
This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.
Some remarks on elastic crack-tip stress fields.
NASA Technical Reports Server (NTRS)
Rice, J. R.
1972-01-01
It is shown that if the displacement field and stress intensity factor are known as functions of crack length for any symmetrical load system acting on a linear elastic body in plane strain, then the stress intensity factor for any other symmetrical load system whatsoever on the same body may be directly determined. The result is closely related to Bueckner's (1970) weight function, through which the stress intensity factor is expressed as a sum of work-like products between applied forces and values of the weight function at their points of application. An example of the method is given wherein the solution for a crack in a remotely uniform stress field is used to generate the expression for the stress intensity factor due to an arbitrary traction distribution on the faces of a crack. A corresponding theory is developed in an appendix for three-dimensional crack problems, although this appears to be directly useful chiefly for problems in which there is axial symmetry.
Crack tip field and fatigue crack growth in general yielding and low cycle fatigue
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1984-01-01
Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.
The effect of transverse shear in a cracked plate under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The problem of an elastic plate containing a through crack and subjected to twisting moments or transverse shear loads is considered. By using a bending theory which allows the satisfaction of the boundary conditions on the crack surface regarding the normal and the twisting moments and the transverse shear load separately, it is found that the resulting asymptotic stress field around the crack tip becomes identical to that given by the elasticity solutions of the plane strain and antiplane shear problems. The problem is solved for uniformly distributed or concentrated twisting moment or transverse shear load and the normalized Mode II and Mode III stress-intensity factors are tabulated. The results also include the effect of the Poisson's ratio and material orthotropy for specially orthotropic materials on the stress-intensity factors.
Deformation mechanics of deep surface flaw cracks
NASA Technical Reports Server (NTRS)
Francis, P. H.; Nagy, A.; Beissner, R. E.
1972-01-01
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.
Assessment of damage localization based on spatial filters using numerical crack propagation models
NASA Astrophysics Data System (ADS)
Deraemaeker, Arnaud
2011-07-01
This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.
Cracking of textured zinc coating during forming process
Mei, Z.; Morris, J.W. Jr.
1993-09-01
A model is presented to relate cracking of a zinc coating on steel during forming process with its crystallographic texture. There are three deformation modes that can accommodate strains in a zinc coating caused by external loadings; basal slip, twinning, and cleavage cracking. Twinning of a zinc hexagonal crystal induces a contraction along its c-axis while cleavage relaxes tensile strain along its c-axis. Because of this, when basal slip in grains of a textured zinc coating is difficult under a given loading, either twinning or cleavage occurs, depending on whether the basal plane is parallel or normal to the loading axis and whether the loading is tensile or compressive. The loadings during formability or surface friction tests cause twinning in the basal-textured coating and cleavage cracking in the prism-textured coating. The prism-textured coating contains in extraordinarily high hardness since none of the three deformation modes may be operative under compression. These results derived from the model are confirmed with recent studies on electrogalvanized steels.
Kinetic studies of the stress corrosion cracking of D6AC steel
NASA Technical Reports Server (NTRS)
Noronha, P. J.
1975-01-01
The effect of load interactions on the crack growth velocity of D6AC steel under stress corrosion cracking conditions was determined. The environment was a 3.5 percent salt solution. The modified-wedge opening load specimens were fatigue precracked and subjected to a deadweight loading in creep machines. The effects of load shedding on incubation times and crack growth rates were measured using high-sensitivity compliance measurement techniques. Load shedding results in an incubation time, the length of which depends on the amount of load shed and the baseline stress intensity. The sequence of unloading the specimen also controls the subsequent incubation period. The incubation period is shorter when load shedding passes through zero load than when it does not if the specimen initially had the same baseline stress intensity. The crack growth rates following the incubation period are also different from the steady-state crack growth rate at the operating stress intensity. These data show that the susceptibility of this alloy system to stress corrosion cracking depends on the plane-strain fracture toughness and on the yield strength of the material.
NASA Astrophysics Data System (ADS)
Chu, Yi-Cheng; Chen, Chih; Kao, Nicholas; Jiang, Don Son
2017-06-01
The thermo-mechanical properties of microbumps serving as interconnects between Si chips in three-dimensional integrated circuits were examined in this study. Arrays of SnAg microbumps were subjected to temperature cycling tests up to 2500 cycles. Extensive cracks formed in the microbumps, and some of them propagated across the entire microbump. A microstructural analysis by electron back scattering diffraction indicated that the cracks propagated along two paths: Sn grain boundaries with high misorientation angles and SnAg/Ni3Sn4 interfaces. The average Sn grain size was only 7.4 μm, implying a large proportion of grain boundaries per unit volume, which facilitated crack propagation across the microbump of 20 μm in diameter. [Figure not available: see fulltext.
A Local Damage Approach to Predict Crack Initiation in Type AISI 316L(N) Stainless Steel
NASA Astrophysics Data System (ADS)
Krishnan, S. A.; Sasikala, G.; Moitra, A.; Albert, S. K.; Bhaduri, A. K.
2014-05-01
A local damage approach based on plastic strain equivalent to uniform strain and grain diameter of the material is proposed for prediction of crack initiation. Plane strain, plane stress, and 3D FEM simulations are carried out for compact tension (CT) geometry with blunt notch of different a/ W ratios under mode-I loading. Elastic-plastic fracture parameters have been estimated based on certain assumptions on blunting at notch tip and micromechanisms of events leading to onset of crack. The various crack initiation parameters evaluated based on proposed local damage approach and initial assumptions have been verified by conducting experiments on CT specimens and subsequent scanning electron microscopy study on fracture surface. The laboratory scale experimental results of AISI 316L(N) stainless steel material are in good agreement with FEM-predicted fracture parameters for notch type of stress raisers. The local damage approach and FEM procedure established in the present study would be easily extendable to the analysis of stress raisers in components for the prediction of crack initiation under elastic-plastic condition.
Crack growth direction in unidirectional off-axis graphite epoxy
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Gregory, M. A.; Beuth, J. L., Jr.
1984-01-01
An anisotropic elasticity crack tip stress analysis is implemented using three crack extension direction criteria (the normal stress ratio, the tensor polynominal and the strain energy density) to predict the direction of crack extension in unidirectional off axis graphite-epoxy. The theoretical predictions of crack extension direction are then compared with experimental results for 15 deg off axis tensile coupons with center cracks. Specimens of various aspect ratios and crack orientations are analyzed. It is shown that only the normal stress ratio criterion predicts the correct direction of crack growth.
The partially closed Griffith crack. [under polynomial loads
NASA Technical Reports Server (NTRS)
Thresher, R. W.; Smith, F. W.
1973-01-01
A solution is presented for a Griffith crack subjected to an arbitrary polynomial loading function which causes one end of the crack to remain closed. Closed form expressions are presented for the crack opening length and for the stress and displacements in the plane of the crack. The special case of pure bending is presented as an example and for this case the stress intensity factor is computed.
The partially closed Griffith crack. [under polynomial loads
NASA Technical Reports Server (NTRS)
Thresher, R. W.; Smith, F. W.
1973-01-01
A solution is presented for a Griffith crack subjected to an arbitrary polynomial loading function which causes one end of the crack to remain closed. Closed form expressions are presented for the crack opening length and for the stress and displacements in the plane of the crack. The special case of pure bending is presented as an example and for this case the stress intensity factor is computed.
Chen, X Y; Pan, X H; Chen, W; Chen, S S; Huang, J Y; Ye, Z Z
2016-10-15
A large degree of polarization (ρ) of photoluminescence (PL) approximate to 1 is obtained in each nonpolar a-plane Mg_{x}Zn_{1-x}O layer grown by plasma-assisted molecular beam epitaxy (MBE) with x=0.01, 0.03, and 0.10, respectively. Anisotropic in-plane strains are selectively introduced by using foreign substrates and doping with different Mg contents, which strongly modify the valence band structures, leading to anisotropic optical properties. A polarized Raman measurement shows that anisotropic in-plane strains along the y and z axes increase with the increasing Mg contents. Polarized PL spectra show that ρ gradually increases to 0.97 with decreasing in-plane strains, resulting from an increasing difference in transition energy (ΔE) between E⊥c and E‖c caused by a lift of the degeneracy of valence band structures. The obtained highly polarized emission is close to linear polarized light, which is desirable in the backlighting of liquid crystal displays.
NASA Technical Reports Server (NTRS)
Stonesifer, R. B.; Atluri, S. N.
1982-01-01
The development of valid creep fracture criteria is considered. Two path-independent integral parameters which show some degree of promise are the C* and (Delta T)sub c integrals. The mathematical aspects of these parameters are reviewed by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects, and large deformations. Two principal conclusions are that (Delta T)sub c has an energy rate interpretation whereas C* does not. The development and application of fracture criteria often involves the solution of boundary/initial value problems associated with deformation and stresses. The finite element method is used for this purpose. An efficient, small displacement, infinitesimal strain, displacement based finite element model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations. A mesh shifting/remeshing procedure is used for simulating crack growth. The model is implemented with the quartz-point node technique and also with specially developed, conforming, crack-tip singularity elements which provide for the r to the n-(1+n) power strain singularity associated with the HRR crack-tip field. Comparisons are made with a variety of analytical solutions and alternate numerical solutions for a number of problems.
Resolved shear stress intensity coefficient and fatigue crack growth in large crystals
NASA Technical Reports Server (NTRS)
Chen, QI; Liu, Hao-Wen
1988-01-01
Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.
Measurement and analysis of critical crack tip processes during fatigue crack growth
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J.; Dexter, R. J.
1985-01-01
The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.
Visual simulation of fatigue crack growth
Wang, S.; Margolin, H.; Lin, F.B.
1998-07-01
An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
Slow Crack Growth of Germanium
NASA Technical Reports Server (NTRS)
Salem, Jon
2016-01-01
The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.
NASA Astrophysics Data System (ADS)
Hecker, Friedrich W.; Pindera, Jerzy T.; Wen, Baicheng
Crack-tip photomechanics procedures are based on certain simplifying assumptions that are seldom discussed. In a recent paper the theoretical bases of the shadow optical methods of caustics have been analysed and tested using the results obtained by three analytical-experimental procedures, namely classical strain gage techniques, isodynes, and strain-gradient index method. It has been concluded that the straing-radient index method appears to be a suitable tool for analysis of stress states near crack tips and notches and, in particular, for testing the predictive power of the pertinent singular solutions of the linear elastic fracture mechanics and the ranges of their applicability. In the present paper, a more detailed analysis of all results obtained in light deflection experiments allows to quantify the contribution of both involved effects and to determine the distortion of the faces of the investigated plates along their crack planes. The ability of the strain-gradient light bending method to analyse some features of the three-dimensional stress-state is reported. Finally, the presented experimental evidence allows to draw conclusions related to limits of applicability of certain photomechanical measurements near crack tips. An extensive summary of this paper is published in the Proceedings of the Second International Conference on Photomechanics and Speckle Metrology, Vol. 1554A, part of SPIE's 1991 International Symposium on Optical Applied Science and Engineering, 22-26 July 1991, San Diego, CA, USA. 1
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.
1985-01-01
The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.
Dienes, J.K.
1983-01-01
An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).
Peridynamic model for fatigue cracking.
Silling, Stewart Andrew; Abe Askari
2014-10-01
The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.
Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold
NASA Technical Reports Server (NTRS)
Newman, John A.; Riddell, William T.; Piascik, Robert S.
2003-01-01
A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.
Effect of size on cracking of materials
NASA Technical Reports Server (NTRS)
Glucklick, J.
1971-01-01
Brittle behavior of large mild steel elements, glass plasticity, and fatigue specimen size sensitivity are manifestations of strain-energy size effect. Specimens physical size effect on material cracking initiation occurs according to flaw distribution statistics. Fracture size effect depends on stability or instability of crack propagation.
Matrix cracking of fiber-reinforced ceramic composites in shear
NASA Astrophysics Data System (ADS)
Rajan, Varun P.; Zok, Frank W.
2014-12-01
The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state matrix crack. Through a combination of analytical solutions and finite element simulations of the constituent stresses before and after cracking, we identify the dominant stress components that drive crack growth. We show that, when the axial slip lengths are much larger than the fiber diameter and when interfacial slip precedes cracking, the shear stresses in the constituents are largely unaffected by the presence of the crack; the changes that do occur are confined to a 'core' region within a distance of about one fiber diameter from the crack plane. Instead, the driving force for crack growth derives mainly from the axial stresses-tensile in the fibers and compressive in the matrix-that arise upon cracking. These stresses are well-approximated by solutions based on shear-lag analysis. Combining these solutions with the governing equation for crack growth yields an analytical estimate of the critical shear stress for matrix cracking. An analogous approach is used in deriving the critical stresses needed for matrix cracking under arbitrary in-plane loadings. The applicability of these results to cross-ply CMC laminates is briefly discussed.
Effects of crack geometry and material behavior on scattering by cracks for QNDE applications
Achenbach, J.D.
1989-09-15
In work carried out on this project, the usual mathematical modeling of ultrasonic wave scattering by flaws is being extended to account for several typical characteristics of fatigue and stress-corrosion cracks, and the environment of such cracks. Work has been completed on scattering by macrocrack-microcrack configurations. We have also investigated reflection and transmission by a flaw plane consisting of an infinite array of randomly oriented cracks. In another investigation the propagation of mechanical disturbances in solids with periodically distributed cracks has been studied.
The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel
Krenn, C.R. |
1996-12-01
Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {l_brace}111{r_brace} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary {eta} phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {l_brace}111{r_brace} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use.
Crack Healing in Quartz: Influence of Crack Morphology and pOH-
NASA Astrophysics Data System (ADS)
Fallon, J. A.; Kronenberg, A. K.; Popp, R. K.; Lamb, W. M.
2004-12-01
Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral r-cleavage cracks in polished Brazilian quartz prisms that were hydrothermally annealed. Quartz prisms were pre-cracked at room temperature and then annealed at temperatures T of 250° and 400° C for 2.4 to 240 hours, fluid pressure Pf = 41 MPa (equal to confining pressure Pc), and varying pOH- (from 5.4 to 1.2 at 250° C for fluids consisting of distilled water and NaOH solutions). Crack morphologies before and after annealing were recorded for each sample in plane light digital images and apertures were determined from interference fringes recorded using transmitted monochromatic light (λ = 598 nm). As documented in previous studies (Smith and Evans, 1984; Brantley et al., 1990; Beeler and Hickman, 1996), crack healing of quartz is driven by reductions in surface energy and healing rates appear to be limited by diffusional solute transport; sharply defined crack tips become blunted and break up into fluid-filled tubes and inclusions. However, fluid inclusion geometries are also observed with nonequilibrium shapes that depend on initial surface roughness. Crack healing is significant at 400° C after short run durations (24 hr) with healing rates reaching 10-5 mm/s. Crack healing is also observed at T=250° C, but only for smooth cracks with apertures < 0.6 μ m or for cracks subject to low pOH-. The extent of crack healing is sensitive to crack aperture and to hackles formed by fine-scale crack branching during crack growth. Initial crack apertures appear to be governed by the presence of fine particles, often found in the vicinity of hackles, which maintain the separation of crack surfaces. Where rough cracks exhibit healing, hackles are sites of either enhanced or reduced loss of fluid-solid interface depending on slight mismatches and sense of twist of opposing crack surfaces. Hackles of open r-cleavage cracks are replaced either by (1) healed curvilinear
Controlled crack growth specimen for brittle systems
NASA Technical Reports Server (NTRS)
Calomino, Anthony M.; Brewer, David N.
1990-01-01
A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.
Controlled crack growth specimen for brittle systems
NASA Technical Reports Server (NTRS)
Calomino, Anthony M.; Brewer, David N.
1992-01-01
A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.
Controlled crack growth specimen for brittle systems
NASA Technical Reports Server (NTRS)
Calomino, Anthony M.; Brewer, David N.
1992-01-01
A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.
Effects of friction and high torque on fatigue crack propagation in mode III. [AISI 4140 and 4340
Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m/sup 2/ tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ..delta..K /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10/sup -6/ to 10/sup -2/ mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ..delta..K /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (..delta..GAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10/sup -6/ to 10/sup -2/ mm per cycle.
Corrosion fatigue crack growth: The role of crack-tip deformation and film formation kinetics
Hudak, S.J. Jr.
1988-01-01
The objectives of this study was to elucidate the mechanical and electrochemical conditions at the crack-tip, then use this information to critically assess anodic dissolution versus hydrogen embrittlement mechanisms of crack growth. The system studied is sensitized 304 stainless steel in an aqueous 0.1M Na{sub 2}SO{sub 4} environment at temperatures of 343 to 363 K. The first-ever measurements of crack-tip strains at growing corrosion-fatigue cracks were obtained using the stereoimaging technique. Results showed that the crack-tip strains, and thus strain rates, were significantly less than those attending crack growth in an inert environment. The local environment was determined using a novel crack-simulation experiment involving cyclic straining of a creviced electrode. Cyclic straining was found to decrease the electrode potential and promote acidification of the occluded environment and resulted in the following steady-state electrochemical conditions: pH = 5.2 to 6.2 with local cell (mixed) potentials of 0 to {minus}200 mV (vs SHE) and bare surfaces potentials of approximately {minus}300 to {minus}500 mV (SHE). It is concluded that hydrogen embrittlement is the predominant mechanism of corrosion fatigue crack growth in the 304 stainless steel-aqueous environment system.
Expansive Soil Crack Depth under Cumulative Damage
Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng
2014-01-01
The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974
Crack Monitoring of Operational Wind Turbine Foundations.
Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-08-21
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.
Crack Monitoring of Operational Wind Turbine Foundations
McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-01-01
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687
Advanced Experimental Techniques in Crack Tip Analysis.
1983-06-01
The shear stress in the xy plane is then given by B sin 20 (3) axy =2 3 Clark, Mignogna and Sanford E18 ) used the above relations to measure the...directly using crack tip measurements in contrast to the ASTM 12 _ designated far-field procedure which is based on many simplifying assumptions. 2-0...effect of Crack Front Curvature in an ASTM Compact Tension Speciment", Proc. of the Fourth Brazilian Congress of Mechanical Engineering, 1977, pp 13 - 26
Fatigue Crack Detection Using Digital Image Correlation
NASA Astrophysics Data System (ADS)
Cawley, P.; Hutt, T. D.
2009-03-01
At present, detecting structural defects such as cracking and corrosion before they become critical is largely achieved by time consuming techniques such as eddy current and ultrasonic testing. These techniques require point-by-point scanning over the area to be tested. Digital Image Correlation could provide a cheaper and quicker testing technique. It works by correlating images of the structure surface in unloaded and loaded states taken with a standard digital camera, giving the displacement and strain fields. The specific case of a crack at a hole in an aluminium plate was investigated. It was found that the strain concentration around the crack tip is too localised to detect; however the displacement jump across the crack could be seen. This technique allows the cracks to be detected and would allow rapid testing of a structure if it can easily be loaded.
Fatigue crack growth with single overload - Measurement and modeling
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.
1987-01-01
This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
Online bridge crack monitoring with smart film.
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.
Crack Tip Dislocation Nucleation in FCC Solids
NASA Astrophysics Data System (ADS)
Knap, J.; Sieradzki, K.
1999-02-01
We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.
NASA Astrophysics Data System (ADS)
Martakos, G.; Andreasen, J. H.; Berggreen, C.; Thomsen, O. T.
2017-02-01
A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect of the embedded crack arresters was evaluated in terms of the achieved enhancement of the damage tolerance of the tested sandwich panels. A finite element (FE) model of the experimental setup was used for predicting propagation rates and direction of the crack growth. The FE simulation was based on the adoption of linear fracture mechanics and a fatigue propagation law (i.e. Paris law) to predict the residual fatigue life-time and behaviour of the test specimens. Finally, a comparison between the experimental results and the numerical simulations was made to validate the numerical predictions as well as the overall performance of the crack arresters.
Accoustic emission crack detection with FBG
NASA Astrophysics Data System (ADS)
Baldwin, Christopher S.; Vizzini, Anthony J.
2003-07-01
A Bragg grating based acoustic emission crack detection (AECD) sensor system is developed. The ultimate goal of the sensor system is to provide structural health monitoring of composite structures. Various aspects of the sensor system including the parameters involving the optical filter using a matched fiber Bragg grating have been analyzed. The prototype sensor system was tested using pencil lead break tests and Open-Hole-Tension (OHT) specimens (ASTM D 5766). The fiber Bragg grating sensor was embedded into the composite tension specimen at the mid-plane and outside of the region under strain so as to reduce the effects of unwanted structural strains in the sensor response. Impact tests with the surface mounted sensor system determined the sensitivity of the sensor to the direction of the stress wave. The tests demonstrate the ability of the AECD sensor system to detect a pencil lead break event and actual AE events from a composite specimen both in the near surface and embedded configurations.
Brittle crack propagation in silicon single crystals
Brede, M.; Hsia, K.J.; Argon, A.S. )
1991-07-15
Viewing the brittle-to-ductile transition of fracture in intrinsically brittle solids as a crack tip initiated critical event of either nucleation of dislocation loops from the crack tip or the motion away of such dislocations from the crack tip, experiments have been devised to measure the critical activation energy of such events by measuring the arrest temperature of cleavage cracks with different velocities in experiments that were conducted on large Si single crystals subjected to a steep temperature gradient. While such experiments can provide precise information that can be related directly to mechanisms of crack tip bifurcation behavior, they are hampered by nontrivial perturbations that must be controlled. Here in the first of a series of communications we discuss the nature of these perturbations in Si single crystals, cleaving either on the {l brace}111{r brace} or the {l brace}110{r brace} planes.
NASA Astrophysics Data System (ADS)
Oh, Ho Kyun; Kim, In Won; Park, Sang Min; Hong, Sun Ig
2017-05-01
Ingots from stainless steel 21-4N are studied in the initial condition and after 7-h homogenizing at 1200°C. Compressive tests of specimens cut from surface layers and from the cores of the ingots are performed at 900 - 1250°C. The effect of the initial condition of the steel and of the test conditions on the critical stress of the start of dynamic recrystallization is determined. The conditions of formation of dangerous cracks in the ingots are considered.
Analysis of Multiple Cracks in an Infinite Functionally Graded Plate
NASA Technical Reports Server (NTRS)
Shbeeb, N. I.; Binienda, W. K.; Kreider, K. L.
1999-01-01
A general methodology was constructed to develop the fundamental solution for a crack embedded in an infinite non-homogeneous material in which the shear modulus varies exponentially with the y coordinate. The fundamental solution was used to generate a solution to fully interactive multiple crack problems for stress intensity factors and strain energy release rates. Parametric studies were conducted for two crack configurations. The model displayed sensitivity to crack distance, relative angular orientation, and to the coefficient of nonhomogeneity.
1984-08-10
34Elastodynamic Analysis of Cracks by Finite Element Method Using Singular Element", Int. J. Fracture, 14, pp 59-68, 1978. [4] Bazant , Z. 0., Glazik, J. L., Jr...tions of the bilinear stress-strain relation. DD FORM I JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102- LF- 014-6601 Unclassified...unloading region can be obtained from the work of Achenbach and Bazant (1975). In the elastic region the displacement rate must satisfy for plane strain
Qian, Dan; Xue, Jiawei; Zhang, Anfeng; ...
2017-06-06
Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane.more » Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.« less
Steady crack growth through ductile metals: Computational studies
NASA Astrophysics Data System (ADS)
Sobotka, James C.
This thesis examines the crack-front response during sustained ductile tearing in structural metals at quasistatic rates using high resolution finite element computations. At load levels approaching the steady-growth regime, well-established computational methods that model material damage break down numerically as vanishingly small load increments produce increasingly large amounts of crack extension. The computational model adopted here determines the deformation history of a steadily advancing crack directly without the need for a priori (transient) analysis that considers blunting of the pre-existing stationary crack and subsequent growth through the associated initial plastic zone. Crack extension occurs at the remotely applied, fixed loading without the need for a local growth criteria. This numerical scheme utilizes a streamline integration technique to determine the elastic-plastic fields, generalized from a two-dimensional to a fully three-dimensional setting and implemented within mixed Matlab/C++/F-90 based software. Modifications of the conventional finite element formulation lead to an efficient procedure -- readily parallelized -- and determine the invariant near-front fields, representative of steady-state growth, on a fixed mesh in a boundary-layer framework. In the small-scale yielding regime, the crack front does not sense the existence of remote boundaries, and computational results retain a strong transferability among various geometric configurations where near-front, plastic deformation remains entirely enclosed by the surrounding linear-elastic material. The global stress intensity factor (KI ) and imposed T-stress fully specify displacement constraints along the far-field boundary, and in a three-dimensional setting, the panel thickness reflects the only natural length scale. The initial studies in this work consider steady crack advance within the small-scale yielding context under plane-strain conditions and mode I loading. These analyses
Underwood, J.H.; Baratta, F.I.; Zalinka, J.J.
1991-10-01
Plane strain fracture toughness tests were performed using the recently proposed round bar bend test procedure with a liquid-phase sintered tungsten alloy. The tests included a direct comparison of fracture toughness from rectangular and round bend specimens and measurements of load line compliance using the unloading technique of J integral fracture tests. Complementary displacement and crack growth stability analyses of the round bar were performed as an extension of recent work in these two areas.
NASA Astrophysics Data System (ADS)
Liu, Yan; Tang, Shawei; Liu, Guangyi; Sun, Yue; Hu, Jin
2017-05-01
In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
Nucleation of squat cracks in rail, calculation of crack initiation angles in three dimensions
NASA Astrophysics Data System (ADS)
Naeimi, Meysam; Li, Zili; Dollevoet, Rolf
2015-07-01
A numerical model of wheel-track system is developed for nucleation of squat-type fatigue cracks in rail material. The model is used for estimating the angles of squat cracks in three dimensions. Contact mechanics and multi-axial fatigue analysis are combined to study the crack initiation mechanism in rails. Nonlinear material properties, actual wheel-rail geometries and realistic loading conditions are considered in the modelling process. Using a 3D explicit finite element analysis the transient rolling contact behaviour of wheel on rail is simulated. Employing the critical plane concept, the material points with the largest possibility of crack initiation are determined; based on which, the 3D orientations/angles of the possible squat cracks are estimated. Numerical estimations are compared with sample results of experimental observations on a rail specimen with squat from the site. The findings suggest a proper agreement between results of modelling and experiment. It is observed that squat cracks initiate at an in-plane angle around 13°-22° relative to the rail surface. The initiation angle seen on surface plane is calculated around 29°-48°, while the crack tend to initiate in angles around 25°-31° in the rail cross-section.
Ensemble of secondary cracks near the fatigue fracture surface of a titanium alloy VT23M specimen
NASA Astrophysics Data System (ADS)
Lavrov, A. V.; Erasov, V. S.; Nochovnaya, N. A.; Kotova, E. A.
2017-04-01
The secondary fragment cracks in a specimen made of a high-strength VT23M titanium alloy in the plane parallel to the specimen plane are studied with a scanning laser microscope. Two types of the secondary cracks are detected. Relations between the characteristics of an ensemble of secondary cracks and the cyclic loading parameters are obtained.
NASA Astrophysics Data System (ADS)
Suzuki, A.; Gigliotti, M. F. X.; Hazel, B. T.; Konitzer, D. G.; Pollock, T. M.
2010-04-01
Crack progression during compressive sustained-peak low-cycle fatigue (SPLCF) was examined in vapor phase aluminide coated single-crystal Ni-base superalloy René N5. Strain-controlled tests with a 120-second hold at compression were conducted at 1366 K (1093 °C) with A = -1 ( R = -∞) and 0.35 pct total strain range, and were terminated at selected fractions of predicted life. Crack lengths on the surface and crack depth in longitudinal sections were examined for each specimen. All cracks appeared to have initiated at the coating surface. Failed specimens showed that cracks initially grew on (001), perpendicular to the stress axis, and then deflected to other crystallographic planes. Interrupted test specimens showed crevices initiated on the coating surface at less than 10 pct of the predicted life. The depths of crevices into the coating increased with cyclic exposure, but they did not penetrate into the substrate through the interdiffusion zone (IDZ) until about 80 pct of predicted life. Stress relaxation during compressive hold results in residual tension upon unloading. These results suggest that improving creep resistance of the substrate alloy and developing a coating system that can delay crack penetration into the substrate are keys for improved SPLCF life.
NASA Astrophysics Data System (ADS)
Matzen, Sylvia; Nesterov, Oleksiy; Rispens, Gijsbert; Heuver, Jeroen; Noheda, Beatriz; Biegalski, Michael; Christen, Hans
2014-03-01
Understanding and controlling domain formation in nanoscale ferroelectrics is interesting from a fundamental point of view and of great technological importance. Increasing miniaturization allows creating complex domain structures, offering novel functionalities that could be particularly useful for the development of nanoelectronic devices. While most studies in thin films focus on domain patterns with up/down polarization for ferroelectric memories, domain structures with purely in-plane polarization have not been much investigated. However, such structures are potentially useful in optical devices or to avoid depolarization fields in ultra-thin films, as long as the domains can be addressed and switched. We use a combination of compositional substitutions and epitaxial growth on a substrate in order to tune the domain configuration. The substitution of Pb by Sr in PbxSr1-xTiO3 thin films grown epitaxially on (110)-DyScO3, stabilizes a domain structure with purely in-plane polarization. In this work, we show that it is possible to stabilize and control a complex domain architecture at two different length scales, yielding periodic ferroelectric nano-domains with purely in-plane polarization. Most importantly, these in-plane domains can be switched by a scanning probe.
Analysis of Rayleigh wave interactions for surface crack characterization
NASA Astrophysics Data System (ADS)
Rosli, M. H.; Fan, Y.; Edwards, R. S.
2012-05-01
Electromagnetic acoustic transducers (EMATs) have been used in pitch-catch mode for a better characterization of surface cracks in metals. The system, which combines the measurement of Rayleigh wave velocity in the in-plane and out-of-plane directions, has been used to understand the interaction of Rayleigh waves with inclined surface cracks. This shows a stronger and more prominent enhancement pattern when compared to the enhancement caused by cracks which are normal to the surface. In addition, measurements in the far-field are combined with the near-field enhancement measurement, with a view to characterize the cracks. An algorithm for characterizing surface cracks is presented. A finite element method model has been computed to simulate the experiment, and the cause of the prominent enhancement in the inclined cracks is explained.
Stress intensity factors for bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1978-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. Cracks fully imbedded into the homogenous strips were analyzed as well as the singular behavior of the stresses for two special crack geometries. The analysis of cracks crossing interfaces indicates that, for certain orthotropic material combinations, the stress state at the point of intersection of a crack and an interface may be bounded. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters.
An Investigation of Mechanisms Effecting Environmental Stress Cracking in Titanium Alloy.
1981-07-06
of titanium alloy ( Ti6Al4V ) has been under an environmental stress cracking investigation. The acoustic emission (AE) techniques were used to monitor...in a closed loop metharol environment. The acoustic signals were received at a gain of 85 dB in a high bAndpass filter range of 100- 300 KHz and... temperature and annealing for a select time im- proved the fracture toughness in the alloy, and (2) in a plane strain load mode at a constant c rack
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Xue-Hui, L.; Erdogan, F.
1984-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
Crack, crack house sex, and HIV risk.
Inciardi, J A
1995-06-01
Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive.
Evolving fracture patterns: columnar joints, mud cracks, and polygonal terrain
NASA Astrophysics Data System (ADS)
Goehring, L.
2012-12-01
Contraction cracks can form captivating patterns, such as the artistic craquelure sometimes found in pottery glazes, to the cracks in dried mud, or the polygonal networks covering the polar regions of Earth and Mars. Two types are frequently encountered: those with irregular rectilinear patterns, such as that formed by an homogeneous slurry when dried (or cooled) uniformly, and more regular hexagonal patterns, such as those typified by columnar joints. Once cracks start to form in a thin contracting layer, they will sequentially break the layer into smaller and smaller pieces. A rectilinear crack pattern encodes information about the order of cracks, as later cracks tend to intersect with earlier cracks at right angles. In this manner they relieve the stresses perpendicular to the pre-existing crack. In a hexagonal pattern, in contrast, the angles between all cracks at a vertex are near 120°. In this presentation it will be shown how both types of pattern can arise from identical forces, and that a rectilinear, T-junction dominated pattern will develop into to a hexagonal pattern, with Y-junctions, if allowed to. Such an evolution can be explained as the result of three conditions: (1) if cracks advance through space, or heal and recur, that the previous positions of a crack tip acts as a line of weakness, guiding the next iteration of cracking; (2) that the order of opening of cracks can change in each iteration; and (3) that crack tips curve to maximise the local strain energy release rate. The ordering of crack patterns are seen in a number of systems: columnar joints in starch and lava; desiccation cracks in clays that are repeatedly wetted and dried; cracks in eroding gypsum-cemented sand layers; and the cracks in permafrost known as polygonal terrain. These patterns will each be briefly explored, in turn, and shown to obey the above principles of crack pattern evolution.
Suzuki, N; Mita, K; Watakabe, M; Akataki, K; Okagawa, T; Kimizuka, M
1998-01-01
The purpose of this study was to use an non-invasive method to determine whether strain on the gastrocnemii and hamstrings influences postural balance in spastic cerebral palsy (CP). Changes in alignment during standing posture with subjects positioned on a platform that was gradually inclined were measured in 10 normal children and 11 children with CP. The changes in postural alignment were plotted and geometric models used to determine the lines where the gastrocnemii and hamstrings were maximally stretched. In this way the relationship between postural alignment and the amount of strain on the gastrocnemii and hamstrings was investigated. On the inclined platform, which caused ankle joints to become dorsiflexed as the inclination angle increased, the gastrocnemii began to be strained and the hip joints began to be flexed (trunk bent forward) at the same time. In the children with CP, the gastrocnemii were more strained by smaller degrees of inclination. Furthermore, there was one child with CP whose hamstrings were also strained on the inclined platform. We confirmed that postural balance was affected by strain on the gastrocnemii and hamstrings.
NASA Technical Reports Server (NTRS)
Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.; Bucci, R. J.; Collis, S. F.; Kohm, R. F.; Kaufman, J. G.
1977-01-01
A description is presented of studies which have been conducted to establish an improved technology base for a use of the sharply notched cylindrical specimen in quality assurance tests of aluminum alloy products. The results are presented of an investigation of fundamental variables associated with specimen preparation and testing, taking into account the influence of the notch root radius, the eccentricity of loading, the specimen diameter, and the notch depth on the sharp notch strength. Attention is given to the statistical procedures which are necessary to establish correlations between the sharp notch strength and the plane-strain fracture toughness for high-strength aluminum alloys.
NASA Astrophysics Data System (ADS)
Ranjan, Srikant
2005-11-01
Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the
Crack tip shielding observed with high-resolution transmission electron microscopy.
Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji
2015-10-01
The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory.
Crack tip shielding observed with high-resolution transmission electron microscopy
Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji
2015-01-01
The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory. PMID:26115957
Monitoring fatigue crack growth and opening using antenna sensors
NASA Astrophysics Data System (ADS)
Mohammad, I.; Huang, H.
2010-05-01
Fatigue cracking is one of the most common failure modes of various load-bearing structures. Even though sensors of many different types have been developed for crack detection, very few can monitor crack growth with a high sensitivity. This paper presents an antenna sensor that is capable of monitoring the growth of fatigue cracks with a sub-millimeter resolution. According to microstrip patch antenna theory, the resonant frequencies of a dual-frequency patch antenna are inversely proportional to the electrical lengths of the corresponding antenna radiation modes. The presence of a crack in the ground plane or the elongation of the antenna patch due to crack opening increases the electric length, thereby causing a shift in its corresponding resonant frequency. As a result, crack propagation and opening can be monitored from the resonant frequency shifts of the patch antenna. The patch antenna's capability of monitoring crack growth was validated using fatigue testing of a compact tension specimen. The specimen preparation, sensor fabrication, and experimental procedure are presented. The experimental results demonstrated that the corresponding resonant frequency of the antenna sensor shifted linearly with crack growth. On average, 1 mm crack growth caused the antenna frequency to shift by 22.1 MHz. The orientation of the crack and the effect of crack closure on the resonant frequencies of the antenna sensor are also discussed.
Pirgazi, Hadi; Ghodrat, Sepideh; Kestens, Leo A.I.
2014-04-01
In cylinder heads made of compacted graphitic iron (CGI), heating and cooling cycles can lead to localized cracking due to thermo-mechanical fatigue (TMF). To meticulously characterize the complex crack path morphology of CGI under TMF condition, in relation to microstructural features and to find out how and by which mechanisms the cracks predominantly develop, three-dimensional electron back scattering diffraction (EBSD) was employed. Based on the precise quantitative microstructural analysis, it is found that graphite particles not only play a crucial role in the crack initiation, but also are of primary significance for crack propagation, i.e. crack growth is enhanced by the presence of graphite particles. Furthermore, the density of graphite particles on the fracture plane is more than double as high as in any other arbitrary plane of the structure. The obtained results did not indicate a particular crystallographic preference of fracture plane, i.e. the crystal plane parallel to the fracture plane was nearly of random orientation. - Highlights: • Crystallographic features of a thermo-mechanical fatigue (TMF) crack were studied. • Wide-field 3D EBSD is used to characterize the TMF crack morphology. • Data processing was applied on a large length scale of the order of millimeters. • Graphite density in the fracture plane is much higher than any other random plane. • It is revealed that crack growth is enhanced by the presence of graphite particles.
Gear Crack Propagation Investigation
NASA Technical Reports Server (NTRS)
1995-01-01
Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios
NASA Astrophysics Data System (ADS)
Wang, Xu; Xu, Yang
2015-12-01
We analytically investigate the contribution of surface piezoelectricity to the interaction between a piezoelectric screw dislocation and a finite crack in a hexagonal piezoelectric solid. The piezoelectric screw dislocation suffers jumps in the displacement and in the electric potential across the slip plane, and meanwhile it is subjected to a line force and a line charge at its core. The original boundary value problem is reduced to two sets of coupled first-order Cauchy singular integro-differential equations by considering a distribution of line dislocations, electric-potential-dislocations, line forces and line charges on the crack. By using a diagonalization method, the two sets of equations are decoupled into four independent singular integro-differential equations, each of which can be numerically solved by means of the collocation method. Our analysis reveals that in general the stresses, strains, electric displacements and electric fields exhibit both the weak logarithmic and the strong square root singularities at the two crack tips. The image force acting on the piezoelectric screw dislocation due to its interaction with the finite crack is calculated.
The analysis of crack tip fields in ferroelastic materials
NASA Astrophysics Data System (ADS)
Carka, Dorinamaria; Landis, Chad M.
2011-09-01
The stress and strain fields near a stationary crack in a ferroelastic material are analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that can arise near a crack tip. Detailed finite element calculations are carried out to determine the stress and strain fields in the vicinity of the crack tip, and to compute values for the J-integral on various integration paths around the tip. The results of the calculations are discussed in relation to results for growing cracks and for stationary cracks in standard elastic-plastic materials.
Characterization of crack growth under combined loading
NASA Technical Reports Server (NTRS)
Feldman, A.; Smith, F. W.; Holston, A., Jr.
1977-01-01
Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.
NASA Astrophysics Data System (ADS)
Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan
2017-03-01
Tensile deformation of nanoscale bicrystal nickel film with twist grain boundary, which includes various twist angles, is investigated via molecular dynamics simulation to obtain the influence of twist angle on crack propagation. The twist angle has a significant influence on crack propagation. At the tensile strain of 0.667, as for the twist angles of 0°, 3.54° and 7.05°, the bicrystal nickel films are subjected to complete fracture, while as for the twist angles of 16.1° and 33.96°, no complete fracture occurs in the bicrystal nickel films. When the twist angles are 16.1° and 33.96°, the dislocations emitted from the crack tip are almost unable to go across the grain boundary and enter into the other grain along the slip planes {111}. There should appear a critical twist angle above which the crack propagation is suppressed at the grain boundary. The higher energy in the grain boundary with larger twist angle contributes to facilitating the movement of the glissile dislocation along the grain boundary rather than across the grain boundary, which leads to the propagation of the crack along the grain boundary.
Tiernan, M.
1980-09-01
Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.
Environmental stress cracking of polymers
NASA Technical Reports Server (NTRS)
Mahan, K. I.
1980-01-01
A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.
Energy Partition During In-plane Dynamic Rupture on a Frictional Interface
NASA Astrophysics Data System (ADS)
Needleman, A.; Shi, Z.; Ben-Zion, Y.
2007-12-01
We study properties of dynamic ruptures and the partition of energy between radiation and dissipative mechanisms using two-dimensional in-plane calculations with the finite element method. The model consists of two identical isotropic elastic media separated by an interface governed by rate- and state-dependent friction. Rupture is initiated by gradually overstressing a localized nucleation zone. Our simulations with model parameters representative of Homalite-100 indicate that different values of parameters controlling the velocity dependence of friction, the strength excess parameter and the length of the nucleation zone, can lead to the following four rupture modes: supershear crack-like rupture, subshear crack-like rupture, subshear single pulse and supershear train of pulses. High initial shear stress and weak velocity dependence of friction favor crack-like ruptures, while the opposite conditions favor the pulse mode. The rupture mode can switch from a subshear single pulse to a supershear train of pulses when the width of the nucleation zone increases. The elastic strain energy released over the same propagation distance by the different rupture modes has the following order: supershear crack, subshear crack, supershear train of pulses and subshear single pulse. The same order applies also to the ratio of kinetic energy (radiation) to total change of elastic energy for the different rupture modes. Decreasing the dynamic coefficient of friction increases the fraction of stored energy that is converted to kinetic energy. In the current study we use model parameters representative of rocks instead of Homalite-100, by modeling recent results of Kilgore et al. (2007) who measured and estimated various energy components in laboratory friction experiments with granite. We are also incorporating into the code ingredients that will allow us to study rupture properties and energy partition for cases with a bimaterial interface and dynamic generation of plastic strain
Gear crack propagation investigations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Ballarini, Roberto
1996-01-01
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.
Physically Based Failure Criteria for Transverse Matrix Cracking
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2003-01-01
A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.
Variation of crack-opening stresses in three-dimensions - Finite thickness plate
NASA Technical Reports Server (NTRS)
Chermahini, R. G.; Blom, A. F.
1991-01-01
A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.
Variation of crack-opening stresses in three-dimensions - Finite thickness plate
NASA Technical Reports Server (NTRS)
Chermahini, R. G.; Blom, A. F.
1991-01-01
A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.
Role of Grain Boundaries and Microstructure on the Environment Assisted Cracking of Pipeline Steels
NASA Astrophysics Data System (ADS)
Arafin, Muhammad
2011-12-01
reconstruction model has been developed that can reproduce the experimentally determined grain boundary character distribution (GBCD) from the simple texture and overall GBCD descriptions. This model has been coupled with the intergranular crack propagation model that can take into account the crystallographic orientations of the grains and the resulting grain boundary character, individual grain boundary fracture strength, and projected local stress onto the grain boundary plane based on applied stress magnitude and in-situ crack propagation length. The predicted threshold fracture stress has been compared with the experimental fracture stress data of various textured and random Mo polycrystals obtained from the literature, and good agreement was observed. Besides, hydrogen induced cracking (HIC) behaviour of two relatively new high strength pipeline steels, API X80 and API X100, in high pH carbonate-bicarbonate environment has been studied using slow strain rate test (SSRT) technique. While both the steels are found to be highly susceptible to HIC at cathodic potentials, the bainitic lath type microstructure (API X100) is more susceptible to HIC compared to the ferritic/granular bainitic steel (API X80) at high cathodic potential. This can be primarily attributed to the bainitic lath boundary separation phenomenon in the API X100 steel. This study also shows that applying cathodic protection can lead to significant hydrogen embrittlement in these steels.
Croft,M.; Jisrawi, N.; Zhong, Z.; Holtz, R.; Sadananda, K.; Skaritka, J.; Tsakalakos, T.
2007-01-01
High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At the point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.
... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...
Lundin, C.D.; Qiao, C.Y.P.
1995-12-31
A tubing weld cracking (TWC) test was developed for applications involving advanced austenitic alloys (such as modified 800H and 310HCbN). Compared to the Finger hot cracking test, the TWC test shows an enhanced ability to evaluate the crack sensitivity of tubing materials. The TWC test can evaluate the cracking tendency of base as well as filter materials. Thus, it is a useful tool for tubing suppliers, filler metal producers and fabricators.
Interaction between Interfacial Collinear Griffith Cracks in Composite Media under Thermal Loading
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Das, S.
2016-05-01
This article deals with the interactions between a central crack and a pair of outer cracks situated at the interface of orthotropic elastic half planes under thermo-mechanical loading. The mixed boundary value problem has been reduced to a pair of singular integral equations which has been solved numerically using Jacobi polynomial method. The interaction effects have been obtained in terms of stress magnification factors depending on the crack spacing and crack length. The phenomena of crack shielding and crack amplification have been depicted through graphs for different particular cases.
NASA Astrophysics Data System (ADS)
Frühwirt, Thomas; Plößer, Arne; Konietzky, Heinz
2015-04-01
The main focus of this work was to investigate temporary and spatial features of crack development in concrete blocks due to the action of a swelling agent. A commercial available cement-based mortar which shows heavily swelling behaviour when hydrating is used to provide inside pressure in boreholes in conrete blocks and hence serves as cracking agent. As no data for the swelling behaviour of the cracking agent were available the maximum axial swelling stress and axial free swelling strain were determined experimentally. In a first series of tests on concrete blocks the influence of an external mechanical, unidirectional stress on the development-time and orientation of cracks has been investigated for a range of loading levels. The stress state in the blocks prepared with a single borehole was determined by a superposition of internal stresses caused by swelling pressure and external mechanical loading. For a second series of tests prismatic blocks with two boreholes where prepared. This test setup allowed to realize different orientation of boreholes with respect to the uniaxial loading direction. Complementary tests were done using the cracking agent in both, only one or none of the boreholes. Different modes of crack interaction and influence of filled or unfilled boreholes have been observed. Features of crack development showed significant sensitivity to external loading. Starting even at very low load levels crack orientation was primarely determined by the direction of the external load. Temporal change in crack development due to the different load levels was insignificant and no consistent conclusion could be drawn. Crack interaction phenomena only were observed with two boreholes orientated primarely in direction of the external loading. Even in these cases crack orientation was mainly determined by the external stress field and only locally influenced by other cracks or the unfilled borehole. The work provides us with an extensive catalogue of
Experimental measurement of the near tip strain field in an iron-silicon single crystal
NASA Astrophysics Data System (ADS)
Shield, T. W.; Kim, K.-S.
1994-05-01
EXPERIMENTAL RESULTS are presented for the plastic deformation field near a crack (200 μm wide notch) tip in an iron-3% silicon single crystal. The specimen was loaded in four point bending and the measurements were made at zero load after extensive plastic deformation had occurred. Results are given for a crack on the (011) plane with its tip along the [01|T] direction. The surface deformation field was measured using moire microscopy and a grating on the specimen surface. The in-plane Almansi strain components have been obtained by digitally processing the moire fringes. A well-structured asymptotic field has been found at a distance of 350-500 μm from the notch tip, where the maximum plastic strain is about 9%. The asymptotic field is observed to be composed of many distinct angular sectors. Three (six symmetric) of these sectors are found to have approximately constant strains. In a fourth (two symmetric) sector, the surface strains are approximately 1/ r singular. Between these sectors there are interconnecting transition sectors. The location of the stress state on the yield surface and the active slip systems in each sector are identified by assuming that the plastic strain rates are normal to a Schmid law yield surface. The slip systems identified in this manner show excellent agreement with direct observations of the slip texture on the surface and dislocation etch pits in the interior of the specimen. The experimental strain measurements also show that the constant strain sectors are regions in which unloading occurs. Because of this unloading, the crack tip stress and deformation state is substantially different from an HRR type field which assumes proportional loading. This strong nonproportional loading is thought to be caused by the presence of material anisotropy. The nonproportional loading also provides a large amount of crack tip shielding that is evidence of a toughening mechanism that results from the presence of material anisotropy.
Crack healing in silicon nitride due to oxidation
Choi, S.R.; Tikare, V.; Pawlik, R.
1991-10-01
The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment. 20 refs.
A cylindrical shell with an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1982-01-01
The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented.
Crack healing in silicon nitride due to oxidation
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Tikare, Veena; Pawlik, Ralph
1991-01-01
The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment.
NASA Astrophysics Data System (ADS)
Lomakin, E. V.; Fedulov, B. N.
2013-07-01
The limit properties of many heterogeneous materials such as grounds, concrete, ceramics, cast-iron alloys, and various heat-resistant and powder materials, as well as the properties of many composite materials, depend on the loading conditions. Neglecting the effects exhibited by such materials may result in nonconservative limit load analysis for some types of loading and possibly in an overly increased end product weight by failing to take into account stronger material properties for other types of loading. This paper presents a possible approach to modeling the behavior of such materials under plastic deformation, which is demonstrated for the sample problem on the extension of a strip weakened by cuts with circular base. An analytic solution on the basis of a rigid-plastic model of the material and a numerical solution by the finite elementmethod with elastic strains and small strengthening taken into account are presented.
NASA Astrophysics Data System (ADS)
Morovvati, M. R.; Lalehpour, A.; Esmaeilzare, A.
2016-12-01
Reinforcing aluminum with SiC and B4C nano/micro particles can lead to a more efficient material in terms of strength and light weight. The influence of adding these particles to an aluminum 7075 matrix is investigated using chevron-notch fracture toughness test method. The reinforcing factors are type, size (micro/nano), and weight percent of the particles. The fracture parameters are maximum load, notch opening displacement, the work up to fracture and chevron notch plane strain fracture toughness. The findings demonstrate that addition of micro and nano size particles improves the fracture properties; however, increasing the weight percent of the particles leads to increase of fracture properties up to a certain level and after that due to agglomeration of the particles, the improvement does not happen for both particle types and size categories. Agglomeration of particles at higher amounts of reinforcing particles results in improper distribution of particles and reduction in mechanical properties.
Dynamical weight functions for a planar crack
NASA Astrophysics Data System (ADS)
Al-Falou, A. A.; Ball, R. C.; Larralde, H.
2000-01-01
The stress intensity factors are evaluated for a moving planar crack for loadings which vary arbitrarily in time and three dimensions of space. We exploit the adjoint elasticity equation obeyed by the corresponding weight functions, and a new and more universal Wiener-Hopf factorization of the Rayleigh function, this being the central difficulty in such calculations. For the mode II weight function we give further asymptotic results crucial to a subsequent calculation of crack stability with respect to out-of-plane perturbations.
Dynamic initiation and propagation of cracks in unidirectional composite plates
NASA Astrophysics Data System (ADS)
Coker, Demirkan
Dynamic crack growth along weak planes is a significant mode of failure in composites and other layered/sandwiched structures and is also the principal mechanism of shallow crustal earthquakes. In order to shed light on this phenomenon dynamic crack initiation and propagation characteristics of a model fiber-reinforced unidirectional graphite/epoxy composite plate was investigated experimentally. Dynamic fracture experiments were conducted by subjecting the composite plates to in-plane, symmetric and asymmetric, impact loading. The lateral shearing interferometric technique of coherent gradient sensing (CGS) in conjunction with high-speed photography was used to visualize the failure process in real time. It was found that mode-I cracks propagated subsonically with crack speeds increasing to the neighborhood of the Rayleigh wave speed of the composite. Also in mode-I, the dependence of the dynamic initiation fracture toughness on the loading rate was determined and was found to be constant for low loading rates and to increase rapidly above K˙dI>10 5 . The dynamic crack propagation toughness, KID, was observed to decrease with crack tip speed up to the Rayleigh wave speed of the composite. For asymmetric, mode-II, types of loading the results revealed highly unstable and intersonic shear-dominated crack growth along the fibers. These cracks propagated with unprecedented speeds reaching 7400 m/s which is the dilatational wave speed of the composite along the fibers. For intersonic crack growth, the interferograms, featured a shock wave structure typical of disturbances traveling with speeds higher than one of the characteristic wave speeds in the solid. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating non-uniform crack face frictional contact. In addition, shear dominated dynamic crack growth is investigated along composite/Homalite interfaces subjected to impact loading. The crack
The influence of crack closure and elasto-plastic flow on the bending of a cracked plate
NASA Technical Reports Server (NTRS)
Jones, D. P.; Swedlow, J. L.
1975-01-01
The influence of crack closure and elastoplastic flow on the bending behavior of thin cracked plates is investigated using an incremental elastoplastic plate bending finite element computer program. The finite element program was developed using assumptions consistent with Kirchhoff fourth-order plate theory while the material property treatment permits general isotropic work hardening with local elastic unloading. This technique is applied to the problem of a large centrally through cracked plate subject to remote circular bending. Comparison is drawn between two cases of the bending problem. The first neglects the possibility of crack face interference with bending, and the second includes a kinematic prohibition against the crack face from passing through the symmetry plane. Results are reported which isolate the effects of elastoplastic flow and crack closure.
A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem
NASA Technical Reports Server (NTRS)
Erdogan, F.; Pacella, A. H.
1974-01-01
The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.
Twisting cracks in Bouligand structures.
Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo
2017-06-10
The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crack Turning and Arrest Mechanisms for Integral Structure
NASA Technical Reports Server (NTRS)
Pettit, Richard; Ingraffea, Anthony
1999-01-01
In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate
Cracked tooth diagnosis and treatment: An alternative paradigm
Mamoun, John S.; Napoletano, Donato
2015-01-01
This article reviews the diagnosis and treatment of cracked teeth, and explores common clinical examples of cracked teeth, such as cusp fractures, fractures into tooth furcations, and root fractures. This article provides alternative definitions of terms such as cracked teeth, complete and incomplete fractures and crack lines, and explores the scientific rationale for dental terminology commonly used to describe cracked teeth, such as cracked tooth syndrome, structural versus nonstructural cracks, and vertical, horizontal, and oblique fractures. The article explains the advantages of high magnification loupes (×6–8 or greater), or the surgical operating microscope, combined with co-axial or head-mounted illumination, when observing teeth for microscopic crack lines or enamel craze lines. The article explores what biomechanical factors help to facilitate the development of cracks in teeth, and under what circumstances a full coverage crown may be indicated for preventing further propagation of a fracture plane. Articles on cracked tooth phenomena were located via a PubMed search using a variety of keywords, and via selective hand-searching of citations contained within located articles. PMID:26038667
NASA Astrophysics Data System (ADS)
Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan
2017-08-01
Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.
Nucleation and growth of cracks in vitreous-bonded aluminum oxide at elevated temperatures
Jakus, K.; Wiederhorn, S.M.; Hockey, B.J.
1986-10-01
The nucleation and growth of cracks was studied at elevated temperatures on a grade of vitreous-bonded aluminium oxide that contained approx. =8 vol% glass at the grain boundaries. Cracks were observed to nucleate within the vitreous phase, close to the tensile surface of the flexural test specimens used in these experiments. Crack nucleation occurred at a strain of approx. =0.08% to 0.12% which corresponded to a crack nucleation time of approx. =35% of the time to failure by creep rupture. Once nucleated, cracks propagated along grain boundaries, as long as the stress for crack propagation was maintained. The crack velocity for cracks that were nucleated by the creep process was found to be linearly proportional to the apparent stress intensity factor, whereas for cracks that were nucleated by indentation, the crack velocity was proportional to the fourth power of the apparent stress intensity factor.
Fatigue crack growth behavior in equine cortical bone
NASA Astrophysics Data System (ADS)
Shelton, Debbie Renee
2001-07-01
Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber
Corrosion pitting and environmentally assisted small crack growth.
Turnbull, Alan
2014-09-08
In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data.
Corrosion pitting and environmentally assisted small crack growth
Turnbull, Alan
2014-01-01
In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249
Investigation of Helicopter Longeron Cracks
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Crack initiation mechanisms in IASCC of stainless steel alloys
Cookson, J.M.; Was, G.S.; Andresen, P.L.
1995-12-31
An abnormally high oxygen concentration was recently discovered in a high purity stainless steel alloy widely used in IASCC studies. This led to an investigation into the role of oxygen on the initiation of intergranular cracking in irradiated samples in high temperature water. The concentration of oxygen in the alloys correlated with the number of cracks initiated in the proton irradiated region of samples strained in water containing 0.5 {micro}S/cm H{sub 2}SO{sub 4} at 288 C. This suggests that the presence of oxygen, in the form of spinel oxide particles, can lead to a substantial increase in the likelihood of crack initiation. This effect is only observed in irradiated samples strained in water, not in either unirradiated (non-sensitized) samples strained in water or irradiated samples strained in argon This paper examines the possible role of oxides in promoting crack initiation and the implications for IASCC.
NASA Technical Reports Server (NTRS)
Smith, C. W.
1997-01-01
The present study was undertaken in order to develop test methods and procedures for measuring the variation of the stress intensity factor through the thickness in bimaterial specimens containing cracks within and parallel to the bond line using the frozen stress photoelastic method. Since stress freezing materials are incompressible above critical temperature, and since thick plates are to be employed which tend to produce a state of plane strain near the crack tip, the interface near tip fracture equations reduce to the classic form for homogeneous materials. Moreover, zero thickness interfaces do not exist when materials are bonded together. It was decided early on that it would be important to insure a uniform straight and accurate crack tip region through the thickness of the body to reduce scatter in the SIF distribution through the thickness. It was also observed that rubberlike materials which were desired to be modeled exhibited significant tip blunting prior to crack extension and that some blunting of the tip would provide a more realistic model. It should be noted that, in normal stress freezing photoelastic work, it is considered good practice to avoid utilizing data near bond lines in photoelastic models due to the bond line stresses which inevitably develop when two parts are bonded together. Thus, the present study involves certain exploratory aspects in deviating from standard practice in stress freezing work. With the above ideas in mind, several different test methods were investigated and are described in the following sections and appendices. The geometry selected for the program was a thick, edge cracked specimen containing a bond line.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain
Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock
NASA Astrophysics Data System (ADS)
Zhang, Xiaoling; Meng, Qingduan; Zhang, Liwen; Lv, Yanqiu
2014-03-01
A higher fracture probability appearing in indium antimonide (InSb) infrared focal plane arrays (IRFPAs) subjected to the thermal shock test, restricts its final yield. In light of the proposed equivalent method, where a 32 × 32 array is employed to replace the real 128 × 128 array, a three-dimensional modeling of InSb IRFPAs is developed to explore its deformation rules. To research the damage degree to the mechanical properties of InSb chip from the back surface thinning process, the elastic modulus of InSb chip along the normal direction is lessened. Simulation results show when the out-of-plane elastic modulus of InSb chip is set with 30% of its Young's modulus, the simulated Z-components of strain distribution agrees well with the top surface deformation features in 128 × 128 InSb IRFPAs fracture photographs, especially with the crack origination sites, the crack distribution and the global square checkerboard buckling pattern. Thus the Z-components of strain are selected to explore the deformation rules in the layered structure of InSb IRFPAs. Analyzing results show the top surface deformation of InSb IRFPAs originates from the thermal mismatch between the silicon readout integrated circuits (ROIC) and the intermediate layer above, made up of the alternating indium bump array and the reticular underfill. After passing through both the intermediate layer and the InSb chip, the deformation amplitude is reduced firstly from 2.23 μm to 0.24 μm, finally to 0.09 μm. Finally, von Mises stress criterion is employed to explain the causes that cracks always appear in the InSb chip.
J-integral estimates for cracks in infinite bodies
NASA Technical Reports Server (NTRS)
Dowling, N. E.
1986-01-01
An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elastoplastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the strain normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant.
J-integral estimates for cracks in infinite bodies
NASA Technical Reports Server (NTRS)
Dowling, N. E.
1987-01-01
An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elasto-plastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the strain normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant.
Catalytic cracking of hydrocarbons
Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.
1992-02-04
This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.
1992-01-01
The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.
The crack problem in a reinforced cylindrical shell
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1986-01-01
A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.
The crack problem in a reinforced cylindrical shell
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1986-01-01
In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.
CRACK MODELLING FOR RADIOGRAPHY
Chady, T.; Napierala, L.
2010-02-22
In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.
Zuckerman, G R
1998-01-01
Fractured molars and premolars are very common. Fractures usually result from cracks that develop and slowly extend until the tooth separates into buccal and lingual fragments. Sometimes, as these cracks expand, the patient exhibits symptoms of what is commonly referred to as "cracked tooth syndrome" (CTS). When CTS occurs, an opportunity exists to diagnose and treat these patients, to relieve their discomfort and prevent sequelae that would require more extensive treatment.
Quenched catalytic cracking process
Krambeck, F.J.; Penick, J.E.; Schipper, P.H.
1990-12-18
This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.