Sample records for plane strain problem

  1. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  2. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  3. New insights into classical solutions of the local instability of the sandwich panels problem

    NASA Astrophysics Data System (ADS)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2016-06-01

    The paper concerns the problem of local instability of thin facings of a sandwich panel. The classic analytical solutions are compared and examined. The Airy stress function is applied in the case of the state of plane stress and the state of plane strain. Wrinkling stress values are presented. The differences between the results obtained using the differential equations method and energy method are discussed. The relations between core strain energies are presented.

  4. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    NASA Astrophysics Data System (ADS)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  5. Direct Three-Dimensional Myocardial Strain Tensor Quantification and Tracking using zHARP★

    PubMed Central

    Abd-Elmoniem, Khaled Z.; Stuber, Matthias; Prince, Jerry L.

    2008-01-01

    Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3-D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3-D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3-D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in-vitro on a phantom and in-vivo in four healthy adult human subjects. PMID:18511332

  6. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  7. User's guide for analysis of finite elastoplastic deformation: The FIPDEF and FIPAX programs for the CDC 6600

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1974-01-01

    Computer programs are presented which provide incremental finite-element analysis capability for problems of quasi-static, finite, elastoplastic deformation in two spatial dimensions (plane strain, plane stress, axisymmetric). Monotonic or cyclic loading of isotropic hardening materials is considered. The only restriction on the form of the stress-strain curve is that the rate of work hardening exceed some small positive value. The user's guide assumes familiarity with both finite-element analysis and FORTRAN IV programming for the CDC 6600. Sufficient information is provided to support problem solving ultization of the programs.

  8. Stress-free end problem in layered materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1977-01-01

    In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.

  9. Plane elasto-plastic analysis of v-notched plate under bending by boundary integral equation method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.

    1973-01-01

    A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.

  10. A Multiphysics Finite Element and Peridynamics Model of Dielectric Breakdown

    DTIC Science & Technology

    2017-09-01

    A method for simulating dielectric breakdown in solid materials is presented that couples electro-quasi-statics, the adiabatic heat equation, and...temperatures or high strains. The Kelvin force computation used in the method is verified against a 1-D solution and the linearization scheme used to treat the...plane problems, a 2-D composite capacitor with a conductive flaw, and a 3-D point–plane problem. The results show that the method is capable of

  11. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  12. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  13. Residual stresses in cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Hyer, M. W.

    1984-01-01

    The residual thermal stresses in 4-layer cross-ply tubes are studied. The tubes considered has a small radius to wall-thickness ratios and so elasticity solutions were used. The residual thermal stress problem was considered to be axisymmetric and three elasticity solutions were derived and the results compared with the results using classical lamination theory. The comparison illustrates the limitations of classical lamination theory. The three elasticity solutions derived were: plane stress, plane strain, and generalized plane strain, the latter being the most realistic. Residual stresses in both the hoop and axial direction is significant. Stacking arrangement effects the residual stress to some extent, as do the material properties of the individual lamina. The benefits of hybrid construction are briefly discussed.

  14. Derivation of a variational principle for plane strain elastic-plastic silk biopolymers

    NASA Astrophysics Data System (ADS)

    He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.

    2014-01-01

    Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.

  15. On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration

    NASA Technical Reports Server (NTRS)

    Wheeler, L.

    1976-01-01

    Cases involving antiplane shear deformation, axisymmetric torsion, and plane strain theory, with surfaces of constant stress magnitude optimal in terms of minimizing stress, are investigated. Results for the plane theory refer to exterior doubly connected domains. Stresses generated by torsion of an elastic solid lying within a radially convex region of revolution with plane ends, body force absent, and lateral surface traction-free, are examined. The unknown portion of the boundary of such domains may involve a hole, fillet, or notch.

  16. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    NASA Astrophysics Data System (ADS)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  17. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  18. Stress–strain state in an elastoplastic pipe taking into account the temperature and compressibility of the material

    NASA Astrophysics Data System (ADS)

    Gornostaev, K. K.; Kovalev, A. V.; Malygina, Y. V.

    2018-03-01

    In the article the authors have considered the problem of determining the stress-strain state of the elastoplastic pipe with the Mises’ condition in case of plane strain for the compressible material taking into account the temperature. The task was solved using the method of the small parameter. The expressions for the fields of stresses and displacements were received as well as the ratio of the radius of the elastoplastic boundary in the zero and first approximations.

  19. Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance

    NASA Astrophysics Data System (ADS)

    Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.

    2016-11-01

    One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.

  20. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  1. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  2. Influence of 2D Finite Element Modeling Assumptions on Debonding Prediction for Composite Skin-stiffener Specimens Subjected to Tension and Bending

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  3. I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartamil-Bueno, S. J., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S., E-mail: s.j.cartamilbueno@tudelft.nl, E-mail: rbolivar@ugr.es

    2015-06-28

    The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focusedmore » on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.« less

  4. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  5. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE PAGES

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...

    2017-09-13

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  6. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    NASA Astrophysics Data System (ADS)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  7. Analysis of crack propagation as an energy absorption mechanism in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Murphy, D. P.

    1981-01-01

    The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.

  8. Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet

    NASA Astrophysics Data System (ADS)

    Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.

    2013-01-01

    Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.

  9. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  10. Linear Controller Design: Limits of Performance

    DTIC Science & Technology

    1991-01-01

    where a sensor should be placed eg where an accelerometer is to be positioned on an aircraft or where a strain gauge is placed along a beam The...309 VIII CONTENTS 14 Special Algorithms for Convex Optimization 311 Notation and Problem Denitions...311 On Algorithms for Convex Optimization 312 CuttingPlane Algorithms

  11. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David Michael

    1997-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. The formulation uses the principle of virtual work. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are then derived after the application of several simplifying assumptions. These equations are then modified to allow the reference surface of the plate to be located at a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described as well. The terms of the plate stiffness matrix using both Classical Plate Theory (CPT) and first-order Shear-Deformation Plate Theory (SDPT) are presented. The necessary steps to include the effects of in-plane transverse and in-plane shear loads in the in-plane stability equations are also outlined. Numerical results are presented using the newly implemented capability. Comparisons of results for several example problems with different loading states are made. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPF are also made. Results comparing the computational effort required by the new analysis to that of the analysis currently in the VICONOPT program are presented. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  12. Fracture Behavior of a Stitched Warp-Knit Carbon Fabric Composite

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Reeder, James R.; Yuan, F. G.

    2001-01-01

    Tests were conducted on several types of fracture specimens made from a carbon/epoxy composite. The composite material was stitched prior to introducing epoxy resin. Boeing, used this material to develop a composite wing box for a transport aircraft in the NASA Advanced Composites Transport Program. The specimens included compact, extended compact, and center notched tension specimens. The specimens were cut from panels with three orientations in order to explore the effects of anisotropy. The panels were made with various thicknesses to represent a wing, skin from tip to root. All fractures were not self-similar depending on specimen type and orientation. Unnotched tension specimens were also tested to measure elastic constants and strengths. The normal and shear strains were calculated on fracture planes using a series representation of strain fields for plane anisotropic crack problems. The fracture parameters were determined using a finite element method. Characteristic distances for critical tension and shear strains were calculated for each specimen and a failure criterion based on the interaction of tension and shear strains was proposed.

  13. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    NASA Astrophysics Data System (ADS)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  14. Stress-intensity factors of r-cracks in fiber-reinforced composites under thermal and mechanical loading

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    1993-02-01

    The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.

  15. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  16. Applications of FEM and BEM in two-dimensional fracture mechanics problems

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Steeve, B. E.; Swanson, G. R.

    1992-01-01

    A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.

  17. Lattice strain effects on the optical properties of MoS2 nanosheets

    PubMed Central

    Yang, Lei; Cui, Xudong; Zhang, Jingyu; Wang, Kan; Shen, Meng; Zeng, Shuangshuang; Dayeh, Shadi A.; Feng, Liang; Xiang, Bin

    2014-01-01

    “Strain engineering” in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS2 to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS2 nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS2 nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS2. PMID:25008782

  18. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.

  19. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  20. Buckling of graded coatings: A continuum model

    NASA Astrophysics Data System (ADS)

    Chiu, Tz-Cheng

    2000-12-01

    Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)

  1. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  2. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE PAGES

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...

    2017-02-07

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  3. NOLIN: A nonlinear laminate analysis program

    NASA Technical Reports Server (NTRS)

    Kibler, J. J.

    1975-01-01

    A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.

  4. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    PubMed

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  6. The effect of the interaction of cracks in orthotropic layered materials under compressive loading.

    PubMed

    Winiarski, B; Guz, I A

    2008-05-28

    The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.

  7. Evaluation of pelvic descent disorders by dynamic contrast roentgenography.

    PubMed

    Takano, M; Hamada, A

    2000-10-01

    For precise diagnosis and rational treatment of the increasing number of patients with descent of intrapelvic organ(s) and anatomic plane(s), dynamic contrast roentgenography of multiple intrapelvic organs and planes is described. Sixty-six patients, consisting of 11 males, with a mean age (+/- standard deviation) of 65.6+/-14.2 years and with chief complaints of intrapelvic organ and perineal descent or defecation problems, were examined in this study. Dynamic contrast roentgenography was obtained by opacifying the ileum, urinary bladder, vagina, rectum, and the perineum. Films were taken at both squeeze and strain phases. On the films the lowest points of each organ and plane were plotted, and the distances from the standard line drawn at the upper surface of the sacrum were measured. The values were corrected to percentages according to the height of the sacrococcygeal bone of each patient. From these corrected values, organ or plane descents at strain and squeeze were diagnosed and graphically demonstrated as a descentgram in each patient. Among 17 cases with subjective symptoms of bladder descent, 9 cases (52.9 percent) showed roentgenographic descent. By the same token, among the cases with subjective feeling of descent of the vagina, uterus, peritoneum, perineum, rectum, and anus, roentgenographic descent was confirmed in 15 of 20 (75 percent), 7 of 9 (77.8 percent), 6 of 16 (37.5 percent), 33 of 33 (100 percent), 25 of 37 (67.6 percent), and 22 of 36 (61.6 percent), respectively. The descentgrams were divided into three patterns: anorectal descent type, female genital descent type, and total organ descent type. Dynamic contrast roentgenography and successive descentgraphy of multiple intrapelvic organs and planes are useful for objective diagnosis and rational treatment of patients with descent disorders of the intrapelvic organ(s) and plane(s).

  8. Anisotropic spin-density distribution and magnetic anisotropy of strained La1-xSrxMnO3 thin films: angle-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi

    2018-01-01

    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.

  9. Crack growth in bonded elastic half planes

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1975-01-01

    Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.

  10. Effects of strain relaxation in Pr 0.67Sr 0.33MnO 3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr 0.67Sr 0.33MnO 3 films with different thicknesses on (001) LaAlO 3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy E r. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results,more » it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of E r. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  11. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  12. On a Minimum Problem in Smectic Elastomers

    NASA Astrophysics Data System (ADS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-07-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.

  13. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  14. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Pal, S.; Anderoglu, O.

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  15. Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys

    DOE PAGES

    Aydogan, E.; Pal, S.; Anderoglu, O.; ...

    2016-03-08

    In this paper, texture and microstructure of tubes and plates fabricated from a nanostructured ferritic alloy (14YWT), produced either by spray forming followed by hydrostatic extrusion (Process I) or hot extrusion and cross-rolling a plate followed by hydrostatic tube extrusion (Process II) have been characterized in terms of their effects on texture and grain boundary character. Hydrostatic extrusion results in a combination of plane strain and shear deformations which generate low intensity α- and γ-fiber components of {001}<110> and {111}<110> together with a weak ζ-fiber component of {011}<211> and {011}<011>. In contrast, multi-step plane strain deformation by hot extrusion andmore » cross-rolling of the plate leads to a strong texture component of {001}<110> together with a weaker {111}<112> component. Although the total strains are similar, shear dominated deformation leads to much lower texture indexes compared to plane strain deformations. Further, the texture intensity decreases after hydrostatic extrusion of the alloy plate formed by plane strain deformation, due to a lower number of activated slip systems during shear dominated deformation. Finally and notably, hot extruded and cross-rolled plate subjected to plane strain deformation to ~50% engineering strain creates only a modest population of low angle grain boundaries, compared to the much larger population observed following the combination of plane strain and shear deformation of ~44% engineering strain resulting from subsequent hydrostatic extrusion.« less

  16. Creep crack-growth: A new path-independent integral (T sub c), and computational studies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The development of valid creep fracture criteria is considered. Two path-independent integral parameters which show some degree of promise are the C* and (Delta T)sub c integrals. The mathematical aspects of these parameters are reviewed by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects, and large deformations. Two principal conclusions are that (Delta T)sub c has an energy rate interpretation whereas C* does not. The development and application of fracture criteria often involves the solution of boundary/initial value problems associated with deformation and stresses. The finite element method is used for this purpose. An efficient, small displacement, infinitesimal strain, displacement based finite element model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations. A mesh shifting/remeshing procedure is used for simulating crack growth. The model is implemented with the quartz-point node technique and also with specially developed, conforming, crack-tip singularity elements which provide for the r to the n-(1+n) power strain singularity associated with the HRR crack-tip field. Comparisons are made with a variety of analytical solutions and alternate numerical solutions for a number of problems.

  17. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. I Analysis. II - Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M.-C.; Erdogan, F.

    1983-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429

  18. The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.

  19. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, T.M.; Motta, A.T.; Koss, D.A.

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less

  20. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. B., E-mail: houbinghuang@gmail.com; Department of Physics, University of Science and Technology Beijing, Beijing 100083; Hu, J. M.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  1. Bulk Nonlinear Elastic Strain Waves in a Bilayer Coaxial Cylindrical Rod

    NASA Astrophysics Data System (ADS)

    Gula, I. A.; Samsonov, A. M.

    2017-12-01

    The problem of the propagation of long nonlinear elastic strain waves in a bilayer coaxial cylindrical rod with an ideal contact between the layers has been considered. Expressions for transverse displacements through longitudinal displacements have been derived. The former satisfies free boundary conditions and continuity conditions for displacements and stresses at the interlayer interface with the desired accuracy. It has been shown how these expressions generalize the well-known plane-section and Love hypotheses for an isotropic homogeneous rod. An equation for the propagation of a nonlinearly elastic strain longitudinal wave has been derived, and its particular solution in the form of a solitary traveling wave has been studied.

  2. Reynolds Stress Balance in Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Miichael M.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 25 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, R(sub e), of about 2,000. All the terms in the equations governing the evolution of the Reynolds stresses have been calculated. The relative importance of the various terms is examined for the different strain geometries and the behavior of the individual terms is used to better assess whether the strained wakes are evolving self-similarly.

  3. Line spring model and its applications to part-through crack problems in plates and shells

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Aksel, Bulent

    1988-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  4. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksel, B.

    1986-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  5. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  6. Permeability of canine vocal fold lamina propria.

    PubMed

    Meyer, Jacob P; Kvit, Anton A; Devine, Erin E; Jiang, Jack

    2015-04-01

    Determine the permeability of excised canine vocal fold lamina propria. Basic science. Vocal folds were excised from canine larynges and mounted within a device to measure the flow of 0.9% saline through the tissue over time. The resultant fluid volume displaced over time was then used in a variation of Darcy's law to calculate the permeability of the tissue. Permeability was found through each anatomical plane of the vocal fold, with five samples per plane. Permeability was also found for lamina propria stretched to 10%, 20%, and 30% of its initial length to determine the effects of tensile strain on permeability, with five samples per level of strain. Permeability was found to be 1.40 × 10(-13) m(3) s/kg through the sagittal plane, 1.00 × 10(-13) m(3) s/kg through the coronal plane, and 4.02 × 10(-13) m(3) s/kg through the axial plane. It was significantly greater through the axial plane than both the sagittal (P = .025) and coronal (P = .009) planes. Permeability under strain through the sagittal plane was found to be 1.94 × 10(-13) m(3) s/kg under 10% strain, 3.35 × 10(-13) m(3) s/kg under 20% strain, and 4.80 × 10(-13) m(3) s/kg under 30% strain. The permeability significantly increased after 20% strain (P < .05). Permeability in canine vocal fold lamina propria was found to be increased along the anterior-posterior axis, following the length of the vocal folds. This may influence fluid distribution within the lamina propria during and after vibration. Similarly, permeability increased after 20% strain was imposed on the lamina propria, and may influence vocal fold dynamics during certain phonation tasks. NA Laryngoscope, 125:941-945, 2015. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Viscoelastic study of an adhesively bonded joint

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.

    1983-01-01

    The plane strain problem of two dissimilar orthotropic plates bonded with an isotropic, linearly viscoelastic adhesive is considered. Both the shear and the normal stresses in the adhesive are calculated for various geometries and loading conditions. Transverse shear deformations of the adherends are taken into account, and their effect on the solution is shown in the results. All three inplane strains of the adhesive are included. Attention is given to the effect of temperature, both in the adhesive joint problem and to the heat generation in a viscoelastic material under cyclic loading. This separate study is included because heat generation and or spatially varying temperature are at present too difficult to account for in the analytical solution of the bonded joint, but whose effect can not be ignored in design.

  8. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  9. A study for high accuracy measurement of residual stress by deep hole drilling technique

    NASA Astrophysics Data System (ADS)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  10. Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu

    2016-03-21

    Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less

  11. Strain effects on the electronic properties in δ-doped oxide superlattices

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; Cooper, Valentino; Lee, Ho Nyung

    2015-03-01

    Strain effects on the electronic properties of (LaTiO3)1/(SrTiO3)N superlattices were investigated using density functional theory. Under biaxial in-plane strain within the range of -5% ≤ ɛ// ≤ 5%, the dxy orbital electrons are highly localized at the interfaces whereas the dyz and dxz orbital electrons are more distributed in the SrTiO3 (STO) spacer layers. For STO thickness N ≥ 3 unit cells (u.c.), the dxy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent on the applied biaxial in-plane strain. As the in-plane strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the dxy orbital, the dyz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. Since the charge densities in the dxy orbital and the dyz and dxz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.

  12. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K. Y.; Chen, Y.; Li, J.

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  13. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE PAGES

    Yu, K. Y.; Chen, Y.; Li, J.; ...

    2016-11-28

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  14. Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration

    NASA Astrophysics Data System (ADS)

    Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.

    2009-05-01

    We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.

  15. Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2018-04-01

    Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.

  16. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.

    2012-07-01

    The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostatic pressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.

  17. A thermoelastic transversely isotropic thick walled cylinder/disk application: An analytical solution and study

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.

  18. Discrete shear-transformation-zone plasticity modeling of notched bars

    NASA Astrophysics Data System (ADS)

    Kondori, Babak; Amine Benzerga, A.; Needleman, Alan

    2018-02-01

    Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

  19. Stresses and strains in thick perforated orthotropic plates

    Treesearch

    A. Alshaya; John Hunt; R. Rowlands

    2016-01-01

    Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...

  20. Lattice strain measurements of deuteride phase formation in epitaxial niobium on sapphire

    NASA Astrophysics Data System (ADS)

    Allain, Monica Marie Cortez

    Deuteride phase formation in epitaxial niobium on sapphire was investigated for two film thicknesses (200 and 1200A). A palladium cap of approximately 40A facilitated deuterium absorption from the gas phase and each exposure condition ensured that the film passed through the miscibility gap. In situ resistivity and x-ray diffraction (XRD) provided a correlation between the film resistance and each of the phases. This correlation was used during helium-3 nuclear reaction analysis to determine the deuterium concentration at the beginning and end of the miscibility gap providing a closer look at the strain behavior vs. deuterium concentration within the single and two-phase region. Three orthogonal reciprocal lattice points, the out-of-plane (1--10), the in-plane (002), and the in-plane (110), were monitored with XRD during deuterium absorption to saturation. Cycling effects on the 1200A Nb film were analyzed and found not to influence the strain behavior. The strain was anisotropic for both films, giving an enhanced out-of-plane expansion relative to the two in-plane directions. This is consistent with a clamping force inhibiting in-plane expansion. The observed out-of-plane strain can be used to estimate the in-plane clamping stress; the result is approximately 1 and 2 GPa for the 1200 and 200A Nb films respectively. The volumetric expansion determined from in situ XRD measurements demonstrate that the know value of the specific volume of deuterium, Deltanu/O, in bulk Nb (Deltanu/O = 0.174) does not hold for thin-film, epitaxial geometry (Deltanu/O ≈ 1). Further, the behavior of the specific volume shows a discontinuity at the phase boundary that does not exist in bulk. Lattice strain and overall film expansion from simultaneous XRD and x-ray reflectivity (XRR) measurements, respectively, were performed on both films. These results demonstrate a larger out-of-plane film expansion compared to the out-of-plane lattice strain for the 1200A Nb film compared to the 200A Nb film. It is believe that this is a consequence of greater plasticity within the 1200A film and associated dislocation generation. The enhance plasticity is also confirmed by a greater loss in structural coherence for the 1200A film and the fact that the in-plane clamping stress is greater for the 200A film. Evidence of significant dislocation formation has been confirmed with high-resolution electron microscopy (HREM) for the 1200A Nb film. The HREM images were used to estimate a dislocation density of 1012 cm-2 after repeated cycling. A residual out-of-plane compressive strain was observed in the 1200A Nb film after complete deuterium evolution. This observation can be explained by irreversible interstitial dislocation loop formation.

  1. Strain effects on the electronic properties in δ -doped oxide superlattices

    DOE PAGES

    You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; ...

    2015-02-07

    We investigated strain effects on the electronic properties of (LaTiO 3) 1/(SrTiO 3)N superlattices using density functional theory. Under biaxial in-plane strain within the range of -5% ≤ ε// ≤ 5%, the d xy orbital electrons are highly localized at the interfaces whereas the d yz and d xz orbital electrons are more distributed in the SrTiO 3 (STO) spacer layers. For STO thickness N ≥ 3 unit cells (u.c.), the d xy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent onmore » the applied biaxial in-plane strain. As the in-plane strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the d xy orbital, the d yz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. In conclusion, since the charge densities in the d xy orbital and the d yz and d xz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.« less

  2. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    USGS Publications Warehouse

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  3. Strain mapping in single-layer two-dimensional crystals via Raman activity

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.

    2018-03-01

    By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.

  4. The Effect of Viscosity of a Fluid on the Frequency Response of a Viscoelastic Plate Loaded by This Fluid

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.; Ismailov, M. I.; Akbarov, S. D.

    2018-03-01

    A hydroviscoelastic system consisting of a viscoelastic plate and a half-plane filled with a viscous fluid is considered. The effect of viscosity of the fluid on the frequency response of the system and its dependence on the rheological parameters of plate material are estimated. The problem on forced vibrations of the system in the plane strain state is investigated using the exact equations of viscoelastodynamics for describing the motion of the plate and linearized Navier-Stokes equations for describing the flow of the fluid. The results found in the cases of nonviscous compressible and Newtonian compressible viscous fluids are compared.

  5. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

    PubMed

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

    2017-07-03

    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.

  6. Laser speckle strain and deformation sensor using linear array image cross-correlation method for specifically arranged triple-beam triple-camera configuration

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, Adel K. (Inventor)

    2000-01-01

    The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.

  7. A proposed standard round compact specimen for plane strain fracture toughness testing

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Newman, J. C., Jr.; Seeley, R. R.

    1980-01-01

    A round, disk-shaped specimen is proposed as a standard test specimen for addition to ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-78A). The specimen is diametrically cracked, and loaded in the same way as the existing standard compact specimen. Tests and analyses were performed to verify that the proposed round compact specimen and associated stress intensity factor K solution are appropriate for a standard plane strain fracture toughness test. The use of the round compact specimen for other fracture tests is described.

  8. Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huaping, E-mail: wuhuaping@gmail.com; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540; Chai, Guozhong

    The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship amongmore » ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.« less

  9. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  10. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  11. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  12. Dynamic Failure of Integrated Durable Hot Structure for Space Access Vehicles

    DTIC Science & Technology

    2009-08-01

    in nonho- mogeneous solids, which is of the more practical importance, by assuming plane strain conditions. Later on Delale and Erdogan [11], Eischen...12] and Erdogan et al. [13] solved crack problems for non-homogeneous materials under quasi-static loading. With the introduction of FGMs, research on...fracture mechanics of nonhomo- geneous solids gained additional impetus. Jin and Noda [14], Konda and Erdo- gan [15] and Erdogan [16] obtained the

  13. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0060: Gradient Materials Morphology Modeling Support

    DTIC Science & Technology

    2007-08-01

    antiplane eigenstrain . ASME Journal of Applied Mechanics (In press, to appear in the September issue). [4] Wang, X., Pan, E., Roy, A. K, 2007. Three...problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies...strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nOliuniform. This phenomenon differs

  14. Integrating Experimentation, Modeling, and Visualization Through Full-Field Methods (Preprint)

    DTIC Science & Technology

    2009-04-01

    including fatigue, fatigue-crack growth, tribology , fracture toughness, Figure 1. Full-field, in-plane, maximum principal stress in a fully lamellar...studied, and 3) the correlation between 1) and 2). The emphases in this paper will be on the first and second areas, but the need for work in the third ...problems, concentrating on displacements rather than strains is appropriate for this work. The top figure shows the overall displacements, after rigid- body

  15. Simultaneous in- and out-of-plane Mitral Valve Annular Force Measurements.

    PubMed

    Skov, Søren N; Røpcke, Diana M; Telling, Kristine; Ilkjær, Christine; Tjørnild, Marcell J; Nygaard, Hans; Nielsen, Sten L; Jensen, Morten O

    2015-06-01

    Mitral valve repair with annuloplasty is often favoured over total valve replacement. In order to develop and optimize new annuloplasty ring designs, it is important to study the complex biomechanical behaviour of the valve annulus and the subvalvular apparatus with simultaneous in- and out-of-plane restraining force measurements. A new flat D-shaped mitral valve annular force transducer was developed. The transducer was mounted with strain gauges to measure strain and calibrated to provide simultaneous restraining forces in- and out of the mitral annular plane. The force transducer was implanted and evaluated in an 80 kg porcine experimental model. Accumulation of out-of-plane restraining forces, creating strain in the anterior segment were 0.7 ± 0.0 N (towards apex) and an average force accumulation of 1.5 ± 0.3 N, creating strain in the commissural segments (away from apex). The accumulations of in-plane restraining forces, creating strain on the inner side of the ring were 1.7 ± 0.2 N (away from ring center). A new mitral annular force transducer was successfully developed and evaluated in vivo. The transducer was able to measure forces simultaneously in different planes. Initial indications point towards overall agreement with previous individual force measurements in- and out-of the mitral annular plane. This can provide more detailed insight into the annular force distribution, and could potentially improve the level of evidence based mitral valve repair and support the development of future mitral annuloplasty devices.

  16. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

    DOE PAGES

    Li, Hong; Tsai, Charlie; Koh, Ai Leen; ...

    2015-11-09

    As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS 2) is known to contain active edge sites and an inert basal plane. Activating the MoS 2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS 2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bindmore » directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔG H) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔG H = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.« less

  17. Stress concentration investigations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Gillcrist, M. C.; Parnell, L. A.

    1986-01-01

    Parametic investigations are performed using several two dimensional finite element formulations to determine their suitability for use in predicting extremum stresses in marine propellers. Comparisons are made of two NASTRAN elements (CTRIM6 and CTRAIA2) wherein elasticity properties have been modified to yield plane strain results. The accuracy of the elements is investigated by comparing finite element stress predictions with experimentally determined stresses in two classical cases: (1) tension in a flat plate with a circular hole; and (2) a filleted flat bar subjected to in-plane bending. The CTRIA2 element is found to provide good results. The displacement field from a three dimensional finite element model of a representative marine propeller is used as the boundary condition for the two dimensional plane strain investigations of stresses in the propeller blade and fillet. Stress predictions from the three dimensional analysis are compared with those from the two dimensional models. The validity of the plane strain modifications to the NASTRAN element is checked by comparing the modified CTRIA2 element stress predictions with those of the ABAQUS plane strain element, CPE4.

  18. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    NASA Astrophysics Data System (ADS)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  19. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    PubMed Central

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  20. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  1. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  2. Towards a unified solution of localization failure with mixed finite elements

    NASA Astrophysics Data System (ADS)

    Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas

    2015-04-01

    Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement interpolations. As a fundamental enhancement of the displacement-pressure formulation above mentioned, this kind of formulation benefits of the following advantages: it provides enhanced rate of convergence for the strain (and stress) and it is able to deal with incompressible situations. The method is completed with constitutive laws from Von Mises and Drucker-Prager local plasticity models with nonlinear strain softening. Moreover, global and local error norms are discussed to support the advantages of the proposed method. Then, numerical examples of stability analysis of slopes are presented to demonstrate the capability of the method. It will be shown that not only soil slopes can be modeled but also snow avalanche release and their weak layer fracture can be similarly treated. Consequently, this formulation appears to be a general and accurate tool for the solution of mechanical problem involving failure with localization bands [3,4]. References [1] Y.R. Rashid, 'Ultimate strength analysis of prestressed concrete pressure vessels', Nuclear Engineering and Design, Volume 7, Issue 4, April, Pages 334-344, 1968. [2] M. Cervera, M. Chiumenti, D. Di Capua. 'Benchmarking on bifurcation and localization in J 2 plasticity for plane stress and plane strain conditions.' Computer Methods in Applied Mechanics and Engineering, Vol. 241-244, Pages 206-224, 2012. [3] L. Benedetti, M. Cervera, M. Chiumenti. 'Stress-accurate mixed FEM for soil failure under shallow foundations involving strain localization in plasticity' Computers and Geotechnics, Vol. 64, pp. 32-47, 2015. [4] Cervera, M., Chiumenti, M., Benedetti, L., Codina, R. 'Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity' Computer Methods in Applied Mechanics and Engineering, to appear, 2015.

  3. Temperature effects on the deformation and fracture of Al-Li-Cu-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1991-01-01

    The crack initiation and growth fracture resistance of Al-Cu-Li and Al-Cu-Li-In alloys were characterized and optimized for cryogenic tank applications. Presently, the effects of stress state and temperature is being determined on the fracture toughness and fracture mechanisms of commercially available Vintage 3 2090-T81 and experimental 2090+In-T6. Precracked J-integral specimens of both alloys were tested at ambient and cryogenic temperatures in the plane stress and plane strain conditions. Considering ambient temperature, results showed that 2090-T81 exhibited the highest toughness in both plane strain and plane stress conditions. For the plane strain condition, reasonable crack initiation and growth toughness of 1090-T81 are associated with a significant amount of delamination and transgranular fracture. Plane stress toughnesses were higher and fracture was characterized by shear cracking with minimal delaminations. In comparisons, the fracture behavior of 2090+In-T6 is significantly degraded by subgrain boundary precipitation. Toughness is low and characterized by intersubgranular fracture with no delamination in the plane stress or plane strain conditions. Intersubgranular cracking is a low energy event which presumably occurs prior to the onset of slip band cracking. Copious grain boundary precipitation is atypical of commercially available 2090. At cryogenic temperatures, both alloys exhibit increased yield strength, toughness, and amount of delamination and shear cracking. The change in fracture mode of 2090+In-T6 from intersubgranular cracking at ambient temperature to a combination of intersubgranular cracking, shear cracking, and delamination at cryogenic temperature is the subject of further investigation.

  4. Two-dimensional mapping of triaxial strain fields in a multiferroic BiFeO3 thin film using scanning x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Bark, Chung W.; Cho, Kyung C.; Koo, Yang M.; Tamura, Nobumichi; Ryu, Sangwoo; Jang, Hyun M.

    2007-03-01

    The dramatically enhanced polarizations and saturation magnetizations observed in the epitaxially constrained BiFeO3 (BFO) thin films with their pronounced grain-orientation dependence have attracted much attention and are attributed largely to the constrained in-plane strain. Thus, it is highly desirable to directly obtain information on the two-dimensional (2D) distribution of the in-plane strain and its correlation with the grain orientation of each corresponding microregion. Here the authors report a 2D quantitative mapping of the grain orientation and the local triaxial strain field in a 250nm thick multiferroic BFO film using a synchrotron x-ray microdiffraction technique. This direct scanning measurement demonstrates that the deviatoric component of the in-plane strain tensor is between 5×10-3 and 6×10-3 and that the local triaxial strain is fairly well correlated with the grain orientation in that particular region.

  5. Line-spring model for surface cracks in a Reissner plate

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper the line-spring model developed by Rice and Levy for a surface crack in elastic plates is reconsidered. The problem is formulated by using Reissner's plate bending theory. For the plane strain problem of a strip containing an edge crack and subjected to tension and bending new expressions for stress intensity factors are used which are valid up to a depth-to-thickness ratio of 0.8. The stress intensity factors for a semi-elliptic and a rectangular crack are calculated. Considering the simplicity of the technique and the severity of the underlying assumptions, the results compare rather well with the existing finite element solutions.

  6. Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge{sub 1−x}Sn{sub x} alloys for field-effect transistors applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn, E-mail: junxu@tsinghua.edu.cn; Wang, Jing

    The carrier transport and tunneling capabilities of biaxially strained Ge{sub 1−x}Sn{sub x} alloys with (001), (110), and (111) orientations were comprehensively investigated and compared. The electron band structures of biaxially strained Ge{sub 1−x}Sn{sub x} alloys were calculated by the nonlocal empirical pseudopotential method and the modified virtual crystal approximation was adopted in the calculation. The electron and hole effective masses at the band edges were extracted using a parabolic line fit. It is shown that the applied biaxial strain and the high Sn composition are both helpful for the reduction of carrier effective masses, which leads to the enhanced carriermore » mobility and the boosted direct band-to-band-tunneling probability. Furthermore, the strain induced valance band splitting reduces the hole interband scattering, and the splitting also results in the significantly enhanced direct tunneling rate along the out-of-plane direction compared with that along the in-plane direction. The biaxially strained (111) Ge{sub 1−x}Sn{sub x} alloys exhibit the smallest band gaps compared with (001) and (110) orientations, leading to the highest in-plane and out-of-plane direct tunneling probabilities. The small effective masses on (110) and (111) planes in some strained conditions also contribute to the enhanced carrier mobility and tunneling probability. Therefore, the biaxially strained (110) and (111) Ge{sub 1−x}Sn{sub x} alloys have the potential to outperform the corresponding (001) Ge{sub 1−x}Sn{sub x} devices. It is important to optimize the applied biaxial strain, the Sn composition, and the substrate orientation for the design of high performance Ge{sub 1−x}Sn{sub x} field-effect transistors.« less

  7. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  8. A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime

    NASA Astrophysics Data System (ADS)

    Kroon, M.

    2011-11-01

    Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.

  9. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  10. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    PubMed

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  11. A Comprehensive Study on Damage Tolerance Properties of Notched Composite Laminates.

    DTIC Science & Technology

    1988-02-01

    of Applied Mechanics, Vol. 46, pp. 90-96, the strain energy release rate. 1979. [14] F. Delae and F. Erdogan , "Bosid,;d Orlhotropic REFERENCES Strips...with Cracks", Int. J. of Fracture, Vol. 15, [1] F. Erdogan and G.C. Sih, "On the Crack Extension in pp.33-364,1979. Plates Under Plane Loading and...1987. Vol. 34, pp. 967-974, 1967. (17] F. Erdogan , "Mixed Boundary-VL..t; Problems in [4] B. Cotterell, "The Influence of the Stress Distribution

  12. Large amplitude vibrations of laminated hybrid composite plates

    NASA Astrophysics Data System (ADS)

    Sarma, M. S.; Venkateshwar Rao, A.; Pillai, S. R. R.; Nageswara Rao, B.

    1992-12-01

    A general equation of motion for the nonlinear vibration of a rectangular plate is formulated using Kirchhoff's hypothesis and von Karman type strain-displacement relations. The formulation includes in-plane deformations and neglects the corresponding inertia terms. The amplitudes are written under assumption that mode shapes are approximately the fundamental modes which satisfy the boundary conditions of the problem. It is shown that the method can be used to easily calculate an excellent aproximation to the periodic solutions of the nonlinear antisymmetric quadratic oscillator.

  13. Tunable spin splitting and spin lifetime in polar WSTe monolayer

    NASA Astrophysics Data System (ADS)

    Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo

    2018-04-01

    The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.

  14. On the freestream matching condition for stagnation point turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  15. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  16. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  17. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  18. Comparative study on hydrostatic strain, stress and dislocation density of Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure before and after a-Si{sub 3}N{sub 4} passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Mukhopadhyay, Partha

    2015-08-28

    The hydrostatic strain, stress and dislocation densities were comparatively analyzed before and after passivation of amorphous silicon nitride (a-Si{sub 3}N{sub 4}) layer on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure by nondestructive high resolution x-ray diffraction (HRXRD) technique. The crystalline quality, in-plane and out-of plane strain were evaluated from triple-axis (TA) (ω-2θ) diffraction profile across the (002) reflection plane and double-axis (DA) (ω-2θ) glancing incidence (GI) diffraction profile across (105) reflection plane. The hydrostatic strain and stress of Al{sub 0.3}Ga{sub 0.7}N barrier layer were increased significantly after passivation and both are tensile in nature. The dislocation density of GaN was also analyzed andmore » no significant change was observed after passivation of the heterostructure. The crystalline quality was not degraded after passivation on the heterostructure confirmed by the full-width-half-maximum (FWHM) analysis.« less

  19. The plane strain shear fracture of the advanced high strength steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li, E-mail: li.sun@gm.com

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operatemore » in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.« less

  20. Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, J.; Braun, D.; Schmidbauer, M.; Duk, A.; Wördenweber, R.

    2014-05-01

    NaNbO3 thin films have been grown under anisotropic biaxial strain on several oxide substrates by liquid-delivery spin metalorganic chemical vapor deposition. Compressive lattice strain of different magnitude, induced by the deposition of NaNbO3 films with varying film thickness on NdGaO3 single crystalline substrates, leads to modifications of film orientation and phase symmetry, which are similar to the phase transitions in Pb-containing oxides near the morphotropic phase boundary. Piezoresponse force microscopy measurements exhibit large out-of-plane polarization components, but no distinctive domain structure, while C-V measurements indicate relaxor properties in these films. When tensile strain is provoked by the epitaxial growth on DyScO3, TbScO3, and GdScO3 single crystalline substrates, NaNbO3 films behave rather like a normal ferroelectric. The application of these rare-earth scandate substrates yields well-ordered ferroelectric stripe domains of the type a1/a2 with coherent domain walls aligned along the [001] substrate direction as long as the films are fully strained. With increasing plastic lattice relaxation, initially, a 2D domain pattern with still exclusively in-plane electric polarization, and finally, domains with in-plane and out-of-plane polar components evolve.

  1. A Predictive Methodology for Delamination Growth in Laminated Composites Part I: Theoretical Development and Preliminary Experimental Results

    DTIC Science & Technology

    1998-04-01

    LOADING In classical plate theory, deformations are defined entirely by midsurface strains and curvatures. For the uncracked portion of the element, the...equations relating these midsurface strains and curvatures to the load and moment resultants are given by N = Ae°+Bfc M = BS°+DK (1) Or, in their...the region above the crack plane (plate 1) or below the crack plane (plate 2), the midsurface strains and curvatures are related to the load and

  2. PLANE STRAIN FRACTURE TOUGHNESS DATA FOR HANDBOOK PRESENTATION

    DTIC Science & Technology

    An experimental program was conducted to determine the plane strain fracture toughness (K sub IC) of the following classes of: (1) AISI Alloy Steels...4340, 4140 ); (2) 5Cr-Mo-V Steels; (3) Precipitation-Hardening Stainless Steels (17-7 PH, PH 15-7 Mo, 17-4, AM355); (4) Titanium Alloy, Ti-6Al-4V. The

  3. Plane stress analysis of wood members using isoparametric finite elements, a computer program

    Treesearch

    Gary D. Gerhardt

    1983-01-01

    A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...

  4. Effect of strain on thermoelectric properties of SrTiO3: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Zou, Daifeng; Liu, Yunya; Xie, Shuhong; Lin, Jianguo; Li, Jiangyu

    2013-10-01

    The electronic structures of strained SrTiO3 were investigated by using first-principles calculations, and the anisotropic thermoelectric properties of n-type SrTiO3 under biaxial strain were calculated on the base of the semi-classical Boltzmann transport theory. It was theoretically found that the in-plane and out-of-plane power factors of n-type SrTiO3 can be increased under compressive and tensile strains, respectively, and such dependence can be explained by the strain-induced redistribution of electrons. To further optimize the thermoelectric performance of n-type SrTiO3, the maximum power factors and the corresponding optimal n-type doping levels were evaluated.

  5. Triangular prismatic solid-shell element with generalised deformation description

    NASA Astrophysics Data System (ADS)

    Mataix, Vicente; Flores, Fernando G.; Rossi, Riccardo; Oñate, Eugenio

    2018-01-01

    The solid-shells are an attractive kind of element for the simulation of f orming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any kind of additional modification, besides the thermomechanic problem is formulated without additional assumptions. Additionally, this type of element allows the three-dimensional description of the deformable body, thus contact on both sides of the element can be treated easily. The present work consists in the development of a triangular prism element as a solid-shell, for the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation by Flores, a modified right Cauchy-Green deformation tensor (?) is obtained; in the present work a modified deformation gradient (?) is obtained, which allows to generalise the methodology and allows to employ a wide range of constitutive laws. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow. Some examples have been evaluated to show the good performance of the element and results.

  6. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy to the square of the wake mean velocity deficit are determined nearly entirely by the total strain. For these measures the order in which the strains are applied does not matter and the changes brought about by the strain are nearly reversible. The wake mean velocity deficit and width, on the other hand, differ by about a factor of three when the total strain returns to one, depending on whether the wake was first "favourably" or "adversely" strained. The strain history is important for predicting the evolution of these quantities.

  7. Strain-driven electric control of magnetization reversal at multiferroic interfaces

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj; Kioussis, Nicholas

    2018-03-01

    We predict that biaxial strain of several percent has a colossal effect on the magnetic anisotropy of ultrathin Fe /X TiO3 (X =Sr ,Ba ) bilayers grown epitaxially on appropriate substrates. We demonstrate that under large compressive biaxial strain the Fe film undergoes an in-plane to out-of-plane spin reorientation via ferroelectric polarization switching, where the critical strain depends on the Fe film thickness. The underlying mechanism is the interplay between the strain-enhanced magnetoelectric coupling associated with the enhanced polarization in the ferroelectric substrate and the strain-reduced magnetic anisotropy energy of the Fe overlayer. These findings open interesting prospects for exploiting stain engineering to harvest higher electric field efficiency of magnetic anisotropy for the next generation of magnetoelectric random access memory devices.

  8. Role of grain-size in phyllonitisation: Insights from mineralogy, microstructures, strain analyses and numerical modeling

    NASA Astrophysics Data System (ADS)

    Bose, Narayan; Dutta, Dripta; Mukherjee, Soumyajit

    2018-07-01

    Brittle Y- and P-planes exist in an exposure of greywacke in the Garhwal Lesser Himalaya, India. Although, Y-planes are well developed throughout, the P-planes are prominent only in some parts (domain-A), and not elsewhere (domain-B). To investigate why the P-planes developed selectively, the following studies were undertaken: 1. Clay-separated XRD analyses: clinochlore and illite are present in both the domains. 2. Strain analyses by Rf-φ method: it deduces strain magnitudes of ∼1.8 for the ductile deformed quartz grains from both the domains A and B. 3. Grain size analyses of quartz clasts: domain-A is mostly composed of finer grains (area up to 40,000 μm2), whereas domain-B consists of a population of coarser grains (area >45,000 μm2). A 2D finite element modeling of linear elastic material was performed using COMSOL software to investigate the control of grain-size variation on the generation brittle shear planes. The results of numerical modeling corroborate the known fact that an increase in grain-size reduces the elastic strain energy density. A broader grain-size distribution increases the effects of diffusion creep and resists the onset of dislocation creep. Thus, rocks with coarser grain population (domain B) tend to resist the generation of shear fractures, unlike their fine-grained counterpart (domain A).

  9. Origin of texture development in orthorhombic uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  10. Origin of texture development in orthorhombic uranium

    DOE PAGES

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...

    2016-04-09

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  11. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0}<1 1 1> and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  12. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Namsun; Lee, Jongho; Research Institute for Solar and Sustainable Energies

    2014-12-15

    This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanicalmore » characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.« less

  13. Altering thermal transport by strained-layer epitaxy

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Pal, Souvik; Hafreager, Anders; Murad, Sohail; Sahu, Rakesh P.; Puri, Ishwar K.

    2018-05-01

    Since strain changes the interatomic spacing of matter and alters electron and phonon dispersion, an applied strain can modify the thermal conductivity k of a material. We show how the strain induced by heteroepitaxy is a passive mechanism to change k in a thin film. Molecular dynamics simulations of the deposition and epitaxial growth of ZnTe thin films provide insights into the role of interfacial strain in the conductivity of a deposited film. ZnTe films grow strain-free on lattice-matched ZnTe substrates, but similar thin films grown on a lattice-mismatched CdTe substrate exhibit ˜6% biaxial in-plane tensile strain and ˜7% uniaxial out-of-plane compressive strain. In the T = 700 K-1100 K temperature range, the conductivities of strained ZnTe layers decrease to ˜60% of their unstrained values. The resulting understanding of dk/dT shows that strain engineering can be used to alter the performance of a thermal rectifier and also provides a framework for enhancing thermoelectric devices.

  14. Numerical modelling of strain in lava tubes

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.

  15. Strain engineered barium strontium titanate for tunable thin film resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khassaf, H.; Khakpash, N.; Sun, F.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  16. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  17. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  18. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    NASA Astrophysics Data System (ADS)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  19. Effect of strain on the electronic structure and optical properties of germanium

    NASA Astrophysics Data System (ADS)

    Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu

    2018-05-01

    The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.

  20. The effects of orthotic intervention on multisegment foot kinematics and plantar fascia strain in recreational runners.

    PubMed

    Sinclair, Jonathan; Isherwood, Josh; Taylor, Paul J

    2015-02-01

    Chronic injuries are a common complaint in recreational runners. Foot orthoses have been shown to be effective for the treatment of running injuries but their mechanical effects are still not well understood. This study aims to examine the influence of orthotic intervention on multisegment foot kinematics and plantar fascia strain during running. Fifteen male participants ran at 4.0 m · s(-1) with and without orthotics. Multisegment foot kinematics and plantar fascia strain were obtained during the stance phase and contrasted using paired t tests. Relative coronal plane range of motion of the midfoot relative to the rearfoot was significantly reduced with orthotics (1.0°) compared to without (2.2°). Similarly, relative transverse plane range of motion was significantly lower with orthotics (1.1°) compared to without (1.8°). Plantar fascia strain did not differ significantly between orthotic (7.1) and nonorthotic (7.1) conditions. This study shows that although orthotics did not serve to reduce plantar fascia strain, they are able to mediate reductions in coronal and transverse plane rotations of the midfoot.

  1. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  2. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  3. Investigation of rolling variables on the structure of steel

    NASA Astrophysics Data System (ADS)

    Ekebuisi, Godwyn O.

    The Literature pertaining to the present research has been critically reviewed. Hot deformation of Nb-free and Nb-containing stainless and C-Mn steels has been carried out by: upset-forging, rolling, and plane strain compression testing. Also, some gridded lead alloy and some mild steel containing Type I MnS inclusions as markers have been hot rolled. Subsequently investigations have been made into: barrelling and lubrication in upsetting; distributions of temperature and strain during thermomechanical working; microstructural processes associated with hot deformation of steel and the evolution of microstructures particularly recrystallised gamma-grain size; isothermal transformation of austenite to ferrite; and the mechanisms governing hot deformation of austenite.Barrelling during the hot upsetting of a solid cylinder arises from the combined effects of interface friction and inhomogeneous distribution of temperature. A barrelling factor, B[f], has been defined to quantify the degree of barrelling and hence of inhomogeneity of deformation in an upset-forged cylinder. Employing glass as a lubricant, an optimised lubrication technique, which ensures homogeneous deformation in upsetting, has been developed and a mechanism of lubrication proposed. The through-thickness temperature distribution of a deforming material, particularly during hot rolling, is inhomogeneous. Generally, the centre-plane temperature rises due to heat generation while the surface-plane temperature drops due to the cooling effects of the tools. Strain distribution during hot rolling is also inhomogeneous. In particular, the vertical strain (epsilon[z]) is minimum at the surface-plane of the material, maximum at the mid-plane and intermediate at the centre-plane.Hot deformation of the stainless steels leads to substructure formation and, at suitably high strains, dynamic and metadynamic recrystallisation. Only a small amount of static recovery precedes static recrystallisation. Nucleation for recrystallisation occurs at preferential sites, particularly serrated boundaries and triple junctions of the deformed prior gamma-grains.The nucleated gamma-grains grow anisotropically and link up to form chains of grains at the prior gamma-grain boundaries. Recrystallisation in hot-rolled samples is inhomogeneous at micro and macro-levels. Particularly, recrystallisation is accelerated at the centre-plane and retarded at the surface plane. This effect arises mainly from non-uniform distribution of temperature and is influenced by material and hot rolling variables. Nb retards recrystallisation by the combined effects of Nb carbide/ nitride particles and Nb atoms in solid solution, the particle effect predominating at 1100°C. Recrystallisation is accelerated by a higher strain, a higher deformation temperature, a higher strain rate, a decrease in the prior ?-grain size, and the presence of deformation bands and twins. A non-isothermal multiple deformation sequence increases the incubation time due to a large temperature drop but promotes a fast recrystallisation rate at the recrystallisation temperature. (Abstract shortened by ProQuest.).

  4. Some space shuttle tile/strain-isolator-pad sinusoidal vibration tests

    NASA Technical Reports Server (NTRS)

    Miserentino, R.; Pinson, L. D.; Leadbetter, S. A.

    1980-01-01

    Vibration tests were performed on the tile/strain-isolator-pad system used as thermal protection for the space shuttle orbiter. Experimental data on normal and in-plane vibration response and damping properties are presented. Three test specimens exhibited shear type motion during failures that occurred in the tile near the tile/strain-isolator-pad bond-line. A dynamic instability is described which has large in-plane motion at a frequency one-half that of the nominal driving frequency. Analysis shows that this phenomenon is a parametric response.

  5. Evaluation of an improved finite-element thermal stress calculation technique

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1982-01-01

    A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.

  6. Rolling motion of an elastic cylinder induced by elastic strain gradients

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Shaohua

    2014-10-01

    Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.

  7. Fatigue crack closure: a review of the physical phenomena

    PubMed Central

    Pippan, R.

    2017-01-01

    Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624

  8. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

    2016-04-01

    A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

  9. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  10. The effect of transverse shear in a cracked plate under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The problem of an elastic plate containing a through crack and subjected to twisting moments or transverse shear loads is considered. By using a bending theory which allows the satisfaction of the boundary conditions on the crack surface regarding the normal and the twisting moments and the transverse shear load separately, it is found that the resulting asymptotic stress field around the crack tip becomes identical to that given by the elasticity solutions of the plane strain and antiplane shear problems. The problem is solved for uniformly distributed or concentrated twisting moment or transverse shear load and the normalized Mode II and Mode III stress-intensity factors are tabulated. The results also include the effect of the Poisson's ratio and material orthotropy for specially orthotropic materials on the stress-intensity factors.

  11. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  12. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  13. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells

    PubMed Central

    Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287

  14. Development of basic theories and techniques for determining stresses in rotating turbine or compressor blades

    NASA Technical Reports Server (NTRS)

    Chien, C. H.; Swinson, W. F.; Turner, J. L.; Moslehy, F. A.; Ranson, W. F.

    1980-01-01

    A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed.

  15. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracymore » of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.« less

  16. Development of Michelson interferometer based spatial phase-shift digital shearography

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.

  17. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  18. Strain localization in <111> single crystals of Hadfield steel under compressive load

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.

    2010-07-01

    A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.

  19. Effects of external magnetic field and out-of-plane strain on magneto-optical Kerr spectra in CrI3 monolayer.

    PubMed

    Guo, Guanxing; Bi, Gang; Cai, Chunfeng; Wu, Huizhen

    2018-07-18

    Magnetic semiconductors based on two-dimensional (2D) crystals have attracted attention owing to their intrinsic ferromagnetism and have potential for spintronic devices. Here, full-potential linearized augmented plane wave plus local orbitals method is used to explore the structural, electronic, magnetic, and magneto-optical properties of CrI 3 monolayer. Our first-principles calculations show that CrI 3 monolayer is a ferromagnetic indirect semiconductor with spin-up and spin-down band gaps of 1.23 and 1.90 eV, respectively, and a magnetic moment of 2.93 [Formula: see text] per Cr atom. Based on the macroscopic linear response theory, we systematically study the influences of external magnetic field and out-of-plane strain on the magneto-optical Kerr effect spectra in CrI 3 monolayer. The Kerr rotation of CrI 3 monolayer at 1.96 eV photon energy is [Formula: see text], which is consistent with the recent experiments. We find that the Kerr rotation reaches its maximum when the external magnetic field is perpendicular to CrI 3 plane, while it is almost zero on turning the magnetic field in the plane. This result as well as the sizable magnetocrystalline anisotropy energy (MAE) of 0.79 meV verifies that CrI 3 monolayer has a strong magnetic anisotropy with an out-of-plane easy axis. Further, applying out-of-plane compressive and tensile strain upon CrI 3 monolayer, we observe a redshift of the Kerr rotation spectra with the increase of the strain and the peak values of the Kerr rotation increase correspondingly. The rich electronic and magnetic properties, especially the magneto-optical spectra, render CrI 3 monolayer a promising 2D magnetic material for applications from sensing to data storage.

  20. Numerical modelling of bifurcation and localisation in cohesive-frictional materials

    NASA Astrophysics Data System (ADS)

    de Borst, René

    1991-12-01

    Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

  1. Effects of tissue mechanical and acoustic anisotropies on the performance of a cross-correlation-based ultrasound strain imaging method.

    PubMed

    Li, He; Lee, Wei-Ning

    2017-02-21

    The anisotropic mechanical properties (mechanical anisotropy) and view-dependent ultrasonic backscattering (acoustic anisotropy) of striated muscle due to the underlying myofiber arrangement have been well documented, but whether they impact on ultrasound strain imaging (USI) techniques remains unclear. The aim of this study was therefore to investigate the performance of a cross-correlation-based two-dimensional (2D) USI method in anisotropic media under controlled quasi-static compression in silico and in vitro. First, synthetic pre- and post-deformed 2D radiofrequency images of anisotropic phantoms were simulated in two scenarios to examine the individual effect of the mechanical and acoustic anisotropies on strain estimation. In the first scenario, the phantom was defined to be transversely isotropic with the scatterer amplitudes following a zero-mean Gaussian distribution, while in the second scenario, the phantom was defined to be mechanically isotropic with Gaussian distributed scatterer amplitudes correlated along the principal directions of pre-defined fibers. These two anisotropies were then jointly incorporated into the ultrasound image simulation model with additional depth-dependent attenuation. Three imaging planes-the fiber plane with the fiber direction perpendicular to the ultrasound beam (TIS perp_fb ), the fiber plane with the fiber direction parallel to the beam (TIS para ), and the transverse fiber plane (TIS perp_cfb )-were studied. The absolute relative error (ARE) of the lateral strain estimates in TIS perp_fb (20.99  ±  15.65%) was much higher than that in TIS perp_cfb (4.14  ±  3.17%). The ARE in TIS para was unavailable owing to the large spatial extent of false peaks. The effect of tissue anisotropy on the performance of the 2D USI was further confirmed in an in vitro porcine skeletal muscle phantom. The best in-plane strain quality was again shown in TIS perp_cfb (elastographic signal-to-noise ratio, or SNR e :  >25 dB), whereas the most unreliable strain estimates were found as expected in TIS para (SNR e :  <10 dB). The strain filter explained the effect of the mechanical anisotropy and required the underlying strain to be within an optimal range for estimation. Sonographic SNR (SNR s ) was found to be altered by the acoustic anisotropy and was much lower in TIS para (~10 dB) than in TIS perp_fb (~50 dB) in vitro, which affected the accuracy of the strain estimation. Speckle size showed no evident impact on strain estimation but requires further examination.

  2. Strain-tuned enhancement of ferromagnetic TC to 176 K in Sm-doped BiMnO3 thin films and determination of magnetic phase diagram.

    PubMed

    Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L

    2017-03-03

    BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.

  3. Giant room temperature magnetoelectric response in strain controlled nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia

    2017-05-01

    We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.

  4. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St.John, C.M.

    The SHAFT code incorporates equations to compute stresses in a shaft liner when the rock through which a shaft passes is subject to known three-dimensional states of stress or strain. The deformation modes considered are hoop deformation, axial deformation, and shear on a plane normal to the shaft axis. Interaction between the liner and the soil and rock is considered, and it is assumed that the liner is in place before loading is applied. This code is intended to be used interactively but creates a permanent record complete with necessary quality assurance information. The code has been carefully verified formore » the case of generalized plane strain, in which an arbitrary axial strain can be defined. It may also be used for plane stress analysis. Output is given in the form of stresses at selected sample points in the linear and the rock and a simple graphical representation of the distribution of stress through the liner. 12 figs., 13 tabs.« less

  6. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  7. In-Plane Heterostructures Enable Internal Stress Assisted Strain Engineering in 2D Materials.

    PubMed

    Liu, Feng; Wang, Tzu-Chiang; Tang, Qiheng

    2018-04-01

    Conventional methods to induce strain in 2D materials can hardly catch up with the sharp increase in requirements to design specific strain forms, such as the pseudomagnetic field proposed in graphene, funnel effect of excitons in MoS 2 , and also the inverse funnel effect reported in black phosphorus. Therefore, a long-standing challenge in 2D materials strain engineering is to find a feasible scheme that can be used to design given strain forms. In this article, combining the ability of experimentally synthetizing in-plane heterostructures and elegant Eshelby inclusion theory, the possibility of designing strain fields in 2D materials to manipulate physical properties, which is called internal stress assisted strain engineering, is theoretically demonstrated. Particularly, through changing the inclusion's size, the stress or strain gradient can be controlled precisely, which is never achieved. By taking advantage of it, the pseudomagnetic field as well as the funnel effect can be accurately designed, which opens an avenue to practical applications for strain engineering in 2D materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  9. Strain-induced changes of the electronic properties of B -site ordered double-perovskite Sr2CoIrO6 thin films

    NASA Astrophysics Data System (ADS)

    Esser, S.; Chang, C. F.; Kuo, C.-Y.; Merten, S.; Roddatis, V.; Ha, T. D.; Jesche, A.; Moshnyaga, V.; Lin, H.-J.; Tanaka, A.; Chen, C. T.; Tjeng, L. H.; Gegenwart, P.

    2018-05-01

    B -site ordered thin films of double perovskite Sr2CoIrO6 were epitaxially grown by a metalorganic aerosol deposition technique on various substrates, actuating different strain states. X-ray diffraction, transmission electron microscopy, and polarized far-field Raman spectroscopy confirm the strained epitaxial growth on all used substrates. Polarization-dependent Co L2 ,3 x-ray absorption spectroscopy reveals a change of the magnetic easy axis of the antiferromagnetically ordered (high-spin) Co3 + sublattice within the strain series. By reversing the applied strain direction from tensile to compressive, the easy axis changes abruptly from in-plane to out-of-plane orientation. The low-temperature magnetoresistance changes its sign respectively and is described by a combination of weak antilocalization and anisotropic magnetoresistance effects.

  10. Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Chen, Yue

    2017-03-01

    Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.

  11. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, J.G.

    In order to study effects of constraint on fracture toughness, it is important to select the right location within the crack-tip field for investigation. In 1950 Hill postulated that close to a circular notch tip the principal stress directions would be radial and circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane, neglecting strain hardening, was identical to that for the circumferential stress near the bore of an ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant geometries are identical.more » In 1969, Rice and Johnson developed a near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill's suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder analogy was based on small strain theory, and the calculated strain distributions did not agree well with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder analogy equations have been rederived, based on large strain theory, and the agreement with the Rice and Johnson results and other more recent numerical results is good. Calculations illustrate the effects of transverse strain on the principal stresses very close to a blunting crack tip and show that, theoretically, a singularity still exists at the tip of a blunting crack. 10 refs., 9 figs.« less

  13. Elasto-plastic bending of cracked plates, including the effects of crack closure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jones, D. P.

    1972-01-01

    A capability for solving elasto-plastic plate bending problems is developed using assumptions consistent with Kirchhoff plate theory. Both bending and extensional modes of deformation are admitted with the two modes becoming coupled as yielding proceeds. Equilibrium solutions are obtained numerically by determination of the stationary point of a functional which is analogous to the potential strain energy. The stationary value of the functional for each load increment is efficiently obtained through use of the conjugate gradient. This technique is applied to the problem of a large centrally through cracked plate subject to remote circular bending. Comparison is drawn between two cases of the bending problem. The first neglects the possibility of crack face interference with bending, and the second includes a kinematic prohibition against the crack face from passing through the symmetry plane. Results are reported which isolate the effects of elastoplastic flow and crack closure.

  14. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  15. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.

    PubMed

    Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam

    2018-03-28

    The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

  16. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  17. Ferroelastic switching in a layered-perovskite thin film

    DOE PAGES

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; ...

    2016-02-03

    Here, a controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barriermore » of ferroelastic switching in orthorhombic Bi 2WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.« less

  18. Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Yu

    2002-01-01

    Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.

  19. Crack growth measured on flat and curved surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Orange, T. W.; Sullivan, T. L.

    1967-01-01

    Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.

  20. Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.

    2014-04-01

    We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

  1. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE PAGES

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  2. A Finite Element Study on Crack Tip Deformation.

    DTIC Science & Technology

    1976-08-01

    REPOPINUMDER • TNOR(.) CONTRACT OR GRANT NUMSER(.) ______ ~~~ ~~~ /I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN T. PROJECT . TASKJ AREA ...that the bulk of the strain measurements agree well with the results of the plane stress calculations except in the small area close to the crack tip...that the bulk of the strain measurements agree veil with the results of the plane stress calcula- tions except in the small area cloae to the crack

  3. Characterization of Strain Due to Nitrogen Doping Concentration Variations in Heavy Doped 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Raghothamachar, Balaji; Chan, Xiaojun; Kim, Taejin; Dudley, Michael

    2018-02-01

    Highly doped 4H-SiC will show a significant lattice parameter difference with respect to the undoped material. We have applied the recently developed monochromatic contour mapping technique for 4H-SiC crystals to a 4H-SiC wafer crystal characterized by nitrogen doping concentration variation across the whole sample surface using a synchrotron monochromatic x-ray beam. Strain maps of 0008 and - 2203 planes were derived by deconvoluting the lattice parameter variations from the lattice tilt. Analysis reveals markedly different strain values within and out of the basal plane indicating the strain induced by nitrogen doping is anisotropic in the 4H-SiC hexagonal crystal structure. The highest strain calculated along growth direction [0001] and along [1-100] on the closed packed basal plane is up to - 4 × 10-4 and - 2.7 × 10-3, respectively. Using an anisotropic elasticity model by separating the whole bulk crystal into numerous identical rectangular prism units, the measured strain was related to the doping concentration and the calculated highest nitrogen level inside wafer crystal was determined to be 1.5 × 1020 cm-3. This is in agreement with observation of double Shockley stacking faults in the highly doped region that are predicted to nucleate at nitrogen levels above 2 × 1019 cm-3.

  4. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain

    NASA Astrophysics Data System (ADS)

    Fuchs, D.; Arac, E.; Pinta, C.; Schuppler, S.; Schneider, R.; v. Löhneysen, H.

    2008-01-01

    Ferromagnetic order can be induced in LaCoO3 (LCO) thin films by epitaxial strain. Here, we show that the magnetic properties can be “tuned” by epitaxial strain imposed on LCO thin films by the epitaxial growth on various substrate materials, i.e., (001) oriented SrLaAlO4 , LaAlO3 , SrLaGaO4 , (LaAlO3)0.3(Sr2AlTaO6)0.7 , and SrTiO3 . The lattice mismatch at room temperature of the in-plane lattice parameters between the substrate, as , and bulk LCO, ab , ranges from -1.31% to +2.63% . Single-phase, ⟨001⟩ oriented LCO thin films were grown by pulsed laser deposition on all these substrates. Due to the difference of the thermal-expansion coefficients between LCO and the substrates, the films experience an additional tensile strain of about +0.3% during the cooling process after the deposition at Ts=650°C . The film lattice parameters display an elastic behavior, i.e., an increase of the in-plane film lattice parameter with increasing as . From the ratio between the out-of-plane and in-plane strain, we obtain a Poisson ratio of ν≈1/3 . All films show a ferromagnetic transition as determined from magnetization measurements. The magnetization increases strongly with increasing tensile strain, whereas the transition temperature TC after a rapid initial rise appears to saturate at TC≈85K above a=3.86Å . The effective magnetic moment μeff in the paramagnetic state increases almost linearly as a function of the mean lattice parameter ⟨a⟩ , indicating an enhanced population of higher spin states, i.e., intermediate- or high-spin states. The experimental results are discussed in terms of a decrease of the octahedral-site rotation with increasing tensile strain.

  5. Formability analysis of sheet metals by cruciform testing

    NASA Astrophysics Data System (ADS)

    Güler, B.; Alkan, K.; Efe, M.

    2017-09-01

    Cruciform biaxial tests are increasingly becoming popular for testing the formability of sheet metals as they achieve frictionless, in-plane, multi-axial stress states with a single sample geometry. However, premature fracture of the samples during testing prevents large strain deformation necessary for the formability analysis. In this work, we introduce a miniature cruciform sample design (few mm test region) and a test setup to achieve centre fracture and large uniform strains. With its excellent surface finish and optimized geometry, the sample deforms with diagonal strain bands intersecting at the test region. These bands prevent local necking and concentrate the strains at the sample centre. Imaging and strain analysis during testing confirm the uniform strain distributions and the centre fracture are possible for various strain paths ranging from plane-strain to equibiaxial tension. Moreover, the sample deforms without deviating from the predetermined strain ratio at all test conditions, allowing formability analysis under large strains. We demonstrate these features of the cruciform test for three sample materials: Aluminium 6061-T6 alloy, DC-04 steel and Magnesium AZ31 alloy, and investigate their formability at both the millimetre scale and the microstructure scale.

  6. Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho

    2016-03-01

    By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.

  7. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  8. The surface and through crack problems in layered orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Wu, Binghua

    1991-01-01

    An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

  9. Elasticity Solution of an Adhesively Bonded Cover Plate of Various Geometries

    NASA Technical Reports Server (NTRS)

    Aksel, G. N.; Erdogan, F.

    1985-01-01

    The plane strain of adhesively bonded structures consisting of two different isotropic adherends is considered. By expressing the x-y components of the displacements in terms of Fourier integrals and using the corresponding boundary and continuity conditions, the integral equations for the general problem are obtained and solved numerically by applying Gauss-Chebyshev integration scheme. The shear and the normal stresses in the adhesive are calculated for various geometries and material properties for a stiffened plate under uniaxial tension. Numerical results involving the stress intensity factors and the strain energy release rate are presented. The closed-form expressions for the Fredholm kernels are provided to obtain the solution for an arbitrary geometry and material properties. For the general geometry, the contribution of the normal stress is quite significant, while for symmetric geometries, the shear stress is dominant, the normal stress vanishes if the adherends are of the same material and the same thickness.

  10. Application of the variational-asymptotical method to composite plates

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Lee, Bok W.; Atilgan, Ali R.

    1992-01-01

    A method is developed for the 3D analysis of laminated plate deformation which is an extension of a variational-asymptotical method by Atilgan and Hodges (1991). Both methods are based on the treatment of plate deformation by splitting the 3D analysis into linear through-the-thickness analysis and 2D plate analysis. Whereas the first technique tackles transverse shear deformation in the second asymptotical approximation, the present method simplifies its treatment and restricts it to the first approximation. Both analytical techniques are applied to the linear cylindrical bending problem, and the strain and stress distributions are derived and compared with those of the exact solution. The present theory provides more accurate results than those of the classical laminated-plate theory for the transverse displacement of 2-, 3-, and 4-layer cross-ply laminated plates. The method can give reliable estimates of the in-plane strain and displacement distributions.

  11. Large strain cruciform biaxial testing for FLC detection

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Efe, Mert

    2017-10-01

    Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.

  12. Goldstone-like phonon modes in a (111)-strained perovskite

    NASA Astrophysics Data System (ADS)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  13. Strain effect on the magnetic and transport properties of LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peng, S. J.; Wang, D. J.; Wu, K. M.; Wang, S. H.

    2018-05-01

    LaCoO3 (LCO) has attracted much attention due to the unique magnetic transition and spin transition of Co3+ ions. Epitaxial LCO film exhibits an unexpected ferromagnetism, in contrast to the non-magnetism of bulk LCO. An in-depth study on the property of strained LCO film is of great importance. We have fabricated 30 nm LCO films on various substrates and studied the magnetic and transport properties of films in different strain states (compressed strain for LCO/LaAlO3, tensile strain for LCO/(LaAlO3)0.3(Sr2TaAlO6)0.35, SrTiO3). The in-plane tensiled LCO films exhibit ferromagnetic ground state at 5K and magnetic transition with TC around 85K, while compressed LCO/LaAlO3 film has a negligibly small moment signal. Our results reveal that in-plane tensile strain and tetragonal distortion are much more favorable for stabilizing the FM order in LCO films.

  14. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie, B. X.; Huang, J. Y.; Fan, D.

    Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less

  15. Variation of Shrinkage Strain within the Depth of Concrete Beams.

    PubMed

    Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak

    2015-11-16

    The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs' equation, which accounts for the change of aggregate volume concentration.

  16. Variation of Shrinkage Strain within the Depth of Concrete Beams

    PubMed Central

    Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak

    2015-01-01

    The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677

  17. Effects of local film properties on the nucleation and growth of tin whiskers and hillocks

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin

    Whiskers and hillocks grow spontaneously on Pb-free Sn electrodeposited films as a response to thin film stresses. Stress relaxation occurs by atom deposition to specific grain boundaries in the plane of the film, with hillocks being formed when grain boundary migration accompanies growth out of the plane of the film. The implication for whisker formation in electronics is serious: whiskers can grow to be millimeters long, sometimes causing short circuiting between adjacent components and, thereby, posing serious electrical reliability risks. In order to develop more effective whisker mitigation strategies, a predictive physics-based model has been needed. A growth model is developed, based on grain boundary faceting, localized Coble creep, as well as grain boundary sliding for whiskers, and grain boundary sliding with shear induced grain boundary migration for hillocks. In this model of whisker formation, two mechanisms are important: accretion of atoms by Coble creep on grain boundary planes normal to the growth direction inducing a grain boundary shear and grain boundary sliding in the direction of whisker growth. The model accurately captures the importance of the geometry of "surface grains"---shallow grains on film surfaces whose depths are significantly less than their in-plane grain sizes. A critical factor in the analysis is the ratio of the grain boundary sliding coefficient to the in-plane film compressive stress. If the accretion-induced shear stresses are not coupled to grain boundary motion and sliding occurs, a whisker forms. If the shear stress is coupled to grain boundary migration, a hillock forms. Based on this model, long whiskers grow from shallow surface grains with easy grain boundary sliding in the direction of growth. Other observed growth morphologies will be discussed in light of our model. Additional insights into the preferred sites for whisker and hillock growth were developed based on elastic anisotropy, local film microstructure, grain misorientation, and elastic strain energy density (ESED) as the driving force for growth. Local grain orientations and strains measured by synchrotron micro-diffraction in regions containing whiskers or hillocks were compared with elastic finite element analysis simulations, including Sn elastic anisotropy. Whisker and hillock grains were observed to have higher crystallographic misorientations with neighboring grains than generally observed in the microstructure. While elastic simulations predicted higher local out-of-plane elastic strains and ESEDs for whisker and hillock grains, synchrotron measurements of out-of-plane strains of whisker and hillock grains after growth showed relaxation, with correspondingly low ESEDs calculated from measured strains. This suggests that, before whisker or hillock formation, highly misoriented grains with high out-of-plane elastic strains and ESEDs relative to their neighbors determined, at least in part, which grains became whiskers or hillocks. Based on the models and experiments in this thesis, a clearer picture emerges of the necessary and sufficient conditions for tin whisker and hillock formation in thin films.

  18. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

    NASA Technical Reports Server (NTRS)

    Rojas, Roberto G.

    1985-01-01

    A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

  19. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, T.; Remmele, T.; Korytov, M.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets.more » Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.« less

  20. Experiment Evaluation of Bifurcation in Sands

    NASA Technical Reports Server (NTRS)

    Alshibi, Khalid A.; Sture, Stein

    2000-01-01

    The basic principles of bifurcation analysis have been established by several investigators, however several issues remain unresolved, specifically how do stress level, grain size distribution, and boundary conditions affect general bifurcation phenomena in pressure sensitive and dilatant materials. General geometrical and kinematics conditions for moving surfaces of discontinuity was derived and applied to problems of instability of solids. In 1962, the theoretical framework of bifurcation by studying the acceleration waves in elasto-plastic (J2) solids were presented. Bifurcation analysis for more specific forms of constitutive behavior was examined by studying localization in pressure-sensitive, dilatant materials, however, analyses were restricted to plane deformation states only. Bifurcation analyses were presented and applied to predict shear band formations in sand under plane strain condition. The properties of discontinuous bifurcation solutions for elastic-plastic solids under axisymmetric and plane strain loading conditions were studied. The study focused on theory, but also references and comparisons to experiments were made. The current paper includes a presentation of a summary of bifurcation analyses for biaxial and triaxial (axisymmetric) loading conditions. The Coulomb model is implemented using incremental piecewise scheme to predict the constitutive relations and shear band inclination angles. Then, a comprehensive evaluation of bifurcation phenomena is presented based on data from triaxial experiments performed under microgravity conditions aboard the Space Shuttle under very low effective confining pressure (0.05 to 1.30 kPa), in which very high peak friction angles (47 to 75 degrees) and dilatancy angles (30 to 31 degrees) were measured. The evaluation will be extended to include biaxial experiments performed on the same material under low (10 kPa) and moderate (100 kPa) confining pressures. A comparison between the behavior under biaxial and triaxial loading conditions will be presented, and related issues concerning influence of confining pressure will be discussed.

  1. Shear sensing in bonded composites with cantilever beam microsensors and dual-plane digital image correlation

    NASA Astrophysics Data System (ADS)

    Baur, Jeffery W.; Slinker, Keith; Kondash, Corey

    2017-04-01

    Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.

  2. The magnetic transition temperature tuned by strain in YMn0.9Ru0.1O3 thin films

    NASA Astrophysics Data System (ADS)

    Yang, L. P.; Zhang, A. M.; Wang, K.; Wu, X. S.; Zhai, Z. Y.

    2018-05-01

    Epitaxial orthorhombic YMn0.9Ru0.1O3 films with different thickness have been grown on (001)-SrTiO3 substrates by pulsed laser deposition (PLD). The crystal structure is well investigated by X-ray Diffraction. It is found that the out-of-plane parameter c slowly increases with decreasing thickness of samples because of the tensile strain between the films and substrates along c axis. The lengths of in-plane Mn-O bonds expand with the enhancement of strains, which is proved by Raman scatting. The magnetic measurements reveal that there exist two magnetic transition temperatures TN1 and TN2. The TN1 is close to that of orthorhombic YMnO3 bulk. With decreasing thickness of the films, TN1 keeps almost constant because of the small stain along c-axis. TN2, however, obviously increases from 117 K to 134 K, which could be related to the expansion of in-plane Mn-O bonds. Results show that the magnetic transition temperature of YMn0.9Ru0.1O3 films can be sensitively manipulated by the strain of the films.

  3. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

    NASA Astrophysics Data System (ADS)

    Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

    2007-04-01

    An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

  4. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  5. Effect of misfit strains on fourth and sixth order permittivity in (Ba0.60,Sr0.40)TiO3 films on orthorhombic substrates

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J.

    2006-03-01

    The in-plane dielectric response of [110] oriented Ba0.60Sr0.40TiO3 epitaxial films grown on [100] NdGaO3 is used to determine the field induced polarization at 10GHz. The nonlinear polarization curve is used to determine the linear and nonlinear permittivity terms for the in-plane principal directions, [001] and [1¯10]. Studied films are in the thickness range of 75-1200nm, and clearly show the influences that drive tunability down with increasing residual strain. The variation of the tunability, along the [001] direction, proves to be less sensitive to residual strain then the [1¯10] direction, although [1¯10] is capable of greater tunability at low residual strains.

  6. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

    ERIC Educational Resources Information Center

    Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

    2015-01-01

    This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

  7. High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan

    2018-01-01

    In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.

  8. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Jiang, Q.

    2007-02-01

    A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.

  9. In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760 C

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1991-01-01

    Isothermal, in-phase and out-of-phase axial-torsional fatigue experiments have been conducted at 760 C on uniform gage section, thin-walled tubular specimens of a wrought cobalt-base superalloy, Haynes 188. Test-control and data acquisition were accomplished with a minicomputer. Fatigue lives of the in- and out-of-phase axial-torsional fatigue tests have been estimated with four different multiaxial fatigue life prediction models that were developed primarly for predicting axial-torsional fatigue lives at room temperature. The models investigated were: (1) the von Mises equivalent strain range; (2) the Modified Multiaxiality Factor Approach; (3) the Modified Smith-Watson-Topper Parameter; and (4) the critical shear plane method of Fatemi, Socie, and Kurath. In general, life predictions by the von Mises equivalent strain range model were within a factor of 2 for a majority of the tests and the predictions by the Modified Multiaxiality Factor Approach were within a factor of 2, while predictions of the Modified Smith-Watson-Topper Parameter and of the critical shear plane method of Fatemi, Socie, and Kurath were unconservative and conservative, respectively, by up to factors of 4. In some of the specimens tested under combined axial-torsional loading conditions, fatigue cracks initiated near extensometer indentations. Two design modifications have been proposed to the thin-walled tubular specimen to overcome this problem.

  10. Combined strain and composition-induced effects in the metal-insulator transition of epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.

    2017-12-01

    The role of epitaxial strain, thermal strain, and bulk (strain-free) lattice parameters in the metal-insulator transition (MIT) and the structural phase transition (SPT) of VO2 is investigated for the case of epitaxial films grown on (001)-oriented TiO2 substrates. Temperature-resolved X-ray reciprocal space mapping has been used to determine the absolute state of strain as well as the bulk lattice parameters of VO2 at 100 °C. For the thinnest film (15 nm), the state of strain is dominated by the film/substrate lattice mismatch yielding an in-plane tensile strain which, in turn, shifts both the MIT and the SPT towards lower temperatures. Conversely, for the thickest film (100 nm), the epitaxial strain is relaxed, so that the state of strain is dominated by the VO2/TiO2 thermal expansion mismatch which is responsible for a compressive in-plane strain. In all cases, a swelling of the strain-free VO2 unit-cell is observed which indicates the presence of interfacial oxygen vacancies and/or Ti diffusion into the VO2 films. The presence of oxygen vacancies stabilizes the metallic rutile phase and counterbalances the action of thermal strain on the MIT and the SPT and degrades the electric properties for the thinnest film. For the thickest film, the resistivity ratio is 6.4 × 104.

  11. Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia

    NASA Astrophysics Data System (ADS)

    Simha, N. K.

    1997-02-01

    We first construct Bain strains for the tetragonal to monoclinic ( t → m) transformation of zirconia (ZrO 2), and then examine the resulting twin and habit plane microstructures. The ( t → m) transformation in zirconia occurs via two paths; transformation along path I has two Bain strains that involve shearing of a rectangular face of the tetragonal unit cell, and shearing of the square base corresponds to path II. The monoclinic variants resulting from each of the three Bain strains can form 12 twins, and four of the twins corresponding to path II are neither of type I nor of type II. Habit planes do not exist for the transformation along path I, whereas transformation along path II has: (± 0.8139, ± 0.3898, - 0.4309) t, (± 0.6489, ± 0.6271, - 0.4309) t, (± 0.7804, ± 0.4530, - 0.4309) t. We predict the exact twin planes observed by Bailey [(1964) Phase transformation at high temperatures in hafnia and zirconia. Proc. Roy. Soc.279A, 395-412], Bansal and Heuer [(1972) On a martensitic phase transformation in Zirconia ZrO 2—I. Metallographic evidence. Acta Metall.20, 1281-1289] and Buljan et al. [(1976) Optical and X-ray single crystal studies of the monoclinic ↔ tetragonal transition in ZrO 2. J. Am. Ceram. Soc.59, 351-354]; additional twins and habit planes that we predict have not yet been observed.

  12. An experimental study on the manufacture and characterization of in-plane fibre-waviness defects in composites.

    PubMed

    Christian, W J R; DiazDelaO, F A; Atherton, K; Patterson, E A

    2018-05-01

    A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect.

  13. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  14. Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2006-07-01

    Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10

  15. Electromechanics in MoS2 and WS2: nanotubes vs. monolayers

    PubMed Central

    Ghorbani-Asl, Mahdi; Zibouche, Nourdine; Wahiduzzaman, Mohammad; Oliveira, Augusto F.; Kuc, Agnieszka; Heine, Thomas

    2013-01-01

    The transition-metal dichalcogenides (TMD) MoS2 and WS2 show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain through mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that similar electromechanical properties as in monolayer and bulk TMDs are found for large diameter TMD single- (SWNT) and multi-walled nanotubes (MWNTs). The semiconductor-metal transition occurs at elongations of 16%. We show that Raman signals of the in-plane and out-of-plane lattice vibrations depend significantly and linearly on the strain, showing that Raman spectroscopy is an excellent tool to determine the strain of the individual nanotubes and hence monitor the progress of nanoelectromechanical experiments in situ. TMD MWNTs show twice the electric conductance compared to SWNTs, and each wall of the MWNTs contributes to the conductance proportional to its diameter. PMID:24129919

  16. Mechanical properties of novel forms of graphyne under strain: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2017-06-01

    The mechanical properties of two forms of graphyne sheets named α-graphyne and α2-graphyne under uniaxial and biaxial strains were studied. In-plane stiffness, bulk modulus, and shear modulus were calculated based on density functional theory. The in-plane stiffness, bulk modulus, and shear modulus of α2-graphyne were found to be larger than that of α-graphyne. The maximum values of supported uniaxial and biaxial strains before failure were determined. The α-graphyne was entered into the plastic region with the higher magnitude of tension in comparison to α2-graphyne. The mechanical properties of α-graphyne family revealed that these forms of graphyne are proper materials for use in nanomechanical applications.

  17. Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate

    NASA Astrophysics Data System (ADS)

    Qiao, Liang; Bi, Xiaofang

    2008-02-01

    Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.

  18. Influence of anisotropic strain on the dielectric and ferroelectric properties of SrTiO3 thin films on DyScO3 substrates

    NASA Astrophysics Data System (ADS)

    Biegalski, M. D.; Vlahos, E.; Sheng, G.; Li, Y. L.; Bernhagen, M.; Reiche, P.; Uecker, R.; Streiffer, S. K.; Chen, L. Q.; Gopalan, V.; Schlom, D. G.; Trolier-McKinstry, S.

    2009-06-01

    The in-plane dielectric and ferroelectric properties of coherent anisotropically strained SrTiO3 thin films grown on orthorhombic (101) DyScO3 substrates were examined as a function of the angle between the applied electric field and the principal directions of the substrate. The dielectric permittivity revealed two distinct maxima as a function of temperature along the [100]p and [010]p SrTiO3 pseudocubic directions. These data, in conjunction with optical second-harmonic generation, show that the switchable ferroelectric polarization develops first predominantly along the in-plane axis with the larger tensile strain before developing a polarization component along the perpendicular direction with smaller strain as well, leading to domain twinning at the lower temperature. Finally, weak signatures in the dielectric and second-harmonic generation response were detected at the SrTiO3 tilt transition close to 165 K. These studies indicate that anisotropic biaxial strain can lead to new ferroelectric domain reorientation transitions that are not observed in isotropically strained films.

  19. Wrinkles in reinforced membranes

    NASA Astrophysics Data System (ADS)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  20. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  1. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  2. Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    NASA Technical Reports Server (NTRS)

    Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2012-01-01

    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.

  3. Anion Order and Spontaneous Polarization in LaTiO2N Oxynitride Thin Films

    NASA Astrophysics Data System (ADS)

    Vonrüti, Nathalie; Aschauer, Ulrich

    2018-01-01

    The perovskite oxynitride LaTiO2N is a promising material for photocatalytic water splitting under visible light. One of the obstacles towards higher efficiencies of this and similar materials stems from charge-carrier recombination, which could be suppressed by the surface charges resulting from the dipolar field in polar materials. In this study, we investigate the spontaneous polarization in epitaxially strained LaTiO2N thin films via density functional theory calculations. The effect of epitaxial strain on the anion order, resulting out-of-plane polarization, energy barriers for polarization reversal, and corresponding coercive fields are studied. We find that for compressive strains larger than 4% the thermodynamically stable anion order is polar along the out-of-plane direction and has a coercive field comparable to other switchable ferroelectrics. Our results show that strained LaTiO2N could indeed suppress carrier recombination and lead to enhanced photocatalytic activities.

  4. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    NASA Astrophysics Data System (ADS)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  5. Effects of tissue mechanical and acoustic anisotropies on the performance of a cross-correlation-based ultrasound strain imaging method

    NASA Astrophysics Data System (ADS)

    Li, He; Lee, Wei-Ning

    2017-02-01

    The anisotropic mechanical properties (mechanical anisotropy) and view-dependent ultrasonic backscattering (acoustic anisotropy) of striated muscle due to the underlying myofiber arrangement have been well documented, but whether they impact on ultrasound strain imaging (USI) techniques remains unclear. The aim of this study was therefore to investigate the performance of a cross-correlation-based two-dimensional (2D) USI method in anisotropic media under controlled quasi-static compression in silico and in vitro. First, synthetic pre- and post-deformed 2D radiofrequency images of anisotropic phantoms were simulated in two scenarios to examine the individual effect of the mechanical and acoustic anisotropies on strain estimation. In the first scenario, the phantom was defined to be transversely isotropic with the scatterer amplitudes following a zero-mean Gaussian distribution, while in the second scenario, the phantom was defined to be mechanically isotropic with Gaussian distributed scatterer amplitudes correlated along the principal directions of pre-defined fibers. These two anisotropies were then jointly incorporated into the ultrasound image simulation model with additional depth-dependent attenuation. Three imaging planes—the fiber plane with the fiber direction perpendicular to the ultrasound beam (TISperp_fb), the fiber plane with the fiber direction parallel to the beam (TISpara), and the transverse fiber plane (TISperp_cfb)—were studied. The absolute relative error (ARE) of the lateral strain estimates in TISperp_fb (20.99  ±  15.65%) was much higher than that in TISperp_cfb (4.14  ±  3.17%). The ARE in TISpara was unavailable owing to the large spatial extent of false peaks. The effect of tissue anisotropy on the performance of the 2D USI was further confirmed in an in vitro porcine skeletal muscle phantom. The best in-plane strain quality was again shown in TISperp_cfb (elastographic signal-to-noise ratio, or SNRe:  >25 dB), whereas the most unreliable strain estimates were found as expected in TISpara (SNRe:  <10 dB). The strain filter explained the effect of the mechanical anisotropy and required the underlying strain to be within an optimal range for estimation. Sonographic SNR (SNRs) was found to be altered by the acoustic anisotropy and was much lower in TISpara (~10 dB) than in TISperp_fb (~50 dB) in vitro, which affected the accuracy of the strain estimation. Speckle size showed no evident impact on strain estimation but requires further examination.

  6. Conceptual design and multidisciplinary optimization of in-plane morphing wing structures

    NASA Astrophysics Data System (ADS)

    Inoyama, Daisaku; Sanders, Brian P.; Joo, James J.

    2006-03-01

    In this paper, the topology optimization methodology for the synthesis of distributed actuation system with specific applications to the morphing air vehicle is discussed. The main emphasis is placed on the topology optimization problem formulations and the development of computational modeling concepts. For demonstration purposes, the inplane morphing wing model is presented. The analysis model is developed to meet several important criteria: It must allow large rigid-body displacements, as well as variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Preliminary work has indicated that addressed modeling concept meets the criteria and may be suitable for the purpose. Topology optimization is performed on the ground structure based on this modeling concept with design variables that control the system configuration. In other words, states of each element in the model are design variables and they are to be determined through optimization process. In effect, the optimization process assigns morphing members as 'soft' elements, non-morphing load-bearing members as 'stiff' elements, and non-existent members as 'voids.' In addition, the optimization process determines the location and relative force intensities of distributed actuators, which is represented computationally as equal and opposite nodal forces with soft axial stiffness. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of formulation itself. Sample in-plane morphing problems are solved to demonstrate the potential capability of the methodology introduced in this paper.

  7. The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.

    2017-12-01

    The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.

  8. Impact of mechanical stress on ferroelectricity in (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Takahisa; Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577; Katayama, Kiliha

    2016-06-27

    To investigate the impact of mechanical stress on their ferroelectric properties, polycrystalline (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films were deposited on (111)Pt-coated SiO{sub 2}, Si, and CaF{sub 2} substrates with thermal expansion coefficients of 0.47, 4.5, and 22 × 10{sup −6}/ °C, respectively. In-plane X-ray diffraction measurements revealed that the (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films deposited on SiO{sub 2} and Si substrates were under in-plane tensile strain and that their volume fraction of monoclinic phase decreased as this strain increased. In contrast, films deposited on CaF{sub 2} substrates were under in-plane compressive strain, and their volume fraction of monoclinic phasemore » was the largest among the three kinds of substrates. The maximum remanent polarization of 9.3 μC/cm{sup 2} was observed for Pt/(Hf{sub 0.5}Zr{sub 0.5})O{sub 2}/Pt/TiO{sub 2}/SiO{sub 2}, while ferroelectricity was barely observable for Pt/(Hf{sub 0.5}Zr{sub 0.5})O{sub 2}/Pt/TiO{sub 2}/SiO{sub 2}/CaF{sub 2}. This result suggests that the in-plane tensile strain effectively enhanced the ferroelectricity of the (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films.« less

  9. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim

    2017-10-01

    Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.

  10. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    PubMed

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  11. Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors: Thermodynamic calculation and phase-field simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W. J.; Zheng, Yue, E-mail: zhengy35@mail.sysu.edu.cn; Wu, C. M.

    Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according tomore » the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.« less

  12. Strain doping: Reversible single-axis control of a complex oxide lattice via helium implantation

    DOE PAGES

    Guo, Hangwen; Dong, Shuai; Rack, Philip D.; ...

    2015-06-25

    We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La 0.7Sr 0.3MnO 3 thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain canmore » be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. As a result, the ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials’ functional properties.« less

  13. Following strain-induced mosaicity changes of ferroelectric thin films by ultrafast reciprocal space mapping.

    PubMed

    Schick, D; Bojahr, A; Herzog, M; Gaal, P; Vrejoiu, I; Bargheer, M

    2013-03-01

    We investigate coherent phonon propagation in a thin film of ferroelectric PbZr(0.2)Ti(0.8)O(3) (PZT) by ultrafast x-ray diffraction experiments, which are analyzed as time-resolved reciprocal space mapping in order to observe the in- and out-of-plane structural dynamics, simultaneously. The mosaic structure of the PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a picosecond time scale, which is not observed for out-of-plane compression.

  14. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    NASA Astrophysics Data System (ADS)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  15. Confinement- and strain-induced enhancement of thermoelectric properties in LaNiO3/LaAlO3(001 ) superlattices

    NASA Astrophysics Data System (ADS)

    Geisler, Benjamin; Pentcheva, Rossitza

    2018-05-01

    By combining ab initio simulations including an on-site Coulomb repulsion term and Boltzmann theory, we explore the thermoelectric properties of (LaNiO3)n /(LaAlO3)n (001) superlattices (n =1 ,3 ) and identify a strong dependence on confinement, spacer thickness, and epitaxial strain. While the system with n =3 shows modest values of the Seebeck coefficient and power factor, the simultaneous reduction of the LaNiO3 region and the LaAlO3 spacer thickness to single layers results in a strong enhancement, in particular of the in-plane values. This effect can be further tuned by using epitaxial strain as a control parameter: Under tensile strain corresponding to the lateral lattice constant of SrTiO3 we predict in- and cross-plane Seebeck coefficients of ±600 μ V /K and an in-plane power factor of 11 μ W /K2cm for an estimated relaxation time of τ =4 fs around room temperature. These values are comparable to some of the best performing oxide systems such as La-doped SrTiO3 or layered cobaltates and are associated with the opening of a small gap (0.29 eV) induced by the concomitant effect of octahedral tilting and Ni-site disproportionation. This establishes oxide superlattices at the verge of a metal-to-insulator transition driven by confinement and strain as promising candidates for thermoelectric materials.

  16. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  17. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  18. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    NASA Astrophysics Data System (ADS)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  19. A decomposition approach to the design of a multiferroic memory bit

    NASA Astrophysics Data System (ADS)

    Acevedo, Ruben; Liang, Cheng-Yen; Carman, Gregory P.; Sepulveda, Abdon E.

    2017-06-01

    The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

  20. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  1. Higher-order cladding mode excitation of femtosecond-laser-inscribed tilted FBGs.

    PubMed

    Ioannou, Andreas; Theodosiou, Antreas; Kalli, Kyriacos; Caucheteur, Christophe

    2018-05-01

    We study the modal behavior of plane-by-plane femtosecond laser fabricated tilted fiber Bragg gratings (FBGs). The focus is on the differential strain and temperature sensitivities between the cladding mode resonances of an nth grating order and those of the (n-i)th orders (with i=1-n), which are collocated in the same wavelength range. Whereas the Bragg mode exhibits an axial strain sensitivity of 1.2 pm/μϵ, we experimentally show that the strain sensitivity of ultrahigh-order cladding modes is negative and at -1.99  pm/μϵ in the same spectral window. Using a finite element mode solver, the modal refractive index value is computed to be well below 1, thus confirming that these modes, in reality, are leaky modes.

  2. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  3. Intertwined Hamiltonians in two-dimensional curved spaces

    NASA Astrophysics Data System (ADS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-04-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.

  4. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  5. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, J. W.; Shen, Y. F.; Zhang, C. S.

    Here, the microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with numerous carbides. Neutron diffraction reveals that the intensity of (011) and (022) peaks for the UFG sample is significantly enhanced, suggesting that the (011)//RD texture is a result of the warm rolling process. The lattice parameter of UFG steel is smaller than that of a martensitic steel (M steel) counterpart, indicating a lower carbon concentration inmore » the lattice. The estimated dislocation densities for M steel and UFG steel are 2.59 × 10 14 cm –2 and 1.76 × 10 12 cm –2, respectively. The UFG steel reveals a nearly isotropic lattice strain response under initial tension from 0 to 450 MPa, where the lattice strains of the (110), (002), and (112) planes are identical. The increase of lattice strain of the (110) plane becomes smaller than that of the (002) and (112) planes as the stress exceeds 450 MPa, suggesting that the nanosized carbides contribute to the hardening ability by promoting the accumulation of geometrically necessary dislocations around the particles, and the (110) lattice becomes harder compared to the other two planes.« less

  6. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel

    DOE PAGES

    Liang, J. W.; Shen, Y. F.; Zhang, C. S.; ...

    2018-04-25

    Here, the microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with numerous carbides. Neutron diffraction reveals that the intensity of (011) and (022) peaks for the UFG sample is significantly enhanced, suggesting that the (011)//RD texture is a result of the warm rolling process. The lattice parameter of UFG steel is smaller than that of a martensitic steel (M steel) counterpart, indicating a lower carbon concentration inmore » the lattice. The estimated dislocation densities for M steel and UFG steel are 2.59 × 10 14 cm –2 and 1.76 × 10 12 cm –2, respectively. The UFG steel reveals a nearly isotropic lattice strain response under initial tension from 0 to 450 MPa, where the lattice strains of the (110), (002), and (112) planes are identical. The increase of lattice strain of the (110) plane becomes smaller than that of the (002) and (112) planes as the stress exceeds 450 MPa, suggesting that the nanosized carbides contribute to the hardening ability by promoting the accumulation of geometrically necessary dislocations around the particles, and the (110) lattice becomes harder compared to the other two planes.« less

  7. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  8. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  9. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation. Reference Fletcher, R. C. 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds Cylindrical, and, If So, Do We Understand Why. Tectonophysics 147(1-4), 65-83.

  10. Variation of yield loci in finite element analysis by considering texture evolution for AA5042 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan

    2013-12-01

    Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

  11. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    NASA Astrophysics Data System (ADS)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  12. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    NASA Astrophysics Data System (ADS)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  13. An experimental study on the manufacture and characterization of in-plane fibre-waviness defects in composites

    PubMed Central

    DiazDelaO, F. A.; Atherton, K.

    2018-01-01

    A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect. PMID:29892446

  14. Monte-Carlo investigation of in-plane electron transport in tensile strained Si and Si{_{1-y}}C{_y} (y {leq 0.03})

    NASA Astrophysics Data System (ADS)

    Dollfus, Ph.; Galdin, S.; Hesto, P.

    1999-07-01

    Electron transport properties in tensile strained Si-based materials are theoretically analyzed using Monte-Carlo calculation. We focus our interest on in-plane transport in Si and Si{1-y}Cy (yleq 0.03), grown respectively on <~ngle 001rangle Si{1-x}Gex pseudo-substrate and Si substrate, with a view to Field-Effect-Transistor application. In comparison with unstrained Si, the tensile strain effect is shown to be very attractive in Si: drift mobilities greater than 3000 cm^2/Vs are obtained at 300 K for a Ge fraction mole of 0.2 in the pseudo-substrate. In the Si{1-y}Cy/Si system, that does not need any pseudo-substrate, the beneficial strain effect on transport is counterbalanced by the alloy scattering whose influence on mobility is studied. If the alloy potential is greater than about 1 eV, the advantage of strain-induced reduction of effective mass is lost in terms of stationary transport performance at 300 K.

  15. Comparison of mechanical and microstructural properties of conventional and severe plastic deformation processes

    NASA Astrophysics Data System (ADS)

    Szombathelyi, V.; Krallics, Gy

    2014-08-01

    The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.

  16. Hybrid near-optimal aeroassisted orbit transfer plane change trajectories

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Duckeman, Gregory A.

    1994-01-01

    In this paper, a hybrid methodology is used to determine optimal open loop controls for the atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the sense that it combines the features of numerical collocation with the analytically tractable portions of the problem which result when the two-point boundary value problem is cast in the form of a regular perturbation problem. Various levels of approximation are introduced by eliminating particular collocation parameters and their effect upon problem complexity and required number of nodes is discussed. The results include plane changes of 10, 20, and 30 degrees for a given vehicle.

  17. Cleavage strain in the Variscan fold belt, County Cork, Ireland, estimated from stretched arsenopyrite rosettes

    USGS Publications Warehouse

    Ford, M.; Ferguson, C.C.

    1985-01-01

    In south-west Ireland, hydrothermally formed arsenopyrite crystals in a Devonian mudstone have responded to Variscan deformation by brittle extension fracture and fragment separation. The interfragment gaps and terminal extension zones of each crystal are infilled with fibrous quartz. Stretches within the cleavage plane have been calculated by the various methods available, most of which can be modified to incorporate terminal extension zones. The Strain Reversal Method is the most accurate currently available but still gives a minimum estimate of the overall strain. The more direct Hossain method, which gives only slightly lower estimates with this data, is more practical for field use. A strain ellipse can be estimated from each crystal rosette composed of three laths (assuming the original interlimb angles were all 60??) and, because actual rather than relative stretches are estimated, this provides a lower bound to the area increase in the plane of cleavage. Based on the average of our calculated strain ellipses this area increase is at least 114% and implies an average shortening across the cleavage of at least 53%. However, several lines of evidence suggest that the cleavage deformation was more intense and more oblate than that calculated, and we argue that a 300% area increase in the cleavage plane and 75% shortening across the cleavage are more realistic estimates of the true strain. Furthermore, the along-strike elongation indicated is at least 80%, which may be regionally significant. Estimates of orogenic contraction derived from balanced section construction should therefore take into account the possibility of a substantial strike elongation, and tectonic models that can accommodate such elongations need to be developed. ?? 1985.

  18. Application of boundary integral equations to elastoplastic problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Albers, L. U.

    1975-01-01

    The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.

  19. FORTRAN programs for calculating nonlinear seismic ground response in two dimensions

    USGS Publications Warehouse

    Joyner, W.B.

    1978-01-01

    The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.

  20. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  1. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  2. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame.

  3. Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman

    2010-03-01

    Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.

  4. An elastic dimpling instability with Kosterlitz-Thouless character and a precursor role in creasing

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler; Paulsen, Joseph; Schwarz, Jennifer

    Creasing instability, also known as sulcification, occurs in a variety of quasi-2d elastic systems subject to compressive plane strain, and has been proposed as a mechanism of brain folding. While the dynamics of pre-existing creases can be understood in terms of crack propagation, a detailed critical phenomena picture of the instability is lacking. We show that surface dimpling is an equilibrium phase transition, and can be described in a language of quasi-particle excitations conceptualized as ``ghost fibers'' within the shear lag model. Tension-compression pairs (dipoles) of ghost fibers are energetically favorable at low strains, and the pairs unbind at a critical compressive plane strain, analogously to vortices in the Kosterlitz-Thouless transition. This dimpling transition bears strong resemblance to the creasing instability. We argue that zero-length creases are ghost fibers, which are a special case of ``ghost slabs''. Critical strain of a ghost slab increases linearly with its length, and is independent of both shear modulus and system thickness.

  5. Formation of chocolate-tablet boudins: Results from scaled analogue models

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Göttlich, J.; Peinl, M.

    2014-11-01

    We used power-law viscous plasticine as a rock analogue to simulate chocolate tablet boudinage of rocks undergoing dislocation creep. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent two phases of plane strain in a weaker plasticine matrix, with the principal stretching axis, X, and the axis of no-change, Y, replacing each other from the first to the second phase. In each phase of plane strain, boudinage was controlled by an initial phase of viscous necking followed by extension fracture along the neck domain. Increase in the magnitude of finite strain (e) and decrease in layer thickness (Hi) result in a decrease in the boudin width (Wa) and an increase in the number of boudins (N). Given the viscosity ratio between layer and matrix (m) is higher than ca. 5, the number of boudins decreases and the boudin width increases with increasing values of m. An unexpected result of the present study is that in each experiment, the number of boudins was significantly higher during the second phase of plane strain. This difference should be related to additional drag of the matrix plasticine on the stiff layer in the neck domains formed during the first phase of boudinage. The aspect ratio of the second generation of boudins (Wd = Wa/Hi) is compatible with aspect ratios of natural boudins and with aspect ratios calculated using analytical solutions.

  6. Steady-state LPO is not always reached in high-strain shear zones

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Warren, J. M.

    2017-12-01

    Seismic anisotropy in the upper mantle results from the alignment of olivine crystal lattices during flow by dislocation creep. Experiments on the evolution of olivine lattice preferred orientation (LPO) as a function of shear strain have found that high strains (>10) are necessary to achieve a steady-state LPO (i.e., the dominant slip system does not change appreciably with further strain) when a pre-existing LPO is present. At lower strain ( 2), a pseudo-steady-state fabric is reached, in which the [100] axes of olivine reach a steady orientation relative to the deformation kinematics, but the [010] and [001] axes continue to evolve (e.g. Hansen et al., 2014). To constrain LPO evolution at mantle conditions, we looked at the LPO variation across three high temperature mantle shear zones in the Josephine Peridotite of SW Oregon. These shear zones provide a rare opportunity to examine LPO evolution in natural samples as a function of shear strain, due to the presence of a pyroxene foliation that serves as a strain marker. Observations of two of these shear zones are consistent with experimental observations (Warren et al., 2008; Skemer et al., 2010). Shear Zone G reaches a steady-state LPO at a strain of >20. Shear Zone P reaches a pseudo-steady-state LPO, with a consistent [100] axis orientation, at a strain of 3.5. However, a steady-state orientation is not reached in the [010] or [001] axes at the maximum strain of 5.25. The third shear zone, Shear Zone A, does not appear to reach even a pseudo-steady-state LPO, despite reaching strains >20 at its center. Instead, the dominant slip plane switches back and forth between the (010) and (001) planes with increasing strain, while the [100] axis orientations continue to evolve. Unusually, at peak strain, the [100] axes are oriented 40° past the shear plane. In contrast, the other two shear zones, along with other natural and experimental examples, have the [100] axes oriented approximately parallel to the shear direction at very high strain. The high angle of the [100] axes to the shear direction at high strain in SZA may explain angular offsets between plate motion and fast seismic direction, for instance as seen in the MELT experiment (Wolfe and Solomon, 1998). Hansen et al., 2014, EPSLSkemer et al., 2010, J. Pet. Warren et al., 2008, EPSLWolfe and Solomon, 1998, Science

  7. A Review of Australian Investigations on Aeronautical Fatigue during the Period April 1981 to March 1983.

    DTIC Science & Technology

    1983-03-01

    13. Jeffery, G.B. Plane stress and plane strain in bipolar co-ordinates. Royal Society of London, Phil . Trans. Series A, Vol. 221, 1921, pp 265-293...Commerce Central Library .../cont. DISTRIBUTfION (CONTD.) Statutory &State Authorities and Industry Ccuimonwealth Aircraft Corporation, Mr R.C. Beckett

  8. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  9. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading

    NASA Astrophysics Data System (ADS)

    Woracek, R.; Penumadu, D.; Kardjilov, N.; Hilger, A.; Strobl, M.; Wimpory, R. C.; Manke, I.; Banhart, J.

    2011-05-01

    Wavelength selective neutron radiography at a cold neutron reactor source was used to measure strain and determine (residual) stresses in a steel sample under plane stress conditions. We present a new technique that uses an energy-resolved neutron imaging system based on a double crystal monochromator and is equipped with a specially developed (in situ) biaxial load frame to perform Bragg edge based transmission imaging. The neutron imaging technique provides a viewing area of 7 cm by 7 cm with a spatial resolution on the order of ˜ 100 μm. The stress-induced shifts of the Bragg edge corresponding to the (110) lattice plane were resolved spatially for a ferritic steel alloy A36 (ASTM international) sample. Furthermore it is demonstrated that results agree with comparative data obtained using neutron diffraction and resistance based strain-gauge rosettes.

  10. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes.

    PubMed

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-12

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  11. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-01

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  12. Steinhaus’ Geometric Location Problem for Random Samples in the Plane.

    DTIC Science & Technology

    1982-05-11

    NAL 411R A1, ’I 7 - I STEINHAUS ’ GEOMETRIC LOCATION PROBLEM FOR RANDOM SAMPLES IN THE PLANE By Dorit Hochbaum and J. Michael Steele TECHNICAL REPORT...DEPARTMENT OF STATISTICS -Dltrib’ytion/ STANFORD UNIVERSITY A-I.abilty Codes STANFORD, CALIFORNIA Dist Spciat ecial Steinhaus ’ Geometric Location Problem for...Random Samples in the Plane By Dorit Hochbaum and J. Michael Steele I. Introduction. The work of H. Steinhaus U wf94 as apparently the first explicit

  13. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Shahsavari, Davood; Li, Li

    2018-03-01

    A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. Themore » elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.« less

  15. Mechanical properties of thermal protection system materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less

  16. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    NASA Astrophysics Data System (ADS)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  17. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Okunishi, E.; Nishiura, T.; Kawano, H.; Inamura, T.; S., Ii; Hara, T.

    2012-06-01

    Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a ? B19‧ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a ? B19‧ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the ⟨011⟩B19‧ type II and/or ? B19‧ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the ? B19‧ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis.

  18. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  19. Submicron mapping of strained silicon-on-insulator features induced

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Sankarapandian, M.; Polvino, S. M.; Noyan, I. C.; Lai, B.; Cai, Z.

    2007-04-01

    Real-space maps of strain within silicon-on-insulator (SOI) features induced by adjacent, embedded shallow-trench-isolation (STI) SiO2 regions were obtained using x-ray microbeam diffraction. The quantitative strain mapping indicated that the SOI strain was largest at the SOI/STI interface and decreased as a function of distance from this interface. An out-of-plane residual strain of approximately -31μɛ was observed in the blanket regions of the SOI. A comparison of the depth-averaged strain distributions to the strain profiles calculated from an Eshelby inclusion model indicated an equivalent eigenstrain of -0.55% in the STI regions acting on the SOI features.

  20. Anti-plane eigenstrain problem of an inclusion of arbitrary shape in an anisotropic bimaterial with a semi-infinite interface crack

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2018-02-01

    We consider an Eshelby inclusion of arbitrary shape with uniform anti-plane eigenstrains embedded in one of two bonded dissimilar anisotropic half planes containing a semi-infinite interface crack situated along the negative real axis. Using two consecutive conformal mappings, the upper and lower halves of the physical plane are first mapped onto two separate quarters of the image plane. The corresponding boundary value problem is then analyzed in this image plane rather than in the original physical plane. Corresponding analytic functions in all three phases of the composite are derived via the construction of an auxiliary function and repeated application of analytic continuation across the real and imaginary axes in the image plane. As a result, the local stress intensity factor is then obtained explicitly. Perhaps most interestingly, we find that the satisfaction of a particular condition makes the inclusion (stress) invisible to the crack.

  1. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  2. Determination of Dynamic Recrystallization Process by Equivalent Strain

    NASA Astrophysics Data System (ADS)

    Qin, Xiaomei; Deng, Wei

    Based on Tpнoвckiй's displacement field, equivalent strain expression was derived. And according to the dynamic recrystallization (DRX) critical strain, DRX process was determined by equivalent strain. It was found that equivalent strain distribution in deformed specimen is inhomogeneous, and it increases with increasing true strain. Under a certain true strain, equivalent strains at the center, demisemi radius or on tangential plane just below the surface of the specimen are higher than the true strain. Thus, micrographs at those positions can not exactly reflect the true microstructures under the certain true strain. With increasing strain rate, the initial and finish time of DRX decrease. The frozen microstructures of 20Mn23AlV steel with the experimental condition validate the feasibility of predicting DRX process by equivalent strain.

  3. Centre-based restricted nearest feature plane with angle classifier for face recognition

    NASA Astrophysics Data System (ADS)

    Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua

    2017-10-01

    An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.

  4. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Subrata, E-mail: subrata.panda@univ-lorrain

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less

  5. Edge softening of the Shuttle TPS strain isolation pad. [Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.; Rummler, D. R.

    1982-01-01

    Tensile tests and an analytical investigation were performed to characterize the edge softening behavior of the strain isolation pad (SIP) between the Orbiter skin and thermal protection system. The tensile tests were carried out with varying sizes of disk-shaped specimens bonded between aluminum disks. The specimens strength and stiffness were determined on the basis of specimen size, and an analytical model of the microstructural stress-strain characteristics was developed. Strength and stiffness were found to decrease near the free edges because through-the-thickness fibers located there were not anchored. No size dependence at maximum load was observed in specimens between 0.75-4.0 in. thick. In-plane and out-of-plane coupling in deformation was detected. The model gave accurate predictions of the tensile behavior of the SIP as a function of distance to a free edge.

  6. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  7. Thermal stresses in the laser disc from a tetragonal c-cut crystal

    NASA Astrophysics Data System (ADS)

    Yumashev, K. V.; Loiko, P. A.

    2014-12-01

    Analytical expressions for thermal stresses and strains, as well as displacements, are obtained for the laser disc from a tetragonal crystal cut along the [0 0 1] axis under plane stress approximation, for the first time, to our knowledge. This study illustrates that, in polar coordinates, the normal stresses, σr and σθ, are angular independent, while the shear one τrθ is zero. The thermal strains, εr and εθ, and displacements, u and υ, depend on both radial and tangential coordinates; this dependence has the shape of a four-leaf rose. For considered crystal cutting with isotropic in-plane thermal expansion, the displacements are not pure radial (υ≠0). The values of stresses, strains and displacements are calculated for the disc from a c-cut yttrium vanadate laser crystal, Nd:YVO4. The thermal fracture issues are analyzed for this crystal.

  8. Deformation of a geo-medium with considering for internal self-balancing stresses

    NASA Astrophysics Data System (ADS)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2016-11-01

    Based on the general concept of rock as a medium with inner sources and sinks of energy, the authors consider an approach to mathematical modeling of a geo-medium with account for internal self-balancing stresses. The description of stresses and strains at the level of microstructural elements and macrovolume of the medium uses methods of non-Archimedean analysis. The model allows describing the accumulation of elastic energy in the form of internal self-balancing stresses. A finite element algorithm and a software program for solving plane boundary-value problems have been developed. The calculated data on rock specimen compression are given. It is shown that the behavior of plastic deformation zones depends on the pre-assigned initial microstresses.

  9. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  10. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  11. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  12. Spall response of single-crystal copper

    NASA Astrophysics Data System (ADS)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  13. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    PubMed

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  14. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  15. Left ventricular function quantified by myocardial strain imaging in small-breed dogs with chronic mitral regurgitation.

    PubMed

    Smith, Danielle N; Bonagura, John D; Culwell, Nicole M; Schober, Karsten E

    2012-03-01

    The presence of left ventricular (LV) systolic dysfunction may influence prognosis or therapy in dogs with chronic mitral regurgitation (MR). Assessment of LV function in MR by conventional echocardiography is confounded by altered ventricular loading. Myocardial deformation (strain) imaging might offer more sensitive estimates of LV function in this disease. Prospectively measure myocardial strain in dogs with asymptomatic MR compared to a control group. Forty healthy dogs (3.5-11.5 kg): 20 Controls; 20 dogs with MR and LV remodeling (Stage B2), were evaluated in this study. LV size and function were assessed in a short-axis plane. Segmental radial strain and strain rate and global circumferential strain were measured using a 2D echocardiographic speckle-tracking algorithm (GE EchoPAC). Groups were compared using Bonferroni t-tests. Influences of heart rate and body weight were explored with linear regression. The MR group had significantly greater mean values for heart rate, LV size, and LV systolic function. Specifically, LV diastolic diameter, diastole area, shortening fraction, averaged peak systolic and early diastolic radial strain, global circumferential strain, and averaged radial strain rate were significantly greater in the MR group (p < 0.015 to p < 0.001). Strain was unrelated to weight, but weakly correlated with heart rate. Similar to conventional indices, Stage B2 dogs with MR demonstrate hyperdynamic deformation in the short-axis plane. Short-axis strain variables measured by 2D speckle tracking are greater than for controls of similar age and weight. These results imply either preserved LV systolic function or that LV dysfunction is masked by altered ventricular loading. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane.

    PubMed

    Puech, V; Chami, M; Lemassu, A; Lanéelle, M A; Schiffler, B; Gounon, P; Bayan, N; Benz, R; Daffé, M

    2001-05-01

    With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.

  17. Study of magnetic domain evolution in an auxetic plane of Galfenol using Kerr microscopy

    NASA Astrophysics Data System (ADS)

    Raghunath, Ganesh; Flatau, Alison B.

    2015-05-01

    Galfenol (FexGa100-x), a magnetostrictive alloy (3/2λ 110-400 ppm) of Iron and Gallium exhibits an in-plane auxetic response in the ⟨110⟩ crystallographic direction. Negative Poisson's ratios have been observed in response to application of stress fields, where values of as low as -0.7 have been reported for compositions of greater than roughly 20% Ga [Zhang et al., J. Appl. Phys. 108(2), 023513 (2010)] and in response to application of magnetic fields, where values of as low as -2.5 have been reported to be expected for compositions of less than roughly 20% Ga [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)]. Several models have been proposed to understand these two distinct phenomena. Galfenol samples with less than 20% Ga also exhibit an unusual response to an increasing magnetic field applied along the ⟨110⟩ direction. The longitudinal strain which increases initially with applied field experiences a dip (until ˜10 mT) before increasing again to reach saturation. The transverse strain increases and reaches a maximum value (at the same field of ˜10 mT) and then drops from the maximum by 5%-10% as magnetic saturation is approached [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)].This work deals with discussing the evolution of magnetic domains in a 16 at. % Ga single crystal Galfenol sample when subjected to magnetic fields in the ⟨110⟩ direction in the (100) plane. The magnetic domains on the surface of mechanically polished Galfenol samples were imaged using Magneto-Optic Kerr Effect microscopy. Simultaneously, the strains along the longitudinal and transverse ⟨110⟩ directions were recorded using a bi-directional strain gauge rosette mounted on the unpolished bottom surface of the planar samples. The energy from the applied magnetic field is expected to grow the ⟨110⟩ oriented domains at the expense of domains oriented along all other directions. But since the plane has an easy ⟨100⟩ axis, we expect the domains to orient along the easy direction before saturating along the applied magnetic field direction. A correlation between the images recorded and the strains observed will be used to understand this shift of domains and bump in strain at low fields.

  18. Strain rate effects on mechanical properties of fiber composites, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  19. In plane oscillation of a bifilar pendulum

    NASA Astrophysics Data System (ADS)

    Hinrichsen, Peter F.

    2016-11-01

    The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

  20. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  1. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  2. Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Havens, David; Shiyekar, Sandeep; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions.

  3. Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.

    2017-09-01

    By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.

  4. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  5. Influence of strain rate on the structure/property behavior of the alpha-2 alloy Ti-24.5Al-10.5Nb-1.5Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III; Hong, Sun Ig; Marquardt, B.J.

    Preliminary dislocation g{center_dot}b analysis revealed that following room temperature deformation at low strain rate the majority of the dislocations are a-dislocations lying on basal planes, 2nd order pyramidal (a/2 + c) slip on [1211], and 1st order pyramidal a-slip on [1011]. Increasing the rate of deformation at room temperature to 6000 s{sup {minus}1} is seen to result in increased a-slip on prism planes and a decreased amount of basal slip. At high-strain-rates and elevated temperatures the substructure was seen to be generally similar to that observed following high-rate deformation at room temperature except for an increased amount of basal slipmore » and a somewhat higher incidence of 2nd order pyramidal slip. The defect generation and the rate sensitivity of Ti-24.5Al-10.5Nb-1.5Mo are discussed as a function of strain rate and temperature and contrasted to that observed in conventional titanium alloys and TiAl.« less

  6. Inducing phase transitions of T-like BiFeO3 films by low-energy He implantation

    NASA Astrophysics Data System (ADS)

    Herklotz, Andreas; Beekman, Christianne; Rus, Stefania Florina; Ivanov, Ilia; Balke, Nina; Ward, Thomas Zac

    Ferroelectric phase transitions of BiFeO3 are found to be controllable through the application of single axis, out-of-plane strain. Low-energy He implantation has been deployed to induce out-of-plane strain in T-like BFO films, while the compressive in-plane strain due to the coherent growth on LaAlO3 substrates remains fixed. Our data shows that He implantation triggers a MC -MA - T phase sequence of the T polymorph that is identical to structural changes that are induced with increasing temperature. Mixed phases nanodomains phases are gradually suppressed and disappear above a certain He doping level. Our data shows that the ferroelectric and optical properties of BiFeO3 films critically depend on the He doping level. Thus, the results demonstrates that He implantation can be used as an intriguing approach to study lines in the rich phase space of BFO films that can't be accessed by simple heteroepitaxy. This effort was wholly supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division, with user projects supported at ORNL's Center for Nanophase Materials Research (CNMS) which is also sponsored by DOE-BES.

  7. The crack problem for a half plane stiffened by elastic cover plates

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.

  8. Electrostatic engineering of strained ferroelectric perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Stengel, Massimiliano

    2015-12-01

    Design of novel artificial materials based on ferroelectric perovskites relies on the basic principles of electrostatic coupling and in-plane lattice matching. These rules state that the out-of-plane component of the electric displacement field and the in-plane components of the strain are preserved across a layered superlattice, provided that certain growth conditions are respected. Intense research is currently directed at optimizing materials functionalities based on these guidelines, often with remarkable success. Such principles, however, are of limited practical use unless one disposes of reliable data on how a given material behaves under arbitrary electrical and mechanical boundary conditions. Here we demonstrate, by focusing on the prototypical ferroelectrics PbTiO3 and BiFeO3 as test cases, how such information can be calculated from first principles in a systematic and efficient way. In particular, we construct a series of two-dimensional maps that describe the behavior of either compound (e.g., concerning the ferroelectric polarization and antiferrodistortive instabilities) at any conceivable choice of the in-plane lattice parameter, a , and out-of-plane electric displacement, D . In addition to being of immediate practical applicability to superlattice design, our results bring new insight into the complex interplay of competing degrees of freedom in perovskite materials and reveal some notable instances where the behavior of these materials depart from what naively is expected.

  9. Strain memory of 2D and 3D rigid inclusion populations in viscous flows - What is clast SPO telling us?

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W.; Law, Richard D.

    2014-11-01

    We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.

  10. Altered spinal motion in low back pain associated with lumbar strain and spondylosis.

    PubMed

    Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D

    2013-04-01

    Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.

  11. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-Hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  13. Out-of-plane stretching for simultaneous generation of different morphological wrinkles on a soft matter

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhao, Zhi-Jun; Park, Sang-Hu

    2016-07-01

    This study demonstrates a simple and flexible out-of-plane induced mechanical stretching method for generating labyrinthic, waving, and straight orderly microscale directional wrinkles. Different complex wrinkling patterns were fabricated simultaneously using a UV-curable thin layer of resin NOA-68T that was coated on a soft foundation. Then an out-of-plane pre-straining deformation was applied by a specially designed punch to generate internal elastic instabilities. The surface wrinkling pattern characteristics (shapes and size) changed according to the amount of punch stroke (pre-strain) and the cross-sectional shape of the punch. This study confirms the usefulness of this method for controlling and generating local wrinkling patterns for diverse applications. As an example, the contact angles of a water droplet on a local area of the same pattern were measured to identify the change in wettability with respect to different wrinkling shapes. This method can be utilized in topographical tunable wrinkle fabrication for local surface modification.

  14. Plastic deformation of B2-NiTi - is it slip or twinning?

    NASA Astrophysics Data System (ADS)

    Sehitoglu, H.; Wu, Y.; Alkan, S.; Ertekin, E.

    2017-06-01

    The work addresses two main questions that have baffled the shape memory research community. Firstly, the superb ductility of B2-NiTi cannot be solely attributed to slip on {0 1 1} planes, because there are not a sufficient number of independent slip systems under arbitrary deformations. We show unequivocally, upon diffraction measurements and local strain field traces, that deformation twinning on {1 1 4} planes that can provide additional systems to accommodate plastic flow is activated. Secondly, the slip direction on the {0 1 1} planes has not been established in NiTi with certainty. It is proved precisely to be in ?0 0 1? direction based on crystallographic shear analysis producing the specific strain tensor components (measured at mesoscale with digital image correlation, DIC). Based on the single-crystal experiments, the CRSSs (critical resolved shear stress) are established as 250 and 330 MPa for slip and twinning, respectively. The results have implications in devising correct crystal plasticity formulations for shape memory alloys.

  15. Some remarks on elastic crack-tip stress fields.

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1972-01-01

    It is shown that if the displacement field and stress intensity factor are known as functions of crack length for any symmetrical load system acting on a linear elastic body in plane strain, then the stress intensity factor for any other symmetrical load system whatsoever on the same body may be directly determined. The result is closely related to Bueckner's (1970) weight function, through which the stress intensity factor is expressed as a sum of work-like products between applied forces and values of the weight function at their points of application. An example of the method is given wherein the solution for a crack in a remotely uniform stress field is used to generate the expression for the stress intensity factor due to an arbitrary traction distribution on the faces of a crack. A corresponding theory is developed in an appendix for three-dimensional crack problems, although this appears to be directly useful chiefly for problems in which there is axial symmetry.

  16. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  17. Thermo-viscoelastic analysis of composite materials, volume 1

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Hwang, I. H.

    1988-01-01

    Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied.

  18. Analysis of borehole expansion and gallery tests in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    1991-01-01

    Closed-form solutions are used to show how rock anisotropy affects the variation of the modulus of deformation around the walls of a hole in which expansion tests are conducted. These tests include dilatometer and NX-jack tests in boreholes and gallery tests in tunnels. The effects of rock anisotropy on the modulus of deformation are shown for transversely isotropic and regularly jointed rock masses with planes of transverse isotropy or joint planes parallel or normal to the hole longitudinal axis for plane strain or plane stress condition. The closed-form solutions can also be used when determining the elastic properties of anisotropic rock masses (intact or regularly jointed) in situ. ?? 1991.

  19. Solvent Assisted Delamination Crack Growth Behavior of Amorphous Thermoplastic Materials

    DTIC Science & Technology

    1989-02-01

    72CRD285. October 1972. 4. Standard Method of Test for Plane- Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical...intensity factor K I or the associated strain energy release rate, G I . ASTM compact tension test yields stress intensity factor, KI, via Equation 1...are such that a constant deadweight load results in increasing strain energy release rate with increasing crack length. Figure 3 shows the neat resin

  20. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  1. Strain dependence of antiferromagnetic interface coupling in La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices

    DOE PAGES

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; ...

    2015-04-06

    We have investigated the magnetic response of La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg 1/3Nb 2/3O 3-0.28PbTiO 3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La 0.7Sr 0.3MnO 3(22 angstrom)/SrRuO 3(55 angstrom)] 15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic ordermore » in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO 3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.« less

  2. Effects of strain on ferroelectric polarization and magnetism in orthorhombic HoMnO3

    NASA Astrophysics Data System (ADS)

    Iuşan, Diana; Yamauchi, Kunihiko; Barone, Paolo; Sanyal, Biplab; Eriksson, Olle; Profeta, Gianni; Picozzi, Silvia

    2013-01-01

    We explore how the ferroelectric polarization of antiferromagnetic E-type orthorhombic HoMnO3 can be increased, by investigating the effects of in-plane strain on both the magnetic properties and the ferroelectric polarization, using combined density functional theory calculations and a model Hamiltonian technique. Our results show that the net polarization is strongly enhanced under compressive strain, due to an increase of the elec-tronic contribution to the polarization. In contrast, the ionic contribution is found to decrease. We identify the electron-lattice coupling, due to Jahn-Teller (JT) distortions, and its response to strain, to be responsible for the observed behavior. The JT-induced orbital ordering of occupied Mn-eg1 electrons in alternating 3x2-r23y2-r2 orbital states in the unstrained structure, changes under in-plane compressive strain to a mixture with x2-z2y2-z2 states. The asymmetric hopping of eg electrons between Mn ions along zigzag spin chains (typical of the AFM-E spin configuration) is therefore enhanced under strain, explaining the large value of the polarization. Using a degenerate double-exchange model including electron-phonon interaction, we reproduce the change in the orbital ordering pattern. In this picture, the orbital ordering change is related to a change of the Berry phase of the eg electrons. This causes an increase of the electronic contribution to the polarization.

  3. Three-dimensional ultrasound strain imaging of skeletal muscles

    NASA Astrophysics Data System (ADS)

    Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, H. H. G.; Lopata, R. G. P.; Verdonschot, N.; de Korte, C. L.

    2017-01-01

    In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle contraction, is used as experimental validation of the 3D technique and to compare its performance with respect to a 2D based technique. Axial, lateral and (in case of 3D) elevational displacements are estimated using a cross-correlation based displacement estimation algorithm. After transformation of the displacements to a Cartesian coordinate system, strain is derived using a least-squares strain estimator. The performance of both methods is compared by calculating the root-mean-squared error of the estimated displacements with the calculated theoretical displacements of the phantom experiments. We observe that the 3D technique delivers more accurate displacement estimations compared to the 2D technique, especially in the translation experiment where out-of-plane motion hampers the 2D technique. In vivo application of the 3D technique in the musculus vastus intermedius shows good resemblance between measured strain and the force pattern. Similarity of the strain curves of repetitive measurements indicates the reproducibility of voluntary contractions. These results indicate that 3D ultrasound is a valuable imaging tool to quantify complex tissue motion, especially when there is motion in three directions, which results in out-of-plane errors for 2D techniques.

  4. Tunable ferroelectricity and anisotropic electric transport in monolayer β -GeSe

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Liu, Chang; Lu, Yunhao; Yao, Yugui; Yang, Shengyuan A.

    2018-04-01

    Low-dimensional ferroelectricity has attracted tremendous attention due to its huge potential in device applications. Here, based on first-principles calculations, we predict the existence of spontaneous in-plane electrical polarization and ferroelectricity in monolayer β -GeSe, a polymorph of GeSe with a boat conformation newly synthesized in experiment. The magnitude of the polarization is about 0.16 n C /m , which is comparable to that of monolayer SnTe studied in recent experiment, and the intrinsic Curie temperature is estimated to be above 200 K. Interestingly, owing to its puckered structure, the physical properties of β -GeSe can be easily controlled by strain. The Curie temperature can be raised above room temperature by applying a 1% tensile strain, and the magnitude of polarization can be largely increased by strains in either the armchair or zigzag direction. Furthermore, we find that for the case with electron doping, applying strain can readily tune the anisotropic electric transport with the preferred conducting direction rotated by 90∘, which is connected to a strain-induced Lifshitz transition. The ratio between the effective masses along the two in-plane directions can undergo a dramatic change of two orders of magnitude even by a 2% strain. Our result reveals monolayer β -GeSe is a promising platform for exploring ferroelectricity in two dimensions and for nanoscale mechanoelectronic device applications.

  5. Simple Numerical Simulation of Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2002-01-01

    By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

  6. Crack problems for a rectangular plate and an infinite strip

    NASA Technical Reports Server (NTRS)

    Civelek, M. B.; Erdogan, F.

    1980-01-01

    The general plane problem for an infinite strip containing multiple cracks perpendicular to its boundaries is considered. The problem is reduced to a system of singular integral equations. Two specific problems of practical interest are then studied in detail. The first problem explores the interaction effect of multiple edge cracks in a plate or beam under tension or bending. The second problem is that of a rectangular plate containing an arbitrarily oriented crack in the plane of symmetry. Particular emphasis is placed on the problem of a plate containing an edge crack and subjected to concentrated forces.

  7. Theoretical study on strain induced variations in electronic properties of 2H-MoS{sub 2} bilayer sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liang; Dongare, Avinash M., E-mail: dongare@uconn.edu; Namburu, Raju R.

    2014-02-03

    The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.

  8. Reversible strain effect on the magnetization of LaCoO3 films

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Rata, A. D.; Schultz, L.; Dörr, K.

    2009-03-01

    The magnetization (M) of a LaCoO3 film grown epitaxially on a piezoelectric substrate has been investigated in dependence on the biaxial in-plane strain. M decreases with the reversible release of tensile strain, with a maximum change of at least 6% per 0.1% of biaxial strain near the Curie temperature (TC) . The biaxial strain response of TC is estimated to be below 5 K/% in the tensile strain state. This is in agreement with results from statically strained films on various substrates. As possible origins of the strain-induced magnetization are considered (i) the strain-dependent Curie temperature, (ii) a strain-dependent magnetically inhomogeneous (phase-separated) state, and (iii) a strain-dependent magnetic moment (spin state) of Co ions. The TC shift is found insufficient to explain the measured strain-induced magnetization change but contributions from mechanism (ii) or (iii) must be involved.

  9. Growth and characterization of highly tensile strained Ge{sub 1−x}Sn{sub x} formed on relaxed In{sub y}Ga{sub 1−y}P buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; D'Costa, Vijay Richard; Dong, Yuan

    2016-03-28

    Ge{sub 0.94}Sn{sub 0.06} films with high tensile strain were grown on strain-relaxed In{sub y}Ga{sub 1−y}P virtual substrates using solid-source molecular beam epitaxy. The in-plane tensile strain in the Ge{sub 0.94}Sn{sub 0.06} film was varied by changing the In mole fraction in In{sub x}Ga{sub 1−x}P buffer layer. The tensile strained Ge{sub 0.94}Sn{sub 0.06} films were investigated by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. An in-plane tensile strain of up to 1% in the Ge{sub 0.94}Sn{sub 0.06} was measured, which is much higher than that achieved using other buffer systems. Controlled thermal anneal experiment demonstrated that the strain was notmore » relaxed for temperatures up to 500 °C. The band alignment of the tensile strained Ge{sub 0.94}Sn{sub 0.06} on In{sub 0.77}Ga{sub 0.23}P was obtained by high resolution x-ray photoelectron spectroscopy. The Ge{sub 0.94}Sn{sub 0.06}/In{sub 0.77}Ga{sub 0.23}P interface was found to be of the type I band alignment, with a valence band offset of 0.31 ± 0.12 eV and a conduction band offset of 0.74 ± 0.12 eV.« less

  10. Beneficial defects: exploiting the intrinsic polishing-induced wafer roughness for the catalyst-free growth of Ge in-plane nanowires.

    PubMed

    Persichetti, Luca; Sgarlata, Anna; Mori, Stefano; Notarianni, Marco; Cherubini, Valeria; Fanfoni, Massimo; Motta, Nunzio; Balzarotti, Adalberto

    2014-01-01

    We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain. 81.07.Gf; 68.35.bg; 68.35.bj; 62.23.Eg.

  11. An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Liang, Shuang; Li, Zhenhuan

    2017-04-01

    A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.

  12. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously published preliminary linear analysis, it is demonstrated in the present paper that neglecting nonlinear effects for the structure and loads of interest can lead to appreciable loss in analysis fidelity.

  13. Large actuation strain over 0.3% in periodically orthogonal poled BaTiO3 ceramics and multilayer actuators via reversible domain switching

    NASA Astrophysics Data System (ADS)

    Wang, Qiangzhong; Li, Faxin

    2018-06-01

    Lead titanate zirconate (PZT) ceramics based piezoelectric actuators always suffer from small output strains (typically 0.1%–0.15%) and have recently been criticized for the toxicity problem of the high-concentration lead. In our recent work (Li et al 2017 J. Appl. Phys. 122 074103), we realized large local actuation strain nearly 0.6% in a periodically orthogonal poled (POP) PZT ceramics via reversible domain switching. In this work, we applied the POP method to barium titanate (BT) ceramics and proposed a specially designed multilayer actuator which can output large uniform strain. The simple tetragonal structure of BT ceramics makes it easier to understand the mechanism of reversible domain switching in POP ceramics and its lead-free characteristic is more promising. Firstly, a POP BT ceramic piece was fabricated and the actuation testing results show that local large actuation strain of 0.36% can be obtained under a field of 2 kV mm‑1 at 0.1 Hz. However, the actuation strain is non-uniform along the period direction, varying from 0.22% to 0.36%. Then, to output uniform large strain, a four-layer actuator based on the POP BT ceramics was designed and fabricated in which only the in-plane poled regions of the adjacent layers were bonded. Results show that the output strain turns to be uniform in this way, which is 0.34% under 2 kV mm‑1, resulting in a very high large-signal (=S max/E max) of 1700 pm V‑1. The large actuation strain is very stable and keeps unchanged after 20k cycles of operation. It drops quickly with the increasing frequency and is stabilized at 0.18% above 1.0 Hz. Finally, bipolar field testing was conducted on the POP BT based actuator. Results show that the actuator shows electrostriction-like symmetric bipolar actuation behavior with the repeatable actuation strain of 0.3% under 2 kV mm‑1. This work may provide a feasible solution to low frequency, large-strain lead-free piezoelectric actuation.

  14. Stress wave calculations in composite plates using the fast Fourier transform.

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  15. The planes of satellite galaxies problem, suggested solutions, and open questions

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.

    2018-02-01

    Satellite galaxies of the Milky Way and of the Andromeda galaxy have been found to preferentially align in significantly flattened planes of satellite galaxies, and available velocity measurements are indicative of a preference of satellites in those structures to co-orbit. There is an increasing evidence that such kinematically correlated satellite planes are also present around more distant hosts. Detailed comparisons show that similarly anisotropic phase-space distributions of sub-halos are exceedingly rare in cosmological simulations based on the ΛCDM paradigm. Analogs to the observed systems have frequencies of ≤ 0.5% in such simulations. In contrast to other small-scale problems, the satellite planes issue is not strongly affected by baryonic processes because the distribution of sub-halos on scales of hundreds of kpc is dominated by gravitational effects. This makes the satellite planes one of the most serious small-scale problems for ΛCDM. This review summarizes the observational evidence for planes of satellite galaxies in the Local Group and beyond, and provides an overview of how they compare to cosmological simulations. It also discusses scenarios which aim at explaining the coherence of satellite positions and orbits, and why they all are currently unable to satisfactorily resolve the issue.

  16. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  17. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  18. Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.

  19. Wetting of a partially immersed compliant rod

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yuen; Jagota, Anand

    2016-11-01

    The force on a solid rod partially immersed in a liquid is commonly used to determine the liquid-vapor surface tension by equating the measured force required to remove the rod from the liquid to the vertical component of the liquid-vapor surface tension. Here, we study how this process is affected when the rod is compliant. For equilibrium, we enforce force and configurational energy balance, including contributions from elastic energy. We show that, in general, the contact angle does not equal that given by Young's equation. If surface stresses are tensile, the strain in the immersed part of the rod is found to be compressive and to depend only on the solid-liquid surface stress. The strain in the dry part of the rod can be either tensile or compressive, depending on a combination of parameters that we identify. We also provide results for compliant plates partially immersed in a liquid under plane strain and plane stress. Our results can be used to extract solid surface stresses from such experiments.

  20. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  1. Compact forced simple-shear sample for studying shear localization in materials

    DOE PAGES

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less

  2. X-ray reciprocal space mapping of dislocation-mediated strain relaxation during InGaAs/GaAs(001) epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru

    2011-12-01

    Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into fourmore » thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.« less

  3. Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Nicolas, Matthew James

    The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.

  4. Influence of strain on dislocation core in silicon

    NASA Astrophysics Data System (ADS)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  5. Uncooled Cantilever Microbolometer Focal Plane Arrays with mK Temperature Resolution: Engineering Mechanics for the Next Generation

    DTIC Science & Technology

    2009-11-25

    34Nanoindentation Stress-Strain Curves of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films," Thin Solid Films, 516 (8) (2008) 1941-1951. 9. S...1604. 5. Z. Cao* and X. Zhang, "Measurement of Stress-Strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation," in Processing...Microsystems (Transducers 󈧋), Lyon, France, June 10-14, 2007. 9. Z. Cao* and X. Zhang, “Measurement of Stress-strain Curves of PECVD Silicon Oxide

  6. Effect of biaxial strain on the magnetism of Fe16N2: Density-functional investigations

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Liu, Lijuan; Wu, Ping

    2014-02-01

    The effect of biaxial strain on the magnetism of α″-Fe16N2 was investigated by the first principles calculations. The GGA, GGA + U and HSE06 calculations give the same result that the magnetic moments increase with the biaxial strain in the ab plane. All non-equivalent Fe atoms contribute to the increase of magnetic moments, although the variations of inter-atomic distances between non-equivalent Fe and N are different. Additionally, the magnetic anisotropy of Fe16N2 could be controlled by the biaxial strain.

  7. The Effect of Crystallite Size and Texture on the Strength of MgGeO3 Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Miyagi, Lowell

    2011-06-01

    In-situ radial synchrotron x-ray diffraction is used to measure lattice strain and lattice preferred orientation (texture) in MgGeO3 post-perovskite synthesized and deformed in the diamond anvil cell up to 135 GPa. Lattice strains are used to calculate differential stress supported by the sample and can provide a lower bounds estimate on yield strength. MgGeO3 post-perovskite synthesized from the enstatite phase exhibits a weak transformation texture of (100) planes at high angles to the direction of compression. In a sample with larger crystallites, pressure increase and deformation results in (001) lattice planes orienting nearly perpendicular to compression, consistent with dominant (001) slip. In another sample with smaller crystallites it is difficult to induce texture change, and differential stress is higher than in the sample with larger crystallites. When MgGeO3 post-perovskite is synthesized from the perovskite phase a different transformation texture of (001) planes at high angles to compression is observed. This sample is able to support large differential stress as the direction perpendicular to the (001) plane is a plastically hard orientation for MgGeO3 post-perovskite. This work was supported by the Carnegie DOE Alliance Center and a Bateman fellowship at Yale University.

  8. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  9. In-plane stability analysis of non-uniform cross-sectioned curved beams

    NASA Astrophysics Data System (ADS)

    Öztürk, Hasan; Yeşilyurt, İsa; Sabuncu, Mustafa

    2006-09-01

    In this study, in-plane stability analysis of non-uniform cross-sectioned thin curved beams under uniformly distributed dynamic loads is investigated by using the Finite Element Method. The first and second unstable regions are examined for dynamic stability. In-plane vibration and in-plane buckling are also studied. Two different finite element models, representing variations of cross-section, are developed by using simple strain functions in the analysis. The results obtained from this study are compared with the results of other investigators in existing literature for the fundamental natural frequency and critical buckling load. The effects of opening angle, variations of cross-section, static and dynamic load parameters on the stability regions are shown in graphics.

  10. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  11. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1988-10-01

    Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.

  12. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    PubMed

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  13. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    PubMed Central

    Li, Shuang; Li, Rui

    2016-01-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977

  14. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  15. Toward Effective Shell Modeling of Wrinkled Thin-Film Membranes Exhibiting Stress Concentrations

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sleight, David W.

    2004-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns. An element-level, strain-energy density criterion is suggested for facilitating automated, adaptive mesh refinements specifically aimed at the modeling of thin-film membranes undergoing wrinkling deformations.

  16. Engineering Evaluation of International Low Impact Docking System Latch Hooks

    NASA Technical Reports Server (NTRS)

    Martinez, J.; Patin, R.; Figert, J.

    2013-01-01

    The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).

  17. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a well suited electrode material that is both conducting, and full strained on the MgAl2O4 substrate is quite rare. We will supply some answers to this unique problem. XRD results show that Ni1-xAlxO1+delta (x=0.3, 0.4 & 0.5) film, although highly mixed with Al2O3, still takes rock-salt structure and is grown very well on the spinel MgAl 2O4 substrate, with perfect crystallization and a smooth surface. Ni0.7Al0.3O1+ delta and Ni 0.6Al0.4O1+ delta are good buffer layers for perovskite film on spinel MgAl2O4 substrate. Ni 0.5Al0.5O1+ delta could also be a good buffer layer. The structural transition from rock-salt to spinel was found at x=0.67. Tensile strain effects from thermal expansion difference of BiFeO3 films were found. Thermal expansion difference caused strain does not change the ferroelectric property greatly, due to film relaxation. BiFeO3 film with NAO buffer exhibit much larger strain.

  18. Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.

    1999-11-01

    A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.

  19. Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin

    2015-03-01

    We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''

  20. Calculating tissue shear modulus and pressure by 2D log-elastographic methods

    NASA Astrophysics Data System (ADS)

    McLaughlin, Joyce R.; Zhang, Ning; Manduca, Armando

    2010-08-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ sdot u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms.

  1. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks

    NASA Astrophysics Data System (ADS)

    Pakzad, R.; Wang, S. Y.; Sloan, S. W.

    2018-04-01

    In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of pressurization rates and permeability conditions.

  2. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.

    PubMed

    Yousefsani, Seyed Abdolmajid; Shamloo, Amir; Farahmand, Farzam

    2018-04-01

    A transverse-plane hyperelastic micromechanical model of brain white matter tissue was developed using the embedded element technique (EET). The model consisted of a histology-informed probabilistic distribution of axonal fibers embedded within an extracellular matrix, both described using the generalized Ogden hyperelastic material model. A correcting method, based on the strain energy density function, was formulated to resolve the stiffness redundancy problem of the EET in large deformation regime. The model was then used to predict the homogenized tissue behavior and the associated localized responses of the axonal fibers under quasi-static, transverse, large deformations. Results indicated that with a sufficiently large representative volume element (RVE) and fine mesh, the statistically randomized microstructure implemented in the RVE exhibits directional independency in transverse plane, and the model predictions for the overall and local tissue responses, characterized by the normalized strain energy density and Cauchy and von Mises stresses, are independent from the modeling parameters. Comparison of the responses of the probabilistic model with that of a simple uniform RVE revealed that only the first one is capable of representing the localized behavior of the tissue constituents. The validity test of the model predictions for the corona radiata against experimental data from the literature indicated a very close agreement. In comparison with the conventional direct meshing method, the model provided almost the same results after correcting the stiffness redundancy, however, with much less computational cost and facilitated geometrical modeling, meshing, and boundary conditions imposing. It was concluded that the EET can be used effectively for detailed probabilistic micromechanical modeling of the white matter in order to provide more accurate predictions for the axonal responses, which are of great importance when simulating the brain trauma or tumor growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.M.; Li, D.F.; Xing, Z.S.

    The morphology and habit planes of deformation-induced lenticular martensite were investigated by optical and transmission electron microscopy in Fe-30Ni and Fe-30Ni-0.11C alloys. Transitions in morphology were observed with progressive deformation levels going from lenticular to butterfly martensite for the Fe-30Ni-0.11C alloy. The habit planes changed from (225)[sub f] or (259)[sub f] for the thermal lenticular martensite to (111)[sub f] for the strain-induced martensite. The morphology and crystallography of the small butterfly martensites was also investigated. A change in the orientation relationships from K-S to N-W relations was also observed. These changes were attributed to the contribution of mobile dislocations whichmore » modified the shear mode form twinning to slip, and to a plastic accommodation of transformation strains.« less

  4. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Brault, J.; Nemoz, M.; Teisseire, M.; Vinter, B.; Leroux, M.; Chauveau, J.-M.

    2011-12-01

    Nonpolar (112¯0) Al0.2Ga0.8N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (112¯0) Zn0.74Mg0.26O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  5. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM; Gin, Aaron [Albuquerque, NM; Marsh, Phillip F [Lowell, MA; Young, Erik W [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  6. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  7. Beneficial defects: exploiting the intrinsic polishing-induced wafer roughness for the catalyst-free growth of Ge in-plane nanowires

    PubMed Central

    2014-01-01

    We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain. PACS 81.07.Gf; 68.35.bg; 68.35.bj; 62.23.Eg PMID:25114649

  8. Strain-engineering of Janus SiC monolayer functionalized with H and F atoms

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Sadki, K.; Kourra, M.-H.; Bousmina, M.

    2018-05-01

    Based on ab initio density functional theory calculations, the structural, electronic, mechanical, acoustic, thermodynamic, and piezoelectric properties of (F,H) Janus SiC monolayers are studied. The new set of derivatives shows buckled structures and different band gap values. Under strain, the buckling changes and the structures pass from semiconducting to metallic. The elastic limits and the metastable regions are determined. The Young's modulus and Poisson ratio reveal stronger behavior for the modified conformers with respect to graphene. The values of the Debye temperature make the new materials suitable for thermal application. Moreover, all the conformers show in-plane and out-of-plane piezoelectric responses comparable with known two-dimensional materials. If engineered, such piezoelectric Janus structures may be promising materials for various nanoelectromechanical applications.

  9. Origin of the resistivity anisotropy in the nematic phase of FeSe

    DOE PAGES

    Tanatar, M. A.; Bohmer, A. E.; Timmons, E. I.; ...

    2016-09-16

    The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to other iron-based superconductors, FeSe does not develop long-range magnetic order below the tetragonal-to-orthorhombic transition at T s ≈ 90 K. This allows for the disentanglement of the contributions to the resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity measurements, we extract the intrinsic resistivity anisotropy of strain-free samples. The anisotropy peaks slightly below T s and decreases to nearly zero on cooling down to the superconducting transition. Furthermore, this behavior is consistent with a scenario in which the in-plane resistivitymore » anisotropy is dominated by inelastic scattering by anisotropic spin fluctuations.« less

  10. Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si

    PubMed Central

    Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan

    2010-01-01

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG. PMID:20876145

  11. Effect of Biaxial Strain on the Phase Transitions of Ca (Fe1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Sapkota, A.; Kreyssig, A.; Bud'ko, S. L.; Drachuck, G.; Saunders, S. M.; Goldman, A. I.; Canfield, P. C.

    2017-03-01

    We study the effect of applied strain as a physical control parameter for the phase transitions of Ca (Fe1 -xCox)2As2 using resistivity, magnetization, x-ray diffraction, and Fe 57 Mössbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. The magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.

  12. Strain-Enhanced p Doping in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Choi, Minseok

    2018-02-01

    Achievement of desired p -type electrical properties in MoS2 remains a challenge. Here, we demonstrate that p doping in monolayer MoS2 can be enhanced in terms of strain manipulation, through first-principles hybrid functional calculations. Biaxial tensile strain and shear strain with smaller in-plane angles induce the dramatic reduction in formation energy of p dopants such as niobium and tantalum, providing the moderate doping contents required for applications. In addition, the formation of sulfur vacancies which are potential compensators of holes released from the dopants is suppressed by the strains. Our calculations pave an alternative strategy to overcome in the realization of p doping in monolayer MoS2 .

  13. Effect of biaxial strain on the phase transitions of Ca ( Fe 1 – x Co x ) 2 As 2

    DOE PAGES

    Bohmer, A. E.; Sapkota, A.; Kreyssig, A.; ...

    2017-03-10

    We study the effect of applied strain as a physical control parameter for the phase transitions of Ca(Fe 1–xCo x) 2As 2 using resistivity, magnetization, x-ray diffraction, and 57Fe Mossbauer spectroscopy. Biaxial strain, namely, compression of the basal plane of the tetragonal unit cell, is created through firm bonding of samples to a rigid substrate via differential thermal expansion. This strain is shown to induce a magnetostructural phase transition in originally paramagnetic samples, and superconductivity in previously nonsuperconducting ones. Lastly, the magnetostructural transition is gradual as a consequence of using strain instead of pressure or stress as a tuning parameter.

  14. From Number Lines to Graphs in the Coordinate Plane: Investigating Problem Solving across Mathematical Representations

    ERIC Educational Resources Information Center

    Earnest, Darrell

    2015-01-01

    This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…

  15. Three-State Ferroelastic Switching and Large Electromechanical Responses in PbTiO3 Thin Films.

    PubMed

    Damodaran, Anoop R; Pandya, Shishir; Agar, Josh C; Cao, Ye; Vasudevan, Rama K; Xu, Ruijuan; Saremi, Sahar; Li, Qian; Kim, Jieun; McCarter, Margaret R; Dedon, Liv R; Angsten, Tom; Balke, Nina; Jesse, Stephen; Asta, Mark; Kalinin, Sergei V; Martin, Lane W

    2017-10-01

    Leveraging competition between energetically degenerate states to achieve large field-driven responses is a hallmark of functional materials, but routes to such competition are limited. Here, a new route to such effects involving domain-structure competition is demonstrated, which arises from strain-induced spontaneous partitioning of PbTiO 3 thin films into nearly energetically degenerate, hierarchical domain architectures of coexisting c/a and a 1 /a 2 domain structures. Using band-excitation piezoresponse force microscopy, this study manipulates and acoustically detects a facile interconversion of different ferroelastic variants via a two-step, three-state ferroelastic switching process (out-of-plane polarized c + → in-plane polarized a → out-of-plane polarized c - state), which is concomitant with large nonvolatile electromechanical strains (≈1.25%) and tunability of the local piezoresponse and elastic modulus (>23%). It is further demonstrated that deterministic, nonvolatile writing/erasure of large-area patterns of this electromechanical response is possible, thus showing a new pathway to improved function and properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Three dimensional finite-element analysis of finite-thickness fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1977-01-01

    The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.

  17. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  18. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high levelmore » of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.« less

  19. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter

    PubMed Central

    Feng, Yuan; Okamoto, Ruth J.; Namani, Ravi; Genin, Guy M.; Bayly, Philip V.

    2013-01-01

    White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned, myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well. Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local mean fiber direction. Suitable material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy–Green strain tensor to account for the effects of relatively stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not all, published models of white matter depend on I4 but not on I5. Here, we explore the small strain limits of these models in the context of experimental measurements that probe these dependencies. Models in which strain energy depends on I4 but not I5 can capture differences in Young’s (tensile) moduli, but will not exhibit differences in shear moduli for loading parallel and normal to the mean direction of axons. We show experimentally, using a combination of shear and asymmetric indentation tests, that white matter does exhibit such differences in both tensile and shear moduli. Indentation tests were interpreted through inverse fitting of finite element models in the limit of small strains. Results highlight that: (1) hyperelastic models of transversely isotropic tissues such as white matter should include contributions of both the I4 and I5 strain pseudo-invariants; and (2) behavior in the small strain regime can usefully guide the choice and initial parameterization of more general material models of white matter. PMID:23680651

  20. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  1. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  2. Topological analysis of the motion of an ellipsoid on a smooth plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivochkin, M Yu

    2008-06-30

    The problem of the motion of a dynamically and geometrically symmetric heavy ellipsoid on a smooth horizontal plane is investigated. The problem is integrable and can be considered a generalization of the problem of motion of a heavy rigid body with fixed point in the Lagrangian case. The Smale bifurcation diagrams are constructed. Surgeries of tori are investigated using methods developed by Fomenko and his students. Bibliography: 9 titles.

  3. Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane

    ERIC Educational Resources Information Center

    Chick, Helen

    2016-01-01

    The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…

  4. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  5. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  6. Comment on "Out-of-plane equilibrium points in the restricted three-body problem with oblateness (Research Note)"

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Xuefeng; Zhou, Li-Yong

    2018-06-01

    Douskos & Markellos (2006, A&A, 446, 357) first reported the existence of the out-of-plane equilibrium points in restricted three-body problem with oblateness. This result deviates significantly from the intuitive physical point of view that there is no other force that can balance the combined gravitation in Z direction. In fact, the out-of-plane equilibrium in that model is illusory and we prove here that such equilibrium points arise from the improper application of the potential function.

  7. STUDY ON THE MECHANICAL WORKING CONDITIONS OF NUCLEAR MATERIALS AS RELATED TO ROLLING. Quarterly Report No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, C.A.M.; Sabato, J.A.

    1962-09-01

    BS>Descriptions are given of: (a) the design, construction, and adjustment of a Ford plane-strain compression die, to be used in the determination of constrained yield stress curves, and (b) the design and construction of a load cell with strain gages to be used in the measurement of the rolling load during rolling. (auth)

  8. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  9. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  10. Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping

    2008-05-01

    Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.

  11. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    PubMed

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations assumed by BPs in thin films reflect a complex interplay of surface interactions and elastic energies associated with strain of the BP lattice. The results also provide new principles and methods to control the structure and properties of BP thin films, which may find use in BP-templated material synthesis, and BP-based optical and electronic devices.

  12. Right ventricular dysfunction affects survival after surgical left ventricular restoration.

    PubMed

    Couperus, Lotte E; Delgado, Victoria; Palmen, Meindert; van Vessem, Marieke E; Braun, Jerry; Fiocco, Marta; Tops, Laurens F; Verwey, Harriëtte F; Klautz, Robert J M; Schalij, Martin J; Beeres, Saskia L M A

    2017-04-01

    Several clinical and left ventricular parameters have been associated with prognosis after surgical left ventricular restoration in patients with ischemic heart failure. The aim of this study was to determine the prognostic value of right ventricular function. A total of 139 patients with ischemic heart failure (62 ± 10 years; 79% were male; left ventricular ejection fraction 27% ± 7%) underwent surgical left ventricular restoration. Biventricular function was assessed with echocardiography before surgery. The independent association between all-cause mortality and right ventricular fractional area change, tricuspid annular plane systolic excursion, and right ventricular longitudinal peak systolic strain was assessed. The additive effect of multiple impaired right ventricular parameters on mortality also was assessed. Baseline right ventricular fractional area change was 42% ± 9%, tricuspid annular plane systolic excursion was 18 ± 3 mm, and right ventricular longitudinal peak systolic strain was -24% ± 7%. Within 30 days after surgery, 15 patients died. Right ventricular fractional area change (hazard ratio, 0.93; 95% confidence interval, 0.88-0.98; P < .01), tricuspid annular plane systolic excursion (hazard ratio, 0.80; 95% confidence interval, 0.66-0.96; P = .02), and right ventricular longitudinal peak systolic strain (hazard ratio, 1.15; 95% confidence interval, 1.05-1.26; P < .01) were independently associated with 30-day mortality, after adjusting for left ventricular ejection fraction and aortic crossclamping time. Right ventricular function was impaired in 21%, 20%, and 27% of patients on the basis of right ventricular fractional area change, tricuspid annular plane systolic excursion, and right ventricular longitudinal peak systolic strain, respectively. Any echocardiographic parameter of right ventricular dysfunction was present in 39% of patients. The coexistence of several impaired right ventricular parameters per patient was independently associated with increased 30-day mortality (hazard ratio, 2.83; 95% confidence interval, 1.64-4.87, P < .01 per additional impaired parameter). Baseline right ventricular systolic dysfunction is independently associated with increased mortality in patients with ischemic heart failure undergoing surgical left ventricular restoration. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2013-01-01

    The fracture behaviour of pure iron deformed by equal-channel angular pressing via route A was examined. The fracture toughness was determined for different specimen orientations and measured in terms of the critical plane strain fracture toughness, KIC, the critical J integral, JIC, and the crack opening displacement for crack initiation, CODi. The results demonstrate that the crack plane orientation has a pronounced effect on the fracture toughness. Different crack plane orientations lead to either crack deflection or delamination, resulting in increased fracture resistance in comparison to one remarkably weak specimen orientation. The relation between the microstructure typical for the applied deformation route and the enormous differences in the fracture toughness depending on the crack plane orientation will be analyzed in this paper. PMID:23645995

  14. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  15. Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept

    ERIC Educational Resources Information Center

    Kawam, Alae; Kouh, Minjoon

    2011-01-01

    In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…

  16. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  17. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements.

    PubMed

    Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella

    2015-12-01

    To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state in +30° and -30° models, higher rigidity restoring materials exhibits lower interfacial stress with respect to low rigidity materials. Fracture planes inclined palatal-buccally in apical-coronal direction (+30°) reduce the interfacial stress intensity and natural tissues stress intensity with respect to the other tested configurations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  19. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  20. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  1. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  2. Epitaxial effects in thin films of high-Tc cuprates with the K2NiF4 structure

    NASA Astrophysics Data System (ADS)

    Naito, Michio; Sato, Hisashi; Tsukada, Akio; Yamamoto, Hideki

    2018-03-01

    La2-xSrxCuO4 (LSCO) and La2-xBaxCuO4 (LBCO) have been recognized as the archetype materials of "hole-doped" high-Tc superconductors. Their crystal structures are relatively simple with a small number of constituent cation elements. In addition, the doping level can be varied by the chemical substitution over a wide range enough to obtain the full spectrum of doping-dependent electronic and magnetic properties. These attractive features have dedicated many researchers to thin-film growth of LSCO and LBCO. The critical temperature (Tc) of LSCO and LBCO is sensitive to strain as manifested by a positive pressure coefficient of Tc in bulk samples. In general, films are strained if they are grown on lattice-mismatched substrates (epitaxial strain). Early attempts (before 1997) at the growth of LSCO and LBCO films resulted in depressed Tc below 30 K as they were grown on a commonly used SrTiO3 substrate (in-plane lattice parameter asub = 3.905 Å): the in-plane lattice parameters of LSCO and LBCO are ≤3.80 Å, and hence tensile epitaxial strain is introduced. The situation was changed by the use of LaSrAlO4 substrates with a slightly shorter in-plane lattice constant (asub = 3.756 Å). On LaSrAlO4 substrates, the Tc reaches 45 K in La1.85Sr0.15CuO4, 47 K in La1.85Ba0.15CuO4, and 56 K in ozone-oxidized La2CuO4+δ films, substantially higher than the Tc's of the bulk compounds. The Tc increase in La1.85Sr0.15CuO4 films on LaSrAlO4 and decrease on SrTiO3 are semi-quantitatively in accord with the phenomenological estimations based on the anisotropic strain coefficients of Tc (dTc/dεi). In this review article, we describe the growth and properties of films of cuprates having the K2NiF4 structure, mainly focusing on the increase/decrease of Tc by epitaxial strain and quasi-stable phase formation by epitaxial stabilization. We further extract the structural and/or physical parameters controlling Tc toward microscopic understanding of the variation of Tc by epitaxial strain.

  3. Plane Poiseuille Flow of a Rarefied Gas in the Presence of a Strong Gravitation

    NASA Astrophysics Data System (ADS)

    Doi, Toshiyuki

    2010-11-01

    Poiseuille flow of a rarefied gas between two horizontal planes in the presence of a strong gravitation is considered, where the gravity is so strong that the path of a molecule is curved considerably as it ascends or descends the distance of the planes. The gas behavior is studied based on the Boltzmann equation. An asymptotic analysis for a slow variation in the longitudinal direction is carried out and the problem is reduced to a spatially one dimensional problem, as was in the Poiseuille flow problem in the absence of the gravitation. The mass flow rate as well as the macroscopic variables is obtained for a wide range of the mean free path of the gas and the gravity. A numerical analysis of a two dimensional problem is also carried out and the result of the asymptotic analysis is verified.

  4. Speckle photography during dynamic impact of an energetic material using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay, B.W.; Laabs, G.W.; Henson, B.F.

    1997-08-01

    Laser and white light speckle photography have been used to observe surface displacement in a number of materials and over a varied range of strain rates. However, each suffers from limitations. We have developed a novel application of speckle photography in very difficult environments by using laser-induced fluorescence to generate the speckle pattern. This permits confinement of the free surface without undue degradation of the correlation upon which speckle methods are based. We have applied this method to measure the surface displacement of a reactive material during dynamic deformation at moderate strain rates. Conventional methods were tried but were unsuccessful,more » necessitating a novel approach. To the best of our knowledge, neither high-speed laser nor white light speckle photography has been performed using energetic materials. These measurements are very difficult because of the low material strength (yield strength {approximately}8{endash}80 MPa), and because significant out-of-plane motion and surface disruption occur during fracture, and early during the deformation process. We report results from experiments in which these major problems have been overcome. {copyright} {ital 1997 American Institute of Physics.}« less

  5. An interferometric strain-displacement measurement system

    NASA Technical Reports Server (NTRS)

    Sharpe, William N., Jr.

    1989-01-01

    A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.

  6. Covariance of dynamic strain responses for structural damage detection

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.

    2017-10-01

    A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.

  7. A finite element method for the thermochemical decomposition of polymeric materials. II - Carbon phenolic composites

    NASA Technical Reports Server (NTRS)

    Sullivan, R. M.; Salamon, N. J.

    1992-01-01

    A previously developed formulation for modeling the thermomechanical behavior of chemically decomposing, polymeric materials is verified by simulating the response of carbon phenolic specimens during two high temperature tests: restrained thermal growth and free thermal expansion. Plane strain and plane stress models are used to simulate the specimen response, respectively. In addition, the influence of the poroelasticity constants upon the specimen response is examined through a series of parametric studies.

  8. The Shock and Vibration Digest. Volume 12, Number 8,

    DTIC Science & Technology

    1980-08-01

    half tme coefficient of 0.315 in the above lamina. Sequential delamination began when a strip equation because two surfaces are formed). of width D in...a striker plate. Each specimen study of the two-dimensional ( plane -strain) response was subjected to two separate impact loadings: an of an elastic...laminated plate; they used a finite ele- in- plane impact and a so-called shear-bending impact. ment/normal mode technique. The physical behavior The

  9. Novel Approach on the Optimisation of Mid-Course Corrections Along Interplanetary Trajectories

    NASA Astrophysics Data System (ADS)

    Iorfida, Elisabetta; Palmer, Phil; Roberts, Mark

    The primer vector theory, firstly proposed by Lawden, defines a set of necessary conditions to characterise whether an impulsive thrust trajectory is optimal with respect to propellant usage, within a two-body problem context. If the conditions are not satisfied, one or more potential intermediate impulses are performed along the transfer arc, in order to lower the overall cost. The method is based on the propagation of the state transition matrix and on the solution of a boundary value problem, which leads to a mathematical and computational complexity.In this paper, a different approach is introduced. It is based on a polar coordinates transformation of the primer vector which allows the decoupling between its in-plane and out-of-plane components. The out-of-plane component is solved analytically while for the in-plane ones a Hamiltonian approximation is made.The novel procedure reduces the mathematical complexity and the computational cost of Lawden's problem and gives also a different perspective about the optimisation of a transfer trajectory.

  10. Comparative analysis of methods for modeling the penetration and plane-parallel motion of conical projectiles in soil

    NASA Astrophysics Data System (ADS)

    Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.

    2015-05-01

    This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.

  11. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  12. On the determination of stress fields and displacements in a thin elastoplastic plate containing elastic inclusion - a shim

    NASA Astrophysics Data System (ADS)

    Kovalev, A. V.; Rusina, E. Y.; Yakovlev, A. Y.

    2018-03-01

    The paper is devoted to the determination of the stress-strain state of a mechanical structure, which consists of a thin infinite elastoplastic plate with a hole and a continuous fine elastic inclusion. The complexity of this problem lies in the fact that the shape of the boundary between the elastic and plastic zones in the plate is not known in advance. The small parameter method is used as the solution method, while the small parameter characterizes the deviation of the shape of the contour from the circle and the perturbation of external static boundary conditions. As the zero solution, the axisymmetric elastoplastic state of the plate with inclusion is chosen. Two variants of inclusion fixation in a plate are considered: inclusion is enclosed with tension or soldered. As a result of solving the problem within the framework of ideal plasticity, the distribution of the stress and displacement fields and the shape of the elastoplastic boundary are obtained. To illustrate the case of a plane-stressed state, the results of a numerical experiment on the mathematical model obtained are presented.

  13. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor)

    2014-01-01

    A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

  14. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  15. X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires

    NASA Astrophysics Data System (ADS)

    Eymery, J.; Favre-Nicolin, V.; Fröberg, L.; Samuelson, L.

    2009-03-01

    Wrap-gate (111) InAs nanowires (NWs) were studied after HfO2 dielectric coating and Cr metallic deposition by a combination of grazing incidence x-ray techniques. In-plane and out-of-plane x-ray diffraction (crystal truncation rod analysis) allow determining the strain tensor. The longitudinal contraction, increasing with HfO2 and Cr deposition, is significantly larger than the radial dilatation. For the Cr coating, the contraction along the growth axis is quite large (-0.95%), and the longitudinal/radial deformation ratio is >10, which may play a role on the NW transport properties. Small angle x-ray scattering shows a smoothening of the initial hexagonal bare InAs NW shape and gives the respective core/shell thicknesses, which are compared to flat surface values.

  16. Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.

  17. Perspective - Systematic study of Reynolds stress closure models in the computations of plane channel flows

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Sarkar, S.

    1993-01-01

    The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.

  18. Systematic study of Reynolds stress closure models in the computations of plane channel flows

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Sarkar, S.

    1992-01-01

    The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.

  19. Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique

    PubMed Central

    Kostyuk, Oksana; Birch, Helen L; Mudera, Vivek; Brown, Robert A

    2004-01-01

    This study aimed to investigate the preferential collagen fibril alignment in unloaded and loaded tendons using elastic scattering spectroscopy. The device consisted of an optical probe, a pulsed light source (320–860 nm), a spectrometer and a PC. Two probes with either 2.75 mm or 300 μm source-detector separations were used to monitor deep and superficial layers, respectively. Equine superficial digital flexor tendons were subjected to ex vivo progressive tensional loading. Seven times more backscattered light was detected parallel rather than perpendicular to the tendon axis with the 2.75 mm separation probe in unloaded tendons. In contrast, using the 300 μm separation probe the plane of maximum backscatter (3-fold greater) was perpendicular to the tendon axis. There was no optical anisotropy in the cross-sectional plane of the tendon (i.e. the transversely cut tendon surface), with no structural anisotropy. During mechanical loading (9–14% strain) backscatter anisotropy increased 8.5- to 18.5-fold along the principal strain axis for 2.75 mm probe separation, but almost disappeared in the perpendicular plane (measured using the 300 μm probe separation). Optical (anisotropy) and mechanical (strain) measurements were highly correlated. We conclude that spatial anisotropy of backscattered light can be used for quantitative monitoring of collagen fibril alignment and tissue reorganization during loading, with the potential for minimally invasive real-time structural monitoring of fibrous tissues in normal, pathological or repairing tissues and in tissue engineering. PMID:14578479

  20. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  1. Comparing slow and fast rupture in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.

    2017-12-01

    During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these irregularities. In Westerly granite, slow rupture experiments tend to produce complex fracture patterns while during the dynamic rupture experiments secondary rupture planes are not formed. These findings show that grain or flaw size, flaw distribution, and rupture speed strongly influence fracture localization and propagation.

  2. Prognostic Value of Right Ventricular Dysfunction in Heart Failure With Reduced Ejection Fraction: Superiority of Longitudinal Strain Over Tricuspid Annular Plane Systolic Excursion.

    PubMed

    Carluccio, Erberto; Biagioli, Paolo; Alunni, Gianfranco; Murrone, Adriano; Zuchi, Cinzia; Coiro, Stefano; Riccini, Clara; Mengoni, Anna; D'Antonio, Antonella; Ambrosio, Giuseppe

    2018-01-01

    In heart failure (HF) with reduced ejection fraction, right ventricular (RV) impairment, as defined by reduced tricuspid annular plane systolic excursion, is a predictor of poor outcome. However, peak longitudinal strain of RV free wall (RVFWS) has been recently proposed as a more accurate and sensitive tool to evaluate RV function. Accordingly, we investigated whether RVFWS could help refine prognosis of patients with HF with reduced ejection fraction in whom tricuspid annular plane systolic excursion is still preserved. A total of 200 patients with HF with reduced ejection fraction (age, 66±11 years; ejection fraction, 30±7%) with preserved tricuspid annular plane systolic excursion (>16 mm) underwent RV function assessment using speckle-tracking echocardiography to measure peak RVFWS. After a median follow-up period of 28 months, 62 (31%) patients reached the primary composite end point of all-cause death/HF rehospitalization. Median RVFWS was -19.3% (interquartile range, -23.3% to -15.0%). By lasso-penalized Cox-hazard model, RVFWS was an independent predictor of outcome, along with Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure-HF score, Echo-HF score, and severe mitral regurgitation. The best cutoff value of RVFWS for prediction of outcome was -15.3% (area under the curve, 0.68; P <0.001; sensitivity, 50%; specificity, 80%). In 50 patients (25%), RVFWS was impaired (ie, ≥-15.3%); event rate (per 100 patients per year) was greater in them than in patients with RVFWS <-15.3% (29.5% [95% confidence interval, 20.4-42.7] versus 9.4% [95% confidence interval, 6.7-13.1]; P <0.001). RVFWS yielded a significant net reclassification improvement (0.584 at 3 years; P <0.001), with 68% of nonevents correctly reclassified. In patients with HF with reduced ejection fraction with preserved tricuspid annular plane systolic excursion, RV free-wall strain provides incremental prognostic information and improved risk stratification. © 2018 American Heart Association, Inc.

  3. Ductilization of High-Strength Magnesium Alloys

    DTIC Science & Technology

    2012-09-17

    ductility in this system. Figure 4 compares true stress strain curves measured for the solution-treated and peak-aged conditions. Fractography of the...plane 1.274 1.094 1.213 Figure 4. Measured true stress-strain curves and fractography of WE43 Mg alloy Figure 3. FLAPW...Therefore, the enhancement of grain boundary cohesion plays an important role in the improvement of ductility. Figure 5 Fractography of WE43 at

  4. Advanced solid elements for sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  5. Unique Abnormalities in Right Ventricular Longitudinal Strain in Systemic Sclerosis Patients.

    PubMed

    Mukherjee, Monica; Chung, Shang-En; Ton, Von Khue; Tedford, Ryan J; Hummers, Laura K; Wigley, Fredrick M; Abraham, Theodore P; Shah, Ami A

    2016-06-01

    Cardiac involvement in systemic sclerosis (scleroderma [SSc]) adversely affects long-term prognosis, often remaining undetectable despite close clinical examination and 2-dimensional echocardiographic monitoring. Speckle-derived strain of the right ventricle (RV) was utilized to detect occult abnormalities in regional and global contractility in SSc patients. A total of 138 SSc patients with technically adequate echocardiograms was studied and compared with 40 age- and sex-matched healthy non-SSc controls. Standard assessment of RV chamber function included tricuspid annular plane systolic excursion and fractional area change. RV longitudinal systolic speckle-derived strain was assessed in the basal, mid, and apical free wall. Tricuspid annular plane systolic excursion was not different between groups (P=0.307). Although fractional area change was lower in SSc patients than in controls (mean, 48.9 versus 55; P=0.002), the mean fractional area change was still within the normal range (>35). In contrast, RV longitudinal systolic speckle-derived strain measures were significantly different between groups, both globally (-20.4% versus -17.7%; P=0.005) and regionally: they were decreased in the apex (-8.5% versus -17.1%; P<0.0001) and mid segments (-12.4% versus -20.9%; P<0.0001), and increased in the base (-32.2% versus -23.3%; P=0.0001) for the SSc group. The regional difference in the base compared with the apex was significantly greater for SSc than for controls (P<0.0001 for interaction). The differences observed in regional strain between SSc and control were unchanged after adjusting for RV systolic pressure. Speckle-derived strain reveals a heterogenous pattern of regional heart strain in SSc that is not detected by conventional measures of function, suggestive of occult RV myocardial disease. © 2016 American Heart Association, Inc.

  6. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  7. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  8. Revisiting the Cramér Rao Lower Bound for Elastography: Predicting the Performance of Axial, Lateral and Polar Strain Elastograms.

    PubMed

    Verma, Prashant; Doyley, Marvin M

    2017-09-01

    We derived the Cramér Rao lower bound for 2-D estimators employed in quasi-static elastography. To illustrate the theory, we modeled the 2-D point spread function as a sinc-modulated sine pulse in the axial direction and as a sinc function in the lateral direction. We compared theoretical predictions of the variance incurred in displacements and strains when quasi-static elastography was performed under varying conditions (different scanning methods, different configuration of conventional linear array imaging and different-size kernels) with those measured from simulated or experimentally acquired data. We performed studies to illustrate the application of the derived expressions when performing vascular elastography with plane wave and compounded plane wave imaging. Standard deviations in lateral displacements were an order higher than those in axial. Additionally, the derived expressions predicted that peak performance should occur when 2% strain is applied, the same order of magnitude as observed in simulations (1%) and experiments (1%-2%). We assessed how different configurations of conventional linear array imaging (number of active reception and transmission elements) influenced the quality of axial and lateral strain elastograms. The theoretical expressions predicted that 2-D echo tracking should be performed with wide kernels, but the length of the kernels should be selected using knowledge of the magnitude of the applied strain: specifically, longer kernels for small strains (<5%) and shorter kernels for larger strains. Although the general trends of theoretical predictions and experimental observations were similar, biases incurred during beamforming and subsample displacement estimation produced noticeable differences. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  10. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  11. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  12. Solution of a Plane Hydrofracture Problem with Stress Contrast

    NASA Astrophysics Data System (ADS)

    Gladkov, I. O.; Linkov, A. M.

    2018-03-01

    A plane hydrofracture problem for the Khristianovich-Geertsma-de Klerk model is extended and solved in the case where a confining stress closing a fracture is not constant in the direction of its propagation. A method is developed for solving the problem with an arbitrary stress contrast. It is stated that the transition through a contact with positive (negative) contrast occurs with fracture arresting (acceleration), whose intensity is controlled by a dimensionless parameter derived from theoretical considerations and numerical results.

  13. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.

  14. The repeatability and characteristics of right ventricular longitudinal strain imaging by speckle-tracking echocardiography in healthy dogs.

    PubMed

    Morita, T; Nakamura, K; Osuga, T; Yokoyama, N; Khoirun, N; Morishita, K; Sasaki, N; Ohta, H; Takiguchi, M

    2017-08-01

    To assess the repeatability and characteristics of echocardiographic indices of the right ventricular (RV) function derived from speckle-tracking echocardiography. Fourteen laboratory Beagles and 103 privately owned dogs without cardiac disease were involved in this study. Right ventricular longitudinal strain, strain rate, and a strain-related index for assessing RV dyssynchrony derived from speckle-tracking echocardiography were obtained by two different observers using five Beagles. Within-day, between-day, and interobserver coefficients of variation and the intraclass correlation coefficient of speckle-tracking echocardiography indices were determined. Both speckle-tracking echocardiography and conventional indices of RV function, including the peak velocity of systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, fractional area change, and the Tei index, were obtained from 14 Beagles and 103 privately owned dogs. Relationships between echocardiographic indices and the body weight, heart rate, age, and sex were estimated by regression analysis. Speckle-tracking echocardiographic indices showed good within-day repeatability, between-day and interobserver repeatability were moderate to good. In large dogs, RV longitudinal strain, strain rate, and fractional area change were significantly decreased, while the index of RV dyssynchrony, systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, and the Tei index were increased. All speckle-tracking and conventional echocardiographic indices were correlated with the body weight. The speckle-tracking echocardiography indices were highly repeatable and body weight affected speckle-tracking echocardiography indices in dogs. Further studies are needed to apply speckle-tracking echocardiography indices in dogs with cardiac disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biaxial tensile strain tuned up-and-down behavior on lattice thermal conductivity in β-AsP monolayer

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Dong, Jun

    2018-07-01

    Various two-dimensional (2D) materials with a graphene-like buckled structure have emerged, and the β-phase AsP monolayer has been recently proposed to be thermodynamically stable from first-principles calculations. The studies of thermal transport are very useful for these 2D materials-based nano-electronics devices. Motivated by this, a comparative study of strain-dependent phonon transport of AsP monolayers is performed by solving the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). It is found that the lattice thermal conductivity () of the AsP monolayer is very close to the one of As monolayer with a similar buckled structure, which is due to neutralization between the reduction of phonon lifetimes and group velocity enhancement from As to AsP monolayer. The corresponding room-temperature sheet thermal conductance of AsP monolayer is 152.5 . It is noted that the increasing tensile strain can harden a long wavelength out-of-plane (ZA) acoustic mode, and soften the in-plane longitudinal acoustic (LA) and transversal acoustic (TA) modes. Calculated results show that of AsP monolayer presents a nonmonotonic up-and-down behavior with increased strain. The unusual strain dependence is due to the competition among the reduction of phonon group velocities, improved phonon lifetimes of ZA mode and nonmonotonic up-and-down phonon lifetimes of TA/LA mode. It is found that acoustic branches dominate the in the considered strain range, and the contribution from ZA branch increases with increased strain, while it is opposite for TA/LA branch. By analyzing cumulative with respect to phonon mean free path, tensile strain can modulate effectively the size effects on in the AsP monolayer. Our work enriches the studies of thermal transports of 2D materials with graphene-like buckled structures, and strengthens the idea to engineer thermal transport properties by simple mechanical strain, and stimulates further experimental works to synthesize AsP monolayers.

  16. Structural Affects on the Slamming Pressures of High-Speed Planing Craft

    NASA Astrophysics Data System (ADS)

    Ikeda, Christine; Taravella, Brandon; Judge, Carolyn

    2015-11-01

    High-speed planing craft are subjected to repeated slamming events in waves that can be very extreme depending on the wave topography, impact angle of the ship, forward speed of the ship, encounter angle, and height out of the water. The current work examines this fluid-structure interaction problem through the use of wedge drop experiments and a CFD code. In the first set of experiments, a rigid 20-degree deadrise angle wedge was dropped from a range of heights (0 <= H <= 0 . 6 m) and while pressures and accelerations of the slam even were measured. The second set of experiments involved a flexible-bottom 15-degree deadrise angle wedge that was dropped from from the same range of heights. In these second experiments, the pressures, accelerations, and strain field were measured. Both experiments are compared with a non-linear boundary value flat cylinder theory code in order to compare the pressure loading. The code assumes a rigid structure, therefore, the results between the code and the first experiment are in good agreement. The second experiment shows pressure magnitudes that are lower than the predictions due to the energy required to deform the structure. Funding from University of New Orleans Office of Research and Sponsored Programs and the Office of Naval Research.

  17. Towards the stabilization of the low density elements in topology optimization with large deformation

    NASA Astrophysics Data System (ADS)

    Lahuerta, Ricardo Doll; Simões, Eduardo T.; Campello, Eduardo M. B.; Pimenta, Paulo M.; Silva, Emilio C. N.

    2013-10-01

    This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant-Kirchhoff constitutive law, and strong differences are found.

  18. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  19. Focus information is used to interpret binocular images

    PubMed Central

    Hoffman, David M.; Banks, Martin S.

    2011-01-01

    Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139

  20. Effects of biaxial strains on electronic and elastic properties of hexagonal XSi2 (X = Cr, Mo, W) from first-principles

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo

    2018-02-01

    Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.

  1. Fracture Resistance of Railroad Wheels

    DOT National Transportation Integrated Search

    1974-09-01

    The effects of manufacturing method, chemical composition, heat treatment, temperature, and loading rate on the plane strain fracture toughness KIC of railroad wheels have been determined. Carbon content of the wheels is shown to be the principal fac...

  2. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  3. The effects of eccentricities on the fracture of off-axis fiber composites. [carbon fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of-plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to assess the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.

  4. The effects of eccentricities on the fracture of off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to access the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.

  5. Finite lateral compression of an elastic plasticfibre-reinforced tube : loading solutions

    NASA Astrophysics Data System (ADS)

    England, A. H.; Gregory, P. W.

    1999-02-01

    This paper considers the finite plane-strain deformations of an elastic-plastic tubecompressed between two rigid smooth parallel plates. The tube is composed of an elastic-plasticfibre-reinforced material in which the fibres lie in planes perpendicular to the axis of the tube andreinforce the tube in the circumferential direction. The composite is assumed to be an idealmaterial which is inextensible in the fibre-direction and is incompressible. The unloading of theelastic-plastic tube will be considered in a subsequent paper.

  6. Effects of Cutout Orientations on Natural Frequencies and Mode Shapes of Curved Rectangular Composite Panels.

    DTIC Science & Technology

    1986-12-01

    line perpendicular to the midsurface to remain straight and perpendicular under deformation is the equivalent to ignoring the shear strains in planes...perpendicular to the -. nidsurface, or vxz=vyz=0 , where z is the direction normal to the midsurface in Figure 1. In addition, the normals are 4...integration, but are functions of x and y only, the coordinates in the plane of the laminate midsurface E43. 13 S.* e .. .’. . . o ’ . J

  7. Technology for Elevated Temperature Tests of Structural Panels

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1999-01-01

    A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.

  8. Multiaxial Fatigue Life Prediction Based on Short Crack Propagation Model with Equivalent Strain Parameter

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang-Feng; Shang, De-Guang; Sun, Yu-Juan; Song, Ming-Liang; Wang, Xiao-Wei

    2018-01-01

    The maximum shear strain and the normal strain excursion on the critical plane are regarded as the primary parameters of the crack driving force to establish a new short crack model in this paper. An equivalent strain-based intensity factor is proposed to correlate the short crack growth rate under multiaxial loading. According to the short crack model, a new method is proposed for multiaxial fatigue life prediction based on crack growth analysis. It is demonstrated that the method can be used under proportional and non-proportional loadings. The predicted results showed a good agreement with experimental lives in both high-cycle and low-cycle regions.

  9. Shear at Twin Domain Boundaries in YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Geballe, T. H.; Koster, G.; Batterman, B. W.; Patel, J. R.

    2004-05-01

    The microstructure and strain state of twin domains in YBa2Cu3O7-x are discussed based upon synchrotron white-beam x-ray microdiffraction measurements. Intensity variations of the fourfold twin splitting of Laue diffraction peaks are used to determine the twin domain structure. Strain analysis shows that interfaces between neighboring twin domains are strained in shear, whereas the interior of these domains are regions of low strain. These measurements are consistent with the orientation relationships of twin boundaries within and across domains and show that basal plane shear stresses can exceed 100MPa where twin domains meet. Our results support stress field pinning of magnetic flux vortices by twin domain boundaries.

  10. A direct correlation of x-ray diffraction orientation distributions to the in-plane stiffness of semi-crystalline organic semiconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bingxiao; Awartani, Omar; O'Connor, Brendan

    2016-05-02

    Large charge mobilities of semi-crystalline organic semiconducting films could be obtained by mechanically aligning the material phases of the film with the loading axis. A key element is to utilize the inherent stiffness of the material for optimal or desired alignment. However, experimentally determining the moduli of semi-crystalline organic thin films for different loading directions is difficult, if not impossible, due to film thickness and material anisotropy. In this paper, we address these challenges by presenting an approach based on combining a composite mechanics stiffness orientation formulation with a Gaussian statistical distribution to directly estimate the in-plane stiffness (transverse isotropy)more » of aligned semi-crystalline polymer films based on crystalline orientation distributions obtained by X-ray diffraction experimentally at different applied strains. Our predicted results indicate that the in-plane stiffness of an annealing film was initially isotropic, and then it evolved to transverse isotropy with increasing mechanical strains. This study underscores the significance of accounting for the crystalline orientation distributions of the film to obtain an accurate understanding and prediction of the elastic anisotropy of semi-crystalline polymer films.« less

  11. Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Chen, Youlong; Liu, Yilun; Yan, Yuan; Zhu, Yong; Chen, Xi

    2016-10-01

    When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.

  12. Ultrafast dynamic response of single crystal β-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  13. Versatile strain-tuning of modulated long-period magnetic structures

    DOE PAGES

    Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...

    2017-05-10

    In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less

  14. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less

  15. Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    1999-07-01

    We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 μm spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.

  16. Electrical tuning of microwave properties via strain-mediated magnetoelectric coupling in multiferroic composites

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2018-02-01

    Electrical field induced electromagnetic properties via strain-mediated magnetoelectric effect were studied in FeCoNi/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) multiferroic heterostructures. Both the resonance frequency f FMR and the frequency linewidth Δ f are electrically tunable with f FMR being varied from 3.8 to 8.1 GHz and Δ f from 0.66 to 3.6 GHz. The static magnetic characterization result of the sample before and after poling is also in good agreement with the dynamic magnetic measurement. These results were discussed in details within the framework of the strain-mediated magnetoelectric coupling, which was firmly supported by the electrical field dependence of the in-plane strain measured by a strain gauge.

  17. Plasticity of the dense hydrous magnesium silicate phase A at subduction zones conditions

    DOE PAGES

    Gouriet, K.; Hilairet, N.; Amiguet, E.; ...

    2015-09-12

    The plasticity of the dense hydrous magnesium silicate (DHMS) phase A, a key hydrous mineral within cold subduction zones, was investigated by two complementary approaches: high-pressure deformation experiments and computational methods. The deformation experiments were carried out at 11 GPa, 400 and 580 °C, with in situ measurements of stress, strain and lattice preferred orientations (LPO). Based on viscoplastic self-consistent modeling (VPSC) of the observed LPO, the deformation mechanisms at 580 °C are consistent with glide on the (0 0 0 1) basal and prismatic planes. At 400 °C the deformation mechanisms involve glide on prismatic, (0 0 0 1)more » basal and pyramidal planes. Both give flow stresses of 2.5–3 GPa at strain rates of 2–4 × 10-5 s-1. We use the Peierls–Nabarro–Galerkin (PNG) approach, relying on first-principles calculations of generalized stacking fault (γ-surface), and model the core structure of potential dislocations in basal and prismatic planes. The computations show multiple dissociations of the and dislocations (⟨a⟩ and ⟨b⟩ dislocations) in the basal plane, which is compatible with the ubiquity of basal slip in the experiments. The γ-surface calculations also suggest and dislocations (⟨a+c⟩ or ⟨c-b⟩ directions) in prismatic and pyramidal planes, which is also consistent with the experimental data. Phase A has a higher flow strength than olivine. When forming at depths from the dehydration of weak and highly anisotropic hydrated ultramafic rocks, phase A may not maintain the mechanical softening antigorite can provide. The seismic properties calculated for moderately deformed aggregates suggest that S-wave seismic anisotropy of phase A-bearing rocks is lower than hydrous subduction zone lithologies such as serpentinites and blueschists.« less

  18. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  19. Performance of Chevron-notch short bar specimen in determining the fracture toughness of silicon nitride and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Shannon, J. L., Jr.

    1980-01-01

    Ease of preparation and testing are advantages unique to the chevron-notch specimen used for the determination of the plane strain fracture toughness of extremely brittle materials. During testing, a crack develops at the notch tip and extends stably as the load is increased. For a given specimen and notch configuration, maximum load always occurs at the same relative crack length independent of the material. Fracture toughness is determined from the maximum load with no need for crack length measurement. Chevron notch acuity is relatively unimportant since a crack is produced during specimen loading. In this paper, the authors use their previously determined stress intensity factor relationship for the chevron-notch short bar specimen to examine the performance of that specimen in determining the plane strain fracture toughness of silicon nitride and aluminum oxide.

  20. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  1. Creep crack-growth: A new path-independent T sub o and computational studies

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1981-01-01

    Two path independent integral parameters which show some degree of promise as fracture criteria are the C* and delta T sub c integrals. The mathematical aspects of these parameters are reviewed. This is accomplished by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects and large deformations. Two principal conclusions are that delta T sub c is a valid crack tip parameter during nonsteady as well as steady state creep and that delta T sub c has an energy rate interpretation whereas C* does not. An efficient, small displacement, infinitestimal strain, displacement based finite element model is developed for general elastic/plastic material behavior. For the numerical studies, this model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations.

  2. Symmetry driven control of optical properties in WO 3 films

    DOE PAGES

    Herklotz, A.; Rus, S. F.; KC, S.; ...

    2017-06-23

    Optical band gap control of semiconducting thin films is critical for the optimization of photoelectronic and photochemical applications. In this work, we demonstrate that the optical band gap of WO 3 films can be continuously controlled through uniaxial strain induced by low-energy helium implantation. We show that the implantation of He into epitaxially grown and coherently strained WO 3 films can be used to induce single axis out-of-plane lattice expansion of up to 2%. Ellipsometric spectroscopy reveals that this lattice expansion shifts the absorption spectrum to lower energies and effectively reduces the optical band gap by about 0.18 eV permore » percent expansion of the out-of-plane unit cell length. Furthermore, density functional calculations show that this response is a direct result of changes in orbital degeneracy driven by changes in the octahedral rotations and tilts.« less

  3. Test and Analyses of a Composite Multi-Bay Fuselage Panel Under Uni-Axial Compression

    NASA Technical Reports Server (NTRS)

    Li, Jian; Baker, Donald J.

    2004-01-01

    A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-of-plane translation. The free edges of the panel were constrained by knife-edges. The panel was modeled with shell finite elements and analyzed with ABAQUS nonlinear solver. The nonlinear predictions were compared with the test results in out-of-plane displacements, back-to-back surface strains on stringer flanges and back-to-back surface strains at the centers of the skin-bays. The analysis predictions were in good agreement with the test data up to post-buckling.

  4. Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.; Velardi, L.; Alifano, P.; Monaco, C.; Talà, A.; Tredici, M.; Rainò, A.

    2006-07-01

    A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.

  5. Study on observation planning of LAMOST focal plane positioning system and its simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Jin, Yi; Peng, Xiaobo; Xing, Xiaozheng

    2006-06-01

    Fiber Positioning System of LAMOST focal plane based on subarea thinking, adopts a parallel controllable positioning plan, the structure is designed as a round area and overlapped each other in order to eliminate the un-observation region. But it also makes the observation efficiency of the system become an important problem. In this paper According to the system, the model of LAMOST focal plane Observation Planning including 4000 fiber positioning units is built, Stars are allocated using netflow algorithm and mechanical collisions are diminished through the retreat algorithm, then the simulation of the system's observation efficiency is carried out. The problem of observation efficiency of LAMOST focal plane is analysed systemic and all-sided from the aspect of overlapped region, fiber positioning units, observation radius, collisions and so on. The observation efficiency of the system in theory is describes and the simulation indicates that the system's observation efficiency is acceptable. The analyses play an indicative role on the design of the LAMOST focal plane structure.

  6. Optical Properties of Wurtzite Semiconductors Studied Using Cathodoluminescence Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juday, Reid

    The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the +/- c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.

  7. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  8. Interface crack in a nonhomogeneous elastic medium

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1988-01-01

    The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.

  9. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  10. Effect of Initial Stress on the Dynamic Response of a Multi-Layered Plate-Strip Subjected to an Arbitrary Inclined Time-Harmonic Force

    NASA Astrophysics Data System (ADS)

    Daşdemir, A.

    2017-08-01

    The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

  11. Time-dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation.

    PubMed

    Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-10-01

    Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: a first-principles study.

    PubMed

    Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai

    2014-11-26

    The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd(3+) is between Y(3+) and La(3+). It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.

  13. Strain effects on the work function of an organic semiconductor

    PubMed Central

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  14. Strain effects on the work function of an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  15. Strain effects on the work function of an organic semiconductor.

    PubMed

    Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  16. Strain effects on the work function of an organic semiconductor

    DOE PAGES

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less

  17. Sets that Contain Their Circle Centers

    ERIC Educational Resources Information Center

    Martin, Greg

    2008-01-01

    Say that a subset S of the plane is a "circle-center set" if S is not a subset of a line, and whenever we choose three non-collinear points from S, the center of the circle through those three points is also an element of S. A problem appearing on the Macalester College Problem of the Week website stated that a finite set of points in the plane,…

  18. Synchrotron Radial X-ray Diffraction Studies of Deformation of Polycrystalline MgO

    NASA Astrophysics Data System (ADS)

    Girard, J.; Tsujino, N.; Mohiuddin, A.; Karato, S. I.

    2016-12-01

    X-ray diffraction analyses have been used for decades to study mechanical properties of polycrystalline samples during in-situ high-pressure deformation. When polycrystalline materials are deformed, stresses develop in grains and lead to lattice distortion. Using X-ray diffraction we can estimate the lattice strain for each (hkl) diffraction plans and calculate the applied stress for each (hkl), using [Singh, 1993] relation. However, this method doesn't take into account plastic anisotropy. As a results of plastic anisotropy present in the material, stress estimated from this method can be largely differ depending on (hkl) diffraction planes [Karato, 2009]. Studying the stress estimate for each (hkl) plane, might help us distinguish dominant deformation mechanisms activated during deformation such as diffusion (we will observe small stress variation as a function of (hkl) diffraction planes) or dislocation creep (we will observe a stress variation as a function of (hkl) diffraction planes that could also give us clues on potential slip system activity). In this study we observed stress evolution in MgO polycrystalline samples deformed under mantle pressure and temperature for (200) and (220) diffraction planes. Using a range MgO grain sizes we were able to control the active deformation mechanism (for e.g. diffusion creep or dislocation creep). For coarse-grained specimens, we observed strong (hkl) dependence of radial strain indicating the operation of dislocation creep. The observed (hkl) dependence changes with pressure suggesting a change in the slip system: at pressures higher than 27 GPa, (200) shows larger stress estimate than (220). In contrast, at lower pressures, (220) shows larger stress estimate than (200). This might indicate a slip system transition in MgO occurring under lower mantle conditions. From {110} plane to {100} plane. This is in good agreement with theoretical predictions and numerical calculation [Amodeo et al., 2012] and has an important implication for the interpretation of seismic anisotropy in the D" layer [Karato, 1998]. Amodeo, J., Carrey P., and P. Cordier (2012), Philosophical Magazine, 92(12). Karato, S-I. (1998), Earth and planets Space, 50, 1019-1028 Karato, S.-I. (2009), Physical Review. B, 79(21). Singh, A. K., (1993), Journal of Applied Physic, 73, 4278.

  19. Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates

    NASA Astrophysics Data System (ADS)

    Lévesque, Julie; Kurukuri, Srihari; Mishra, Raja; Worswick, Michael; Inal, Kaan

    A constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate large strain deformation in hexagonal closed-packed metals that deform by slip and twinning. The model allows the twinned zones and the parent matrix to rotate independently. ZEK100 magnesium alloy sheets which significant texture weakening compared to AZ31 sheets are investigated using the model. There is considerable in-plane anisotropy and tension compression asymmetry in the flow behavior of ZEK100. Simulations of uniaxial tension in different directions at various strain rates and the accompanying texture evolution are performed and they are in very good agreement with experimental measurements. The effect of strain rate on the activation of the various slip systems and twinning show that differences in the strain rate dependence of yield stress and Rvalues in ZEK100 have their origin in the activation of different deformation mechanisms.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.

    Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX 2/WX 2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxialmore » strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less

  1. Nonlinear effects in thermal stress analysis of a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Francis, E. C.; Peeters, R. L.; Murch, S. A.

    1976-01-01

    Direct characterization procedures were used to determine the relaxation modulus as a function of time, temperature, and state of strain. Using the quasi-elastic method of linearviscoelasticity, these properties were employed in a finite element computer code to analyze a thick-walled, nonlinear viscoelastic cylinder in the state of plane strain bonded to a thin (but stiff) elastic casing and subjected to slow thermal cooling. The viscoelastic solution is then expressed as a sequence of elastic finite element solutions. The strain-dependent character of the relaxation modulus is included by replacing the single relaxation curve used in the linear viscoelastic theory by a family of relaxation functions obtained at various strain levels. These functions may be regarded as a collection of stress histories or responses to specific loads (in this case, step strains) with which the cooldown solution is made to agree by iterations on the modulus and strain level.

  2. Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films.

    PubMed

    Aleman, Angel; Li, Chao; Zaid, Hicham; Kindlund, Hanna; Fankhauser, Joshua; Prikhodko, Sergey V; Goorsky, Mark S; Kodambaka, Suneel

    2018-05-01

    Pd(111) thin films, ∼245 nm thick, are deposited on Al 2 O 3 (0001) substrates at ≈0.5 T m , where T m is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γ ω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD ϕ scans show six 60°-rotated 111 peaks of Pd at the same ϕ angles for 11[Formula: see text]3 of Al 2 O 3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as [Formula: see text]ǁ[Formula: see text] with two in-plane orientations of [Formula: see text]ǁ[Formula: see text] and [Formula: see text]ǁ[Formula: see text]. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11[Formula: see text]) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11[Formula: see text]) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al 2 O 3 (0001) samples indicate that the Pd-Al 2 O 3 interfaces are essentially atomically abrupt and dislocation-free. These results demonstrate the growth of epitaxial Pd thin films with (111) out-of-plane orientation with low mosaicity on Al 2 O 3 (0001).

  3. Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Hu, X. H.; Choi, K. S.

    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different representative volume element (RVE) sizes are used to predict the size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson-Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the size-dependent fracture strains for multiphase materials. In addition to the RVE sizes, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus RVE size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less

  4. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of densities of the tested specimens.Two types of FE model were developed using a commercially available program. The first type was designed to analyse the model composite materials for comparison with mechanical test data for the purpose of validation of the FE model. Elastic moduli predicted by this type of FE model showed good agreement with the experimentally measured elastic moduli of the model composite materials. This result suggested that the use of layered FE models, which rely upon an isostrain assumption between the layers, can be useful in predicting the elastic properties of different lay-ups of the disc brake material.The second type of FE model analysed disc brake segments, using the experimentally measured bulk mechanical properties of the disc brake material. This FE model approximated the material as a continuum with in-plane isotropy but with different properties in the through-thickness direction. In order to validate this modelling approach, the results of the FE analysis were compared with mechanical tests on disc brake segments, which were loaded by their drive tenons in a manner intended to simulate in-service loading. The FE model showed good agreement with in-plane strains measured on the disc tenon face close to the swept area of the disc, but predicted significantly higher strains than those experimentally measured on the tenon fillet curve. This discrepancy was attributed to the existence of a steep strain gradient on the fillet curve.

  5. Site specificity of adrenalectomy-induced brain growth.

    PubMed

    Thomas, T L; Devenport, L D

    1988-12-01

    Infant, juvenile, and adult brain growth is modulated by corticosterone. This study was designed to determine whether such modulation is confined to certain specific brain areas, and if the pattern of growth revealed is consistent across strains of rats. Young female Sprague-Dawley-derived rats were either adrenalectomized (ADX) or sham-operated (Sham) and allowed to mature 45 days before they were sacrificed for histological analysis. Fore brain sections were taken at several planes for display by projection microscope. Of the 21 sites examined, ADX exerted its greatest effect upon neocortical tissue and myelinated fiber tracts. The only other brain region affected was thalamus, which exhibited a significant widening as a result of ADX. In contrast, archicortical structures were notably unaffected by ADX. Neither the hippocampus, measured from a variety of planes, nor nuclei in the septal area were subject to increased growth by ADX. This general portrayal of ADX's site specificity held across strains of rats. However, there were local differences. Within the neopallium, the frontal region underwent the greatest thickening in one strain, while the occipital area was most strongly affected in the other. Parietal cortex was equally responsive in both strains. The pattern of sensitive vs insensitive sites bore a resemblance to the pattern of increased growth brought about by environmental enrichment as well as the fore brain distribution of Type 2 corticosterone receptors.

  6. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  7. A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Morton, John; Ho, Henjen

    1992-01-01

    The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.

  8. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  9. The effect of hydrogen and microstructure on the deformation and fracture behavior of a single crystal nickel-base superalloy. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walston, William S.

    1990-01-01

    A study was conducted on the effects of internal hydrogen and microstructure on the deformation and fracture of a single crystal nickel-base superalloy. In particular, room temperature plane strain fracture toughness and tensile tests were performed on hydrogen-free and hydrogen charged samples of PWA 1480. The role of microstructure was incorporated by varying the levels of porosity and eutectic gamma/gamma prime through hot isostatic pressing and heat treatment. The room temperature behavior of PWA 1480 was unusual because precipitate shearing was not the primary deformation mechanism at all strains. At strains over 1 percent, dislocations were trapped in the gamma matrix and an attempt was made to relate this behavior to compositional differences between PWA 1480 and other superalloys. Another unique feature of the tensile behavior was cleavage of the eutectic gamma/gamma prime, which is believed to initiate the failure process. Fracture occurred on (111) planes and is likely a result of shear localization along these planes. Elimination of the eutectic gamma/gamma prime greatly improved the tensile ductility, but pososity had no effect on tensile properties. Large quantities of hydrogen (1.74 at. percent) were gas-phase charged into the material, but surprisingly this was not a function of the amount of porosity or eutectic gamma/gamma prime present. Desorption experiments suggest that the vast majority of hydrogen is at reversible lattice trapping sites. This large, uniform concentration of hydrogen dramatically reduced the tensile strain to failure, but only slightly affected the reduction in area. Available hydrogen embrittlement models were examined in light of these results and it was found that the hydrogen enhanced localized plasticity model can explain much of the tensile behavior. K(IC) fracture toughness tests were conducted, but it was necessary to also perform J(IC) tests to provide valid data.

  10. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    PubMed

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  11. 3D full field strain analysis of polymerization shrinkage in a dental composite.

    PubMed

    Martinsen, Michael; El-Hajjar, Rani F; Berzins, David W

    2013-08-01

    The objective of this research was to study the polymerization shrinkage in a dental composite using 3D digital image correlation (DIC). Using 2 coupled cameras, digital images were taken of bar-shaped composite (Premise Universal Composite; Kerr) specimens before light curing and after for 10 min. Three-dimensional DIC was used to assess in-plane and out-of-plane deformations associated with polymerization shrinkage. The results show the polymerization shrinkage to be highly variable with the peak values occurring 0.6-0.8mm away from the surface. Volumetric shrinkage began to significantly decrease at 3.2mm from the specimen surface and reached a minimum at 4mm within the composite. Approximately 25-30% of the strain registered at 5 min occurred after light-activation. Application of 3D DIC dental applications can be performed without the need for assumptions on the deformation field. Understanding the local deformations and strain fields from the initial polymerization shrinkage can lead to a better understanding of the composite material and interaction with surrounding tooth structure, aiding in their further development and clinical prognosis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Strain-induced semi-metal to semiconductor transition and strong enhancement in thermopower of TiS2

    NASA Astrophysics Data System (ADS)

    Samanta, Atanu; Pandey, Tribhuwan; Singh, Abhishek K.

    2015-03-01

    Electronic properties of transition-metal dichalcogenides (TMDs) (MX2, where M = Mo, W and X = S, Se, Te) are very sensitive to the applied pressure/strain, causing a semiconductor to metal transition. Using first principles density functional theory calculations, we demonstrate that bulk TiS2 changes from semi-metal to semi-conducting electronic phase upon application of uniform biaxial strain. This phase transition is responsible for the charge transfer from Ti to S and reduces the overlap between Ti-(d) and S-(p) orbitals. The transport calculations show a three-fold enhancement in thermopower for both p- and n-type TiS2 due to opening of band gap along with changes in dispersion of bands. The electrical conductivity and thermopower shows a large anisotropy due to the difference in the effective masses along the in-plane and out-of-plane directions. We further demonstrate that the enhancement of thermoelectric performance, can also be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at the Ti sites. Aeronautical Development Agency (ADA) under NPMASS and Department of Science and Technology(DST) nanomission

  13. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    PubMed Central

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  14. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  15. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Bratkovsky, Alexandr

    2009-03-01

    We investigate the effects of a lattice misfit strain on a ground state and polarization patterns in flat perovskite nanoparticles (nanoislands of BaTiO3 and PbZr0.5Ti0.5O3) with the use of an ab-initio derived effective Hamiltonian. We show that the strain strongly controls the balance between the depolarizing field and the polarization anizotropy in determining the equilibrium polarization patterns. Compressive strain favors 180 ^0 stripe/tweed domains while a tensile strain leads to in-plane vortex formation, with the unusual intermediate phase (s) where both ordering motifs coexist [1]. The results may allow to explain contradictions in recent experimental data for ferroelectric nanoparticles. [1] Ivan Naumov and Alexander M. Bratkovsky, Phys. Rev. Lett. 101, 107601 (2008).

  16. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  17. Anisotropic strain induced directional metallicity in highly epitaxial LaBaCo 2O 5.5+δ thin films on (110) NdGaO 3

    DOE PAGES

    Ma, Chunrui; Han, Dong; Liu, Ming; ...

    2016-11-21

    Highly directional-dependent metal-insulator transition is observed in epitaxial double perovskite LaBaCo 2O 5.5+δ films. The film exhibit metallic along [100], but remain semiconducting along [010] under application of a magnetic field parallel to the surface of the film. The physical origin for the properties is identified as in-plane tensile strain arising from oxygen vacancies. First-principle calculations suggested the tensile strain drastically alters the band gap, and the vanishing gap opens up [100] conduction channels for Fermi-surface electrons. Lastly, our observation of strain-induced highly directional-dependent metal-insulator transition may open up new dimension for multifunctional devices.

  18. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  19. Gap discrete breathers in strained boron nitride

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.

    2017-11-01

    Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.

  20. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

Top