Analysis of plane-plastic stress problems with axial symmetry in strain-hardening range
NASA Technical Reports Server (NTRS)
Wu, M H Lee
1951-01-01
A simple method is developed for solving plane-plastic-stress problems with axial symmetry in the strain-hardening range which is based on the deformation theory of plasticity employing the finite-strain concept. The equations defining the problems are first reduced to two simultaneous nonlinear differential equations involving two dependent variables: (a) the octahedral shear strain, and (b) a parameter indicating the ratio of principal stresses. By multiplying the load and dividing the radius by an arbitrary constant, it is possible to solve these problems without iteration for any value of the modified load. The constant is determined by the boundary condition. This method is applied to a circular membrane under pressure, a rotating disk without and with a central hole, and an infinite plate with a circular hole. Two materials, inconel x and 16-25-6, the octahedral shear stress-strain relations of which do not follow the power law, are used. Distributions of octahedral shear strain, as well as of principal stresses and strains, are obtained. These results are compared with the results of the same problems in the elastic range.
Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity
NASA Astrophysics Data System (ADS)
Gourgiotis, P. A.; Georgiadis, H. G.
2009-11-01
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed
Albocher, U; Barbone, P E; Richards, M S; Oberai, A A; Harari, I
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems.
Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.
2014-01-01
We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085
Plane Strain Deformation in Generalized Thermoelastic Diffusion
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Kumar, Rajneesh; Ram, Paras
2008-08-01
The present investigation is concerned with plane strain deformation in homogeneous isotropic generalized thermoelastic diffusion subjected to a normal force, thermal source, and chemical potential source. Laplace and Fourier transform techniques are employed to solve the problem. The integral transform have been inverted by using a numerical technique to obtain the displacements, stresses, temperature distribution, and chemical potential distribution. The numerical results of these quantities are illustrated graphically to depict the response of various sources in the theories of thermoelastic diffusion and thermoelasticity for a particular model. Some particular cases have been deduced from the present investigation.
Turbulent Plane Wakes Subjected to Successive Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.
2003-01-01
Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases
Dynamic Shear Band Development in Plane Strain,
1987-11-01
dicular to the initial propagation direction slows (town and further straining occurs inl a hand. The ul1timlate course of events is essentially...pr scribed velocita oal ysiave e n/sec. lie order of ilacint fiie V1 = -3 I/seecorrspon i toean avera elcirt of -300/etersos(i setal *" increase inl ...Spitzig, WV.A., 1980, *Initiation of Localized Shear Bands inl Plane Siraiii..1. .1lcch. Phys. Solids. \\Vol. 28, pp. 113-128. Asaro. R.J., 1983
Geometric and analytic problems on bicomplex plane
NASA Astrophysics Data System (ADS)
Dimiev, Stancho; Stoev, Peter; Stoilova, Stanislava
2015-11-01
Let us recall that the bicomplex plane is a complex ring of complex dimension 2. It consists of couples of the kind (z, w) = z + jw, where z and w are complex numbers and j is a symbol with the property j2 = -1. We note that the bicomplex plane admits singular points. The set of these singular points coincides with the cross-choped set of complex bisectrices (z, ±z), z is a complex. The main problem in the function theory on the bicomplex plane is to describe the interconnection between the same theory of the cross-choped subset and whole bicomplex plane. The first theory is of one complex variable and the second one is of two complex variables. Another problems are related with the comformal mappings and the movement of a partials of this subset on the whole one. Presented paper is a start studies in this direction.
Cutting Plane Algorithms for Maximum Problems
1991-12-01
Bazaraa and Shetty (1979). For variational inequalities, references on the cutting plane approach are considerably less. Zuhovickii et al. (1969) (see...and can be expressed as a convex combination of a finite number of extreme points [see, e.g., Bazaraa et al., (1990)], For VI problems, both U and X are...unique solution (see, page 234 of Bazaraa and Shetty, 1979)., 32 Figure 4: A ’Strong’ Solution to a Variational Inequality Problem The rate of
The crack problem for a nonhomogeneous plane
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.
Solution of the plane stochastic creep boundary value problem
NASA Astrophysics Data System (ADS)
Kovalenko, L. V.; Popov, N. N.; Radchenko, V. P.
2009-01-01
The solution of the non-linear stochastic boundary-value problem of the creep of a thin plate in a plane stress state when the elastic strains are small and can be neglected is presented. The plate material is stochastically inhomogeneous so that the stress and strain tensors are random functions of the coordinates. The constitutive creep relation, taken as in non-linear viscous flow theory, is formulated in a stochastic form. Using the perturbation method, the non-linear stochastic problem is reduced to a system of three linear partial differential equations in the fluctuations of the stress tensor and, then, changing by implementing the stress function, to a differential equation, the solution of which is represented in the form of the sum of two series. The first series is the solution far from the boundary of the plate, ignoring edge effects, and the second is the solution in the boundary layer, and its terms rapidly decay as the distance from the boundary of the plate increases. The stretching of a stochastically inhomogeneous half-plane in the direction of two mutually orthogonal axes is considered as an example. The stress concentration in the boundary of the half-plane is investigated. It is shown that the spread of the stresses in the surface layer, the width of which depends on the degree of non-linearity of the material, can be much greater than in the deep layers.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-03
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future.
Assumed strain formulation for the four-node quadrilateral with improved in-plane bending behaviour
NASA Astrophysics Data System (ADS)
Stolarski, Henryk K.; Chen, Yung-I.
1995-04-01
A new assumed strain quadrilateral element with highly accurate in-plane bending behavior is presented for plane stress and plane strain analysis. The basic idea of the formulation consists in identification of various modes of deformation and then in proper modification of the strain field in some of these modes. In particular, the strain operator corresponding to the in-plane bending modes is modified to simulate the strain field resulting from the assumptions usually made in structural mechanics. The modification of the strain field leads to the assumed strain operator on the element level. As a result, the so-called shear and membrane locking phenomena are alleviated. The element exhibits remarkable success in bending-dominated problems even when severely distorted and high aspect ratio meshes are used. Another advantage of the present assumed strain element is that locking for nearly incompressible materials is also mitigated. While this assumed strain element passes the patch test only for the parallelogram shapes, the element provides convergent solutions as long as the initially general form of the element approaches a parallelogram shape with the refinement of the mesh.
The plane strain tests in the PROMETRA program
NASA Astrophysics Data System (ADS)
Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.
2016-04-01
A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.
Stokes problems for moving half-planes.
Zeng, Y; Weinbaum, S
1995-01-01
New exact solutions of the Navier-Stokes equations are obtained for the unbounded and bounded oscillatory and impulsive tangential edgewise motion of touching half-infinite plates in their own plane. In contrast to Stokes classical solutions for the harmonic and impulsive motion of an infinite plane wall, where the solutions are separable or have a simple similarity form, the present solutions have a two-dimensional structure in the near region of the contact between the half-infinite plates. Nevertheless, it is possible to obtain relatively simple closed-form solutions for the flow field in each case by defining new variables which greatly simplify the r- and theta- dependence of the solutions in the vicinity of the contact region. These solutions for flow in a half-infinite space are then extended to bounded flows in a channel using an image superposition technique. The impulsive motion has application to the motion near geophysical faults, whereas the oscillatory motion has arisen in the design of a novel oscillating half-plate flow chamber for examining the effect of fluid shear stress on cultured cell monolayers.
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.
Cartamil-Bueno, S. J. E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S. E-mail: rbolivar@ugr.es
2015-06-28
The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focused on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.
Shear Band Formation in Plane Strain Experiments of Sand
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
NASA Astrophysics Data System (ADS)
Hiraoka, Naoki; Matsuzaki, Ryosuke; Todoroki, Akira
In order to improve performance of anti lock brake system (ABS) and detect condition of road surface, intelligent tires that monitor strain of interior surface and rolling radius of tire are demanded. However, the high stiffness of an attached sensor like a strain gauge causes debonding of sensors from tire rubber. In the present study, noncontact concurrent monitoring method is proposed using digital image correlation method (DICM) and spotlight projection. In-plane strain and out-of-plane displacement (rolling radius) are calculated by using image processing with an image of interior surface of tire that is taken with a single CCD camera fixed on wheel rim. New monitoring system is applied to Al beam and commercially available radial tire. As a result, this monitoring system is proved to be able to measure in-plane strain and out-of-plane displacement with high accuracy, and confirmed to be effective for concurrent monitoring of tires.
Strained layer superlattice focal plane array having a planar structure
Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J
2012-10-23
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
NASA Astrophysics Data System (ADS)
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Characterization of network parameters for UHMWPE by plane strain compression.
Abreu, E L; Ngo, H D; Bellare, A
2014-04-01
Ultra-high molecular weight polyethylene (PE) is used as a bearing material for total joint replacement prostheses since it is a tough, wear-resistant semicrystalline polymer. Despite its high resistance to wear, PE components have shown measureable wear in vivo, which can cause wear-particle induced osteolysis. Crosslinking of PE using ionizing radiation has been shown to increase wear resistance since both chemical crosslinks and physical entanglements provide high resistance to wear. Molecular characterization of crosslinked PEs is usually conducted using equilibrium swelling or by quantifying gel content. In this study, we compared crosslink densities and molecular weight between crosslinks derived from equilibrium swelling to those obtained by applying the Gaussian and Eight-Chain model to describe plane strain compression of the PE melt. The latter approach has the advantage of accounting for contributions of entanglements to the overall crosslink density, which solvent-based techniques largely neglect. As expected, the crosslink density calculated from model fitting increased monotonically with increase in radiation dose in a 0-200kGy dose range, with a corresponding monotonic decrease in molecular weight between crosslinks, but provided higher values of crosslink density and correspondingly lower values of molecular weight between crosslinks compared to the equilibrium swelling technique.
Graphical statics a forgotten tool for solving plane mechanical problems.
Baumgart, E
2000-05-01
Graphical statics is an almost forgotten, intuitive drawing method for solving plane mechanical problems. It was already in use in the 19th century for biomechanical problems. It was still a standard method employed by civil engineers in the 1940s. Superceded by modern analytical methods, graphical statics disappeared almost completely. The method is restricted to plane static problems, but still remains a useful tool for visualizing, understanding and checking the actions of force groups occurring in modern biomechanical problems. After defining the basic mechanical terminology (body, motion, forces), the paper is written mainly as a teaching tool for immediate application. Many illustrative examples (sporting activities, functional forces in joints) help to clarify the difficult biomechanical content. For application, it must be assumed that the bodies investigated behave as rigid bodies under the action of the forces, but this does not prevent application of the method to deformable living bodies if specific static configurations of the bodies are considered. The application of the method requires a good anatomical knowledge and experience with the function of the musculoskeletal apparatus of living bodies. If reliable models are used, the method delivers quantitative results of sufficient accuracy. The paper may also help provide a better understanding of publications containing graphical solutions to bio-static problems.
Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO
NASA Astrophysics Data System (ADS)
Matsui, Hiroaki; Tabata, Hitoshi
2012-12-01
In-plane lattice strains in a-plane zinc oxide (ZnO) homoepitaxial layers were selectively introduced by changing substrate type and growth conditions. Strain-free layers were observed when using a Crystec ZnO substrate, which resulted in atomically flat surfaces with nano-facets consisting of the m-plane (10-10) at atomic scale. In contrast, ZnO layers on Goodwill ZnO substrates possessed in-plane lattice strains due to generation of basal-plane stacking faults. The degree of lattice strains was systematically changed by the oxygen pressure, which clarified the close correlation between photoluminescence (PL) polarization and lattice strains. The polarization ratio of PL enhanced with the lattice strains.
Evaluation of Instability Phenomena in Sands: Plane Strain Versus Triaxial Conditions
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.
2001-01-01
Extensive research was carried out in the 1950s on theories of plasticity to extend the concepts developed for metals to materials that failed according to the Mohr-Coulomb criterion. The new ideas made it possible to merge the two distinct concepts (strength and deformation techniques) into one that relies on better understanding of plasticity and resulted in a rapid growth in the field of constitutive modeling of soil behavior. At the same time advanced experimental apparatuses and laboratory procedures were developed to calibrate the models. However, most laboratory experiments on granular materials are performed under Conventional Triaxial Conditions (CTC) for the purposes of evaluating constitutive behavior and stability properties, whereas most geotechnical field problems are closer to the Plane Strain (PS) condition. The triaxial tests performed in most laboratories comprise a simplification over in situ states and allow easier and robust experimentation. Most landslide problems, failure of soils beneath shallow and deep foundations, and failure of retaining structures, are cases that can generally be considered as plane strain. Strength and deformation characteristics of granular materials loaded in plane strain may be considerably different from those observed in CTC. Most studies on sands were limited to evaluating the constitutive behavior and in some cases extended to briefly describing the associated instability phenomena. This paper presents the results of a series of PS and CTC experiments performed on fine uniform silica sand known as F-75 Ottawa sand. Advanced analysis techniques were used to study the instability phenomena, which yielded very accurate measurements of shear bands occurrences and patterns. Destructive thin-sectioning technique along with monitoring the specimen surface deformation was used in the PS experiments and Computed Tomography (CT) was used to investigate the progress of primary and secondary shear bands in specimens
Cutting planes for the multistage stochastic unit commitment problem
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
2016-04-20
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Cutting planes for the multistage stochastic unit commitment problem
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
2016-04-20
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program. Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.
The tangential breast match plane: Practical problems and solutions
Norris, M. )
1989-09-01
The three-field breast set-up, in which tangential oblique opposed fields are joined to an anterior supraclavicular field, has been the method of choice for treatment of breast cancer for many years. In the last several years many authors have suggested refinements to the technique that improve the accuracy with which fields join at a match plane. The three-field breast set-up, using a rotatable half-beam block is the technique used at our institution. In instituting this procedure, several practical problems were encountered. Due to the small collimator rotation angles used it is possible to clinically reverse the collimator angle without observing an error noticeable on fluoroscopy. A second error can occur when the table base angle is used to compensate for the incorrect collimator rotation. These potential sources of error can be avoided if a programmable calculator or computer program is used to assist the dosimetrist during the simulation. Utilization of fluoroscopy, digital table position displays and a caliper provide accurate input for the computer program. This paper will present a hybrid procedure that combines practical set-up procedures with the mathematical calculation of ideal angles to result in an accurate and practical approach to breast simulation.
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
NASA Astrophysics Data System (ADS)
Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.
2015-04-01
The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Problems and advances in monitoring horizontal strain
NASA Technical Reports Server (NTRS)
Caputo, M.
1978-01-01
The modern instrumentation is described for use in geodesy for the detection of the deformations of the crust of the earth. Problems are listed. Needs are discussed for the survey of the physical quantities of interest in geodesy, geology, geophysics, and engineering such as the strain invariants, the optimal network of baselines and the accuracy. An analytic method is also given for the computation of the effect of a source of dilatation in a spherical earth.
Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film
Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang; Zhou, Weidong; Gong, Shaoqin
2015-05-25
A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.
NASA Astrophysics Data System (ADS)
Zingerman, K. M.; Shavyrin, D. A.
2016-06-01
The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress-strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov-Muskhelishvili's potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.
Stretch bending - the plane within the sheet where strains reach the forming limit curve
NASA Astrophysics Data System (ADS)
Neuhauser, F. M.; Terrazas, O. R.; Manopulo, N.; Hora, P.; Van Tyne, C. J.
2016-11-01
Finite element analysis (FEA) was used to model the angular stretch bend test, where a strip of sheet metal is locked at both ends and a tool with a radius stretches and bends the center of the strip until failure. The FEA program used in the study was Abaqus. The FEA model was verified by experimental work using a dual phase steel (DP600) and with a simplified analytical analysis. The FEA model was used to simulate the experimental test for various frictional conditions and various radii of an upward moving tool. The primary objective of the study was to evaluate the concave-side rule, which states that during stretch bending the forming limit occurs when the strains on the concave surface plane of the bent sheet (i.e. bottom plane) reach the forming limit curve (FLC). The verification with experimental data indicates that the FEA model represents the process very well. Only conditions where failure occurred on or near the tooling are included in the results. The FEA simulations showed that the actual forming limit of the sheet occurs when the strains on the bottom plane of the sheet (i.e. concave side of the bend) reach the forming limit curve for high friction and small tool radii. For lower friction and for larger tool radii the actual forming limit occurs when strains on other planes in the sheet (i.e. mid planes or top surface plane) reach the forming limit curve. The implications of these results suggest that care must be taken in assessing forming operations when both stretch and bending occur. Although it is known that the FLC cannot predict the forming limit for small bend radii, the common assumption that the forming limit occurs when the strains for the middle thickness plane of the sheet reach the forming limit curve or that the concave side rule is often made. Understanding the limits of this assumption needs to be carefully and critically evaluated.
Reversed polarized emission in highly strained a -plane GaN/AlN multiple quantum wells
NASA Astrophysics Data System (ADS)
Mata, R.; Cros, A.; Budagosky, J. A.; Molina-Sánchez, A.; Garro, N.; García-Cristóbal, A.; Renard, J.; Founta, S.; Gayral, B.; Bellet-Amalric, E.; Bougerol, C.; Daudin, B.
2010-09-01
The polarization of the emission from a set of highly strained a -plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite c axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the c axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been performed to determine the three components of the strain tensor in the active region. Moreover, the experimental results have been compared with the strain values computed by means of a model based on the elastic continuum theory. A high anisotropic compressive in-plane strain has been found, namely, -0.6% and -2.8% along the in-plane directions [11¯00] and [0001], respectively, for the thickest quantum well. The oscillator strength of the lowest optical transition has been calculated within the framework of a multiband envelope function model for various quantum well widths and strain values. The influence of confinement and strain on the degree of polarization is discussed and compared with experiment considering various sets of material parameters.
Thermal and structural analyses of variable thickness plane problems
Wang, Zhibi; Kuzay, T.M.
1995-07-01
Finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window for synchrotron radiation beamline under very strong X-ray is provided.
Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi
2014-09-21
In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.
On the Displacement Problem of Plane Linear Elastostatics
NASA Astrophysics Data System (ADS)
Russo, R.
2010-09-01
We consider the displacement problem of linear elastostatics in a Lipschitz exterior domain of R2. We prove that if the boundary datum a lies in L2(∂Ω), then the problem has a unique very weak solution which converges to an assigned constant vector u∞ at infinity if and if a and u∞ satisfy a suitable compatibility condition.
The plane strain shear fracture of the advanced high strength steels
NASA Astrophysics Data System (ADS)
Sun, Li
2013-12-01
The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.
The plane strain shear fracture of the advanced high strength steels
Sun, Li
2013-12-16
The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.
The unique effect of in-plane anisotropic strain in the magnetization control by electric field
NASA Astrophysics Data System (ADS)
Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.
2016-05-01
The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.
Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Karabin, M. E.; Barlat, F.; Shuey, R. T.
2009-02-01
In this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves ( i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson-Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,[3] were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K Ic . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K Ic .
NASA Astrophysics Data System (ADS)
Graba, M.
2016-12-01
This paper presents a numerical analysis of the relationship between in-plane constraints and the crack tip opening displacement (CTOD) for single-edge notched bend (SEN(B)) specimens under predominantly plane strain conditions. It provides details of the numerical model and discusses the influence of external load and in-plane constraints on the CTOD. The work also reviews methods for determining the CTOD. The new formula proposed in this paper can be used to estimate the value of the coefficient dn as a function of the relative crack length, the strain hardening exponent and the yield strength - dn(n, σ0/E, a/W), with these parameters affecting the level of in-plane constraints. Some of the numerical results were approximated using simple mathematical formulae.
NASA Astrophysics Data System (ADS)
Konno, Hiroshi; Gotoh, Jun-Ya; Uno, Takeaki; Yuki, Atsushi
2002-09-01
We will propose a new cutting plane algorithm for solving a class of semi-definite programming problems (SDP) with a small number of variables and a large number of constraints. Problems of this type appear when we try to classify a large number of multi-dimensional data into two groups by a hyper-ellipsoidal surface. Among such examples are cancer diagnosis, failure discrimination of enterprises. Also, a certain class of option pricing problems can be formulated as this type of problem. We will show that the cutting plane algorithm is much more efficient than the standard interior point algorithms for solving SDP.
Band gap modulation of transition-metal dichalcogenide MX2 nanosheets by in-plane strain
NASA Astrophysics Data System (ADS)
Su, Xiangying; Ju, Weiwei; Zhang, Ruizhi; Guo, Chongfeng; Yong, Yongliang; Cui, Hongling; Li, Xiaohong
2016-10-01
The electronic properties of quasi-two-dimensional honeycomb structures of MX2 nanosheets (M=Mo, W and X=S, Se) subjected to in-plane biaxial strain have been investigated using first-principles calculations. We demonstrate that the band gap of MX2 nanosheets can be widely tuned by applying tensile or compressive strain, and these ultrathin materials undergo a universal reversible semiconductor-metal transition at a critical strain. Compared to WX2, MoX2 need a smaller critical tensile strain for the band gap close, and MSe2 need a smaller critical compressive strain than MS2. Taking bilayer MoS2 as an example, the variation of the band structures was studied and the semiconductor-metal transition involves a slightly different physical mechanism between tensile and compressive strain. The ability to tune the band gap of MX2 nanosheets in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of application.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel
Suarez, L.; Houbaert, Y.; Eynde, X. van den; Lamberigts, M.
2007-04-07
An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 {mu}m) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050 deg. C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050 deg. C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050 deg. C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.
Transient analysis of wave propagation problems by half-plane BEM
NASA Astrophysics Data System (ADS)
Panji, M.; Kamalian, M.; Marnani, J. Asgari; Jafari, M. K.
2013-09-01
In this paper, a half-plane time-domain boundary element method (BEM) was presented for analysing the 2-D scalar wave problems in a homogenous isotropic linear elastic medium. Using the existing transient full-plane fundamental solution and asking for the assistance of method of source image to satisfy the stress-free boundary conditions, first, a half-plane time-domain fundamental solution was obtained for displacement and traction fields. Then, the condensed closed-form of half-plane time-convoluted kernels were extracted analytically by applying the time-convolution integral on the determined half-plane fundamental solutions. After implementing the half-plane time-domain BEM in computer codes, its applicability and efficiency were verified and compared with those of the published works by analysing several practical examples. The studies showed that the proposed method had good agreement with the existing solutions. Compared to the full-plane time-domain BEM, half-plane time-domain BEM had more capability and better accuracy as well as much shorter run time. It is obvious that this method can be practically used to analyse the site response in substituting the old-style time-domain BEM formulation as well.
Effects of Be and Fe content on plane strain fracture toughness in A357 alloys
Tan, Y.H.; Lee, S.L.; Lin, Y.L.
1995-11-01
The effect of Be and Fe content on the plane strain fracture toughness K{sub IC} of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicron-strengthening particles. The effect of Be on increasing K{sub IC} is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.
Effects of be and fe content on plane strain fracture toughness in A357 alloys
NASA Astrophysics Data System (ADS)
Tan, Yen-Hung; Lee, Sheng-Long; Lin, Yu-Lom
1995-11-01
The effect of Be and Fe content on the plane strain fracture toughness K IC of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicronstrengthening particles. The effect of Be on increasing K IC is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.
Constructing generalized Cesàro formulas for finite plane strains
NASA Astrophysics Data System (ADS)
Georgievskii, D. V.
2014-05-01
The problem of finding the displacement vector from a system of nonlinear differential equations which includes displacement gradient components is studied. Expressions on the right side of this system for certain parameter values have the kinematic sense of Lagrange and Euler finite strain tensors. The task is to construct generalized Cesàro formulas for finite strains. The construction of the solution consists of two stages (algebraic and differential), and the second is performed for space whose dimension is greater than or equal to two. An algorithm for the inversion of the original system is proposed, and analytical constructions for the case of two-dimensional space are performed. The problem is solved at the first (algebraic) stage, i.e., an exact analytical expression for the displacement vector components is derived through the known finite strain tensor and an unknown scalar function having the kinematic sense of rotation. Necessary conditions for the existence of this relationship are formulated.
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein
2000-01-01
A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.
ERIC Educational Resources Information Center
Earnest, Darrell
2015-01-01
This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…
Reproduction of solutions in the plane problem on motion of a free-boundary fluid
NASA Astrophysics Data System (ADS)
Karabut, E. A.; Zhuravleva, E. N.
2016-07-01
This study is devoted to finding exact solutions of the plane unsteady problem on the motion of an ideal incompressible free-boundary fluid. A certain procedure of reproduction making it possible to obtain a two-parametrical family of new exact solutions from one known solution is proposed.
Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept
ERIC Educational Resources Information Center
Kawam, Alae; Kouh, Minjoon
2011-01-01
In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)
2002-01-01
A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
Strained-layer superlattice focal plane array having a planar structure
Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.
2010-07-13
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Andrews, D.J.
1985-01-01
A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.
NASA Astrophysics Data System (ADS)
Kroon, M.
2011-11-01
Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.
On out of plane equilibrium points in photo-gravitational restricted three-body problem
NASA Astrophysics Data System (ADS)
Das, M. K.; Narang, Pankaj; Mahajan, S.; Yuasa, M.
2009-12-01
We have investigated the out of plane equilibrium points of a passive micron size particle and their stability in the field of radiating binary stellar systems Krüger-60, RW-Monocerotis within the framework of photo-gravitational circular restricted three-body problem. We find that the out of plane equilibrium points ( L i , i = 6, 7, 8, 9) may exist for range of β 1 (ratio of radiation to gravitational force of the massive component) values for these binary systems in the presence of Poynting-Robertson drag (hereafter PR-drag). In the absence of PR-drag, we find that the motion of a particle near the equilibrium points L 6,7 is stable in both the binary systems for a specific range of β 1 values. The PR-drag is shown to cause instability of the various out of plane equilibrium points in these binary systems.
Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor)
2014-01-01
A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.
NASA Astrophysics Data System (ADS)
Benito, L.; Ballesteros, C.; Ward, R. C. C.
2014-04-01
We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.
ERIC Educational Resources Information Center
Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc
2015-01-01
This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
Perturbation method in the problem on a nearly circular hole in an elastic plane
NASA Astrophysics Data System (ADS)
Bashkankova, E. A.; Vakaeva, A. B.; Grekov, M. A.
2015-03-01
The perturbation method is used to construct the solution of the plane elasticity problem for a plane with a curvilinear nearly circular hole. An algorithm for calculating any approximation represented as a Cauchy type integral depending on all preceding approximations is given. The complex potentials of the first approximation are obtained for an elliptic hole and a curvilinear hole whose boundary deviates from the unit circle in the radial direction according to the cosine law. An example of elliptic hole is used to analyze the error in the first approximation of the stress concentration factor by comparing it with the exact solution. The influence of the hole shape on the distribution of circular stresses on the boundary is studied.
NASA Astrophysics Data System (ADS)
Kistanov, Andrey A.; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V.; Zhou, Kun
2017-03-01
By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from ‑7% (compression) to +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H2O molecule. It shows that compressive/tensile strain is able to increase the binding energy of H2O compared with the adsorption on a planar surface, and the charge transfer between the water molecule and the graphene/silicene sheet can be modulated by strain. Moreover, the presence of the boron-nitride (BN)-substrate significantly influences the chemical activity of the graphene/silicene heterostructure upon its interaction with the H2O molecule and may cause an increase/decrease of the charge transfer between the H2O molecule and the heterostructure. These findings provide insights into the modulation of electronic properties of the in-plane free-standing/substrate-supported graphene/silicene heterostructure, and render possible ways to control its electronic structure, carrier density and redox characteristics, which may be useful for its potential applications in nanoelectronics and gas sensors.
NASA Astrophysics Data System (ADS)
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W; Fragapane, Alex H; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C; Abild-Pedersen, Frank; Nørskov, Jens K; Zheng, Xiaolin
2016-01-01
As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
NASA Astrophysics Data System (ADS)
Besuelle, P.
2012-04-01
Failure by strain localization is commonly observed in geomaterials. Generaly, experimental characterization of the localization in a porous sandstone are performed with classical axisymmetric triaxial compression tests. The effect of the confining pressure is observed on several aspects: onset of localization, pattern of localization, porosity evolution inside bands, grain scale mechanisms of deformation. Complex patterns of localization can be observed at high confining pressure in the transition between the brittle and ductile regime, showing several deformation bands in the specimens ([1]). However the history (time evolution) of the localization is not accessible because the observations are post-mortem. Strain field measurement and evolution in time of the strain field are particularly useful to study the strain localization (initiation of the deformation bands) and the post-localization regime. Such tools have been developed for soils (e.g., sand specimens in plane strain condition [2] or in triaxial conditions using X-ray tomography [3]). Similar developments for rocks are still difficult, especially because the pertinent confining pressure to reproduce in situ stresses are higher than for soils. We present here first results obtained in a new true triaxial apparatus that allows observation of the rock specimen under loading and especially the complex development of deformation bands and faults. As for [4] and [5], the three principal stresses are different, however the intermediate stress is controlled in order to impose a plane strain condition (zero strain in this direction). Observation of a specimen under load is possible as one surface of the prismatic specimen, which is orthogonal to the plane strain direction, is in contact with a hard transparent window. The deformation of this surface is representative of the deformation in the whole specimen, up to and beyond strain localization. Therefore the evolution of the strain field in the sample can be
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Llana-Funez, S.; Rutter, E. H.
2006-12-01
The condition of simultaneous operation of five slip systems to produce homogeneous deformation by intracrystalline plasticity in polycrystalline aggregates is frequently simplified when applied to studying deformation in nature by considering other deformation mechanisms that relax the strict geometric condition. Insufficient knowledge of how these complementary mechanisms interact and accommodate geometrically non-plane strain situations obscure somehow subsequent interpretation of slip patterns in relation to principal strain axes. We ran an experimental program isolating intracrystalline plasticity from other deformation mechanisms with the aim of testing the effect of non-plane strain geometries in the 3D arrangement of crystallographic elements from which we inferred the orientation of active slip systems. We use a fine grained polycrystalline aggregate (Solnhofen Limestone), naturally doped at grain boundaries with organic matter preventing grain growth, that deforms plastically at the experimental conditions used (600 °C, 200 MPa confining pressure and 10^{- 4}s-1 strain rates). To maximize the number of strain geometries we used different experimental configurations (axi-symmetric shortening and extension, and direct shear) and also study in detail volumes where deformation is heterogeneous but still relatively simple. The aim of the work is to relate strain geometry and the development of crystallographic fabrics in different strain paths. We produced constrictional, flattening, and nearly plane strain deformations. We were also able to obtain strain geometries where the vorticity axis in a non-coaxial deformation was either perpendicular to the extension direction (as in simple and sub-simple shear) or parallel to it. We measured the crystallographic preferred orientation (CPO) of calcite in deformed specimens by electron back-scattered diffraction techniques (EBSD), which allowed us to scan relatively small areas within already small specimens
NASA Astrophysics Data System (ADS)
Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.
2017-02-01
Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.
Shimada, T; Okuno, J; Ishii, Y; Kitamura, T
2012-03-07
We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy.
Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave
NASA Astrophysics Data System (ADS)
Khachatryan, A. Kh.; Khachatryan, Kh. A.
2016-11-01
We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space L 1[-r, r] for all finite r < +∞. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
Orientation control of the orbital ordering plane in epitaxial LaMnO3 thin films by misfit strain
NASA Astrophysics Data System (ADS)
Kim, Yong-Jin; Lee, Jin Hong; Kim, Sang-Woo; Koo, Tae Yeong; Yang, Chan-Ho
2016-10-01
We investigate the effects of misfit strain on the orbital order of epitaxial lanthanum manganite thin films grown on (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT) and GdScO3 (GSO) substrates. Resonant X-ray scattering near the Mn K-edge is employed to identify the cooperative Jahn-Teller distortion at room temperature and determine the orientation of the orbital-ordered plane (OOP). We find that coherent growth on LSAT (GSO) makes the OOPs be vertical (parallel) to the film surface. This finding not only offers useful insight into the interplay between misfit strain and orbital order, but also holds promise for strain control of orbital-dependent physical properties.
NASA Astrophysics Data System (ADS)
Baxevanis, T.; Chemisky, Y.; Lagoudas, D. C.
2012-09-01
The plane strain mechanical fields near a stationary crack tip in a pseudoelastic shape memory alloy (SMA) are analyzed via the finite element method. The small scale transformation assumption is employed for the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law used adopts the classical rate-independent small strain flow theory for the evolution equations of both the transformation and plastic strains. Results on the size and shape of the stress-induced transformation and plastic zone formed near the stationary crack are obtained and a fracture toughness criterion based on the J-integral is discussed in view of the observed path-dependence of J. Moreover, the obtained results are discussed in relation to results for stationary cracks in conventional elastic-plastic materials.
Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach
NASA Astrophysics Data System (ADS)
Lunt, Alexander J. G.; Salvati, Enrico; Ma, Lifeng; Dolbyna, Igor P.; Neo, Tee K.; Korsunsky, Alexander M.
2016-09-01
Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding of residual stress and mechanical failure in many applications. This study outlines the first Focused Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of performing precise, reliable and rapid quantification of this behaviour. The nature of semi-destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor quantification: unstrained lattice parameter estimates are not required, analysis is performed in within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be studied and access to X-ray/neutron facilities is not required. The FIST FIB milling and DIC experimental technique is based on extending the ring-core milling geometry to quantify the strain variation with angle and therefore benefits from the excellent precision and simple analytical approach associated with this method. In this study in-plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. The two methods sample different gauge volumes and mechanical states: approximately plane stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using complex analysis methods and Finite Element (FE) modelling that valid comparisons can be drawn between these two stress states. Excellent agreement was obtained between principal stress orientation and magnitudes, leading to realistic residual stress estimates that agree well with the literature (σAv ≈ 460 MPa) . As a measure of validity of the matching approach we report the upper and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the range 2.9586 - 2.9596 Å , closely matching published values.
Discontinuous Galerkin methods with plane waves for time-harmonic problems
Gabard, Gwenael . E-mail: gabard@soton.ac.uk
2007-08-10
A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented. The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each element. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroacoustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles. Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from a two-dimensional jet.
NASA Technical Reports Server (NTRS)
Fisher, D. M.; Buzzard, R. J.
1979-01-01
Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long armed displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders.
In-plane anisotropy of electrical resistivity in strain-detwinned SrFe2As2
NASA Astrophysics Data System (ADS)
Blomberg, E. C.; Tanatar, M. A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Bud'Ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.
2011-04-01
Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe2As2 above and below the temperature of the coupled structural/magnetic transition, TTO. Resistivity is smaller for electrical current flow along the orthorhombic ao direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the bo direction (direction of ferromagnetic chains), which is similar to CaFe2As2 and BaFe2As2 compounds. A strongly first-order structural transition in SrFe2As2 was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above TTO. With the increase of strain, the resistivity anisotropy starts to develop above TTO, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.
In-plane anisotropy of electrical resistivity in strain-detwinned SrFe[subscript 2]As[subscript 2
Blomberg, E.C.; Tanatar, M.A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Budko, S.L.; Canfield, P.C.; Goldman, A.I.; Prozorov, R.
2011-12-09
Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe{sub 2}As{sub 2} above and below the temperature of the coupled structural/magnetic transition, T{sub TO}. Resistivity is smaller for electrical current flow along the orthorhombic a{sub o} direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the b{sub o} direction (direction of ferromagnetic chains), which is similar to CaFe{sub 2}As{sub 2} and BaFe{sub 2}As{sub 2} compounds. A strongly first-order structural transition in SrFe{sub 2}As{sub 2} was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above T{sub TO}. With the increase of strain, the resistivity anisotropy starts to develop above T{sub TO}, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.
NASA Astrophysics Data System (ADS)
Paul, H.; Tarasek, A.; Wajda, W.; Berent, K.
2014-08-01
Crystal lattice rotations induced by shear bands developed in an AA1050 aluminium alloy have been examined in order to investigate the influence of the finegrained structure on the slip propagation across the grain boundaries and the resulting texture evolution. Samples of the AA1050 alloy were pre-deformed in ECAP up to 6 passes via route C, then machined and further compressed in a channel-die up to ~25% at room temperature. The microstructure and texture were characterized by SEM equipped with a high resolution EBSD facility. The ECAP-processing leads to the formation of a fine grained structure. The grains were grouped into nearly complementarily oriented layers. During the secondary straining in the channel-die, the layers of fine grains, initially situated almost parallel to the compression plane, undergo deflection within some narrow areas. This is the beginning stage of the macroscopic shear band (MSB) formation. In all the deformed grains examined (within MSB) a strong tendency for strain-induced re-orientation could be observed. The SEM orientation mapping shows how the layers of flattened grains are incorporated into the MSB area, and what kinds of mechanisms are responsible for the strain accommodation at the macro-scale. Finally, a crystallographic description of the mechanism of MSB formation in AA1050 aluminium alloy is proposed based on the local lattice re-orientations due to localized kinking.
The strain in the array is mainly in the plane (waves below ~1 Hz)
Gomberg, J.; Pavlis, G.; Bodin, P.
1999-01-01
We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering
NASA Astrophysics Data System (ADS)
Harikumar, M.; Sankar, N.; Chandrakaran, S.
2015-09-01
Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.
Solving ethanol production problems with genetically modified yeast strains
Abreu-Cavalheiro, A.; Monteiro, G.
2013-01-01
The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432
Solving ethanol production problems with genetically modified yeast strains.
Abreu-Cavalheiro, A; Monteiro, G
2013-01-01
The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.
Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei
2015-07-13
Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.
Omote, Kazuhiko
2010-12-01
We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.
An exact plane-stress solution for a class of problems in orthotropic elasticity
NASA Technical Reports Server (NTRS)
Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.
1982-01-01
An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.
Wu, Huaping; Chai, Guozhong; Zhou, Ting; Zhang, Zheng; Kitamura, Takayuki; Zhou, Haomiao
2014-03-21
The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship among ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.
Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity
NASA Astrophysics Data System (ADS)
Senashov, Sergey I.; Yakhno, Alexander
2012-10-01
For the hyperbolic system of quasilinear first-order partial differential equations, linearizable by hodograph transformation, the conservation laws are used to solve the Cauchy problem. The equivalence of the initial problem for quasilinear system and the problem for conservation laws system permits to construct the characteristic lines in domains, where Jacobian of hodograph transformations is equal to zero. Moreover, the conservation laws give all solutions of the linearized system. Some examples from the gas dynamics and theory of plasticity are considered.
NASA Astrophysics Data System (ADS)
Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi
2016-08-01
Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.
NASA Astrophysics Data System (ADS)
Nakashima, Takaaki; Ichinose, Daichi; Ehara, Yoshitaka; Shimizu, Takao; Kobayashi, Takeshi; Yamada, Tomoaki; Funakubo, Hiroshi
2017-03-01
(100)/(001)-oriented epitaxial lead titanate (PbTiO3) films with various thicknesses were grown on (100) KTaO3 substrates by pulsed metal-organic chemical vapor deposition. The change of crystal structure with film thickness and deposition temperature was investigated. The paraelectric phase of 50 and 1000 nm-thick films had a tensile strain of 0.5% and almost 0% at 700 °C, respectively. The phase change temperature from the paraelectric phase to the ferroelectric phase, the Curie temperature (Tc), increased with the in-plane strain of the paraelectric phase; that is, Tc increased with decreasing film thickness. In contrast, room-temperature tetragonal distortion decreased as the film became thinner. This study reveals the effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films with higher Tc and smaller tetragonal distortion at room temperature.
Solving the multiple competitive facilities location and design problem on the plane.
Redondo, Juana López; Fernández, José; García, Inmaculada; Ortigosa, Pilar M
2009-01-01
A continuous location problem in which a firm wants to set up two or more new facilities in a competitive environment is considered. Other facilities offering the same product or service already exist in the area. Both the locations and the qualities of the new facilities are to be found so as to maximize the profit obtained by the firm. This is a global optimization problem, with many local optima. In this paper we analyze several approaches to solve it, namely, three multistart local search heuristics, a multistart simulated annealing algorithm, and two variants of an evolutionary algorithm. Through a comprehensive computational study it is shown that the evolutionary algorithms are the heuristics that provide the best solutions. Furthermore, using a set of problems for which the optimal solutions are known, only the evolutionary algorithms were able to find the optimal solutions for all the instances. The evolutionary strategies presented in this paper can be easily adapted to handle other continuous location problems.
On Numerical Methods of Solving Some Optimal Path Problems on the Plane
NASA Astrophysics Data System (ADS)
Ushakov, V. N.; Matviychuk, A. R.; Malev, A. G.
Three numerical methods of solution of some time optimal control problems for a system under phase constraints are described in the paper. Two suggested methods are based on transition to the discrete time model, constructing attainability sets and application of the guide construction. The third method is based on the Deikstra algorithm.
Improving Problem-Solving Skills with the Help of Plane-Space Analogies
ERIC Educational Resources Information Center
Budai, László
2013-01-01
We live our lives in three-dimensional space and encounter geometrical problems (equipment instructions, maps, etc.) every day. Yet there are not sufficient opportunities for high school students to learn geometry. New teaching methods can help remedy this. Specifically our experience indicates that there is great promise for use of geometry…
Inverse problems of determining the shape of incompressible bodies under finite strains
NASA Astrophysics Data System (ADS)
Zhukov, B. A.
2014-05-01
Transformations preserving the volume under finite strains are given for some classes of two-dimensional problems. Several settings of nonlinear elasticity problems meant for determining the shape of mechanical rubber objects from a given configuration in a strained state are proposed on the basis of these transformations. Two axisymmetric problems are solved as an example. In the first problem, we determine the shape of a rubber bushing in a combined rubber-metal joint which has a prescribed configuration in the assembled state. In the second problem, we determine the shape of the rubber element of a cylindrical compression damper in working state.
Domain structure and in-plane switching in a highly strained Bi0.9Sm0.1FeO3 film
NASA Astrophysics Data System (ADS)
Chen, Weigang; Ren, Wei; You, Lu; Yang, Yurong; Chen, Zuhuang; Qi, Yajun; Zou, Xi; Wang, Junling; Sritharan, Thirumany; Yang, Ping; Bellaiche, L.; Chen, Lang
2011-11-01
We report the domain structure and ferroelectric properties of a 32 nm-thick Bi0.9Sm0.1FeO3 film epitaxially grown on a LaAlO3 (LAO) substrate. This film exhibits a monoclinic Mc phase, with its monoclinic distortion and anisotropy of in-plane (IP) lattice parameters being both smaller than those of pure BiFeO3 (BFO) grown on LaAlO3. Polarization hysteresis loops measured using a quasi-planar capacitor show an in-plane polarization up to 30 μC/cm2. Piezoresponse force microcopy demonstrates that a 180° in-plane polarization switching accompanied by a 90° domain wall rotation takes place after electric poling. First-principles calculations suggest the differences between highly strained Sm-substituted and pure BiFeO3.
ERIC Educational Resources Information Center
Sales, Esther; Greeno, Catherine; Shear, M. Katherine; Anderson, Carol
2004-01-01
This study examined whether the general stress--caregiver strain--mental health outcome model may be as appropriate for caregivers of minor-age children as it has been for caregivers of adults with chronic illness. The authors examined whether children's behavioral problems are related to mothers' caregiving strains, which then is related to…
Lee, Y.-G.; Zou, W.-N.; Pan, E.
2015-01-01
This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141
Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung
2013-12-21
Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.
NASA Astrophysics Data System (ADS)
Akbarov, S. D.; İlhan, N.; Koc, N.
2015-09-01
Within the framework of a piecewise homogeneous body model, with the use of exact equations of the linearized theory of electroelasticity for initially stressed bodies, the time-harmonic Lamb problem for a system consisting of a prestressed piezoelectric covering layer and a half-plane is studied. The boundary value problem considered is solved by employing the Fourier exponential transformation technique with respect to the coordinates along the interface. An algorithm is proposed and employed to obtain numerical results for the distribution of the normal and shear stresses acting on the interface plane.
Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films
Matzen, Sylivia; Nesterov, Okeksiy; Rispens, Gregory; Heuver, J. A.; Bark, C; Biegalski, Michael D; Christen, Hans M; Noheda, Beatriz
2014-01-01
Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Parental Strain, Mental Health Problems, and Parenting Practices: A Longitudinal Study.
Borre, Alicia; Kliewer, Wendy
2014-10-01
Although poor parenting practices place youth living in under resourced communities at heightened risk for adjustment difficulties, less is known about what influences parenting practices in those communities. The present study examines prospective linkages between three latent constructs: parental strain, mental health problems and parenting practices. Parental victimization by community violence and life stressors were indicative of parental strain; depressive, anxious, and hostile symptoms were indicators of parental mental health; and parental knowledge of their child's activities and child disclosure were indicators of parenting practices. Interviews were conducted annually for 3 waves with 316 female caregivers (92% African American) parenting youth in low-income inner-city communities. Structural equation modeling revealed that parental strain, assessed at Wave 1, predicted changes in mental health problems one year later, which in turn predicted parenting practices at Wave 3. These results suggest that parental strain can compromise a caregiver's ability to parent effectively by impacting their mental health. Opportunities for intervention include helping caregivers process trauma and mental health problems associated with parental strain.
Parental Strain, Mental Health Problems, and Parenting Practices: A Longitudinal Study
Borre, Alicia; Kliewer, Wendy
2014-01-01
Although poor parenting practices place youth living in under resourced communities at heightened risk for adjustment difficulties, less is known about what influences parenting practices in those communities. The present study examines prospective linkages between three latent constructs: parental strain, mental health problems and parenting practices. Parental victimization by community violence and life stressors were indicative of parental strain; depressive, anxious, and hostile symptoms were indicators of parental mental health; and parental knowledge of their child's activities and child disclosure were indicators of parenting practices. Interviews were conducted annually for 3 waves with 316 female caregivers (92% African American) parenting youth in low-income inner-city communities. Structural equation modeling revealed that parental strain, assessed at Wave 1, predicted changes in mental health problems one year later, which in turn predicted parenting practices at Wave 3. These results suggest that parental strain can compromise a caregiver's ability to parent effectively by impacting their mental health. Opportunities for intervention include helping caregivers process trauma and mental health problems associated with parental strain. PMID:24976666
Lagattu, Fabienne . E-mail: lagattu@lmpm.ensma.fr; Bridier, Florent; Villechaise, Patrick; Brillaud, Jean
2006-01-15
The purpose of this paper is to present a method based on the correlation of digital images obtained on a microscopic scale. A specific grainy pattern has been developed. The use of the scanning electron microscopy (SEM) allowed the determination of full-field 2D displacements on an object surface with a spatial resolution of about 1 {mu}m. Validation tests were performed in order to quantify performances and limits of this method. An example of its application is presented for a Ti-6Al-4V titanium alloy. Results show that it is possible to obtain in-plane displacement values on the object surface with efficient spatial resolution and accuracy. Thus, such a technique can be used to highlight on a relevant scale the role of the microstructure in material deformation processes.
Strain effects on in-plane conductance of the topological insulator Bi{sub 2}Te{sub 3}
Heui Hwang, Jin; Kwon, Sangku; Hun Kim, Jong; Young Park, Jeong; Park, Joonbum; Sung Kim, Jun; Lee, Jhinhwan; Lyeo, Ho-Ki
2014-04-21
We investigated the correlation between electrical transport and mechanical stress in a topological insulator, Bi{sub 2}Te{sub 3}, using conductive probe atomic force microscopy in an ultrahigh vacuum environment. After directly measuring charge transport on the cleaved Bi{sub 2}Te{sub 3} surface, we found that the current density varied with applied load. Current mapping revealed a variation of the current on different terraces. The current density increased in the low-pressure regime and then decreased in the high-pressure regime. This variation of current density was explained in light of the combined effect of changes in the in-plane conductance due to spin–orbit coupling and hexagonal warping.
Yang, Nicholas H; Canavan, Paul K; Nayeb-Hashemi, Hamid
2010-11-01
Subject-specific models were developed and finite element analysis was performed to observe the effect of the frontal plane tibiofemoral angle on the normal stress, Tresca shear stress and normal strain at the surface of the knee cartilage. Finite element models were created for three subjects with different tibiofemoral angle and physiological loading conditions were defined from motion analysis and muscle force mathematical models to simulate static single-leg stance. The results showed that the greatest magnitude of the normal stress, Tresca shear stress and normal strain at the medial compartment was for the varus aligned individual. Considering the lateral knee compartment, the individual with valgus alignment had the largest stress and strain at the cartilage. The present investigation is the first known attempt to analyze the effects of tibiofemoral alignment during single-leg support on the contact variables of the cartilage at the knee joint. The method could be potentially used to help identify individuals most susceptible to osteoarthritis and to prescribe preventive measures.
Ma, R.; Negahban, M.
1995-12-31
The objective of this study is to investigate the effect of crystallization on the mechanical response of a polymer containing a rigid cylindrical inclusion under different loading conditions and under the plane strain restriction. As will be shown, external loading and crystallization can both induce an inhomogeneous distribution of stress and deformation in the vicinity of a cylindrical inclusion and can also interact with each other. Crystallization is a process of transition of the polymer`s microstructure from disordered state to an ordered one. This transition occurs in many polymers, such as polyethylene, polypropylene, nylon, and natural rubber. The process of crystallization gives rise to a macroscopic deformation, reducing the macroscopic volume, and it can increase the toughness and rigidity of a polymer. For example, for natural rubber crystallization causes a two order of magnitude increase in the elastic moduli. Moreover, crystallization can result in stress relaxation under constant uniaxial extension and creep under constant load. These effects have been captured in a constitutive model developed by Negahban, Wineman and Ma, which has been shown to be in good agreement with experimental results. This presentation provides (1) a theoretical evaluation of the effect of crystallization on the distribution of stress and mechanical moduli under axisymmetric loading and an estimation of the idual stress resulting from crystallization in the vicinity of a cylindrical inclusion; and (2) a numerical simulation of the stress distribution in the vicinity of an inclusion due to crystallization under both constant displacement loading and constant traction loading. All results are for plane strain conditions. Results show that an inhomogeneous distribution of stress and deformation is developed in the vicinity of the inclusion due to the external loading and/or due to crystallization.
ERIC Educational Resources Information Center
Bodroza-Pantic, O.; Matic-Kekic, Snezana; Jakovljev, Bogdanka; Markovic, Doko
2008-01-01
In this paper the didactically-methodological procedure named the MTE-model of mathematics teaching (Motivation test-Teaching-Examination test) is suggested and recommended when the teacher has subsequent lessons. This model is presented in detail through the processing of a nonstandard theme--the theme of decomposition of planes. Its efficiency…
NASA Astrophysics Data System (ADS)
D'Onofrio, Mauro; Cariddi, Stefano; Chiosi, Cesare; Chiosi, Emanuela; Marziani, Paola
2017-04-01
We provide an explanation of the properties of the fundamental plane (FP) relation and its observed projections for a sample of nearby early-type galaxies (ETGs) in terms of a fine-tuning between the time-averaged star formation rate < {{\\Psi }}> and their structural and dynamical characteristics. Their total V luminosity is linked with < {{\\Psi }}> and the central velocity dispersion σ through the relation {log}(L)=0.48(+/- 0.06){log}(< {{\\Psi }}> )+1.00 (+/- 0.13){log}(σ )+7.81(+/- 0.26), with an rms = 0.215 (R = 0.64 and P< 1.2× {10}-16). This fine-tuning permits us to obtain the FP in terms of two distinct “virtual planes” in the {log}({R}e){--}{log}(< {I}e> ){--}{log}(σ ) space. The first one (the virial plane; VP) represents the total galaxy mass derived from the scalar virial theorem and the mass-to-light ratio M/L, while the second plane comes from the relation L={L}0\\prime {σ }-2, where {L}0\\prime is a parameter connected with < {{\\Psi }}> . This is a mathematically convenient way for expressing the independence of the galaxy light from the virial equilibrium. Each galaxy in the {log}({R}e){--}{log}(< {I}e> ){--}{log}(σ ) space is identified by the intersection of these two planes. A posteriori, we show that the properties of the FP (tilt and scatter) and the zone of exclusion visible in the FP projections are consequences of this fine-tuning. The link between the FP properties and the SFR of galaxies provides a new view of the star formation phenomenon. The star formation history of an unperturbed galaxy seems to be driven by the initial conditions in the protogalaxies and is regulated across cosmic epochs by the variation of the main galaxy parameters (mass, luminosity, structural shape, and velocity dispersion).
NASA Astrophysics Data System (ADS)
Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano
2005-05-01
The Kepler problem is a dynamical system that is well defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane. First, the theory of central potentials on spaces of constant curvature is studied. All the mathematical expressions are presented using the curvature κ as a parameter, in such a way that they reduce to the appropriate property for the system on the sphere S2, or on the hyperbolic plane H2, when particularized for κ >0, or κ <0, respectively; in addition, the Euclidean case arises as the particular case κ =0. In the second part we study the main properties of the Kepler problem on spaces with curvature, we solve the equations and we obtain the explicit expressions of the orbits by using two different methods, first by direct integration and second by obtaining the κ-dependent version of the Binet's equation. The final part of the paper, that has a more geometric character, is devoted to the study of the theory of conics on spaces of constant curvature.
Problems Associated with Attaching Strain Gages to Titanium Alloy Ti-61-4V
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Lemcoe, M. M.
1977-01-01
Weldable strain gages have shown excellent high temperature characteristics for supersonic cruise aircraft application. The spotwelding attachment method, however, has resulted in serious reductions in the fatigue life of titanium alloy (Ti-6Al-4V) fatigue specimens. The reduction is so severe that the use of weldable strain gages on operational aircraft must be prohibited. The cause of the fatigue problem is thought to be a combination of the microstructure changes in the material caused by spotwelding and the presence of the flange of the stain gage. Brazing, plating, and plasma spraying were investigated as substitutes for spotwelding. The attachment of a flangeless gage by plasma spraying provided the most improvement in the fatigue life of the titanium.
NASA Astrophysics Data System (ADS)
Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui
2016-11-01
The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.
Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui
2016-12-01
The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.
Gadyl'shin, R R
2000-06-30
In this article the two-dimensional Dirichlet boundary-value problem is considered for the Helmholtz operator with boundary conditions on an almost closed curve {gamma}{sub {epsilon}} where {epsilon}<<1 is the distance between the end-points of the curve. A complete asymptotic expression is constructed for a pole of the analytic continuation of the Green's function of this problem as the pole converges to a simple eigenfrequency of the limiting interior problem in the case when the corresponding eigenfunction of the limiting problem has a second-order zero at the centre of contraction of the gap. The influence of symmetry of the gap on the absolute value of the imaginary parts of the poles is investigated.
Chen, X Y; Pan, X H; Chen, W; Chen, S S; Huang, J Y; Ye, Z Z
2016-10-15
A large degree of polarization (ρ) of photoluminescence (PL) approximate to 1 is obtained in each nonpolar a-plane Mg_{x}Zn_{1-x}O layer grown by plasma-assisted molecular beam epitaxy (MBE) with x=0.01, 0.03, and 0.10, respectively. Anisotropic in-plane strains are selectively introduced by using foreign substrates and doping with different Mg contents, which strongly modify the valence band structures, leading to anisotropic optical properties. A polarized Raman measurement shows that anisotropic in-plane strains along the y and z axes increase with the increasing Mg contents. Polarized PL spectra show that ρ gradually increases to 0.97 with decreasing in-plane strains, resulting from an increasing difference in transition energy (ΔE) between E⊥c and E‖c caused by a lift of the degeneracy of valence band structures. The obtained highly polarized emission is close to linear polarized light, which is desirable in the backlighting of liquid crystal displays.
NASA Astrophysics Data System (ADS)
Lomakin, E. V.; Fedulov, B. N.
2013-07-01
The limit properties of many heterogeneous materials such as grounds, concrete, ceramics, cast-iron alloys, and various heat-resistant and powder materials, as well as the properties of many composite materials, depend on the loading conditions. Neglecting the effects exhibited by such materials may result in nonconservative limit load analysis for some types of loading and possibly in an overly increased end product weight by failing to take into account stronger material properties for other types of loading. This paper presents a possible approach to modeling the behavior of such materials under plastic deformation, which is demonstrated for the sample problem on the extension of a strip weakened by cuts with circular base. An analytic solution on the basis of a rigid-plastic model of the material and a numerical solution by the finite elementmethod with elastic strains and small strengthening taken into account are presented.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
NASA Astrophysics Data System (ADS)
Matzen, Sylvia; Nesterov, Oleksiy; Rispens, Gijsbert; Heuver, Jeroen; Noheda, Beatriz; Biegalski, Michael; Christen, Hans
2014-03-01
Understanding and controlling domain formation in nanoscale ferroelectrics is interesting from a fundamental point of view and of great technological importance. Increasing miniaturization allows creating complex domain structures, offering novel functionalities that could be particularly useful for the development of nanoelectronic devices. While most studies in thin films focus on domain patterns with up/down polarization for ferroelectric memories, domain structures with purely in-plane polarization have not been much investigated. However, such structures are potentially useful in optical devices or to avoid depolarization fields in ultra-thin films, as long as the domains can be addressed and switched. We use a combination of compositional substitutions and epitaxial growth on a substrate in order to tune the domain configuration. The substitution of Pb by Sr in PbxSr1-xTiO3 thin films grown epitaxially on (110)-DyScO3, stabilizes a domain structure with purely in-plane polarization. In this work, we show that it is possible to stabilize and control a complex domain architecture at two different length scales, yielding periodic ferroelectric nano-domains with purely in-plane polarization. Most importantly, these in-plane domains can be switched by a scanning probe.
Suzuki, N; Mita, K; Watakabe, M; Akataki, K; Okagawa, T; Kimizuka, M
1998-01-01
The purpose of this study was to use an non-invasive method to determine whether strain on the gastrocnemii and hamstrings influences postural balance in spastic cerebral palsy (CP). Changes in alignment during standing posture with subjects positioned on a platform that was gradually inclined were measured in 10 normal children and 11 children with CP. The changes in postural alignment were plotted and geometric models used to determine the lines where the gastrocnemii and hamstrings were maximally stretched. In this way the relationship between postural alignment and the amount of strain on the gastrocnemii and hamstrings was investigated. On the inclined platform, which caused ankle joints to become dorsiflexed as the inclination angle increased, the gastrocnemii began to be strained and the hip joints began to be flexed (trunk bent forward) at the same time. In the children with CP, the gastrocnemii were more strained by smaller degrees of inclination. Furthermore, there was one child with CP whose hamstrings were also strained on the inclined platform. We confirmed that postural balance was affected by strain on the gastrocnemii and hamstrings.
NASA Technical Reports Server (NTRS)
Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.; Bucci, R. J.; Collis, S. F.; Kohm, R. F.; Kaufman, J. G.
1977-01-01
A description is presented of studies which have been conducted to establish an improved technology base for a use of the sharply notched cylindrical specimen in quality assurance tests of aluminum alloy products. The results are presented of an investigation of fundamental variables associated with specimen preparation and testing, taking into account the influence of the notch root radius, the eccentricity of loading, the specimen diameter, and the notch depth on the sharp notch strength. Attention is given to the statistical procedures which are necessary to establish correlations between the sharp notch strength and the plane-strain fracture toughness for high-strength aluminum alloys.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
Sheina, N I; Zholdakova, Z I; Ivanov, N G
2010-01-01
The pattern of the negative effect of biotechnological strains belonging to different taxons was experimentally studied. The effect of the strains manifested as imbalance of immunocompetent cells, development of immediate and delayed hypersensitivity, and altered qualitative and quantitative characteristics of the autochtonic microflora of the intestine. The minimum acting (10(5) cells/l) and non-acting (10(4) cells/l) enteral exposure levels were determined for the bulk of the test strains. Analysis of the authors' findings and the data available in the literature made it possible to propose a study program on the hygienic regulation and standardization of industrial microorganisms and their based microbiological products in the reservoir water.
Implementation of strain rate sensitive material properties into impact related problems
Laubscher, R.F.; Merwe, P. van der
1995-12-31
Strain rate sensitivity is discussed in general. A general strain rate sensitive constitutive model is then derived with a yield criterion for an isotropic hardening material incorporating a modified version of the Cowper Symonds equation. Experimental data for 10 different metals ranging from carbon steels to titanium alloys are fitted to this constitutive model. It is shown that with this relatively simple model a good agreement can be achieved between the constitutive model and the experimental data for most metals. The manner in which this constitutive model may be used in design is discussed along with its incorporation into numerical methods such as finite elements.
Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang
2016-01-01
Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N 1 = 8657 and N 2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources.
Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang
2016-01-01
Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N1 = 8657 and N2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources. PMID:27582717
NASA Astrophysics Data System (ADS)
Morovvati, M. R.; Lalehpour, A.; Esmaeilzare, A.
2016-12-01
Reinforcing aluminum with SiC and B4C nano/micro particles can lead to a more efficient material in terms of strength and light weight. The influence of adding these particles to an aluminum 7075 matrix is investigated using chevron-notch fracture toughness test method. The reinforcing factors are type, size (micro/nano), and weight percent of the particles. The fracture parameters are maximum load, notch opening displacement, the work up to fracture and chevron notch plane strain fracture toughness. The findings demonstrate that addition of micro and nano size particles improves the fracture properties; however, increasing the weight percent of the particles leads to increase of fracture properties up to a certain level and after that due to agglomeration of the particles, the improvement does not happen for both particle types and size categories. Agglomeration of particles at higher amounts of reinforcing particles results in improper distribution of particles and reduction in mechanical properties.
ERIC Educational Resources Information Center
Heflinger, Craig Anne; Brannan, Ana Maria
2006-01-01
This study examined caregiver strain (i.e., burden of care, caregiver burden) among families of adolescents in treatment for substance abuse disorders compared to youth with mental health problems. We used descriptive and regression analyses to compare groups and to examine the youth and family variables associated with caregiver strain across the…
1994-02-01
LOO estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Anal...Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numir., 13 (1979), pp. 139-166. 11. R.Z. DAUTOV, A.V. LAPIN AND A.D...PDEs, 3 (1987), pp. 65-82. 15. M.T. NAKAo, Superconvergence of the gradient of Galerkin approzimations for elliptic problems, RAIRO Math. Model
Volkov, A V; Kolkutin, V V; Klevno, V A; Shkol'nikov, B V; Kornienko, I V
2008-01-01
Managerial experience is described that was gained during the large-scale work on victim identification following mass casualties in the Tu 154-M and Airbus A310 passenger plane crashes. The authors emphasize the necessity to set up a specialized agency of constant readiness meeting modern requirements for the implementation of a system of measures for personality identification. This agency must incorporate relevant departments of the Ministries of Health, Defense, and Emergency Situations as well as investigative authorities and other organizations.
NASA Technical Reports Server (NTRS)
Gayda, J.
1994-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.
NASA Astrophysics Data System (ADS)
Betka, P. M.; Seeber, L.; Steckler, M. S.
2015-12-01
, contractional structures that formed internally within the FTB are indicative of east-west horizontal shortening and plane strain. This result suggests that the dextral component of shear measured by geodetic data is primarily partitioned onto discrete right-lateral strike-slip faults such as the Churachandpur-Mao and Kabaw faults.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
NASA Technical Reports Server (NTRS)
1999-01-01
Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.
1982-07-01
which makes no use of the hodograph transformation. The advantage of the procedure used here lies in its applicability to the plane strain Mode I problem...solutions of the displacement equation of equilibrium valid on overlapping domains . The final solution is then generated by a consistent matching...y(x)=x+u(x) for all xE%, (1.1)1 is a mappi;: of 9 onto a domain 6* in which u(x) is the displace- ment field. We assume the transformation (1.1) to be
PLASTICITY AND NON-LINEAR ELASTIC STRAINS
conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)
The plane problem of the flapping wing
NASA Technical Reports Server (NTRS)
Birnbaum, Walter
1954-01-01
In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.
In plane oscillation of a bifilar pendulum
NASA Astrophysics Data System (ADS)
Hinrichsen, Peter F.
2016-11-01
The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.
Fourier plane imaging microscopy
Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
Attitude analysis in Flatland: The plane truth
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.
1993-01-01
Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.
Eight plane IPND mechanical testing.
Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL
2008-03-18
A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND
NASA Technical Reports Server (NTRS)
Rzasnicki, W.
1973-01-01
A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.
Axial Plane Optical Microscopy
Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang
2014-01-01
We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. PMID:25434770
Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.
2002-07-29
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.
Out of plane analysis for composite structures
NASA Technical Reports Server (NTRS)
Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.
1990-01-01
Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.
Precise measurement of planeness.
Schulz, G; Schwider, J
1967-06-01
Interference methods are reviewed-particularly those developed at the German Academy of Sciences in Berlin-with which the deviations of an optically flat surface from the ideal plane can be measured with a high degree of exactness. One aid to achieve this is the relative methods which measure the differences in planeness between two surfaces. These are then used in the absolute methods which determine the absolute planeness of a surface. This absolute determination can be effected in connection with a liquid surface, or (as done by the authors) only by suitable evaluation of relative measurements between unknown plates in various positional combinations. Experimentally, one uses two- or multiple-beam interference fringes of equal thickness(1) or of equal inclination. The fringes are observed visually, scanned, or photographed, and in part several wavelengths or curves of equal density (Aquidensiten) are employed. The survey also brings the following new methods: a relative method, where, with the aid of fringes of superposition, the fringe separation is subdivided equidistantly thus achieving an increase of measuring precision, and an absolute method which determines the deviations of a surface from ideal planeness along arbitrary central sections, without a liquid surface, from four relative interference photographs.
ERIC Educational Resources Information Center
Greenman, Geri
2001-01-01
Describes an assignment that was used in an advanced drawing class in which the students created self-portraits, breaking up their images using planes and angles to suggest their bone structure. Explains that the students also had to include three realistic portions in their drawings. (CMK)
Optical strain measuring techniques for high temperature tensile testing
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Hemann, John H.
1987-01-01
A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.
1989-03-01
Th usr a toente aninteer a thca sms b esta 1 Fp-ocsing 2. Enter P1 values, lwgt, ldig - > 9 Table I give us proper values. Table 1. PARAMETER TABLE...necessary and identify by block number) In this thesis a control systems analysis package is developed using parameter plane methods. It is an interactive...designer is able to choose values of the parameters which provide a good compromise between cost and dynamic behavior. 20 Distribution Availability of
Image plane sweep volume illumination.
Sundén, Erik; Ynnerman, Anders; Ropinski, Timo
2011-12-01
In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.
Orbital plane change maneuver with aerocruise
NASA Astrophysics Data System (ADS)
Naidu, D. S.
1991-01-01
The synergistic plane change problem connected with orbital transfer employing aeroassist technology, is addressed. The mission involves transfer from high earth orbit to low earth orbit with plane change being performed within the atmosphere. The complete mission consists of a deorbit phase, atmospheric phase, and finally reorbit phase. The atmospheric maneuver is composed of an entry mode, a cruise mode, and finally an exit mode. During the cruise mode, constant altitude and velocity are maintained by means of bank angle control with constant thrust or thrust control with constant bank angle. Comparisons between these two control strategies bring out some interesting features.
NASA Astrophysics Data System (ADS)
Kamas, Tuncay; Lin, Bin; Giurgiutiu, Victor
2013-04-01
This paper discusses theoretical analysis of electro-mechanical impedance spectroscopy (EMIS) of piezoelectric wafer active sensor (PWAS). Both free and constrained PWAS EMIS models are developed for in-plane (lengthwise) and outof plane (thickness wise) mode. The paper starts with the general piezoelectric constitutive equations that express the linear relation between stress, strain, electric field and electric displacement. This is followed by the PWAS EMIS models with two assumptions: 1) constant electric displacement in thickness direction (D3) for out-of-plane mode; 2) constant electric field in thickness direction (E3) for in-plane mode. The effects of these assumptions on the free PWAS in-plane and out-of-plane EMIS models are studied and compared. The effects of internal damping of PWAS are considered in the analytical EMIS models. The analytical EMIS models are verified by Coupled Field Finite Element Method (CF-FEM) simulations and by experimental measurements. The extent of the agreement between the analytical and experimental EMIS results is discussed. The paper ends with summary, conclusions, and suggestions for future work.
NASA Technical Reports Server (NTRS)
Zahm, A F
1924-01-01
This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Thin-film light-intensity measurement strain-analysis technique.
NASA Technical Reports Server (NTRS)
Williams, J. G.
1972-01-01
The optical response to loading of a thin metallic film deposited on a low-modulus structural substrate is studied theoretically and experimentally. Two types of optical properties called total and central-image transmittance (or reflectance) are shown to be related to the mechanical state of the substrate. Empirical optical-mechanical relationships are proposed between these optical properties and the substrate strain field of a general plane-stress problem. A technique based on wrinkle and microfracture patterns is described for determining principal directions of strain. Experimental results for uniaxially loaded specimens show that it is possible to obtain a nearly linear relationship between transmittance and strain for certain materials combinations.
Precession of a Spinning Ball Rolling down an Inclined Plane
ERIC Educational Resources Information Center
Cross, Rod
2015-01-01
A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…
Sonntag, A
1975-11-01
Under certain circumstances, foci within distinct regions of the body are optimally included by irradiation from different directions of the space. In practice, such plannings mostly fail from the difficulty to produce a sufficiently homogenous dose distribution within the target volume. The present considerations disclose the possibility to determine certain parameters or irradiation in an explicit form, based on a vectorial view of the dose distribution, thus obtaining homogeneity of the radiation dose. Part I of this paper is presenting the foundations of a procedure which aims at dose homogeneity in cross-fire techniques with different planes of incidence, utilizing simple mathematical correlations among the vectorial dose quantities.
In-plane magnetization-induced quantum anomalous Hall effect.
Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing
2013-08-23
The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.
ERIC Educational Resources Information Center
Vajda, S.
1969-01-01
Discussed are some applications of Euler's Formula N plus F minus E equals Z, where N, F, and E are respectively the number of vertices, faces, and edges of a planar figure. In particular, the Four-Color Problem is proved for the special case of five countries. (CT)
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
NASA Astrophysics Data System (ADS)
Tarasov, B. G.; Sadovskii, V. M.
2016-10-01
Mathematical model of the equilibrium fan-structure formation between two elastic half-planes is constructed, simulating a shear rupture at stress conditions of seismogenic depths. The stress-strain state far from the fan-structure is analyzed with the help of solution of the problem on the Volterra edge dislocation resulted in estimation of the fan length. The model of formation of two differently directed fans due to the localized action of tangential stress, which pushes two edge dislocations with the antiparallel Burgers vectors, is proposed and analysed.
Validation of a Scaled Plane Strain Hypervelocity Gouging Model
2006-03-01
enough for 1080 endeos epdata mix 3 matep 1 JO USER * J-C coefficients for VascoMax 300. ajo = 2.17e10 * Dynes/cm^2 bjo= 0.124e10 * Dynes... ajo = 5.25e9 * Dynes/cm^2 bjo= 3.59e7 * Dynes/cm^2 cjo= 0.29 mjo= 6.525e-1 njo= 0.6677 tjo= .1591885e-1 poisson...300. ajo = 2.17e10 * Dynes/cm^2 bjo= 0.124e10 * Dynes/cm^2 cjo= 0.0046 mjo= 0.95 njo= 0.3737 tjo= .040161e-1 poisson= 0.283
Directly probing the effect of strain on magnetic exchange interactions
NASA Astrophysics Data System (ADS)
Dorr, Kathrin
2012-02-01
Thin films of transition metal oxides of the perovskite type ABO3 (B = 3d or 4d metal) have revealed abundant examples for strain-driven changes of magnetic ordering. One most popular is the strain-induced ferromagnetic ferroelectric state of otherwise antiferromagnetic paraelectric EuTiO3. Another promising example is the strain control of orbital occupation and magnetic coupling at oxide interfaces of SrRuO3 with manganites. In spite of strong efforts, the theoretical treatment of magnetic exchange in complex oxides has remained a challenge, and experiments continue to show unpredicted / unexplained large effects of the epitaxial strains in films. In order to provide meaningful experimental data on strain dependences, epitaxial thin films should be grown in various coherent strain states on different substrates without changing anything but the strain. This is inherently difficult: possible problems may arise from a strain-dependent oxidation level or microstructure. As a complementary approach, the in-plane strain of epitaxial oxide films can be controlled reversibly using a piezoelectric substrate, even though the accessible reversible strain of 0.1 -- 0.2% is an order of magnitude smaller. In my talk, I will address reversible-strain studies on La0.7Sr0.3MnO3, La1-xSrxCoO3 (x = 0, 0.2, 0.3) und SrRuO3 films, showing the strain response of the magnetic Curie temperature, the magnetization and the electrical resistance and discussing the current understanding of the strain effects on magnetic ordering. In La0.8Sr0.2CoO3, a strain-driven phase transition between ferromagnetic and spin-glass-like could be established by combining the piezoelectric substrate with a tuned buffer system providing varied as-grown strain states. In SrRuO3, a tetragonal tensile strain state shows a suppression of the ordered magnetic moment. Lattice parameters and symmetries of the films were determined by x-ray diffraction. It is noted that the atomic displacements (bond lengths and
General image method in a plane-layered elastostatic medium
NASA Technical Reports Server (NTRS)
Fares, N.; Li, V. C.
1988-01-01
The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.
National Aerospace Plane (NASP) program
NASA Technical Reports Server (NTRS)
1990-01-01
Artists concept of the X-30 aerospace plane flying through Earth's atmosphere on its way to low-Earth orbit. the experimental concept is part of the National Aero-Space Plane Program. The X-30 is planned to demonstrate the technology for airbreathing space launch and hypersonic cruise vehicles. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (page 117), by James Schultz.
Röthlisberger Channel Model with Anti-Plane Shear Loading Superposed on In-Plane Compression
NASA Astrophysics Data System (ADS)
Fernandes, M. C.; Meyer, C. R.; Rice, J. R.
2014-12-01
The Röthlisberger channel (R-channel) is a commonly adopted model that balances creep closure by Nye 2D in-plane straining, driven by the ice overburden pressure, against the melt rate from viscous energy dissipation in turbulent flow within the channel. Perol and Rice (AGU abstr. C11B-0677, 2011; JGR 2014 in review) and Suckale et al. (JGR F003008, 2014) have conjectured that these R-Channels may exist at the beds of rapidly straining West Antarctic Ice Stream shear margins. That is expected as a result of melt generation and drainage from forming temperate ice, and the channels may interact through the bed hydrology to partially stabilize the shear margin against lateral expansion. However, at those locations the overburden stresses, driving in-plane flow, are supplemented by substantial anti-plane shear stresses. Similarly, R-channels in mountain glaciers are also subject to both in-plane and anti-plane stresses. These channels usually form in the downstream direction, where anti-plane shear effects arise horizontally from drag at lateral moraines and vertically from the downslope gravity component. Here we examine how superposed anti-plane loading can alter results of the Nye solution for a 2D R-channel. We use a combination of perturbation analyses and finite element methods, varying the amount of applied anti-plane stress. A closed-form solution is derived for imposing a small anti-plane perturbation, which has no effect at linear order on the Nye closure rate. Such effects become strong at more substantial perturbations, and the inplane stress and strain fields are then significantly altered from the Nye solution. We further extend our model to compute channel size in terms of the external stressing and flow rate. Understanding the effect of the ice flow on channel size and formation is important to subglacial hydrology, as well as a potentially vital component for our understanding of the formation and motion of ice streams found in West Antarctica.
NASA Technical Reports Server (NTRS)
1997-01-01
The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Surface deformation from a pressurized subsurface fracture: Problem description
Fu, Pengcheng
2014-09-15
This document speci es a set of problems that entail the calculation of ground surface deformation caused by a pressurized subsurface fracture. The solid medium is assumed to be isotropic-homogeneous where linear elasticity applies. The e ects of the uid in the fracture is represented by a uniform pressure applied onto the two fracture walls. The fracture is assumed to be rectangular in shape and various dipping angles are considered. In addition to the full 3D solution, we reduce the 3D problem to a plane-strain geometry, so that 2D codes can participate in the comparison and results can be compared with those available in the literature.
Skigin, Diana C; Depine, Ricardo A
2008-05-01
We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals.
Coincidence lattices in the hyperbolic plane.
Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A
2011-01-01
The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections.
Plane wave reflection at flow intakes
NASA Astrophysics Data System (ADS)
Davies, P. O. A. L.
1987-06-01
A treatment is presented for prediction of the acoustic field associated with an open duct termination whose inflow is at a mean Mach number, and requires a quantitative description of both the acoustic and flow conditions in the vicinity of the open end. This problem is presently simplified by restricting the acoustic field within the duct to plane wave motion, with component wave amplitudes p(+) and p(-), where p(+) is incident at the termination. A 'vena contracta' develops in the pipe just downstream of the intake, leading to a significant mean pressure loss.
On a Minimum Problem in Smectic Elastomers
NASA Astrophysics Data System (ADS)
Buonsanti, Michele; Giovine, Pasquale
2008-07-01
Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.
Finite-element formulations for problems of large elastic-plastic deformation
NASA Technical Reports Server (NTRS)
Mcmeeking, R. M.; Rice, J. R.
1975-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.
Finite element formulations for problems of large elastic-plastic deformation
NASA Technical Reports Server (NTRS)
Mcmeeking, R. M.; Rice, J. R.
1974-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.
The Laplace Planes of Uranus and Pluto
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.
1993-01-01
Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
Space-Plane Spreadsheet Program
NASA Technical Reports Server (NTRS)
Mackall, Dale
1993-01-01
Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.
Computing Displacements And Strains From Video Images
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Mcneill, Stephen R.; Lansing, Matthew D.
1996-01-01
Subpixel digital video image correlation (SDVIC) technique for measuring in-plane displacements on surfaces of objects under loads, without contact. Used for analyses of experimental research specimens or actual service structures of virtually any size or material. Only minimal preparation of test objects needed, and no need to isolate test objects from minor vibrations or fluctuating temperatures. Technique implemented by SDVIC software, producing color-graduated, full-field representations of in-plane displacements and partial derivatives with respect to position along both principal directions in each image plane. From representations, linear strains, shear strains, and rotation fields determined. Written in C language.
Optimal aeroassisted return from high earth orbit with plane change
NASA Technical Reports Server (NTRS)
Winh, N. X.; Hanson, J. M.
1983-01-01
An analytical treatment of the problem of aeroassisted return from a high earth orbit to LEO is presented. The approach taken is that of the minimum fuel aeroassisted return from the higher to the lower orbit with occasional maneuvers within the atmosphere while performing a plane change. The plane changes are calculated for different angular alterations, and a model is developed for optimized atmospheric turning. It is found that larger plane changers demand deeper penetration into the denser regions of the atmosphere, where greater velocity depletion will also occur. Attention is given to lift effects and their optimized solution, and an atmospheric exit condition is characterized which will require one post atmospheric impulse to achieve a LEO of 380 km. Finally, it is shown that application of an impulse will always result in a plane change.
Optimal aeroassisted return from high earth orbit with plane change
NASA Astrophysics Data System (ADS)
Winh, N. X.; Hanson, J. M.
1983-10-01
An analytical treatment of the problem of aeroassisted return from a high earth orbit to LEO is presented. The approach taken is that of the minimum fuel aeroassisted return from the higher to the lower orbit with occasional maneuvers within the atmosphere while performing a plane change. The plane changes are calculated for different angular alterations, and a model is developed for optimized atmospheric turning. It is found that larger plane changers demand deeper penetration into the denser regions of the atmosphere, where greater velocity depletion will also occur. Attention is given to lift effects and their optimized solution, and an atmospheric exit condition is characterized which will require one post atmospheric impulse to achieve a LEO of 380 km. Finally, it is shown that application of an impulse will always result in a plane change.
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1995-01-01
The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.
Affine Contractions on the Plane
ERIC Educational Resources Information Center
Celik, D.; Ozdemir, Y.; Ureyen, M.
2007-01-01
Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…
Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme
Graham, Aaron M; Collins, Benjamin S; Downar, Thomas
2017-01-01
Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
NASA Technical Reports Server (NTRS)
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-01-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
NASA Astrophysics Data System (ADS)
Moreau, Magnus; Marthinsen, Astrid; Selbach, Sverre M.; Tybell, Thomas
2017-02-01
The structural and electronic response of LaAl O3 to biaxial strain in the (111) plane is studied by density functional theory (DFT) and compared with strain in the (001) plane and isostatic strain. For (111) strain, in-plane rotations are stabilized by compressive strain and out-of-plane rotations by tensile strain. This is an opposite splitting of the modes compared with (001) strain. Furthermore, for compressive (111) strain, in-plane rotations are degenerate with respect to the rotation axis, giving rise to Goldstone-like modes. We rationalize these changes in octahedral rotations by analyzing the VA/VB polyhedral volume ratios. Finally, we investigate how strain affects the calculated band gap, and find a 28% difference between the strain planes under 4% tension. This effect is attributed to different A-site dodecahedral crystal field splitting for (001) and (111) strains.
Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksel, B.
1986-01-01
The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.
Plane stress problems using hysteretic rigid body spring network models
NASA Astrophysics Data System (ADS)
Christos, Sofianos D.; Vlasis, Koumousis K.
2016-08-01
In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.
Symmetrically converging plane thermonuclear burn waves
NASA Astrophysics Data System (ADS)
Charakhch'yan, A. A.; Khishchenko, K. V.
2013-10-01
Five variants of a one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density, where the solution includes two thermonuclear burn waves propagating to meet one another at the symmetry plane, are simulated. A laser pulse with total absorption of energy at the critical density (in two variants) and a proton bunch that provides for a nearly isochoric heating (in three variants) are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burn wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0, where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ≈ 1 g cm-2 and about 0.7 at Hρ0 ≈ 5 g cm-2. The expansion stage of the flow (after reflecting the burn or detonation wave from the symmetry plane) gives the main contribution in forming the final values of the burn-up factor and the gain at Hρ0 ≈ 1 g cm-2 and increases them approximately two times at Hρ0 ≈ 5 g cm-2. In the case of the proton driver, the final value of the gain is about 200 at Hρ0 ≈ 1 g cm-2 and about 2000 at Hρ0 ≈ 5 g cm-2. In the case of the laser driver, the above values are four times less in conformity with the difference between the driver energies.
NASA Astrophysics Data System (ADS)
Conn Henry, Richard; Kilston, S.; Shostak, S.
2008-05-01
The strong advantages of SETI searches in the ecliptic plane have been pointed out by Kilston, Shostak, and Henry (2008). In our poster we show one possible history of civilizations in the galaxy, from birth, through galactic colonization, up to death - and even beyond. Should this scenario be correct, the pattern suggests that the best hope for success in SETI is exploration of the possibility that there are a few extremely ancient but non-colonizing civilizations; civilizations that, aeons ago, detected the existence of Earth (oxygen, and hence life) and of its Moon (stabilizing Earth's rotation) via observations of transits of the Sun (hence, ecliptic, which is stable over millions of years [Laskar et al. 2004]), and have been beaming voluminous information in our direction ever since, in their faint hope (now realized) that a technological "receiving” species would appear. To maintain such a targeted broadcast would be extremely cheap for an advanced civilization. A search of a swath centered on our ecliptic plane should easily find such civilizations, if they exist. We hope to carry out such a search, using the Allen Telescope Array. http://henry.pha.jhu.edu/poster.SETI.pdf References: Kilston, Steven; Shostak, Seth; & Henry, Richard Conn; "Who's Looking at You, Kid?: SETI Advantages near the Ecliptic Plane," AbSciCon 2008, April 14-17, Santa Clara, CA.; Laskar, J., et al., A&A 428, 261, 2004 This work was supported by Maryland Space Grant Consortium.
Object tracking based on bit-planes
NASA Astrophysics Data System (ADS)
Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng
2016-01-01
Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.
Serial Back-Plane Technologies in Advanced Avionics Architectures
NASA Technical Reports Server (NTRS)
Varnavas, Kosta
2005-01-01
Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.
Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids
NASA Astrophysics Data System (ADS)
Malkawi, Ghazi
An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new
Orbital Space Plane Cost Credibility
NASA Technical Reports Server (NTRS)
Creech, Steve
2003-01-01
NASA's largest new start development program is the Orbital Space Plane (OSP) Program. The program is currently in the formulation stage. One of the critical issues to be resolved, prior to initiating full-scale development, is establishing cost credibility of NASA s budget estimates for development, production, and operations of the OSP. This paper will discuss the processes, tools, and methodologies that NASA, along with its industry partners, are implementing to assure cost credibility for the OSP program. Results of benchmarking of current tools and the development of new cost estimating capabilities and approaches will be discussed.
NASA Astrophysics Data System (ADS)
Soler, José M.; Williams, Arthur R.
1990-11-01
Results are presented that demonstrate the effectiveness of a calculational method of electronic-structure theory. The method combines the power (tractable basis-set size) and flexibility (transition and first-row elements) of the augmented-plane-wave method with the computational efficiency of the Car-Parrinello method of molecular dynamics and total-energy minimization. Equilibrium geometry and vibrational frequencies in agreement with experiment are presented for Si, to demonstrate agreement with existing methods and for Cu, N2, and H2O to demonstrate the broader applicability of the approach.
SNAP Satellite Focal Plane Development
Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.
2003-07-07
The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.
Negussie, H; Gizaw, D; Tesfaw, L; Li, Y; Oguma, K; Sentsui, H; Tessema, T S; Nauwynck, H J
2017-01-18
Infections with equine herpesviruses (EHVs) are widespread in equine populations worldwide. Whereas both EHV-1 and EHV-4 produce well-documented respiratory syndromes in equids, the contribution of EHV-2 and EHV-5 to disease of the respiratory tract is still enigmatic. This study describes the detection and genetic characterization of EHVs from equids with and without clinical respiratory disease. Virus-specific PCRs were used to detect EHV-1, -2, -4 and -5. From the total of 160 equids with respiratory disease, EHV-5 was detected at the highest prevalence (23.1%), followed by EHV-2 (20.0%), EHV-4 (8.1%) and EHV-1 (7.5%). Concurrent infections with EHV-2 and EHV-5 were recorded from nine (5.2%) diseased horses. Of the total of 111 clinically healthy equids, EHV-1 and EHV-4 were never detected whereas EHV-2 and EHV-5 were found in 8 (7.2%) and 18 (16.2%) horses, respectively. A significantly higher proportion of EHV-2-infected equids was observed in the respiratory disease group (32/160, 20.0%; P = 0.005) compared to those without disease (8/111; 7.2%). EHV-2-positive equids were three times more likely to display clinical signs of respiratory disease than EHV-2-negative equids (OR 3.22, 95% CI: 1.42-7.28). For EHV-5, the observed difference was not statistically significant (P = 0.166). The phylogenetic analysis of the gB gene revealed that the Ethiopian EHV-2 and EHV-5 strains had a remarkable genetic diversity, with a nucleotide sequence identity among each other that ranged from 94.0 to 99.4% and 95.1 to 100%, respectively. Moreover, the nucleotide sequence identity of EHV-2 and EHV-5 with isolates from other countries acquired from GenBank ranged from 92.9 to 99.1% and 95.1 to 99.5%, respectively. Our results suggest that besides EHV-1 and EHV-4, EHV-2 is likely to be an important contributor either to induce or predispose equids to respiratory disease. However, more work is needed to better understand the contribution of EHV-2 in the establishment of
The Bolocam Galactic Plane Survey
NASA Technical Reports Server (NTRS)
Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan
2009-01-01
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.
Scattering by a groove in an impedance plane
NASA Technical Reports Server (NTRS)
Bindiganavale, Sunil; Volakis, John L.
1993-01-01
An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.
A multilinear constraint on dichromatic planes for illumination estimation.
Toro, Javier; Funt, Brian
2007-01-01
A new multilinear constraint on the color of the scene illuminant based on the dichromatic reflection model is proposed. The formulation avoids the problem, common to previous dichromatic methods, of having to first identify pixels corresponding to the same surface material. Once pixels from two or more materials have been identified, their corresponding dichromatic planes can be intersected to yield the illuminant color. However, it is not always easy to determine which pixels from an arbitrary region of an image belong to which dichromatic plane. The image region may cover an area of the scene encompassing several different materials and, hence, pixels from several different dichromatic planes. The new multilinear constraint accounts for this multiplicity of materials and provides a mechanism for choosing the most plausible illuminant from a finite set of candidate illuminants. The performance of this new method is tested on a database of real images.
Singularities from colliding plane gravitational waves
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1980-12-01
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
Material mechanical characterization method for multiple strains and strain rates
Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli
2016-01-19
A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.
NASA Technical Reports Server (NTRS)
1995-01-01
HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.
NASA Technical Reports Server (NTRS)
Rojas, Roberto G.
1985-01-01
A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.
Functional Aesthetic Occlusal Plane (FAOP)
Câmara, Carlos Alexandre; Martins, Renato Parsekian
2016-01-01
ABSTRACT Introduction: A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. Objective: The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP), which aims to help in the diagnosis of the relationships established among molars, incisors and the upper lip. Conclusion: FAOP can complement an existing and established orthodontic treatment plan, facilitating the visualization of functional and aesthetic demands by giving a greater focus on the position of incisors in the relationship established among the incisors, molars and the upper lip stomion. PMID:27653271
Thermodynamics of black plane solution
NASA Astrophysics Data System (ADS)
Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay
2013-11-01
We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.
Smov Baseline Focal Plane Check
NASA Astrophysics Data System (ADS)
Gilmozzi, Roberto
1994-01-01
This test will be executed during the period after the servicing mission and before the extension of the COSTAR assembly. Its purpose is to verify that the FOS, HRS, and FOC focal planes have not been altered by the activities performed by Story and the Astronauts during the servicing mission. A large unknown deviation in aperture position would severly impact subsequent COSTAR alignment activities. If this test reveals a deviation, we may be able to compensate for any offsets prior to the complex and delicate COSTAR alignment calibrations. This enhanced version of the Heptathlon is designed to verify course alignments and measure relative aperture positions to within a few arcsecs. SPECIAL REQUIREMENTS: ***This test uses pre-servicing parameters for HRS, FOS, and FOC and the Cycle 4 parameters for WFPC2.*** ***This test requires special alignment and special guide stars.** ***This test requires special commanding for telemetry setups.**
NASA Astrophysics Data System (ADS)
McCormick, Andrew; Young, Bruce A.; Mahadevan, L.
2012-02-01
We develop a new computational model of elastic rods, taking into account shear and full rotational dynamics, as well as friction, adhesion, and collision. This model is used to study the movement of snakes in different environments. By applying different muscular activation patterns to the snake, we observe many different patterns of motion, from planar undulation to sudden strikes. Many of the most interesting behaviors involve the snake rising out of the horizontal plane in the vertical direction. Such behaviors include a sand snake sidewinding over the hot desert sand and a cobra rearing up into a defensive striking position. Experimental videos of live snakes are analyzed and compared with computational results. We identify and explain a new form of movement previously unobserved: ``collateral locomotion.''
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
Stationary equilibrium singularity distributions in the plane
NASA Astrophysics Data System (ADS)
Newton, P. K.; Ostrovskyi, V.
2012-02-01
We characterize all stationary equilibrium point singularity distributions in the plane of logarithmic type, allowing for real, imaginary or complex singularity strengths. The dynamical system follows from the assumption that each of the N singularities moves according to the flow field generated by all the others at that point. For strength vector \\vec{\\Gamma} \\in {\\Bbb R}^N , the dynamical system is the classical point vortex system obtained from a singular discrete representation of the vorticity field from ideal, incompressible fluid flow. When \\vec{\\Gamma} \\in \\Im , it corresponds to a system of sources and sinks, whereas when \\vec{\\Gamma} \\in {\\Bbb C}^N the system consists of spiral sources and sinks discussed in Kochin et al (1964 Theoretical Hydromechanics 1 (London: Interscience)). We formulate the equilibrium problem as one in linear algebra, A \\vec{\\Gamma} = 0 , A \\in {\\Bbb C}^{N \\times N} , \\vec{\\Gamma} \\in {\\Bbb C}^N , where A is a N × N complex skew-symmetric configuration matrix which encodes the geometry of the system of interacting singularities. For an equilibrium to exist, A must have a kernel and \\vec{\\Gamma} must be an element of the nullspace of A. We prove that when N is odd, A always has a kernel, hence there is a choice of \\vec{\\Gamma} for which the system is a stationary equilibrium. When N is even, there may or may not be a non-trivial nullspace of A, depending on the relative position of the points in the plane. We provide examples of evenly and randomly distributed points on curves such as circles, figure eights, flower-petal configurations and spirals. We then show how to classify the stationary equilibria in terms of the singular spectrum of A.
Difference Between Strain and Sprain.
ERIC Educational Resources Information Center
Connors, G. Patrick
Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)
Strain engineering of Kapitza resistance in few-layer graphene.
Chen, Jie; Walther, Jens H; Koumoutsakos, Petros
2014-02-12
We demonstrate through molecular dynamics simulations that the Kapitza resistance in few-layer graphene (FLG) can be controlled by applying mechanical strain. For unstrained FLG, the Kapitza resistance decreases with the increase of thickness and reaches an asymptotic value of 6 × 10(-10) m(2)K/W at a thickness about 16 nm. Uniaxial cross-plane strain is found to increase the Kapitza resistance in FLG monotonically, when the applied strain varies from compressive to tensile. Moreover, uniaxial strain couples the in-plane and out-of-plane strain/stress when the surface of FLG is buckled. We find that with a compressive cross-plane stress of 2 GPa, the Kapitza resistance is reduced by about 50%. On the other hand it is almost tripled with a tensile cross-plane stress of 1 GPa. Remarkably, compressive in-plane strain can either increase or reduce the Kapitza resistance, depending on the specific way it is applied. Our study suggests that graphene can be exploited for both heat dissipation and insulation through strain engineering.
Tilted planes in 3D image analysis
NASA Astrophysics Data System (ADS)
Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza
1998-03-01
Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.
Determining the pivotal plane of fluid lipid membranes in simulations
NASA Astrophysics Data System (ADS)
Wang, Xin; Deserno, Markus
2015-10-01
Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.
Jackson, W.C.; Portanova, M.A.
1995-10-01
This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent, penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method.
The UKIDSS Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Lucas, P. W.; Hoare, M. G.; Longmore, A.; Schröder, A. C.; Davis, C. J.; Adamson, A.; Bandyopadhyay, R. M.; de Grijs, R.; Smith, M.; Gosling, A.; Mitchison, S.; Gáspár, A.; Coe, M.; Tamura, M.; Parker, Q.; Irwin, M.; Hambly, N.; Bryant, J.; Collins, R. S.; Cross, N.; Evans, D. W.; Gonzalez-Solares, E.; Hodgkin, S.; Lewis, J.; Read, M.; Riello, M.; Sutorius, E. T. W.; Lawrence, A.; Drew, J. E.; Dye, S.; Thompson, M. A.
2008-11-01
The UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 deg2 of the northern and equatorial Galactic plane at Galactic latitudes -5° < b < 5° in the J, H and K filters and a ~200-deg2 area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 μm (1-0) H2 filter. It will provide data on ~2 × 109 sources. Here we describe the properties of the data set and provide a user's guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science comprises six studies. (1) A GPS-Spitzer-GLIMPSE cross-match for the star formation region G28.983-0.603 to identify YSOs. This increases the number of YSOs identified by a factor of 10 compared to GLIMPSE alone. (2) A wide-field study of the M17 nebula, in which an extinction map of the field is presented and the effect of source confusion on luminosity functions in different subregions is noted. (3) H2 emission in the ρ Ophiuchi dark cloud. All the molecular jets are traced back to a single active clump containing only a few protostars, which suggests that the duration of strong jet activity and associated rapid accretion in low-mass protostars is brief. (4) X-ray sources in the nuclear bulge. The GPS data distinguishes local main-sequence counterparts with soft X-ray spectra from nuclear bulge giant counterparts with hard X-ray spectra. (5) External galaxies in the zone of avoidance. The galaxies are clearly distinguished from stars in fields at longitudes l > 90°. (6) IPHAS-GPS optical-infrared spectrophotometric typing. The (i' - J) versus (J - H) diagram is used to distinguish A-F type
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Portanova, Marc A.
1995-01-01
This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage
Stretching of a plane with a lattice of cuts
NASA Astrophysics Data System (ADS)
Dahl, Yu. M.
2016-06-01
An exact analytical solution of the problem in elasticity theory about stretching of a plane with an infinite lattice of rectilinear cuts has been obtained. The analysis is based on G.V. Kolosov's formulas associating the stress components with two regular functions of a complex variable. The obtained solution revealed the original effects of stretching stress screening and localization of compressive stresses between cuts.
Parametrics of submarine dynamic stability in the vertical plane
Papoulias, F.A.; Papanikolaou, S.
1996-12-31
The problem of dynamic stability of submersible vehicles in the dive plane is examined utilizing bifurcation techniques. The primary mechanism of loss of stability is identified in the form of generic Hopf bifurcations to periodic solutions. Stability of the resulting limit cycles is established using center manifold approximations and integral averaging. Parametric studies are performed with varying vehicle geometric properties. The methods described in this work could lead to techniques resulting in enlargement of the submerged operational envelope of a vehicle.
StrainModeler: A MATHEMATICA™-based program for 3D analysis of finite and progressive strain
NASA Astrophysics Data System (ADS)
Bobillo-Ares, Nilo C.; Aller, Jesús; Bastida, Fernando; Menéndez, Omar; Lisle, Richard J.
2015-05-01
StrainModeler is a program constructed in the MATHEMATICA™ environment that performs 3D progressive strain calculations for lines and planes undergoing any sequence of homogeneous deformations. The main inputs to the system define the initial line or plane to be deformed and the deformation sequence to be applied, including combinations of simple shear, pure shear and volume change. For the deformation of lines, the output of the program is the change of attitude of the initial line, which can be represented by graphics or plotted in an equal-area projection. For the deformation of planes, the program has several outputs: (i) change of attitude of the initial plane; (ii) magnitudes and ratio of the semi-axes of the strain ellipse on the deformed plane; (iii) orientation of the major and minor axes of the strain ellipse on the deformed plane; (iv) orientations of the axial planes of the folds formed on the deformed plane, and (v) area change on the deformed plane. The variation of any of these parameters can be shown against a linear parameter only linked to the number of steps involved in the deformation, as a kind of "time" line, or it can be shown against the variation of a parameter of the strain ellipsoid (e. g.: major axis/minor axis ratio). A sequence of directions can be also visualized as a curve in an equal-area plot. Three applications of the program are presented. In the first, the deformation by simple shear of a plane with any orientation is analyzed. In the second, we explore the formation of recumbent folds in layers with different initial orientations for simple shear and pure shear deformations. In the third, we use StrainModeler to analyze the deformation of a set of folds located in a ductile shear zone in the Variscan Belt of NW Spain.
Application of boundary integral equations to elastoplastic problems
NASA Technical Reports Server (NTRS)
Mendelson, A.; Albers, L. U.
1975-01-01
The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.
Galactic plane gamma-radiation
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.
1979-01-01
Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.
Duel-Plane Optical Disdrometer
NASA Astrophysics Data System (ADS)
Winsky, B. E.; Eichinger, W. E.
2011-12-01
Acquiring better drop-size distributions of rainfall will improve our understanding of the spatial and temporal variability of rainfall. In order to fully capture the spatial and temporal variability of rainfall, a robust, calibration free, low-cost instrument that provides an accurate drop-size distribution is required. Therefore, The University of Iowa Lidar Group has developed and built a new duel-plane optical disdrometer that meets these criteria. Two sheets of laser light, vertically spaced by 1 cm are produced by two 670nm laser beams passing through a collecting lens and culminating lens, respectively. The two sheets of laser light then pass through a convex lens located 20 cm from the lasers that focuses the light on a photo detector. A computer reads in and stores the voltages at 10 kHz. The velocity, diameter, shape and drop-size distribution of raindrops are extracted from the voltage measurements. Rainfall data collected in Iowa City, IA tested our disdrometer's robustness and accuracy of providing drop-size distributions. Our distrometer is advantageous because it is simple, low-cost, and requires no calibration.
Radioactivity in the galactic plane
NASA Technical Reports Server (NTRS)
Walraven, G. D.; Haymes, R. C.
1976-01-01
The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.
On plane submerged laminar jets
NASA Astrophysics Data System (ADS)
Coenen, Wilfried; Sanchez, Antonio L.
2016-11-01
We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α <129o in a limited range of Reynolds numbers 0 <=Re <=Rec (α) (e.g. Rec = 1 . 43 for α = π / 2). It is reasoned that an alternative solution, driven by a fraction of the momentum flux of the feed stream, may also exist for all values of Re and α, including a near-centerline Bickley jet, a surrounding Taylor potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.
Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle
Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.
2014-11-03
Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.
RF/Optical Demonstration: Focal Plane Assembly
NASA Astrophysics Data System (ADS)
Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.
2016-11-01
In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.
Digital scanner infrared focal plane technology
NASA Astrophysics Data System (ADS)
Ortiz, M. A.; Malone, N. R.; Harris, M.; Shin, J.; Byers, S.; Price, D.; Vampola, J.
2011-09-01
Advancements in finer geometry and technology advancements in circuit design now allow placement of digital architecture on cryogenic focal planes while using less power than heritage analog designs. These advances in technology reduce the size, weight, and power of modern focal planes. In addition, the interface to the focal plane is significantly simplified and is more immune to Electromagnetic Interference (EMI). The cost of the customer's instrument after integration with the digital scanning Focal Plane Array (FPA) has been significantly reduced by placing digital architecture such as Analog to digital convertors and Low Voltage Differential Signaling (LVDS) Inputs and Outputs (I/O) on the Read Out Integrated Circuit (ROIC).
Nanostructured carbon films with oriented graphitic planes
Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.
2011-03-21
Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.
A Cool Tool for Deicing Planes
NASA Technical Reports Server (NTRS)
2001-01-01
Nicknamed the "ice zapper," the Electro Expulsive Separation System (EESS) is an aircraft ice removal system that "pulverizes ice and removes layers of ice as thin as frost or as thick as an inch of glaze," according to the principle inventor of the technology. Patented by NASA's Ames Research Center, the EESS consists of layers of conductors encased in materials that are bonded directly to the airframe structure. When ice accumulates on the aircraft, an electric current is sent through the conductors, causing them to pulse. Even though the conductors move less than a twenty-thousandth of an inch in just a millisecond, the movement is sufficient to pulverize the ice. It is this highly accelerated motion that shatters the ice into particles the size of table salt; too small to be harmful to the aircraft. When compared with other systems in use, such as thermal deicers and pneumatic boots, the ice zapper does very well. Thermal deicers are fairly common, although they use an enormous amount of energy and present the possibility of ice refreezing. Pneumatic boots are not always effective because they require an inflation device that is unable to work until a quarter inch of ice has accumulated. With both systems, the ice that is loosened may still be large enough to cause problems for the plane once dislodged.
Hybrid inflation in the complex plane
NASA Astrophysics Data System (ADS)
Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2014-07-01
Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.
Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate
Chou, Namsun; Lee, Jongho; Kim, Sohee
2014-12-15
This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanical characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.
Autonomous Real-Time Interventional Scan Plane Control With a 3-D Shape-Sensing Needle
Plata, Juan Camilo; Holbrook, Andrew B.; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L.; Cutkosky, Mark R.
2016-01-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle’s estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner’s frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle’s profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response. PMID:24968093
Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.
Elayaperumal, Santhi; Plata, Juan Camilo; Holbrook, Andrew B; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L; Cutkosky, Mark R
2014-11-01
This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle's estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner's frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle's profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R. (Technical Monitor)
2003-01-01
This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.
Strained Ring Energetic Binders
1993-08-27
polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report
Slipping and Rolling on an Inclined Plane
ERIC Educational Resources Information Center
Aghamohammadi, Cina; Aghamohammadi, Amir
2011-01-01
In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…
Solar Impulse's Solar-Powered Plane
Moniz, Ernest; Piccard, Bertrand; Reicher, Dan
2016-07-12
Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.
Solar Impulse's Solar-Powered Plane
Moniz, Ernest; Piccard, Bertrand; Reicher, Dan
2013-07-08
Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.
Study the Z-Plane Strip Capacitance
Parikh, H.; Swain, S.; /SLAC
2005-12-15
The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.
NASA Technical Reports Server (NTRS)
Huang, W. C.
1972-01-01
Nonlinear boundary value problems of an infinite elastic-plastic plate with a circular hole subjected to pure tension and pure shear at infinity are solved by a method involving Fourier series and finite difference. On the basis of these solutions, the validity of Neuber's relationship between the stress and strain concentration factors for the plane stress problems is examined and a generalized Stowell formula for the stress concentration factor is proposed for problems in which the applied loading may be pure shear as well as pure tension and, furthermore, other stress states. By the same method of solution, the stress distributions around a rigid circular cylindrical inclusion embedded in an infinite rigid-plastic matrix subjected to uniform transverse pure shear and tension are obtained.
Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard
2016-03-21
Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.
Lower incisor inclination regarding different reference planes.
Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen
2016-09-01
The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination.
NASA Astrophysics Data System (ADS)
Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil
2017-04-01
We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.
Mosaic focal plane for star sensors
NASA Astrophysics Data System (ADS)
Chang, N. C.
1981-02-01
The basic principles of star sensors are reviewed with reference to the advantages of replacing photodiodes, image dissectors, and vidicons with mosaic charge transfer device (CTD) focal planes. The desirable characteristics of CTD focal planes include: high uniformity, high transfer effect, low dark current, low hot and cold spots, low dead space, low angular misalignment, high coplanarity, and high thermal stability. An implementation of a mosaic CTD array star sensor which achieves high angular position accuracy and frequency attitude update is presented. Two focal plane packaging concepts, the planar and vertical board packagings, are examined.
High Temperature Capacitive Strain Gage
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
High temperature capacitive strain gage
NASA Astrophysics Data System (ADS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
High temperature strain measurement with a resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos
1993-01-01
A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.
NASA Astrophysics Data System (ADS)
Antal, Tibor; Krapivsky, P. L.
2012-06-01
Synthetic biomolecular spiders with “legs” made of single-stranded segments of DNA can move on a surface covered by single-stranded segments of DNA called substrates when the substrate DNA is complementary to the leg DNA. If the motion of a spider does not affect the substrates, the spider behaves asymptotically as a random walk. We study the diffusion coefficient and the number of visited sites for spiders moving on the square lattice with a substrate in each lattice site. The spider's legs hop to nearest-neighbor sites with the constraint that the distance between any two legs cannot exceed a maximal span. We establish analytic results for bipedal spiders, and investigate multileg spiders numerically. In experimental realizations legs usually convert substrates into products (visited sites). The binding of legs to products is weaker, so the hopping rate from the substrates is smaller. This makes the problem non-Markovian and we investigate it numerically. We demonstrate the emergence of a counterintuitive behavior—the more spiders are slowed down on unvisited sites, the more motile they become.
Strain engineered barium strontium titanate for tunable thin film resonators
Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
A finite element study of a lumbar motion segment subjected to pure sagittal plane moments.
Shirazi-Adl, A; Ahmed, A M; Shrivastava, S C
1986-01-01
A nonlinear finite element program has been developed and applied to the analysis of a three-dimensional model of the lumbar L2-3 motion segment subjected to sagittal plane moments. The analysis accounts for both material and geometric nonlinearities and is based on the Updated Lagrangian approach. The disc nucleus has been considered as an incompressible inviscid fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. Articulation at the facet joints has been treated as a general moving contact problem and the spinal ligaments have been modelled as a collection of nonlinear axial elements. Effects of the loss of intradiscal pressure in flexion and of facetectomy in extension have been analyzed. Comparison of the predicted gross response characteristics with available measurements indicates satisfactory agreement. In flexion relatively large intradiscal pressures are generated, while in extension negative pressures (i.e. suction) of low magnitude are predicted. The stress distribution results indicate that the load transfer path through the posterior elements of the joint in flexion is different from that in extension. In flexion the ligaments are the means of load transfer, while in extension the load is transmitted through the pedicles, laminae and articular processes. In flexion, the inner annulus fibres at the posterolateral location are subject to maximum tensile strain. It is suggested that large flexion moment in combination with other loads is a likely cause of disc prolapse commonly found at this location of the annulus.
Complex space monofilar approximation of diffraction currents on a conducting half plane
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.
NASA Astrophysics Data System (ADS)
Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.
2016-03-01
High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.
Causal inheritence in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-11-24
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.
Strain effect in group-III nitride semiconductors and their alloys
NASA Astrophysics Data System (ADS)
Yan, Qimin; Rinke, Patrick; Scheffler, Matthias; van de Walle, Chris
2009-11-01
Strain plays a crucial role in group-III nitride semiconductor based devices since it affects the band structure near the valence- and conduction-band edges and thus the optical properties and the device characteristics. However, the deformation potentials that describe the change in band structure under strain have not yet been reliably determined. We present a systematic study of the strain effects in AlN, GaN and InN in the wurtzite phase. We apply density functional theory and hybrid functionals to address the band-gap problem. We observe nonlinearities of transition energies under realistic strain condition that may, in part, explain the appreciable scatter in previous theoretical work on deformation potentials of group-III-nitrides. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials. Applying our deformation potentials, we study strain effects in InGaN alloys (including c-, m-, and semi-polar planes) grown on GaN substrates. We make predictions for the transition energies in these systems and their dependence on In composition.
NASA Astrophysics Data System (ADS)
Freilich, Daniel; Llewellyn Smith, Stefan
2015-11-01
Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.
An interferometric strain-displacement measurement system
NASA Technical Reports Server (NTRS)
Sharpe, William N., Jr.
1989-01-01
A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.
Strain effects on oxygen vacancy energetics in KTaO3
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...
2017-02-07
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO3. We find that themore » formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
Evidence for residual elastic strain in deformed natural quartz
Kunz, Martin; Chen, Kai; Tamura,Nobumichi; Wenk, Hans-Rudolf
2009-01-30
Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron x-rays. The measurements with a resolution of one micrometer allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress in the order of {approx} 50 MPa.
Plane elastostatic analysis of V-notched plates.
NASA Technical Reports Server (NTRS)
Gross, B.; Mendelson, A.
1972-01-01
Solutions are given for several plane elastostatic problems of plates having a V-notch on one edge, and subjected to a variety of boundary conditions. The effect of the magnitude of the V-notch angle and specimen geometry on stress intensity factors KI and KII are obtained for unloaded notch surfaces. There is less than one per cent difference in opening model stress intensity factor in going from a zero degree notch angle to a 30 degree notch angle. Notch opening displacements at the plate edge were measured experimentally, and the results obtained were in excellent agreement with the computed results.
Decoding the matrix: Coincident membranes on the plane wave
Bousso, Raphael; Mints, Aleksey L.
2006-03-15
At the core of nonperturbative theories of quantum gravity lies the holographic encoding of bulk data in large matrices. At present this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view, one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation.
Planing-surface Tests at Large Froude Numbers - Airfoil Comparison
NASA Technical Reports Server (NTRS)
Sambraus, A
1938-01-01
The take-off capacity of a flying boat depends upon the design of the hull bottom ahead as well as aft of the step. Systematic tests - largely made by industry itself - had proved the benefit accruing from a well designed hull bottom long before theoretical insight into the flow phenomena involved had been obtained. The theoretical framing of the problem was beset with serious difficulties and, though restricted to the processes within range of the planing bottom ahead of the step, the solutions do not yet afford a comprehensive survey.
Analysis and modeling for thermal focal plane arrays
NASA Astrophysics Data System (ADS)
Tuer, T. W.; Ball, B. W.; Freeling, J. R.; Lennington, J. W.; Lindquist, G. H.
1984-07-01
The development of a first principles computer simulation of a generic pyroelectric thermal detector is described. Formulation of the pertinent equations (based on a thorough literature survey) is presented. This simulation incorporates a finite difference treatment of the transient three-dimensional thermal response of composite focal plane arrays, with treatments of the signal generation, readout and processing including all pertinent noise sources. A number of simplified problems having analytical solutions were treated to validate various portions of the simulation to within a few percent. Performance estimates were made for conceptual several configurations and materials.
NASA Astrophysics Data System (ADS)
Moutanabbir, O.; Reiche, M.; Erfurth, W.; Naumann, F.; Petzold, M.; Gösele, U.
2009-06-01
The strain behavior in nanoscale patterned biaxial tensile strained Si layer on insulator is investigated in 60-nm-thick nanostructures with dimensions in the 80-400 nm range. The in-plane strain is evaluated by using UV micro-Raman. We found that less than 30% of the biaxial strain is maintained in the 200×200 nm2 nanostructures. This relaxation, due to the formation of free surfaces, becomes more important in smaller nanostructures. The strain is completely relieved at 80 nm. This phenomenon is described based on detailed three-dimensional finite element simulations. The anisotropic relaxation in rectangular nanostructures is also discussed.
Empirical paths of poles to planes (eppps) constrain the kinematics of geological shear zones
NASA Astrophysics Data System (ADS)
Talbot, Christopher J.
2014-09-01
Ductile shear zones are tabular bodies of deformed rocks bound by less deformed wall rocks. This work introduces a simple empirical approach to analysing the 3D kinematics of shear zones. The orientations of pre-shear planar markers distorted across natural shear zones by local strains are systematically measured and plotted as poles on lower hemisphere equal area projections that constrain smooth empiricalpaths ofpoles toplanes (eppps). Such eppps recording local strain gradients are used to fix a reference frame to the plane of greatest shear in any homogeneous bulk strain. Assuming that space can be taken as a proxy for time, the curvatures of pre-shear planar markers across shear zones are interpreted as the records of the 3D bulk strain histories of shear zones. The sig- or zig-moidal symmetries of sheared markers record different amounts of the same general strain within the same overall movement pattern (i.e. in a constant flow field) whatever its geometry or history. In effect eppps represent the strain memories of shear zones with successively inward readings recording successively younger shearing. In planes other than the bulk XY, great circle eppps indicate simple shear while hyperbolic eppps indicate pure shear. Eppps for suites of shear zones in Proterozoic gneisses in Sweden exhibit the parabolic shapes indicative of pure rather than simple shear.
Double plane wave reverse time migration with plane wave Green's function
NASA Astrophysics Data System (ADS)
Zhao, Z.; Sen, M. K.; Stoffa, P. L.
2015-12-01
Reverse time migration (RTM) is effective in obtaining complex subsurface structures from seismic data. By solving the two-way wave equation, RTM can use entire wavefield for imaging. Although powerful computer are becoming available, the conventional pre-stack shot gather RTM is still computationally expensive. Solving forward and backward wavefield propagation for each source location and shot gather is extremely time consuming, especially for large seismic datasets. We present an efficient, accurate and flexible plane wave RTM in the frequency domain where we utilize a compressed plane wave dataset, known as the double plane wave (DPW) dataset. Provided with densely sampled seismic dataset, shot gathers can be decomposed into source and receiver plane wave components with minimal artifacts. The DPW RTM is derived under the Born approximation and utilizes frequency domain plane wave Green's function for imaging. Time dips in the shot profiles can help to estimate the range of plane wave components present in shot gathers. Therefore, a limited number of plane wave Green's functions are needed for imaging. Plane wave Green's functions can be used for imaging both source and receiver plane waves. Source and receiver reciprocity can be used for imaging plane wave components at no cost and save half of the computation time. As a result, the computational burden for migration is substantially reduced. Plane wave components can be migrated independently to recover specific targets with given dips, and ray parameter common image gathers (CIGs) can be generated after migration directly. The ray parameter CIGs can be used to justify the correctness of velocity models. Subsurface anisotropy effects can also be included in our imaging condition, provided with plane wave Green's functions in the anisotropic media.
Biomechanical differences between incline and plane hopping.
Kannas, Theodoros M; Kellis, Eleftherios; Amiridis, Ioannis G
2011-12-01
Kannas, TM, Kellis, E, and Amiridis, IG. Biomechanical differences between incline and plane hopping. J Strength Cond Res 25(12): 3334-3341, 2011-The need for the generation of higher joint power output during performance of dynamic activities led us to investigate the force-length relationship of the plantar flexors during consecutive stretch-shortening cycles of hopping. The hypothesis of this study was that hopping (consecutive jumps with the knee as straight as possible) on an inclined (15°) surface might lead to a better jumping performance compared with hopping on a plane surface (0°). Twelve active men performed 3 sets of 10 consecutive hops on both an incline and plane surface. Ground reaction forces; ankle and knee joint kinematics; electromyographic (EMG) activity from the medial gastrocnemius (MG), soleus (Sol) and tibialis anterior (TA); and architectural data from the MG were recorded. The results showed that participants jumped significantly higher (p < 0.05) when hopping on an inclined surface (30.32 ± 8.18 cm) compared with hopping on a plane surface (27.52 ± 4.97 cm). No differences in temporal characteristics between the 2 types of jumps were observed. Incline hopping induced significantly greater ankle dorsiflexion and knee extension at takeoff compared with plane hopping (p < 0.05). The fascicle length of the MG was greater at initial contact with the ground during incline hopping (p < 0.05). Moreover, the EMG activities of Sol and TA during the propulsion phase were significantly higher during incline compared with that during plane hopping (p < 0.05). It does not seem unreasonable to suggest that, if the aim of hopping plyometrics is to improve plantar flexor explosivity, incline hopping might be a more effective exercise than hopping on a plane surface.
Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane
ERIC Educational Resources Information Center
Chick, Helen
2016-01-01
The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…
Plane of elastic non-resisting tension material under foundation structures
NASA Astrophysics Data System (ADS)
Baratta, A.; Corbi, I.
2004-05-01
In the frame of 2D-static problems one approaches the problem of elastic-NRT (not-resisting tension) semi-plane loaded on its limit line. This problem is intended to model the stress situation induced in the soil by a foundation structure. The solution, in terms of activated stress field, is searched for in the class of stress fields satisfying equilibrium and admissibility conditions, by applying an energy approach. Copyright
On the theory of unsteady planing and the motion of a wing with vortex separation
NASA Technical Reports Server (NTRS)
Sedov, L
1940-01-01
The disturbance imparted to water by a planing body give rise to a wave form of motion on the free surface, the length of the waves increasing indefinitely with increase in the Froude number and being directly proportional to the latter in the case of the plane or two-dimensional problem. At large Froude numbers the effect of the weight shows up to any appreciable extent only at some distance from the body, so that the flow near the body can be considered as part of a flow of an infinitely extending weightless fluid. This paper is a consideration of these characteristics as well as a formulation of the planing problem and its relation to the problem of a thin wing.
Observations of the galactic plane by the zodiacal infrared project
NASA Technical Reports Server (NTRS)
Rickard, L. J.; Stemwedel, S. W.; Price, S. D.
1990-01-01
The two rocket flights of the Zodiacal Infrared Project (ZIP), flown 18 August 1980 and 31 July 1981, were intended to provide data on the near-infrared thermal emission of the interplanetary dust cloud over a broad range of ecliptic coordinates (latitudes -60 to +85 degrees, solar elongation angles 22 to 90 degrees and 140 to 180 degrees). In addition, their multiple crossings of the Galactic plane provided low resolution spectral data (delta lambda/lambda ranging from 1. to 0.1, for effective wavelengths from 3 to 30 microns) for most of the first quadrant (longitudes 30 to 100 degrees). Examples are displayed. Having made a thorough reanalysis of the calibration of the ZIP database, researchers present the salient features of the Galactic plane as observed by ZIP. The binned, in-plane data, corrected for zodiacal emission, generally show an exponential decrease with increasing longitude. The fitted exponential scale-length is 0.038/degree, and can be inverted to derive a radial density profile. Channel ratios are converted to temperatures by using model spectra in which thermal emitters with emissivity approx. 1/lambda are convolved with the filter responses. The results for channels 5 (11 microns) and 12 (21 microns) are shown, along with similarly derived temperatures from Infrared Astronomy Satellite (IRAS) 12 microns and 25 microns data. The ZIP data show little variation with longitude, consistent with IRAS results. A narrow spectral feature at 13 microns appears consistently in data for the plane (uncorrected for zodiacal emission). However, this is strongly contaminated by calibration problems for channel 8. Researchers suggest that residual emission at 13 microns arises from the (NeII) line at 12.8 microns.
ERIC Educational Resources Information Center
Kinsella, John J.
1970-01-01
Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)
INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR ...
INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR MACHINE SHOP, LOOKING SOUTH TOWARD PLANING MILL. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
GLAMER - II. Multiple-plane gravitational lensing
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo
2014-12-01
We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.
Focal Plane Metrology for the LSST Camera
A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC
2007-01-10
Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.
Frazin, Richard A
2016-04-01
A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.
The MSX Galactic Plane Survey Submillimeter Results
NASA Astrophysics Data System (ADS)
Price, S.; Carey, S.; Egan, M. P.
The MidCourse Space eXperiment (MSX) surveyed the Galactic plane within 5° latitude in four mid-infrared spectral bands. A set of full resolution (20'') 1.5^circ×1.5^circ images on 6'' pixel centers has been created in each spectral band by co-adding all the survey data. A lower (1.2') resolution atlas of 10^circ×10^circ images provide large-scale panoramas of the plane. A new class of objects has been identified in the images, infrared dark clouds, which are silhouetted against the mid-infrared background emission from the interstellar medium in the Galactic plane. The IRAS ISSA plates indicate that these clouds are dark out to 100 μm. Submillimeter emission traces the form of the dark cloud and reveals cores indicative of class 0 protostars.
Solid-state curved focal plane arrays
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)
2010-01-01
The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.
Mixed boundary conditions for FFT-based homogenization at finite strains
NASA Astrophysics Data System (ADS)
Kabel, Matthias; Fliegener, Sascha; Schneider, Matti
2016-02-01
In this article we introduce a Lippmann-Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann-Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann-Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton-Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.
Sagittal plane deformity: an overview of interpretation and management.
Roussouly, Pierre; Nnadi, Colin
2010-11-01
The impact of sagittal plane alignment on the treatment of spinal disorders is of critical importance. A failure to recognise malalignment in this plane can have significant consequences for the patient not only in terms of pain and deformity, but also social interaction due to deficient forward gaze. A good understanding of the principles of sagittal balance is vital to achieve optimum outcomes when treating spinal disorders. Even when addressing problems in the coronal plane, an awareness of sagittal balance is necessary to avoid future complications. The normal spine has lordotic curves in the cephalad and caudal regions with a kyphotic curve in between. Overall, there is a positive correlation between thoracic kyphosis and lumbar lordosis. There are variations on the degree of normal curvature but nevertheless this shape allows equal distribution of forces across the spinal column. It is the disruption of this equilibrium by pathological processes or, as in most cases, ageing that results in deformity. This leads to adaptive changes in the pelvis and lower limbs. The effects of limb alignment on spinal posture are well documented. We now also know that changes in pelvic posture also affect spinal alignment. Sagittal malalignment presents as an exaggeration or deficiency of normal lordosis or kyphosis. Most cases seen in clinical practise are due to kyphotic deformity secondary to inflammatory, degenerative or post-traumatic disorders. They may also be secondary to infection or tumours. There is usually pain and functional disability along with concerns about self-image and social interaction due to inability to maintain a horizontal gaze. The resultant pelvic and lower limb posture is an attempt to restore normal alignment. Addressing this complex problem requires detailed expertise and awareness of the potential pitfalls surrounding its treatment.
Sagittal plane deformity: an overview of interpretation and management
Roussouly, Pierre
2010-01-01
The impact of sagittal plane alignment on the treatment of spinal disorders is of critical importance. A failure to recognise malalignment in this plane can have significant consequences for the patient not only in terms of pain and deformity, but also social interaction due to deficient forward gaze. A good understanding of the principles of sagittal balance is vital to achieve optimum outcomes when treating spinal disorders. Even when addressing problems in the coronal plane, an awareness of sagittal balance is necessary to avoid future complications. The normal spine has lordotic curves in the cephalad and caudal regions with a kyphotic curve in between. Overall, there is a positive correlation between thoracic kyphosis and lumbar lordosis. There are variations on the degree of normal curvature but nevertheless this shape allows equal distribution of forces across the spinal column. It is the disruption of this equilibrium by pathological processes or, as in most cases, ageing that results in deformity. This leads to adaptive changes in the pelvis and lower limbs. The effects of limb alignment on spinal posture are well documented. We now also know that changes in pelvic posture also affect spinal alignment. Sagittal malalignment presents as an exaggeration or deficiency of normal lordosis or kyphosis. Most cases seen in clinical practise are due to kyphotic deformity secondary to inflammatory, degenerative or post-traumatic disorders. They may also be secondary to infection or tumours. There is usually pain and functional disability along with concerns about self-image and social interaction due to inability to maintain a horizontal gaze. The resultant pelvic and lower limb posture is an attempt to restore normal alignment. Addressing this complex problem requires detailed expertise and awareness of the potential pitfalls surrounding its treatment. PMID:20567858
Achromatic phase shifting focal plane masks
NASA Astrophysics Data System (ADS)
Newman, Kevin
The search for life on other worlds is an exciting scientific endeavor that could change the way we perceive our place in the universe. Thousands of extrasolar planets have been discovered using indirect detection techniques. One of the most promising methods for discovering new exoplanets and searching for life is direct imaging with a coronagraph. Exoplanet coronagraphy of Earth-like planets is a challenging task, but we have developed many of the tools necessary to make it feasible. The Phase-Induced Amplitude Apodization (PIAA) Coronagraph is one of the highest-performing architectures for direct exoplanet imaging. With a complex phase-shifting focal plane mask, the PIAA Complex Mask Coronagraph (PIAACMC) can approach the theoretical performance limit for any direct detection technique. The architecture design is flexible enough to be applied to any arbitrary aperture shape, including segmented and obscured apertures. This is an important feature for compatibility with next-generation ground and space-based telescopes. PIAA and PIAACMC focal plane masks have been demonstrated in monochromatic light. An important next step for high-performance coronagraphy is the development of broadband phase-shifting focal plane masks. In this dissertation, we present an algorithm for designing the PIAA and PIAACMC focal plane masks to operate in broadband. We also demonstrate manufacturing of the focal plane masks, and show laboratory results. We use simulations to show the potential performance of the coronagraph system, and the use of wavefront control to correct for mask manufacturing errors. Given the laboratory results and simulations, we show new areas of exoplanet science that can potentially be explored using coronagraph technology. The main conclusion of this dissertation is that we now have the tools required to design and manufacture PIAA and PIAACMC achromatic focal plane masks. These tools can be applied to current and future telescope systems to enable new
Flow of granular materials down an inclined plane
Gudhe, R.; Rajagopal, K.R.; Massoudi, M.; Chi, R.
1993-05-01
The mechanics of flowing granular materials such as coal, sand, fossil-fuel energy recovery, metal ores, etc., and their flow characteristics have received considerable attention in recent years because it has relevance to several technological problems. In a number of instances these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials taking into account the heat transfer mechanism are derived using the continuum model proposed by Rajagopal and Massoudi (1990). For a fully developed flow of granular materials down an inclined plane, these equations reduce to a system of coupled ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented. For a special case, it is possible to obtain an analytic solution; this is given in the Appendix A of this report.
Source localization using rational approximation on plane sections
NASA Astrophysics Data System (ADS)
Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.
2012-05-01
In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.
Plane shock wave structure in a dilute granular gas
NASA Astrophysics Data System (ADS)
Reddy, M. H. Lakshminarayana; Alam, Meheboob
2016-11-01
We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.
Analytic theory of optimal plane change by low aerodynamic forces
NASA Astrophysics Data System (ADS)
Ma, Der-Ming; Wu, Chi-Hang; Vinh, Nguyen X.
The properites of the optimal and sub-optimal solutions to multiple-pass aeroassisted plane change were previously studied in terms of the trajectory variables. The solutions show the strong orbital nature. Then, it is proposed to obtain the variational equations of the orbital elements. We shall use these equations and the approximate control derived in Vinh and Ma (1990) to calculate the trajectories. In this respect, the approximate control law and the transversality condition are transformed in terms of the orbital elements. Following the above results, we can reduce the computational task by further simplification. Within omega and Omega being small and returning to the value of zero after each revolution, we neglect the equations for omega, and Omega. Also, since omega approximately equal to 0, that is alpha approximately equal to f, we can neglect the equation for the alpha and have only three state equations for the integration. Still the computation over several revolutions is long since it is performed using the eccentric anomaly along the osculating orbit as the independent variable. Here, we shall use the method of averaging as applied to the problem of orbit contraction to solve the problem of optimal plane change. This will lead to the integration of a reduced set of two nonlinear equations.
Slant plane CSAR processing using Householder transform.
Burki, Jehanzeb; Barnes, Christopher F
2008-10-01
Fourier analysis-based focusing of synthetic aperture radar (SAR) data collected during circular flight path is a recent advancement in SAR signal processing. This paper uses the Householder transform to obtain a ground plane circular SAR (CSAR) signal phase history from the slant plane CSAR phase history by inverting the linear shift-varying system model, thereby circumventing the need for explicitly computing a pseudo-inverse. The Householder transform has recently been shown to have improved error bounds and stability as an underdetermined and ill-conditioned system solver, and the Householder transform is computationally efficient.
[Normolipemic plane xanthomas and mycosis fungoides].
García-Arpa, Mónica; Rodríguez-Vázquez, María; Vera, Elena; Romero, Guillermo; González-García, Jesús; Cortina, Pilar
2005-06-01
Diffuse normolipemic plane xanthomas are characterized by the presence of yellowish plaques on the eyelids, neck, upper trunk, buttocks and flexures. Histology shows foamy histiocytes in the dermis. Approximately half of all cases are associated with hematological disorders. On rare occasions, they have been described in the context of cutaneous T-cell lymphomas. We present the case of a female patient with tumor-stage mycosis fungoides who developed normolipemic plane xanthomas coinciding with the appearance of new lymphoma lesions. We review English-language literature regarding the rare association of xanthomas and cutaneous T-cell lymphomas.
Toward loop quantization of plane gravitational waves
NASA Astrophysics Data System (ADS)
Hinterleitner, Franz; Major, Seth
2012-03-01
The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.
Note: A novel integrated microforce measurement system for plane-plane contact research
NASA Astrophysics Data System (ADS)
Dong, W.; Rostoucher, D.; Gauthier, M.
2010-11-01
The evaluation of plane-plane contact force has become a big issue in micro-/nano research, for example in microassembly. However with the lack of effective experimental equipments, the research on plane-plane contact has been limited to theoretical formulations or virtual simulation. In this paper, a microforce sensor and precision parallel robot integrated system is proposed for the microforce measurement of plane-plane contact. In the proposed system, the two objects are fixed on the parallel robot end-platform and the microforce sensor probe tip, respectively, and the high precision robot system is employed to provide six degree-of-freedom motions between both objects. So it is convenient for the microforce measurement between the planar objects with different orientations. As a significant application, the proposed system is utilized for measurements of pull-off force between planar objects, in which the validation of the system is demonstrated in practice. The proposed microforce measurement system is generic, which can be extended to a variety of microforce measurements in plane-plane contact.
Benito, L; Ciria, M; de la Fuente, C; Arnaudas, J I; Ward, R C C; Wells, M R
2005-06-10
We report on the change of the easy axis direction in holmium, from the a to the b axis, under the application of a magnetic field in the basal plane. This spin reorientation is observed by measuring the magnetic torque in Ho(n)/Lu(15) superlattices (n and 15 are the number of atomic planes in the Ho and Lu blocks). We also observe that, at the field H0 and temperature at which the reorientation occurs, both axes are easy directions. Based on the fact that the field H0 depends on n in the same way as the field-induced magnetoelastic distortion does, we propose that this spin reorientation originates from the strong field-induced magnetoelastic deformation within the basal plane. The modulation of the alpha strains with sixfold symmetry originates a 12-fold term in the magnetic anisotropy energy.
Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.
2014-09-22
Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.
Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear
NASA Astrophysics Data System (ADS)
Lei, Zhenkun; Bai, Ruixiang; Tao, Wang; Wei, Xiao; Leng, Ruijiao
2016-12-01
The buckling behavior and failure mode of a composite panel stiffened by I-shaped stringers under in-plane shear is studied using digital fringe projection profilometry. The basic principles of the dynamic phase-shifting technique, multi-frequency phase-unwrapping technique and inverse-phase technique for nonlinear error compensation are introduced. Multi-frequency fringe projection profilometry was used to monitor and measure the change in the morphology of a discontinuous surface of the stiffened composite panel during in-plane shearing. Meanwhile, the strain history of multiple points on the skin was obtained using strain rosettes. The buckling mode and deflection of the panel at different moments were analyzed and compared with those obtained using the finite element method. The experimental results validated the FEM analysis.
NASA Astrophysics Data System (ADS)
Park, Chang Bum; Na, HyungIl; Yoo, Soon Sung; Park, Kwon-Shik
2015-11-01
The electromechanical response of an amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) fabricated on a polyimide substrate was investigated as a function of the neutral axis location and strain history of the bending system. Here, we demonstrate the pronounced bending characteristics of a-IGZO TFTs and their backplane under extreme mechanical strain when they are embedded in a neutral plane (NP). After being subjected to tensile stress, the devices positioned near the NP were observed to function well against a cyclic bending stress of 2 mm radius with 100,000 times, while TFTs farther from the neutral surface exhibited modified electrical properties.
High temperature strain gage apparent strain compensation
NASA Technical Reports Server (NTRS)
Holmes, Harlan K.; Moore, T. C., Sr.
1992-01-01
Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.
MTI Focal Plane Assembly Design and Performance
Ballard, M.; Rienstra, J.L.
1999-06-17
The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.
Deep-Plane Lipoabdominoplasty in East Asians
Jang, Jun-Young; Hong, Yoon Gi; Sim, Hyung Bo; Sun, Sang Hoon
2016-01-01
Background The objective of this study was to develop a new surgical technique by combining traditional abdominoplasty with liposuction. This combination of operations permits simpler and more accurate management of various abdominal deformities. In lipoabdominoplasty, the combination of techniques is of paramount concern. Herein, we introduce a new combination of liposuction and abdominoplasty using deep-plane flap sliding to maximize the benefits of both techniques. Methods Deep-plane lipoabdominoplasty was performed in 143 patients between January 2007 and May 2014. We applied extensive liposuction on the entire abdomen followed by a sliding flap through the deep plane after repairing the diastasis recti. The abdominal wound closure was completed with repair of Scarpa's fascia. Results The average amount of liposuction aspirate was 1,400 mL (700–3,100 mL), and the size of the average excised skin ellipse was 21.78×12.81 cm (from 15×10 to 25×15 cm). There were no major complications such as deep-vein thrombosis or pulmonary embolism. We encountered 22 cases of minor complications: one wound infection, one case of skin necrosis, two cases of undercorrection, nine hypertrophic scars, and nine seromas. These complications were solved by conservative management or simple revision. Conclusions The use of deep-plane lipoabdominoplasty can correct abdominal deformities more effectively and with fewer complications than traditional abdominoplasty. PMID:27462568
Microscale out-of-plane anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2005-01-01
A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.
End Site Control Plane Subsystem (ESCPS)
Swany, Douglas Martin
2014-08-12
This project researched extending the control plane for dynamic networks into end sites like campuses and laboratories. Key aspects of consideration were signaling over local area network technologies, application integration and monitoring. We studied design considerations for such environments and developed and demonstrated a useful proof of concept implementation and documented implementation strategies for heterogeneous networks.
Optical interconnections to focal plane arrays
Rienstra, J.L.; Hinckley, M.K.
2000-11-01
The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.
Dual band QWIP focal plane array
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)
2005-01-01
A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...
NASA Astrophysics Data System (ADS)
Alsaleh, Mustafa I.; Voyiadjis, George Z.; Alshibli, Khalid A.
2006-12-01
It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill-posedness and mesh dependency. Therefore, a non-local theory with internal length scales is needed to overcome such problems. The micropolar and high-order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright
Optimal structural design via optimality criteria as a nonsmooth mechanics problem
NASA Astrophysics Data System (ADS)
Tzaferopoulos, M. Ap.; Stravroulakis, G. E.
1995-06-01
In the theory of plastic structural design via optimality criteria (due to W. Prager), the optimal design problem is transformed to a nonlinear elastic structural analysis problem with appropriate stress-strain laws, which generally include complete vertical branches. In this context, the concept of structural universe (in the sense of G. Rozvany) permits the treatment of complicated optimal layout problems. Recent progress in the field of nonsmooth mechanics makes the solution of structural analysis problems with this kind of 'complete' law possible. Elements from the two fields are combined in this paper for the solution of optimal design and layout problems for structures. The optimal layout of plane trusses with various specific cost functions is studied here as a representative problem. The use of convex, continuous and piecewise linear specific cost functions for the structural members leads to problems of linear variational inequalities or equivalently piecewise linear, convex but nonsmooth optimization problems, which are solved by means of an iterative algorithm based on sequential linear programming techniques. Numerical examples illustrate the theory and its applicability to practical engineering structures. Following a parametric investigation of an optimal bridge design, certain aspects of the optimal truss layout problem are discussed, which can be extended to other types of structural systems as well.
Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity
Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter
2014-01-01
Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629
NASA Astrophysics Data System (ADS)
Cherifi, S.; Boeglin, C.; Stanescu, S.; Deville, J. P.; Mocuta, C.; Magnan, H.; Le Fèvre, P.; Ohresser, P.; Brookes, N. B.
2001-11-01
The effects of nanostructured magnetic Fe65Ni35 films deposited on a vicinal Cu(111) single-crystal surface on the magnetic anisotropy have been studied using magnetic circular x-ray dichroism (MCXD) at the Fe L2,3 edges. In the one-dimensional (1D) limit a large dipolar out-of-plane anisotropy is evidenced with in-plane isotropic magnetic moments. After the 1D coalescence the orbital moment shows a more complex behavior depending on the in-plane direction of saturation. We show that MCXD is strongly sensitive to in-plane orbital anisotropy for the 1D stripes. We demonstrate the importance of the step induced in-plane anisotropy by measuring the orbital magnetic moment dependence as a function of the in-plane azimuth angle. In the submonolayer regime an in-plane magnetic anisotropy is observed related to the step decoration growth mode. In the thickness range of 2-4 equivalent monolayers, 2D coalescence induces a strong in-plane magnetic anisotropy of the magnetic orbital moment. The microscopic origin of the strong in-plane variation of ML has been attributed to magnetocrystalline effects. Strained films give rise to an in-plane magnetic anisotropy energy up to 2 meV/at., which is larger than those measured out of the plane (0-1 meV/at.).
Effect of strain on thermoelectric power of suspended graphene
Vaidya, R. G.; Sankeshwar, N. S. Mulimani, B. G.
2013-12-04
Thermoelectric power, S, of suspended graphene in the presence of strain is investigated. The electrons are considered to be scattered by in-plane and flexural phonons. The dominant contribution to S of non-strained and strained suspended graphene (SG) is found to be from the phonon drag component, S{sub g} for T < 90K. For T > 150 K contribution from diffusion thermopower becomes important. The effect of strain is found to be suppress S{sub d} and to alter its behavior, the effect being larger at higher temperatures.
Integrated focal-plane array /IFPA/ approach to large-area infrared focal plane architecture
NASA Astrophysics Data System (ADS)
Warren, R. E.
1980-01-01
A modular approach to IFPA design is presented which makes it possible to obtain a high-density infrared focal plane amendable to parallel manufacturing techniques as well as to serial plane integration and test. The percent fill factor of the design is dependent on the dimension of the individual detectors; each submodule is manufactured from identical components. The technologies including cables, interconnects, multilayer interconnect structures, and subassembly test requirements, which have direct application to scanning as well as staring integrated focal plane arrays, are discussed.
Geobacteraceae strains and methods
Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana
2015-07-07
Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.
The Development of Electrical Strain Gages
NASA Technical Reports Server (NTRS)
De Forest, A V; Leaderman, H
1940-01-01
The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.
The crack problem in bonded nonhomogeneous materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.
Theory of Lattice Strain for Materials Undergoing Plastic Deformation
NASA Astrophysics Data System (ADS)
Karato, S.
2008-12-01
Radial x-ray diffraction is used to probe physical properties of materials including elastic and plastic properties. The theory used behind such an practice is the one developed by Singh (1993) in which the relation between lattice strain and elastic constants and macroscopic stress is derived. In this theory, the variation of inferred stress with the crystallographic planes, (hkl), is due to the elastic anisotropy. However, recent experimental studies showed that in many cases, the variation of stress with (hkl) far exceeds the value expected from this theory. I have developed a modified theory to rectify this problem with Singh's theory. In Singh's theory, the stress distribution in a polycrystalline material is treated only either unrelaxed or relaxed state. The role of plastic deformation is included only to the extent that plastic flow influences this stress state. Such an assumption corresponds to a Voigt model behavior, which is not an appropriate model at high temperatures where continuing plastic flow occurs with concurrent microscopic equilibrium, elastic deformation. This is a Maxwell model type behavior, and my model provides a stress analysis in a Maxwell material with anisotropic and non-linear power-law rheology. In this theory, the lattice strain corresponding to an imposed macroscopic strain-rate is calculated by three steps: (i) conversion of macroscopic strain-rate to macroscopic stress, (ii) conversion of macroscopic stress to microscopic stress at individual grains, and (iii) calculation of microscopic strain due to microscopic stress. The first step involves anisotropy in macroscopic viscosity that depends on anisotropy in crystal plasticity and lattice-preferred orientation. The second step involves anisotropic crystal plasticity and finally the third step involves elastic crystal anisotropy. In most cases, the influence of LPO is weak and in such a case, the lattice strain depends on (hkl) due to the anisotropy in both elastic and plastic
Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.
2014-06-07
Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, Adel K. (Inventor)
2000-01-01
The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.
An Exact Solution for Geophysical Edge Waves in the {β}-Plane Approximation
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2015-12-01
By taking into account the {β}-plane effects, we provide an exact nonlinear solution to the geophysical edge-wave problem within the Lagrangian framework. This solution describes trapped waves propagating eastward or westward along a sloping beach with the shoreline parallel to the Equator.
Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...
A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...
NASA Astrophysics Data System (ADS)
Nakatsuka, Osamu; Kitada, Hideki; Kim, Youngsuk; Mizushima, Yoriko; Nakamura, Tomoji; Ohba, Takayuki; Zaima, Shigeaki
2011-05-01
We have demonstrated the characterization of the local strain structure in thinned Si layers for wafer-on-a-wafer (WOW) applications by using X-ray microdiffraction with a synchrotron radiation source. The microdiffraction reveals the fluctuation of strains in the thin Si layer around through-silicon via (TSV) interconnects with a sub-micrometer scale. We can separately estimated the in-plane and out-of-plane strain structures in the Si layer, and found that the anisotropic strain is induced in the Si layer between the TSV interconnects.
Split-field pupil plane determination apparatus
Salmon, Joseph T.
1996-01-01
A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).
Image-plane processing of visual information
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.
1984-01-01
Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.
Structure analysis for plane geometry figures
NASA Astrophysics Data System (ADS)
Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi
2013-12-01
As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.
The iPTF Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Bellm, Eric Christopher; Prince, Thomas A.; Miller, Adam; Kulkarni, Shrinivas R.; Kupfer, Thomas; Laher, Russ; Masci, Frank J.; Oded Ofek, Eran; Shupe, David L.; Surace, Jason A.; Intermediate Palomar Transient Factory Collaboration
2016-01-01
Beginning in 2013, the Intermediate Palomar Transient Factory has conducted a survey of the Northern Galactic Plane. The major science goals of the survey include mapping variable stars throughout the Galaxy; discovering outbursting sources such as Cataclysmic Variables, FU Ori outbursts, and M-dwarf flares; and identifying rare types of compact binaries. Through 2015 the survey has obtained an average of 60 epochs in R-band in the spatial region 0 < l < 150 degrees, |b| < 20 degrees, with greatest coverage in the |b| < 5 degree region.I will describe the performance of the survey and present initial results, with a focus on variability-based identification of X-ray sources. The Zwicky Transient Facility, to begin in 2017, will include an extensive public variability survey of the Galactic Plane.
High speed multi focal plane optical system
NASA Technical Reports Server (NTRS)
Minott, P. O. (Inventor)
1983-01-01
An apparatus for eliminating beamsplitter generated optical aberrations in a pupil concentric optical system providing a plurality of spatially separated images on different focal planes or surfaces is presented. The system employs a buried surface beamsplitter having spherically curved entrance and exit faces which are concentric to a system aperture stop with the entrance face being located in the path of a converging light beam directed there from an image forming objective element which is also concentric to the aperture stop.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
In-plane and out-of-plane motions of the human tympanic membrane
Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2016-01-01
Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009
On the Road Map of Vogel's Plane
NASA Astrophysics Data System (ADS)
Mkrtchyan, Ruben L.
2016-01-01
We define "population" of Vogel's plane as points for which universal character of adjoint representation is regular in the finite plane of its argument. It is shown that they are given exactly by all solutions of seven Diophantine equations of third order on three variables. We find all their solutions: classical series of simple Lie algebras (including an "odd symplectic" one), {D_{2,1,λ}} superalgebra, the line of sl(2) algebras, and a number of isolated solutions, including exceptional simple Lie algebras. One of these Diophantine equations, namely {knm=4k+4n+2m+12,} contains all simple Lie algebras, except so{(2N+1).} Among isolated solutions are, besides exceptional simple Lie algebras, so called {e_{71/2}} algebra and also two other similar unidentified objects with positive dimensions. In addition, there are 47 isolated solutions in "unphysical semiplane" with negative dimensions. Isolated solutions mainly belong to the few lines in Vogel plane, including some rows of Freudenthal magic square. Universal dimension formulae have an integer values on all these solutions at least for first three symmetric powers of adjoint representation.
Simulation Exploration through Immersive Parallel Planes: Preprint
Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve
2016-03-01
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.
Focal plane scanner with reciprocating spatial window
NASA Technical Reports Server (NTRS)
Mao, Chengye (Inventor)
2000-01-01
A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.
Restoring Aperture Profile At Sample Plane
Jackson, J L; Hackel, R P; Lungershausen, A W
2003-08-03
Off-line conditioning of full-size optics for the National Ignition Facility required a beam delivery system to allow conditioning lasers to rapidly raster scan samples while achieving several technical goals. The main purpose of the optical system designed was to reconstruct at the sample plane the flat beam profile found at the laser aperture with significant reductions in beam wander to improve scan times. Another design goal was the ability to vary the beam size at the sample to scan at different fluences while utilizing all of the laser power and minimizing processing time. An optical solution was developed using commercial off-the-shelf lenses. The system incorporates a six meter relay telescope and two sets of focusing optics. The spacing of the focusing optics is changed to allow the fluence on the sample to vary from 2 to 14 Joules per square centimeter in discrete steps. More importantly, these optics use the special properties of image relaying to image the aperture plane onto the sample to form a pupil relay with a beam profile corresponding almost exactly to the flat profile found at the aperture. A flat beam profile speeds scanning by providing a uniform intensity across a larger area on the sample. The relayed pupil plane is more stable with regards to jitter and beam wander. Image relaying also reduces other perturbations from diffraction, scatter, and focus conditions. Image relaying, laser conditioning, and the optical system designed to accomplish the stated goals are discussed.
The fundamental plane correlations for globular clusters
NASA Technical Reports Server (NTRS)
Djorgovski, S.
1995-01-01
In the parameter space whose axes include a radius (core, or half-light), a surface brightness (central, or average within the half-light radius), and the central projected velocity dispersion, globular clusters lie on a two-dimensional surface (a plane, if the logarithmic quantities are used). This is analogous to the 'fundamental plane' of elliptical galaxies. The implied bivariate correlations are the best now known for globular clusters. The derived scaling laws for the core properties imply that cluster cores are fully virialized, homologous systems, with a constant (M/L) ratio. The corresponding scaling laws on the half-light scale are differrent, but are nearly identical to those derived from the 'fundamental plane' of ellipticals. This may be due to the range of cluster concentrations, which are correlated with other parameters. A similar explanation for elliptical galaxies may be viable. These correlations provide new empirical constraints for models of globular cluster formation and evolution, and may also be usable as rough distance-indicator relations for globular clusters.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Control of gradual plane change during aerocruise
NASA Astrophysics Data System (ADS)
Cochran, J. E., Jr.; Lee, S.; No, T. S.
Motivated by the continuing interest in orbital maneuvering using aerodynamic forces and the oft overlooked close relationship between performance and stability analyses, we consider the stability and control of small plane change maneuvers during aerocruise. We use a model which consists of linear equations for perturbed motion with respect to a great circle trajectory about a non-rotating earth in terms of variables which allow uncoupling of the longitudinal and lateral dynamics, and partial uncoupling of lateral dynamics. Characteristics of the perturbed motion of a hypersonic flight vehicle with respect to a great circle trajectory are reviewed, including previous results which show that a change in the orientation of the great circle plane results from a general perturbation in initial conditions. This change is analogous to the heading change and lateral displacement which occur when a conventional aircraft's motion is disturbed. A linear quadratic controller for small plane change maneuvers is obtained, and an inverse method for generating controls for a steady-state aerocruise turn is described. An example is presented which shows that the majority of the optimal maneuver is approximated very well by the steady-state turn.
Antenna arrays for producing plane whistler waves
NASA Astrophysics Data System (ADS)
Stenzel, Reiner; Urrutia, J. Manuel
2014-10-01
Linear whistler modes with ω ~= 0 . 3ωce <<ωpe are excited in a large laboratory plasma with magnetic loop antennas. A single antenna always produces a spatially bounded wave packet whose propagation cannot be directly compared to plane wave theories. By superimposing the fields from spatially separated antennas, the wavenumber along the antenna array can be nearly eliminated. 2D arrays nearly produce plane waves. The angle θ of wave propagation has been varied by a phase shift along the array. The refractive index surface n (θ) has been measured. The parallel phase and group velocities for Gendrin modes has been demonstrated. The interference between two oblique plane whistlers creates a whistler ``waveguide'' mode, i.e. standing waves for k ⊥B0 and propagation for k | |B0 . It also describes the reflection of oblique whistlers from a sharp discontinuity in the refractive index or conductivity. Radial reflections are also a dominant factor in small plasma columns of helicon devices. These results are of interest to space and laboratory plasmas. Work supported by NSF/DOE.
Hamiltonian maps in the complex plane
Greene, J.M.; Percival, I.C.
1981-01-01
Following Arnol'd's proof of the KAM theorem, an analogy with the vertical pendulum, and some general arguments concerning maps in the complex plane, detailed calculations are presented and illustrated graphically for the standard map at the golden mean frequency. The functional dependence of the coordinate q on the canonical angle variable theta is analytically continued into the complex theta-plane, where natural boundaries are found at constant absolute values of Im theta. The boundaries represent the appearance of chaotic motion in the complex plane. Two independent numerical methods based on Fourier analysis in the angle variable were used, one based on a variation-annihilation method and the other on a double expansion. The results were further checked by direct solution of the complex equations of motion. The numerically simpler, but intrinsically complex, semipendulum and semistandard map are also studied. We conjecture that natural boundaries appear in the analogous analytic continuation of the invariant tori or KAM surfaces of general nonintegrable systems.
Cleavage plane determination in amphibian eggs.
Sawai, T; Yomota, A
1990-01-01
In the present study using eggs of Cynops pyrrhogaster and Xenopus laevis, we examined (1) structural changes in the cytoplasm before the appearance of the cleavage furrow using a cytochemical method, (2) the time of cleavage plane determination depending on the mitotic apparatus (MA), by changing the shape of the eggs, and (3) the time of arrival of the "cleavage stimulus" at the cortex, by injecting colchicine solution or removing cytoplasm. Results were as follows: (1) In amphibian eggs the diastema was formed after development of the MA, appearing between the two asters after the MA had begun to degenerate. (2) The cleavage plane was preliminarily determined by the MA in the meta- to anaphase of karyokinesis. At this time, however, the egg cortex had not yet received the "cleavage stimulus" indispensable for furrow formation. (3) The egg cortex was really prepared to establish the furrow just after the edge of the diastema arrived at the cortex, when the MA had already degenerated. These results imply that the cleavage plane of the amphibian eggs is determined in two steps: the first, depending on the MA, is the determination of the direction of the growth of the diastema, and the second is the arrival of the "cleavage stimulus" at the cortex in association with the diastema.
An automatic recognition and parameter extraction method for structural planes in borehole image
NASA Astrophysics Data System (ADS)
Wang, Chuanying; Zou, Xianjian; Han, Zengqiang; Wang, Yiteng; Wang, Jinchao
2016-12-01
As a breakthrough in borehole imaging technology, digital panoramic borehole camera technology has been widely employed. The high-resolution panoramic borehole images can accurately reproduce the geometric features of structural planes. However, the detection of these features is usually done manually, which is both time-consuming and introduces human errors. To solve this problem, this paper presents a method for the automatic recognition and parameter extraction of borehole geometric features of camera images. In this method, the image's gray and gradient level, and also their projection on the depth axis are used to identify the locations of structural planes. Afterwards, iterative matching is employed by using a template of sinusoidal function to search for structural planes in the identified image blocks. Finally, optimal sine curves are selected as the feature curves of structural planes, and their related parameters are converted into structural plane parameters required for engineering, such as their positions, dip directions, dip angles and fracture widths. The method can automatically identify all of structural planes throughout the whole borehole camera image in a continuous and rapid manner, and obtain the corresponding structural parameters. It has proven highly reliable, accurate and efficient.
In-plane vibration analysis of annular plates with arbitrary boundary conditions.
Shi, Xianjie; Shi, Dongyan; Qin, Zhengrong; Wang, Qingshan
2014-01-01
In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.
Adamek, Mikolaj; Oschilewski, Anna; Wohlsein, Peter; Jung-Schroers, Verena; Teitge, Felix; Dawson, Andy; Gela, David; Piackova, Veronika; Kocour, Martin; Adamek, Jerzy; Bergmann, Sven M; Steinhagen, Dieter
2017-02-21
Outbreaks of koi sleepy disease (KSD) caused by carp edema virus (CEV) may seriously affect populations of farmed common carp, one of the most important fish species for global food production. The present study shows further evidence for the involvement of CEV in outbreaks of KSD among carp and koi populations: in a series of infection experiments, CEV from two different genogroups could be transmitted to several strains of naïve common carp via cohabitation with fish infected with CEV. In recipient fish, clinical signs of KSD were induced. The virus load and viral gene expression results confirm gills as the target organ for CEV replication. Gill explants also allowed for a limited virus replication in vitro. The in vivo infection experiments revealed differences in the virulence of the two CEV genogroups which were associated with infections in koi or in common carp, with higher virulence towards the same fish variety as the donor fish. When the susceptibility of different carp strains to a CEV infection and the development of KSD were experimentally investigated, Amur wild carp showed to be relatively more resistant to the infection and did not develop clinical signs for KSD. However, the resistance could not be related to a higher magnitude of type I IFN responses of affected tissues. Despite not having a mechanistic explanation for the resistance of Amur wild carp to KSD, we recommend using this carp strain in breeding programs to limit potential losses caused by CEV in aquaculture.
Skeletal muscle transverse strain during isometric contraction at different lengths.
van Donkelaar, C C; Willems, P J; Muijtjens, A M; Drost, M R
1999-08-01
An important assumption in 2D numerical models of skeletal muscle contraction involves deformation in the third dimension of the included muscle section. The present paper studies the often used plane strain description. Therefore, 3D muscle surface deformation is measured from marker displacements during isometric contractions at various muscle lengths. Longitudinal strains at superficial muscle fibers ( - 14 +/- 2.6% at L0, n = 57) and aponeurosis (0.8 +/- 0.9% at L0) decrease with increasing muscle length. The same holds for transverse muscle surface strains in superficial muscle fibers and aponeurosis, which are comparable at intermediate muscle length, but differ at long and short muscle length. Because transverse strains during isometric contraction change with initial muscle length, it is concluded that the effect of muscle length on muscle deformation cannot be studied in plane strain models. These results do not counteract the use of these models to study deformation in contractions with approximately - 9 % longitudinal muscle fiber strain, as transverse strain in superficial muscle fibers and in aponeurosis tissue is minimal in that case. Aponeurosis surface area change decreases with increasing initial muscle length, but muscle fiber surface area change is - 11%, independent of muscle length. Assuming incompressible muscle material, this means that strain perpendicular to the muscle surface equals 11%. Taking the relationship between transverse and longitudinal muscle fiber strain into account, it is hypothesized that superficial muscle fibers flatten during isometric contractions.
The implementation of holography in the plane wave matrix model
NASA Astrophysics Data System (ADS)
Mints, Aleksey Leonidovich
It is expected that at the core of nonperturbative theories of quantum gravity, such as M-theory, lies the realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. Present understanding of such theories requires the holographic encoding of bulk data in large matrices. Currently this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation. Beyond the decoding and partial identification of selected states in large matrices, one would like to get a better understanding of the holographic state counting of these degrees of freedom, i.e., entropy. Contrary to the naive expectation of holography realized in terms of the covariant entropy bound, we present evidence that it is the Bekenstein entropy bound, which is related to area differences, that is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N2 in units of the mass scale.
Maximum orbit plane change with heat-transfer-rate considerations
NASA Technical Reports Server (NTRS)
Lee, J. Y.; Hull, D. G.
1990-01-01
Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.
Network of flexible capacitive strain gauges for the reconstruction of surface strain
NASA Astrophysics Data System (ADS)
Wu, Jingzhe; Song, Chunhui; Saleem, Hussam S.; Downey, Austin; Laflamme, Simon
2015-05-01
Monitoring of surface strain on mesosurfaces is a difficult task, often impeded by the lack of scalability of conventional sensing systems. A solution is to deploy large networks of flexible strain gauges, a type of large area electronics. The authors have recently proposed a soft elastomeric capacitor (SEC) as an economical skin-type solution for large-scale deployment onto mesosurfaces. The sensing principle is based on a measurable change in the sensor’s capacitance upon strain. In this paper, we study the performance of the sensor at reconstructing surface strain map and deflection shapes. A particular feature of the sensor is that it measures surface strain additively, because it is not utilized within a Wheatstone bridge configuration. An algorithm is proposed to decompose the additive in-plane strain measurements from the SEC into principal components. The algorithm consists of assuming a polynomial shape function, and deriving the strain based on Kirchhoff plate theory. A least-squares estimator (LSE) is used to minimize the error between the assumed model and the SEC signals after the enforcement of boundary conditions. Numerical simulations are conducted on a symmetric rectangular cantilever thin plate under symmetric and asymmetric static loads to demonstrate the accuracy and real-time applicability of the algorithm. The performance of the algorithm is further examined on an asymmetric cantilever laminated thin plate constituted with orthotropic materials mimicking a wind turbine blade, and subjected to a non-stationary wind load. Results from simulations show good performance of the algorithm at reconstructing the surface strain maps for both in-plane principal strain components, and that it can be applied in real time. However, its performance can be improved by strengthening assumptions on boundary conditions. The algorithm exhibits robustness in performance with respect to load and noise in signals, except when most of the sensors’ signals are
NASA Astrophysics Data System (ADS)
Kang, I. S.; Leal, L. G.
1987-07-01
A numerical technique for solving axisymmetric, unsteady free-boundary problems in fluid mechanics is presented. This finite-difference method is a generalization of the steady algorithm reported by Ryskin and Leal (1984). In this scheme, all boundary surfaces of the solution domain at any time coincide exactly with a coordinate line of a numerically generated orthogonal coordinate system. Thus, unreasonable grid deformation during calculation is not a problem. A transient algorithm for applying the orthogonal mapping technique to unsteady free-boundary problems is developed. The unsteady deformation of a bubble in a uniaxial extensional flow for Reynolds numbers between 0.1 and 100 is considered as an example.
... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array
Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun
2016-01-01
In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above. PMID:27834893
Optimal control of aeroassisted plane change maneuver using feedback expansions
NASA Technical Reports Server (NTRS)
Mishne, D.; Speyer, J. L.
1986-01-01
A guidance law for an aeroassisted plane change maneuver is developed by an asymptotic expansion technique using a small parameter which essentially represents the ratio of the inertial forces to the atmospheric forces. This guidance law minimizes the energy loss while meeting terminal constraints on the altitude, flight path angle, and heading angle. By neglecting the inertial forces, the resulting optimization problem is integrable and can be determined in closed form. This zeroth-order solution is the first term in an asymptotic series solution of the Hamilton-Jacobi-Bellman equation. The remaining terms are determined from the solution of a first-order, linear partial differential equation whose solution requires only quadrature integration. Our initial results in using this guidance scheme are encouraging.
On the linear stability of compressible plane Couette flow
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Erlebacher, Gordon; Hussaini, M. Yousuff
1991-01-01
The linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.
Raman-strain relations in highly strained Ge: Uniaxial ⟨100⟩, ⟨110⟩ and biaxial (001) stress
NASA Astrophysics Data System (ADS)
Gassenq, A.; Tardif, S.; Guilloy, K.; Duchemin, I.; Pauc, N.; Hartmann, J. M.; Rouchon, D.; Widiez, J.; Niquet, Y. M.; Milord, L.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.
2017-02-01
The application of high values of strain to Ge considerably improves its light emission properties and can even turn it into a direct band gap semiconductor. Raman spectroscopy is routinely used for strain measurements. Typical Raman-strain relationships that are used for Ge were defined up to ˜1% strain using phonon deformation potential theory. In this work, we have studied this relationship at higher strain levels by calculating and measuring the Raman spectral shift-strain relations in several different strain configurations. Since differences were shown between the usual phonon deformation potential theory and ab-initio calculations, we highlight the need for experimental calibrations. We have then measured the strain in highly strained Ge micro-bridges and micro-crosses using Raman spectroscopy performed in tandem with synchrotron based micro-diffraction. High values of strain are reported, which enable the calibration of the Raman-strain relations up to 1.8% of in plane strain for the (001) biaxial stress, 4.8% strain along ⟨100⟩, and 3.8% strain along ⟨110⟩. For Ge micro-bridges, oriented along ⟨100⟩, the nonlinearity of the Raman shift-strain relation is confirmed. For the ⟨110⟩ orientation, we have shown that an unexpected non-linearity in the Raman-strain relationship has also to be taken into account for high stress induction. This work demonstrates an unprecedented level of strain measurement for the ⟨110⟩ uniaxial stress and gives a better understanding of the Raman-strain relations in Ge.
Strain engineering of Dirac cones in graphyne
Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra; Si, Mingsu
2014-05-26
6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.
Fractional Fourier transforms, symmetrical lens systems, and their cardinal planes.
Moreno, Ignacio; Sánchez-López, María M; Ferreira, Carlos; Mateos, Felipe
2007-07-01
We study the relation between optical lens systems that perform a fractional Fourier transform (FRFT) with the geometrical cardinal planes. We demonstrate that lens systems symmetrical with respect to the central plane provide an exact FRFT link between the input and output planes. Moreover, we show that the fractional order of the transform has real values between 0 and 2 when light propagation is produced between principal planes and antiprincipal planes, respectively. Finally, we use this new point of view to design an optical lens system that provides FRFTs with variable fractional order in the range (0,2) without moving the input and output planes.
Strong reduction of the coercivity by a surface acoustic wave in an out-of-plane magnetized epilayer
NASA Astrophysics Data System (ADS)
Thevenard, L.; Camara, I. S.; Prieur, J.-Y.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.
2016-04-01
Inverse magnetostriction is the effect by which magnetization can be changed upon application of stress/strain. A strain modulation may be created electrically by exciting interdigitated transducers to generate surface acoustic waves (SAWs). Hence SAWs appear as a possible route towards induction-free undulatory magnetic data manipulation. Here we demonstrate experimentally on an out-of-plane magnetostrictive layer a reduction of the coercive field of up to 60 % by a SAW, over millimetric distances. A simple model shows that this spectacular effect can be partly explained by the periodic lowering of the strain-dependent domain nucleation energy by the SAW. This proof of concept was done on (Ga,Mn)(As,P), a magnetic semiconductor in which the out-of-plane magnetic anisotropy can be made very weak by epitaxial growth; it should guide material engineering for all-acoustic magnetization switching.
Dynamic response of aluminum honeycombs to in-plane impact loadings
NASA Astrophysics Data System (ADS)
Tanaka, Koichi; Nishida, Masahiro; Mochida, Toshiharu; Kousaka, Akiko
2001-04-01
Deformation processes of aluminum honeycombs with hexagonal cells subjected to the in-plane impact of a rigid impactor are investigated experimentally and numerically in relation to the dynamical behavior of cellular materials and complex materials under high-speed loadings. Strain waves are measured using strain gauges glued on the cell walls and reaction forces are measured using a load cell at the contact surface between the honeycomb and a fixed wall. A high-speed camera is used to visualize the deformation process. Numerical simulations are partly made for the same configuration as the experiment. Very distinctive deformation mechanisms of individual cells and propagation mechanisms of strain waves in the honeycomb are found out. Also, characteristic two-dimensional behavior is revealed in spite of one-dimensional and uni-directional impact loading.
Support plane method applied to ground objects recognition using modelled SAR images
NASA Astrophysics Data System (ADS)
Zherdev, Denis A.; Fursov, Vladimir A.
2015-09-01
In this study, the object recognition problem was solved using support plane method. The modelled SAR images were used as features vectors in the recognition algorithm. Radar signal backscattering of objects in different observing poses is presented in SAR images. For real time simulation, we used simple mixture model of Lambertian-specular reflectivity. To this end, an algorithm of ray tracing is extended for simulating SAR images of 3D man-made models. The suggested algorithm of support plane is very effective in objects recognition using SAR images and RCS diagrams.
Light Reflection and Transmission Coefficients of a Plane-Parallel Anisotropic Layer
NASA Astrophysics Data System (ADS)
Furs, A. N.; Petrov, N. S.
2016-03-01
Normal incidence of light to an anisotropic plane-parallel plate made of a biaxial crystal is considered. The appropriate boundary problem for the Maxwell equations is solved for the case when two principal crystallographic axes of the crystal are parallel to the plane of the plate containing the optical axes (binormals) of the crystal. The expressions for the averaged reflection and transmission coefficients of such a plate are derived in explicit form. They can be used for calculations in experimental studies of optical characteristics of biaxial crystals.
Plane wave transport method for low symmetry lattices and its application
Srivastava, Manoj K; Wang, Yan; Zhang, Xiaoguang; Nicholson, Don M; Cheng, Hai-Ping
2012-01-01
The existing first-principles plane wave transport method implementation \\cite{,choi-1,qe} has the limitation that it only allows transport directions along lattice vectors perpendicular to the basal plane formed by two other lattice vectors. We generalize the algorithm to low symmetry, nonorthogonal lattices thus allowing solution to problems in which the transport direction is not along any lattice vectors. As an application, we calculate the transmission and reflection coefficients, and determine interface resistance of various grain boundaries in crystalline copper.
Effect of heat rate constraint on minimum-fuel synergetic plane change
NASA Technical Reports Server (NTRS)
Mease, Kenneth D.; Utashima, Masayoshi
1991-01-01
The synergetic plane change offers substantial fuel savings over the pure-propulsive alternative for certain noncoplanar orbital transfers. On the other hand, the thermal environment for a synergetic plane change vehicle can be quite severe. The minimum-fuel controls are computed approximately by parametrizing the controls and solving the resulting nonlinear programming problem. By considering several different levels of heat rate constraint, we characterize how the control strategy should be modified in order to keep the heat rate below the specified limit. Flight on the heat rate constraint boundary at high angle of attack is the key characteristic.
WIPP Benchmark calculations with the large strain SPECTROM codes
Callahan, G.D.; DeVries, K.L.
1995-08-01
This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.
Strain tunable ferroelectric and dielectric properties of BaZrO{sub 3}
Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie
2014-06-14
The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO{sub 3} (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO{sub 3}, while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.
Wafer plane inspection with soft resist thresholding
NASA Astrophysics Data System (ADS)
Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song
2008-10-01
Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just
Seismological Constraints on Fault Plane Curvature
NASA Astrophysics Data System (ADS)
Reynolds, K.
2015-12-01
The down-dip geometry of seismically active normal faults is not well known. Many examples of normal faults with down-dip curvature exist, such as listric faults revealed in cross-section or in seismic reflection data, or the exposed domes of core complexes. However, it is not understood: (1) whether curved faults fail in earthquakes, and (2) if those faults have generated earthquakes, is the curvature a primary feature of the rupture or due to later modification of the plane? Even if an event is surface-rupturing, because of the limited depth-extent over which observations can be made, it is difficult to reliably constrain the change in dip with depth (if any) and therefore the fault curvature. Despite the uncertainty in seismogenic normal fault geometries, published slip inversions most commonly use planar fault models. We investigate the seismological constraints on normal fault geometry using a forward-modelling approach and present a seismological technique for determining down-dip geometry. We demonstrate that complexity in the shape of teleseismic body waveforms may be used to investigate the presence of down-dip fault plane curvature. We have applied this method to a catalogue of continental and oceanic normal faulting events. Synthetic models demonstrate that the shapes of SH waveforms at along-strike stations are particularly sensitive to fault plane geometry. It is therefore important to consider the azimuthal station coverage before modelling an event. We find that none of the data require significant down-dip curvature, although the modelling results for some events remain ambiguous. In some cases we can constrain that the down-dip fault geometry is within 20° of planar.
Characterization of DECam focal plane detectors
Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.
2008-06-01
DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.
Experiments with unilateral bite planes in rabbits.
Sergl, H G; Farmland, M
1975-04-01
1. Insertion of bite planes on the right mandibular lateral teeth of eight young rabbits caused load changes in the masticatory system. Eight other animals served as controls. 2. The induced changes were equilibrated during the nine-week experimental period by adapation processes. At the end of the period all teeth were in occlusion and the glenoid fossa-condylar process distance was equal on both sides. 3. The adaptation was the result of several mechanisms working together. We found changes in the alveolar region and at distant growth structures. Cranial scolioses were observed. 4. Masticatory functional loading is a factor which regulates growth in the region of the facial skeleton.
Black Plane Solutions and Localized Gravitational Energy
Roberts, Jennifer
2015-01-01
We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. PMID:27347499
NASA Astrophysics Data System (ADS)
Laurent, P.
2009-05-01
The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.
Femoral bowing plane adaptation to femoral anteversion
Akman, Alp; Demirkan, Fahir; Sabir, Nuran; Oto, Murat; Yorukoglu, Cagdas; Kiter, Esat
2017-01-01
Background: Femoral bowing plane (FBP) is the unattended subject in the literature. More over the femoral shaft with its bowing is neglected in established anteversion determination methods. There is limited information about the relationship between FBP and anteversion. Thus we focused on this subject and hypothesized that there could be an adaptation of FBP to anteversion. Materials and Methods: FBP is determined on three-dimensional solid models derived from the left femoral computerized tomography data of 47 patients which were taken before for another reason and comparatively evaluated with anteversion. There were 20 women and 27 men. The mean age of patients was 56 years (range 21–84 years). Results: The anteversion values were found as the angle between a distal condylar axis (DCA) and femoral neck anteversion axis (FNAA) along an imaginary longitudinal femoral axis (LFA) in the true cranio-caudal view. The FBP was determined as a plane that passes through the centre-points of three pre-determinated sections on the femoral shaft. The angles between DCA, FNAA and FBP were comparatively evaluated. The independent samples t-test was used for statistical analysis. At the end, it was found that FBP lies nearly perpendicular to the anteversion axis for the mean of our sample which is around 89° in females and 93° in males (range 78–102°). On the other hand, FBP does not lie close to the sagittal femoral plane (SFP); instead, there is an average 12.5° external rotation relative to the SFP. FBP is correlated well with anteversion in terms of FBP inclination from SFP and femoral torsion (i.e., angle between FBP and femoral neck anteversion axis (P < 0.001; r = 0.680 and r = −0.682, respectively). Combined correlation is perfect (R2 = 1) as the FBP, SFP, and posterior femoral plane forms a triangle in the cranio-caudal view. Conclusions: We found that FBP adapts to anteversion. As FBP lies close to perpendicularity for the mean, femoral component positioning
Optimizing snake locomotion on an inclined plane.
Wang, Xiaolin; Osborne, Matthew T; Alben, Silas
2014-01-01
We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.
Braiding patterns on an inclined plane.
Mertens, Keith; Putkaradze, Vakhtang; Vorobieff, Peter
2004-07-08
A jet of fluid flowing down a partially wetting, inclined plane usually meanders but--by maintaining a constant flow rate--meandering can be suppressed, leading to the emergence of a beautiful braided structure. Here we show that this flow pattern can be explained by the interplay between surface tension, which tends to narrow the jet, and fluid inertia, which drives the jet to widen. These observations dispel misconceptions about the relationship between braiding and meandering that have persisted for over 20 years.
Control of geostationary spacecraft in orbital plane using a low thrust engine
NASA Astrophysics Data System (ADS)
Salmin, Vadim V.; Chetverikov, Alexey S.
2017-01-01
The control algorithm for the parameters of the geostationary spacecraft orbit was developed using low-thrust engine. We consider only flat parameters determining the geostationary spacecraft's position in the orbit plane, namely, orbital period, eccentricity and longitude point of standing. The terminal control problem of geostationary spacecraft has been stated. It is assumed that the corrective maneuver is implemented by creating a small transversal acceleration using electric low-thruster. There is a developed discrete model of the geostationary spacecraft motion in the orbit plane under the influence of small transversal acceleration. The solution of this problem involving the use of the traditional dynamic programming method based on the use of Bellman equation is difficult to obtain, because the discrete model of geostationary spacecraft motion is a nonlinear system of equations. Therefore, the paper proposes approximate scheme for solving the problem based on the three-step algorithm of terminal control of the orbital period, eccentricity and longitude point of standing. The solution of the plane problem of the terminal control has been obtained in the analytical form. Analytical expressions for the cost estimate of characteristic speed of corrective maneuver have been obtained. When modeling the motion of a geostationary spacecraft under the influence of a small transversal acceleration the algorithm has showed high accuracy of solving the terminal control problem.
High strain rate properties of unidirectional composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Experimental methods were developed for testing and characterization of composite materials at strain rates ranging from quasi-static to over 500 s(sup -1). Three materials were characterized, two graphite/epoxies and a graphite/S-glass/epoxy. Properties were obtained by testing thin rings 10.16 cm (4 in.) in diameter, 2.54 cm (1 in.) wide, and six to eight plies thick under internal pressure. Unidirectional 0 degree, 90 degree, and 10 degree off-axis rings were tested to obtain longitudinal, transverse, and in-plane shear properties. In the dynamic tests internal pressure was applied explosively through a liquid and the pressure was measured with a calibrated steel ring. Strains in the calibration and specimen rings were recorded with a digital processing oscilloscope. The data were processed and the equation of motion solved numerically by the mini-computer attached to the oscilloscope. Results were obtained and plotted in the form of dynamic stress-strain curves. Longitudinal properties which are governed by the fibers do not vary much with strain rate with only a moderate (up to 20 percent) increase in modulus. Transverse modulus and strength increase sharply with strain rate reaching values up to three times the static values. The in-plane shear modulus and shear strength increase noticeably with strain rate by up to approximately 65 percent. In all cases ultimate strains do not vary significantly with strain rates.
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE ...
PLANING MILL, FIRST FLOOR INTERIOR, LOOKING SOUTH. THE LARGE DEVICE IS A WHEEL BORING MACHINE USED DURING THE TIME THIS AREA WAS A WHEEL SHOP. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA
55. LOOKING EAST FROM HEAD OF PLANE 2 EAST. POWER ...
55. LOOKING EAST FROM HEAD OF PLANE 2 EAST. POWER HOUSE AND FLUME VISIBLE TO RIGHT, TAILRACE RUNNING THROUGH CENTER OF PHOTOGRAPH. CRADLE TO INCLINED PLANE 3 EAST IS VISIBLE IN BACKGROUND TO LEFT. - Morris Canal, Phillipsburg, Warren County, NJ
5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ...
5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ABUTMENT, FILL CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...
6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
Noel, B.W.; Smith, D.L.; Sinha, D.N.
1988-06-28
A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.
Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.
1990-01-01
A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.
Acoustic-structure interaction problems. Final report
Love, E.; Taylor, R.L.
1993-12-01
The purpose of this report is to compare and evaluate different numerical methods for solving problems of interaction between elastic solids and acoustic fluids. In particular, we concentrate our efforts on solution techniques involving the finite element method. To that end, in Chapter 2 we discuss different options for analysis of infinite fluids. In particular, the method of mesh trunction and the use of radiation elements and the use of infinite elements are discussed. Also discussed is the analysis of scattering from rigid boundaries. Chapter 3 is a brief discussion of finite element formulations for elastic solids. We review the development, of two dimensional plane strain elements and one dimensional plate and shell elements. In Chapter 4, there is a discussion of the method used to couple the solid and the fluid. We give examples for solution of scattering of pressure waves from thin elastic shell structures. Chapter 5 is a brief conclusion of results and includes recommendations for the best methods of solution and additional research.
Angular-dependent Raman study of a- and s-plane InN
NASA Astrophysics Data System (ADS)
Filintoglou, K.; Katsikini, M.; Arvanitidis, J.; Christofilos, D.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ajagunna, A. O.; Georgakilas, A.; Zoumakis, N.; Kourouklis, G. A.; Ves, S.
2015-02-01
Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane ( 1 1 ¯ 20 ) and semipolar s-plane ( 10 1 ¯ 1 ) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A1(TO), E1(TO), and E2 h on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al2O3) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E1(TO) and E2 h Raman peaks was used for the estimation of the strain state of the samples.
Angular-dependent Raman study of a- and s-plane InN
Filintoglou, K.; Katsikini, M. Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S.; Christofilos, D.; Kourouklis, G. A.; Ajagunna, A. O.; Georgakilas, A.; Zoumakis, N.
2015-02-21
Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.
In-plane and out-of-plane defectivity in thin films of lamellar block copolymers
Mahadevapuram, Nikhila; Mitra, Indranil; Bozhchenko, Alona; ...
2015-10-29
We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L0 = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L0–2.5L0) and brush grafting density (Σ = 0.2–0.6 nm–2) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order at the top of themore » film (quantified through calculation of orientational correlation lengths) improved with tn, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm–2. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. As a result, strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects.« less
In-plane and out-of-plane defectivity in thin films of lamellar block copolymers
Mahadevapuram, Nikhila; Mitra, Indranil; Bozhchenko, Alona; Strzalka, Joseph; Stein, Gila E.
2015-10-29
We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L_{0} = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L_{0}–2.5L_{0}) and brush grafting density (Σ = 0.2–0.6 nm^{–2}) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order at the top of the film (quantified through calculation of orientational correlation lengths) improved with t^{n}, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm^{–2}. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. As a result, strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects.
Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao
2015-01-01
In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013
Phase retrieval in the focal plane
NASA Astrophysics Data System (ADS)
Gaessler, W.; Peter, D.; Storz, C.
Phase retrieval in the focal plane is a very appealing technique, which would simplify the optomechanics of an Adaptive Optics (AO) system a lot and could gain sensitivity under certain conditions. For conventional AO systems the limiting magnitude of the system does not depend on the diameter of the telescope, since any wave front sensor splits the light into sub-apertures, which are in number related to the telescope diameter. Having this in mind the phase retrieval technique looks promising as it breaks this paradigm in the diffraction limited case and thus yields some gain in limiting magnitude with larger telescope diameter. Until now this path was not followed deeply in astronomical AO systems, as the solution of the inversion is non unique and demands much higher calculation power as in conventional AO. This might change with state of the art computers. We give a short overview of some existing techniques and algorithms of focal plane AO and report results of other groups, which tested them in laboratory and on sky. To solve the drawback of the large computational demands and to increase the sensitivity we propose a bootstrapping process with dynamical binning.
Dense granular flows down an inclined plane
NASA Astrophysics Data System (ADS)
Ecke, Robert; Borzsonyi, Tamas
2006-03-01
Granular flow on a rough inclined plane is an important model system in which to study the basic rules of the dynamics of granular materials. Despite intensive study, many features of such flows are still incompletely understood. For uniformly flowing layers at relatively shallow inclination, we consider experimentally the the basic flow rheology of the granular media and propose new scalings to collapse our data for glass beads and rough sand as a function of inclination angle and particle diameter. At steep inclinations above some angle θs (θs/θr 1.3-1.5, where θr stands for the angle of repose) for flowing grains, numerics and theory predict that the surface roughness is inadequate to dissipate energy gained in the gravitational field, and the flow should continue to accelerate. We report on our experimental results on the properties of granular flows on a steeply inclined plane and define the domains of steady flows. We also discuss the instabilities of such flows leading to spatial patterns.
Trajectory optimization for the National aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1993-01-01
While continuing the application of the inverse dynamics approach in obtaining the optimal numerical solutions, the research during the past six months has been focused on the formulation and derivation of closed-form solutions for constrained hypersonic flight trajectories. Since it was found in the research of the first year that a dominant portion of the optimal ascent trajectory of the aerospace plane is constrained by dynamic pressure and heating constraints, the application of the analytical solutions significantly enhances the efficiency in trajectory optimization, provides a better insight to understanding of the trajectory and conceivably has great potential in guidance of the vehicle. Work of this period has been reported in four technical papers. Two of the papers were presented in the AIAA Guidance, Navigation, and Control Conference (Hilton Head, SC, August, 1992) and Fourth International Aerospace Planes Conference (Orlando, FL, December, 1992). The other two papers have been accepted for publication by Journal of Guidance, Control, and Dynamics, and will appear in 1993. This report briefly summarizes the work done in the past six months and work currently underway.
Burnett description for plane Poiseuille flow.
Uribe, F J; Garcia, A L
1999-10-01
Two recent works have shown that at small Knudsen number (K) the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia [Physica A 240, 255 (1997)] qualitatively confirmed these predictions in computer experiments using the direct simulation Monte Carlo method (DSMC). In this paper we compare the DSMC measurements of hydrodynamic variables and non-equilibrium fluxes with numerical solutions of the Burnett equations. Given that they are in better agreement with molecular-dynamics simulations [E. Salomons and M. Mareschal, Phys. Rev. Lett. 69, 269 (1992)] of strong shock waves than Navier-Stokes [F. J. Uribe, R. M. Velasco, and L. S. García-Colín, Phys. Rev. Lett. 81, 2044 (1998)], and that they are second order in Knudsen number suggests that the Burnett equations may provide a better description for large K. We find that for plane Poiseuille flow the Burnett equations do not predict the bimodal temperature profile but do recover many of the other anomalous features (e.g., nonconstant pressure and nonzero parallel heat flux).
Comments on a military transatmospheric aerospace plane
Chase, R.L.
1997-01-01
The conceptual design of a military transatmospheric aerospace plane candidate involves the selection of the mission(s), operating environment, operational concept, payload definition, specific design choices, and a close look at the technology base. A broad range of missions and concepts were reviewed prior to the selection of the mission and concepts presented in this paper. The mission selected was CONUS based global strike. The flight profile selected was a boost-glide-skip unrefuled global range trajectory. Two concepts were selected. The first was a rocket-powered design and the second was a combined air-breathing and rocket powered design. The rocket-powered configuration is a high lift-to-drag ratio modified lifting body. The rocket engine is an advanced dual fuel linear aero-spike. The air-breathing powered configuration is a modified waverider configuration. The engine for the air-breather is a rocket based combined cycle engine. Performance and technology readiness comparisons are presented for the two concepts. The paper closes with a discussion of lessons learned about military transatmospheric aerospace planes over the past twenty years. {copyright} {ital 1997 American Institute of Physics.}
Burnett description for plane Poiseuille flow
NASA Astrophysics Data System (ADS)
Uribe, F. J.; Garcia, Alejandro L.
1999-10-01
Two recent works have shown that at small Knudsen number (K) the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia [Physica A 240, 255 (1997)] qualitatively confirmed these predictions in computer experiments using the direct simulation Monte Carlo method (DSMC). In this paper we compare the DSMC measurements of hydrodynamic variables and non-equilibrium fluxes with numerical solutions of the Burnett equations. Given that they are in better agreement with molecular-dynamics simulations [E. Salomons and M. Mareschal, Phys. Rev. Lett. 69, 269 (1992)] of strong shock waves than Navier-Stokes [F. J. Uribe, R. M. Velasco, and L. S. García-Colín, Phys. Rev. Lett. 81, 2044 (1998)], and that they are second order in Knudsen number suggests that the Burnett equations may provide a better description for large K. We find that for plane Poiseuille flow the Burnett equations do not predict the bimodal temperature profile but do recover many of the other anomalous features (e.g., nonconstant pressure and nonzero parallel heat flux).
Waveguide Metacouplers for In-Plane Polarimetry
NASA Astrophysics Data System (ADS)
Pors, Anders; Bozhevolnyi, Sergey I.
2016-06-01
The state of polarization (SOP) is an inherent property of the vectorial nature of light and a crucial parameter in a wide range of remote sensing applications. Nevertheless, the SOP is rather cumbersome to probe experimentally, as conventional detectors respond only to the intensity of the light, hence losing the phase information between orthogonal vector components. In this work, we propose a type of polarimeter that is compact and well suited for in-plane optical circuitry while allowing for immediate determination of the SOP through simultaneous retrieval of the associated Stokes parameters. The polarimeter is based on plasmonic phase-gradient birefringent metasurfaces that facilitate normal incident light to launch in-plane photonic-waveguide modes propagating in six predefined directions with the coupling efficiencies providing a direct measure of the incident SOP. The functionality and accuracy of the polarimeter, which essentially is an all-polarization-sensitive waveguide metacoupler, is confirmed through full-wave simulations at the operation wavelength of 1.55 μ m .
Jets and storm tracks in ?-plane models
NASA Astrophysics Data System (ADS)
Ambaum, Maarten; Harvey, Ben
2013-04-01
We will present new results from linear calculations and non-linear simulations of a two-layer baroclinic ?-plane model. The model consists of two interacting levels with dynamical temperature anomalies (as in the Eady model), but by its nature provides a consistent description of the continuous 3-dimensional velocity field inside the domain. Our set-up has realistic jet-profiles, yet has a very low-dimensional parameter space. The model is shown to exhibit realistic linear baroclinic instability properties. In addition, it is shown that the introduction of a ?-plane term induces a jet and a storm-track that is highly non-linear: it exhibits a realistic spiral jet structure and jet-exit region, as is the case for the observed N. Hemisphere jet on Earth. This seems to imply that the variability of the N. Atlantic jet stream is not the result of complex topographic and orographic boundary conditions in the N. Hemisphere, as recent simulations appear to suggest, but rather the result of the spherical geometry of the Earth, setting the right conditions for relevant non-linear interactions between Rossby waves and the jet.
Extension and contraction of faulted marker planes
NASA Astrophysics Data System (ADS)
Jackson, Marie D.; Delaney, Paul T.
1985-08-01
We present graphical and analytical methods to determine the extensional or contractional separation of a faulted planar marker using commonly measured field data: fault attitude, slip direction, and bedding or other marker-plane attitude. This determination is easily accomplished for horizontal markers. Faults with normal components of slip extend the markers and indicate extensional tectonics; those with reverse components are contractional. Although the methods quantify this simple relation for horizontal markers, they are most useful in rocks with planar fabrics of steep dip where marker separation cannot be uniquely determined from map or outcrop patterns alone and where faults with normal components of dip slip can contract markers and those with reverse components can extend them. The methods rely on two parameters: (1) the angle between normals to the marker and fault planes and (2) the angle between the slip direction and intersection of the marker and fault. This second parameter measures the obliquity of slip relative to the directions of maximum extensional or contractional separation of the marker, and for a horizontal marker, it is equivalent to the rake of the slip direction. The graphical method requires stereographic projections routinely used for faulting data; the analytical method is programmable on a calculator. *Present address: Department of Applied Earth Sciences, Stanford University, Stanford, California 94035
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-02-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
Transmission probability and active pumping ability of the channel with moving partition plane
NASA Astrophysics Data System (ADS)
Luo, X.; Day, Chr.
2016-11-01
In this paper we present Test Particle Monte Carlo (TPMC) simulations of the transmission probability and the active pumping ability of a rectangular channel of different physical parameters. The novel feature of this problem is that the channel has a partition plane in the middle which is moving up and down, which makes it to a dynamical system. The system was simulated by our TPMC code ProVac3D developed with a new subroutine considering the moving partition plane. In order to obtain precise simulation results, at least 1011 test particles were simulated in parallel on the supercomputer Helios in Japan. It is found that the amplitude and the frequency of the movement will affect both transmission probability and the active pumping ability of the channel. Moreover, it is also found that transmission probability and active pumping ability of the channel with the moving partition plane are no longer independent of the mass of the gas species.
63. CANAL BOAT IN CRADLE AT TOP OF PLANE. TO ...
63. CANAL BOAT IN CRADLE AT TOP OF PLANE. TO PASS OVER THE SUMMIT (THE HUMP OF LAND AT THE TOP OF PLANE TO HOLD BACK THE WATER AT THAT LEVEL), THE BOATS HAVE SEEN HINGED AND TWO CRADLES ARE USED TO CARRY THE BOAT UP THE PLANE. - Morris Canal, Phillipsburg, Warren County, NJ
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED ...
1. LOOKING TOWARD PLANE 9 WEST. BASIN HAS BEEN DRAINED AND SLOPE OF PLANE 9 IS VISIBLE BETWEEN ROW OF TREES IN BACKGROUND. STONEWORK ON LEFT IS ABUTMENT TO BRIDGE THAT CROSSED OVER THE CANAL. - Morris Canal, Inclined Plane 9 West, Port Warren, Warren County, NJ
An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1978-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1979-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
C-shaped specimen plane strain fracture toughness tests. [metallic materials
NASA Technical Reports Server (NTRS)
Buzzard, R. T.; Fisher, D. M.
1977-01-01
Test equipment, procedures, and data obtained in the evaluation of C-shaped specimens are presented. Observations reported on include: specimen preparation and dimensional measurement; modifications to the standard ASTM E 399 displacement gage, which permit punch mark gage point engagement; and a measurement device for determining the interior and exterior radii of ring segments. Load displacement ratios were determined experimentally which agreed with analytically determined coefficients for three different gage lengths on the inner surfaces of radially-cracked ring segments.
Plane strain crack growth models for fatigue crack growth life predictions
Bloom, J.M.; Daniewicz, S.R.; Hechmer, J.L.
1996-02-01
Experimental data and analytical models have shown that a growing fatigue crack produces a plastic wake. This, in turn, leads to residual compressive stresses acting over the crack faces during the unloading portion of the fatigue cycle. This crack closure effect results in an applied stress intensity factor during unloading which is greater than that associated with the K{sub min}, thus producing a crack-driving force which is less than {Delta}K = K{sub max} {minus} K{sub min}. Life predictions which do not account for this crack closure effect give inaccurate life estimates, especially for fully reversed loadings. This paper discusses the development of a crack closure expression for the 4-point bend specimen using numerical results obtained from a modified strip-yield model. Data from tests of eight 4-point bend specimens were used to estimate the specimen constraint factor (stress triaxiality effect). The constraint factor was then used in the estimation of the crack opening stresses for each of the bend tests. The numerically estimated crack opening stresses were used to develop an effective stress intensity factor range, {Delta}K{sub eff}. The resulting crack growth rate data when plotted versus {Delta}K{sub eff} resulted in a material fatigue crack growth rate property curve independent of test specimen type, stress level, and R-ratio. Fatigue crack growth rate data from center-cracked panels using Newman`s crack closure model, from compact specimens using Eason`s R-ratio expression, and from bend specimens using the model discussed in this paper are all shown to fall along the same straight line (on log-log paper) when plotted versus {Delta}K{sub eff}, even though crack closure differs for each specimen type.
NASA Technical Reports Server (NTRS)
Dorward, R. C.; Hasse, K. R.
1977-01-01
A comparison is made between fracture toughness KIc as measured by recommended ASTM procedures and crack arrest toughness KIa as measured on more than 100 bolt-loaded double-cantilever beam (DCB) specimens from 7075, 7050, and 7049 alloy plates. Close agreement was found between the two values, KIa being on the average less than KIc over a specified range. This indicates that a simplified test based on a bolt-loaded DCB specimen could be used for quality control, lot release, and screening purposes. Measurements of crack length and specimen deflection are all that are required. The specimens do not have to be fatigue precracked, nor is a tensile machine needed.
Plane Strain Deformation In A Thermoelastic Microelongated Solid With Internal Heat Source
NASA Astrophysics Data System (ADS)
Ailawalia, P.; Sachdeva, S. K.; Pathania, D. S.
2015-12-01
The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.
Heteroepitaxy mechanisms of AlN on nitridated c- and a-plane sapphire substrates
NASA Astrophysics Data System (ADS)
Funato, Mitsuru; Shibaoka, Mami; Kawakami, Yoichi
2017-02-01
We investigate the metalorganic vapor phase epitaxy of c-oriented AlN on c- and a-plane sapphire substrates, focusing on the effect of sapphire nitridation on the AlN structure. Prior to AlN growth, the sapphire surface is subjected to nitridation via an in-situ NH3 treatment. We demonstrate that nitridation without H2 thermal etching treatment realizes high quality AlN on both c- and a-plane sapphires, indicating that a reaction between NH3 and oxygen on the sapphire surface is a critical factor in the material growth. It is proposed that nitridation initially creates nanometer-scale inversion domains in the AlN epilayer, but as growth proceeds, the N-polar domains are annihilated, leaving voids. Such growth behaviors can be regarded as spontaneous selective area growth with strain-adsorbing void formation, and lead to crack-free, ˜5 μm thick AlN layers, which produce x-ray line widths as narrow as 180 and 483 arc sec for the (0002) and ( 10 1 ¯ 2 ) reflections, respectively, on c-plane sapphire, and 237 and 433 arc sec for these reflections on a-plane sapphire.
High contrast imaging through adaptive transmittance control in the focal plane
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake
2016-05-01
High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.
Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2015-01-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
Tidal friction in the Earth-Moon system and Laplace planes: Darwin redux
NASA Astrophysics Data System (ADS)
Rubincam, David Parry
2016-03-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than ∼10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2°. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
Detection of surface strain by three-dimensional digital holography
NASA Astrophysics Data System (ADS)
de La Torre-Ibarra, Manuel; Mendoza-Santoyo, Fernando; Pérez-López, Carlos; Saucedo-A., Tonatiuh
2005-01-01
Three-dimensional digital holography with three object-illuminating beams has been successfully used for the detection of surface strain in metallic objects. The optical setup that uses illuminating beams to irradiate the object from three directions means that all three object surface displacement components, x, y, and z, can be independently calculated and used to find the strain gradients on the surface. The results show the conversion of the complete surface displacement field into a surface strain field. The method is capable of measuring microstrains for out-of-plane surface displacements of less than 10 μm.
Soft metal constructs for large strain sensor membrane
NASA Astrophysics Data System (ADS)
Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.
2015-03-01
Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.
Electronic, mechanical and dielectric properties of silicane under tensile strain
NASA Astrophysics Data System (ADS)
Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.
2015-05-01
The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.
Electronic, mechanical and dielectric properties of silicane under tensile strain
Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil
2015-05-15
The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.
Learning-based scan plane identification from fetal head ultrasound images
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli
2012-03-01
Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.
Out-of-plane behavior of hollow clay tile walls infilled between steel frames
Butala, M.B.; Jones, W.D.; Beavers, J.E.
1991-08-16
Several buildings at Y-12 Plant rely on unreinforced hollow clay tile walls (HCTW) infilled between unbraced, non-moment resisting steel frames to resist natural phenomena forces, seismic and wind. One critical building relies on moment resisting steel frames in one direction while relying on unreinforced HCTWs infilled between the columns in the orthogonal direction to resist these forces. The HCTWs must act as shear walls while maintaining out-of-plane lateral stability. In assessing the safety of these buildings to seismic forces, several models to study the in- and out-of-plane effects were made and analyzed. The study of the moment resisting steel framed building indicated that bending stresses in the walls were induced by building drift and not by inertial forces per se. The discovery of this phenomenon was some what of a surprise in that the analysis performed is not typically used in design of these structures. The study indicated that the walls began to crack at their interface with the foundation at a low ``g`` level and that horizontal cracking at different elevations continued until the walls exhibited little bending resistance. This paper presents results of the study for out-of-plane behavior of unreinforced HCTWs infilled between adjacent moment resisting steel frames and discusses the problems of assessing the in-plane behavior given the horizontal cracks induced by building drift in the out-of-plane direction.
Eta Carinae: Orientation of The Orbital Plane
NASA Technical Reports Server (NTRS)
Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.
2006-01-01
Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover
Hybrid Image-Plane/Stereo Manipulation
NASA Technical Reports Server (NTRS)
Baumgartner, Eric; Robinson, Matthew
2004-01-01
Hybrid Image-Plane/Stereo (HIPS) manipulation is a method of processing image data, and of controlling a robotic manipulator arm in response to the data, that enables the manipulator arm to place an end-effector (an instrument or tool) precisely with respect to a target (see figure). Unlike other stereoscopic machine-vision-based methods of controlling robots, this method is robust in the face of calibration errors and changes in calibration during operation. In this method, a stereoscopic pair of cameras on the robot first acquires images of the manipulator at a set of predefined poses. The image data are processed to obtain image-plane coordinates of known visible features of the end-effector. Next, there is computed an initial calibration in the form of a mapping between (1) the image-plane coordinates and (2) the nominal three-dimensional coordinates of the noted end-effector features in a reference frame fixed to the main robot body at the base of the manipulator. The nominal three-dimensional coordinates are obtained by use of the nominal forward kinematics of the manipulator arm that is, calculated by use of the currently measured manipulator joint angles and previously measured lengths of manipulator arm segments under the assumption that the arm segments are rigid, that the arm lengths are constant, and that there is no backlash. It is understood from the outset that these nominal three-dimensional coordinates are likely to contain possibly significant calibration errors, but the effects of the errors are progressively reduced, as described next. As the end-effector is moved toward the target, the calibration is updated repeatedly by use of data from newly acquired images of the end-effector and of the corresponding nominal coordinates in the manipulator reference frame. By use of the updated calibration, the coordinates of the target are computed in manipulator-reference-frame coordinates and then used to the necessary manipulator joint angles to position
Hydrodynamic Properties of Planing Surfaces and Flying Boats
NASA Technical Reports Server (NTRS)
Sokolov, N. A.
1950-01-01
The study of the hydrodynamic properties of planing bottom of flying boats and seaplane floats is at the present time based exclusively on the curves of towing tests conducted in tanks. In order to provide a rational basis for the test procedure in tanks and practical design data, a theoretical study must be made of the flow at the step and relations derived that show not only qualitatively but quantitatively the inter-relations of the various factors involved. The general solution of the problem of the development of hydrodynamic forces during the motion of the seaplane float or flying boat is very difficult for it is necessary to give a three-dimensional solution, which does not always permit reducing the analysis to the form of workable computation formulas. On the other had, the problem is complicated by the fact that the object of the analysis is concerned with two fluid mediums, namely, air and water, which have a surface of density discontinuity between them. The theoretical and experimental investigations on the hydrodynamics of a ship cannot be completely carried over to the design of floats and flying-boat hulls, because of the difference in the shape of the contour lines of the bodies, and, because of the entirely different flow conditions from the hydrodynamic viewpoint.
Film flow of a suspension down an inclined plane.
Li, Xiaofan; Pozrikidis, C
2003-05-15
A method is developed for simulating the film flow of a suspension of rigid particles with arbitrary shapes down an inclined plane in the limit of vanishing Reynolds number. The problem is formulated in terms of a system of integral equations of the first and second kind for the free-surface velocity and the traction distribution along the particle surfaces involving the a priori unknown particle linear velocity of translation and angular velocity of rotation about designated centres. The problem statement is completed by introducing scalar constraints that specify the force and torque exerted on the individual particles. A boundary-element method is implemented for solving the governing equations for the case of a two-dimensional periodic suspension. The system of linear equations arising from numerical discretization is solved using a preconditioner based on a particle-cluster iterative method recently developed by Pozrikidis (2000 Engng Analysis Bound. Elem. 25, 19-30). Numerical investigations show that the generalized minimal residual (GMRES) method with this preconditioner is significantly more efficient than the plain GMRES method used routinely in boundary-element implementations. Extensive numerical simulations for solitary particles and random suspensions illustrate the effect of the particle shape, size and aspect ratio in semi-finite shear flow, and the effect of free-surface deformability in film flow.
Manvi, Supriya; Miglani, Shaveta; Rajeswari, C L; Srivatsa, G; Arora, Sarvesh
2012-01-01
Proper occlusal plane is an essential consideration when multiple long span posterior restorations are designed. The determination of the occlusal plane can have a profound effect on the short and long term success of a restorative case. Purpose of Study. (1) To determine the appropriate occlusal curve for individual patients. (2) To compare the deviation of the clinical occlusal curve with the ideal ones. Materials and Methods. A total of 20 subjects were examined and study models were made of their maxillary and mandibular dentition. Inter-occlusal records were made and the casts were articulated in semiadjustable articulator. An ideal occlusal plane was created. The distance of the farthest cusp tip from the Broadrick curve was measured along the long axis of the tooth for each individual. Paired t-tests were used to compare the findings between subjects and controls. Results. A statistically significant difference P < 0.05 was found in the deviation from the Broadrick curve between patients who have lost posterior teeth and the control group who had a full dentition with no missing teeth. Conclusion. Proper utilization of the broadrick flag on a semi-adjustable articulator will allow for a correct determination of the occlusal plane.
Optimal plane changes using third-body forces.
Villac, B F; Scheeres, D J
2004-05-01
The fuel optimality of third-body driven plane changes (i.e., plane changes performed by using third-body forces) over one-impulse transfers is investigated numerically and analytically. In particular, the range of third-body driven plane changes that are realizable is shown to be restricted and one impulse must be used in the uncovered regions. However, when third-body driven plane changes are realizable, it is shown that they are always optimal above a certain critical value (about 40 degrees ) that depends on the initial condition. Contour plots of optimal DeltaV values to perform a desired plane changes are given.
... Parkinson's disease Diseases such as arthritis or multiple sclerosis Vision or balance problems Treatment of walking problems depends on the cause. Physical therapy, surgery, or mobility aids may help.
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1989-01-01
In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.
Stretchable spiral thin-film battery capable of out-of-plane deformation
NASA Astrophysics Data System (ADS)
Kammoun, Mejdi; Berg, Sean; Ardebili, Haleh
2016-11-01
There is a compelling need for innovative design concepts in energy storage devices such as flexible and stretchable batteries that can simultaneously provide electrochemical and mechanical functions to accommodate nonconventional applications including wearable and implantable devices. In this study, we report on the design and fabrication of a stretchable spiral thin-film lithium ion battery that is capable of large out-of-plane deformation of 1300% while exhibiting simultaneous electrochemical functionality. The spiral battery is fabricated using a flexible solid polymer nanocomposite electrolyte film that offers enhanced safety and stability compared to the conventional organic liquid-based electrolyte. The spiral lithium ion battery exhibits robust mechanical stretchability over 9000 stretching cycles and an energy density of 4.862 mWh/cm3 at ∼650% out-of-plane deformation. Finite element analysis of the spiral battery offers insights about the nature of stresses and strains during battery stretching.
UV photodetectors, focal plane arrays, and avalanche photodiodes
NASA Astrophysics Data System (ADS)
McClintock, Ryan
2007-12-01
The study of III-Nitride based optoelectronics devices is a maturing field, but there are still many underdeveloped areas in which to make a contribution of new and original research. This work specifically targets the goals of realizing high-efficiency back-illuminated solar-blind photodetectors, solar-blind focal plane arrays, and visible- and solar-blind Avalanche photodiodes. Achieving these goals has required systematic development of the material growth and characterization, device modeling and design, device fabrication and processing, and the device testing and qualification. This work describes the research conducted and presents relevant devices results. The AlGaN material system has a tunable direct bandgap that is ideally suited to detection of ultraviolet light, however this material system suffers from several key issues, making realization of high-efficiency photodetectors difficult: large dislocation densities, low n-type and p-type doping efficiency, and lattice and thermal expansion mismatches leading to cracking of the material. All of these problems are exacerbated by the increased aluminum compositions necessary in back-illuminated and solar-blind devices. Overcoming these obstacles has required extensive development and optimization of the material growth techniques necessary: this includes everything from the growth of the buffer and template, to the growth of the active region. The broad area devices realized in this work demonstrate a quantum efficiency that is among the highest ever reported for a back-illuminated solar-blind photodetector (responsivity of 157 mA/W at 280nm, external quantum efficiency of 68%). Taking advantage of the back illuminated nature of these detectors, we have successfully developed the technology to hybridize and test a solar-blind focal plane array camera. The initial focal plane array shows good uniformity and reasonable operability, and several images from this first camera are presented. However, in order to
Magnetic measurements with atomic-plane resolution
Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.
2016-01-01
Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide. PMID:27578421
Unsteady granular flows down an inclined plane
NASA Astrophysics Data System (ADS)
Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud
2016-04-01
The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.
Smart trigger logic for focal plane arrays
Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M
2014-03-25
An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.
Design of large aperture focal plane shutter
NASA Astrophysics Data System (ADS)
Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long
2012-09-01
To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.
Magnetic measurements with atomic-plane resolution
NASA Astrophysics Data System (ADS)
Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.
2016-08-01
Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide.
Crisis bifurcations in plane Poiseuille flow
NASA Astrophysics Data System (ADS)
Zammert, Stefan; Eckhardt, Bruno
2015-04-01
Many shear flows follow a route to turbulence that has striking similarities to bifurcation scenarios in low-dimensional dynamical systems. Among the bifurcations that appear, crisis bifurcations are important because they cause global transitions between open and closed attractors, or indicate drastic increases in the range of the state space that is covered by the dynamics. We here study exterior and interior crisis bifurcations in direct numerical simulations of transitional plane Poiseuille flow in a mirror-symmetric subspace. We trace the state space dynamics from the appearance of the first three-dimensional exact coherent structures to the transition from an attractor to a chaotic saddle in an exterior crisis. For intermediate Reynolds numbers, the attractor undergoes several interior crises, in which new states appear and intermittent behavior can be observed. The bifurcations contribute to increasing the complexity of the dynamics and to a more dense coverage of state space.
On turbulent spots in plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Henningson, Dan S.; Kim, John
1991-01-01
Turbulence characteristics inside a turbulent spot in plane Poiseuille flow are investigated by analyzing a database obtained from a direct numerical simulation. The spot is found to consist of two distinct regions - a turbulent area and a wave area. The flow inside the turbulent area has a strong resemblance to that found in the fully developed turbulent channel. Suitably defined mean and r.m.s. fluctuations as well as the internal shear-layer structures are found to be similar to the turbulent counterpart. In the wave area the inflexional mean spanwise profiles cause a rapid growth of oblique waves, which break down to turbulence. The breakdown process of the oblique waves is reminiscent of the secondary instability observed during transition to turbulence in channel and boundary-layer flows. Other detailed characteristics associated with the Poiseuille spot are presented and are compared with experimental results.
Stabilized dispersive focal plane systems for space
NASA Astrophysics Data System (ADS)
Roming, Peter W. A.; Bayless, Amanda J.; Beebe, Chip R.; Brooks, Mark J.; Davis, Michael W.; Klar, Robert A.; Roberts, John M.; Rose, Randall J.; Winters, Gregory S.
2012-09-01
As the costs of space missions continue to rise, the demand for compact, low mass, low-cost technologies that maintain high reliability and facilitate high performance is increasing. One such technology is the stabilized dispersive focal plane system (SDFPS). This technology provides image stabilization while simultaneously delivering spectroscopic or direct imaging functionality using only a single optical path and detector. Typical systems require multiple expensive optical trains and/or detectors, sometimes at the expense of photon throughput. The SDFPS is ideal for performing wide-field low-resolution space-based spectroscopic and direct-imaging surveys. In preparation for a suborbital flight, we have built and ground tested a prototype SDFPS that will concurrently eliminate unwanted image blurring due to the lack of adequate platform stability, while producing images in both spectroscopic and direct-imaging modes. We present the overall design, testing results, and potential scientific applications.
Unsteady granular flows down an inclined plane.
Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud
2016-04-01
The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.
Plane mixing layer vortical structure kinematics
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1993-01-01
The objective of the current project was to experimentally investigate the structure and dynamics of the streamwise vorticity in a plane mixing layer. The first part of this research program was intended to clarify whether the observed decrease in mean streamwise vorticity in the far-field of mixing layers is due primarily to the 'smearing' caused by vortex meander or to diffusion. Two-point velocity correlation measurements have been used to show that there is little spanwise meander of the large-scale streamwise vortical structure. The correlation measurements also indicate a large degree of transverse meander of the streamwise vorticity which is not surprising since the streamwise vorticity exists in the inclined braid region between the spanwise vortex core regions. The streamwise convection of the braid region thereby introduces an apparent transverse meander into measurements using stationary probes. These results corroborated with estimated secondary velocity profiles in which the streamwise vorticity produces a signature which was tracked in time.
Vorticity Fluctuations in Plane Couette Flow
NASA Astrophysics Data System (ADS)
Ortiz de Zarate, Jose; Sengers, Jan V.
2010-11-01
In this presentation we evaluate the flow-induced amplification of the thermal noise in plane Couette configuration. The physical origin of the noise is the random nature of molecular collisions, that contribute with a stochastic component to the stress tensor (Landau's fluctuating hydrodynamics). This intrinsic stochastic forcing is then amplified by the mode- coupling mechanisms associated to shear flow. In a linear approximation, noise amplification can be studied by solving stochastic Orr-Sommerfeld and Squire equations. We compare the efficiency of the different mechanisms, being the most important the direct coupling between Squire and Orr-Sommerfed equations. The main effect is to amplify wall-normal vorticity fluctuations with an spanwise modulation at wave number around 1.5, a configuration that resembles the streaks that have been proposed as precursors of the flow instability.
NASA Astrophysics Data System (ADS)
Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.
2015-05-01
This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.
NASA Astrophysics Data System (ADS)
Zhou, Xiaolan
Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a
The in-focus variable line spacing plane grating monochromator
NASA Astrophysics Data System (ADS)
Reininger, R.
2011-09-01
The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.
Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material
NASA Astrophysics Data System (ADS)
Butz, Benjamin
2015-03-01
Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB <--> BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research
Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens
NASA Technical Reports Server (NTRS)
Krause, David L.
2000-01-01
A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.
Study of magnetic domain evolution in an auxetic plane of Galfenol using Kerr microscopy
NASA Astrophysics Data System (ADS)
Raghunath, Ganesh; Flatau, Alison B.
2015-05-01
Galfenol (FexGa100-x), a magnetostrictive alloy (3/2λ 110-400 ppm) of Iron and Gallium exhibits an in-plane auxetic response in the ⟨110⟩ crystallographic direction. Negative Poisson's ratios have been observed in response to application of stress fields, where values of as low as -0.7 have been reported for compositions of greater than roughly 20% Ga [Zhang et al., J. Appl. Phys. 108(2), 023513 (2010)] and in response to application of magnetic fields, where values of as low as -2.5 have been reported to be expected for compositions of less than roughly 20% Ga [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)]. Several models have been proposed to understand these two distinct phenomena. Galfenol samples with less than 20% Ga also exhibit an unusual response to an increasing magnetic field applied along the ⟨110⟩ direction. The longitudinal strain which increases initially with applied field experiences a dip (until ˜10 mT) before increasing again to reach saturation. The transverse strain increases and reaches a maximum value (at the same field of ˜10 mT) and then drops from the maximum by 5%-10% as magnetic saturation is approached [G. Raghunath and A. B. Flatau, IEEE Trans. Magn. (in press)].This work deals with discussing the evolution of magnetic domains in a 16 at. % Ga single crystal Galfenol sample when subjected to magnetic fields in the ⟨110⟩ direction in the (100) plane. The magnetic domains on the surface of mechanically polished Galfenol samples were imaged using Magneto-Optic Kerr Effect microscopy. Simultaneously, the strains along the longitudinal and transverse ⟨110⟩ directions were recorded using a bi-directional strain gauge rosette mounted on the unpolished bottom surface of the planar samples. The energy from the applied magnetic field is expected to grow the ⟨110⟩ oriented domains at the expense of domains oriented along all other directions. But since the plane has an easy ⟨100⟩ axis, we expect the
Strain induced modification in phonon dispersion curves of monolayer boron pnictides
Jha, Prafulla K. E-mail: prafullaj@yahoo.com; Soni, Himadri R.
2014-01-14
In the frame work of density functional theory, the biaxial strain induced phonon dispersion curves of monolayer boron pnictides (BX, X = N, P, As, and Sb) have been investigated. The electron-ion interactions have been modelled using ultrasoft pseudopotentials while exchange-correlation energies have been approximated by the method of local density approximation in the parameterization of Perdew-Zunger. The longitudinal and transverse acoustic phonon modes of boron pnictide sheets show linear dependency on wave vector k{sup →} while out of plane mode varies as k{sup 2}. The in-plane longitudinal and out of plane transverse optical modes in boron nitride displaying significant dispersion similar to graphene. We have analyzed the biaxial strain dependent behaviour of out of plane acoustic phonon mode which is linked to ripple for four BX sheets using a model equation with shell elasticity theory. The strain induces the hardening of this mode with tendency to become more linear with increase in strain percentage. The strain induced hardening of out of plane acoustic phonon mode indicates the absence of rippling in these compounds. Our band structure calculations for both unstrained and strained 2D h-BX are consistent with previous calculations.
Modulations of thermal properties of graphene by strain-induced phonon engineering
NASA Astrophysics Data System (ADS)
Tada, Kento; Funatani, Takashi; Konabe, Satoru; Sasaoka, Kenji; Ogawa, Matsuto; Souma, Satofumi; Yamamoto, Takahiro
2017-02-01
Modulation of the thermal properties of graphene due to strain-induced phononic band engineering was theoretically investigated by first-principles calculations based on the density functional theory. The high-energy phonon modes are found to exhibit softening owing to the strain, whereas a low-energy acoustic mode (out-of-plane mode) exhibits hardening. Moreover, the dispersion relation of the out-of-plane mode associated with the strain essentially changes from quadratic (∝ k 2) to linear (∝ k). Accordingly, the temperature dependence of the low-temperature specific heat also changes from linear (∝ T) to quadratic (∝ T 2).
A Bridge between Two Important Problems in Optics and Electrostatics
ERIC Educational Resources Information Center
Capelli, R.; Pozzi, G.
2008-01-01
It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…
The Problems of Problem Solving
ERIC Educational Resources Information Center
Watson, Charles E.
1976-01-01
Discusses some common pitfalls in problem-solving and outlines three basic approaches to successfully identifying problems and their causes. (Available from Business Horizons, School of Business, Indiana University, Bloomington, Indiana 47401; $2.50, single copy) (Author/JG)
Elevated temperature strain gages
NASA Technical Reports Server (NTRS)
Brittain, J. O.; Geslin, D.; Lei, J. F.
1985-01-01
Materials were evaluated that could be used in manufacturing electrical resistance strain gages for static strain measurements at temperatures at or above 1273 K. Strain gage materials must have a characteristic response to strain, temperature and time that is reproducible or that varies in a predictable manner within specified limits. Several metallic alloys were evaluated, as well as a series of transition metal carbides, nitrides and silicides.
Strain engineering of nanowire multi-quantum well demonstrated by Raman spectroscopy.
Wölz, Martin; Ramsteiner, Manfred; Kaganer, Vladimir M; Brandt, Oliver; Geelhaar, Lutz; Riechert, Henning
2013-09-11
An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial InxGa1-xN quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy. A detailed calculation of the strain distribution and LO phonon frequency shift shows that a uniform in-plane lattice constant in the nanowire segments satisfactorily describes the resonant Raman spectra, although in reality the three-dimensional strain profile at the periphery of the quantum wells is complex. Our strain analysis is applicable beyond the InxGa1-xN/GaN system under study, and we derive universal rules for strain engineering in nanowire heterostructures.
... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...
Strain analysis of a chiral smectic-A elastomer.
Spillmann, Christopher M; Konnert, John H; Adams, James M; Deschamps, Jeffrey R; Naciri, Jawad; Ratna, Banahalli R
2010-09-01
We present a detailed analysis of the molecular packing of a strained liquid crystal elastomer composed of chiral mesogens in the smectic-A phase. X-ray diffraction patterns of the elastomer collected over a range of orientations with respect to the x-ray beam were used to reconstruct the three-dimensional scattering intensity as a function of tensile strain. We show that the smectic domain order is preserved in these strained elastomers. Changes in the intensity within a given scattering plane are due to reorientation, and not loss, of the molecular order in directions orthogonal to the applied strain. Incorporating the physical parameters of the elastomer, a nonlinear elastic model is presented to describe the rotation of the smectic-layered domains under strain, thus providing a fundamental analysis to the mechanical response of these unique materials.
Estimating the plastic strain with the use of acoustic anisotropy
NASA Astrophysics Data System (ADS)
Belyaev, A. K.; Lobachev, A. M.; Modestov, V. S.; Pivkov, A. V.; Polyanskii, V. A.; Semenov, A. S.; Tret'yakov, D. A.; Shtukin, L. V.
2016-09-01
Experimental verification is used to show that reference specimens and structure unloading do not permit obtaining an adequate estimate of plastic strain by measuring the acoustic anisotropy. Analytic estimates of the speed of propagation of a plane acoustic wave of various polarizations in an elastoplastic material in the direction orthogonal to the action of preliminary uniaxial stress are obtained. An analysis of the obtained relations reveala an advantage of using absolute values of the velocity of longitudinal and transverse waves for the plastic strain identification. In contrast to acoustic anisotropy, the velocities vary monotonically in a wider range of plastic strains. At the same time, the elastic strain does not affect the longitude wave velocity, which allows one to use the measurement results to estimate the character of strains.
Strain-induced permeability increase in volcanic rock
NASA Astrophysics Data System (ADS)
Farquharson, Jamie I.; Heap, Michael J.; Baud, Patrick
2016-11-01
The extrusion of dense, viscous magma typically occurs along pronounced conduit-parallel faults. To better understand the evolution of fault permeability with increasing strain, we measured the permeability of low-porosity volcanic rock samples (basalt and andesite) that were deformed in the brittle regime to various levels of inelastic strain. We observed a progressive increase in sample permeability with increasing inelastic strain (i.e., with continued sliding on the fault plane). At the maximum imposed inelastic strain (0.11), sample permeability had increased by 3 orders of magnitude or more for all sample sets. Microstructural observations show that narrow shear fractures evolve into more complex fracture systems characterized by thick zones of friction-induced cataclasis (gouge) with increasing inelastic strain. These data suggest that the permeability of conduit-parallel faults hosted in the rock at the conduit-wall rock interface will increase during lava extrusion, thus facilitating outgassing and hindering the transition to explosive behavior.
Armitage, R.; Horita, M.; Suda, J.; Kimoto, T.
2007-02-01
A series of m-plane GaN layers with the Ga beam-equivalent pressure (BEP) as the only varied parameter was grown by rf-plasma assisted molecular beam epitaxy on m-plane 4H-SiC substrates using AlN buffer layers. The smoothest growth surfaces and most complete film coalescence were found for the highest Ga BEP corresponding to the Ga droplet accumulation regime. However, better structural quality as assessed by x-ray rocking curves was observed for growth at a lower Ga BEP value below the droplet limit. The variation of rocking curve widths for planes inclined with respect to the epilayer c axis followed a different trend with Ga BEP than those of reflections parallel to the c axis. The GaN layers were found to exhibit a large residual compressive strain along the a axis.
NASA Astrophysics Data System (ADS)
Osburg, Tim
Earthquakes occur at intermediate (≥ 70 km) and deep (≥ 300 km) depths within the Earth. Since their discovery, the cause of intermediate and deep-focus earthquakes has remained a fundamental problem in seismology. While several physical mechanisms have been theorized to explain the occurrence of deep earthquakes, the mechanism may be constrained by determining the fault plane orientation. I used rupture directivity of 52 events in the northeastern Japan subduction zone to determine each event's fault plane orientation. With adequate station coverage, in both azimuth and distance, rupture can be identified along a single nodal plane signifying the fault plane. P-wave duration is shortest in the direction of rupture propagation and greatest in the opposite direction. Measuring the differential rupture duration between seismic stations allows for the determination of rupture direction, rupture velocity relative to the background seismic velocity, and the fault plane for each event. Rupture directivity is determined for a total of 20 events. Results indicate that rupture at intermediate and deep focus depths occur along the subhorizontal nodal plane. While fault plane orientation is apparently uniform in the subducting slab, rupture direction appears scattered. These results suggest multiple mechanisms are responsible for the orientation and azimuthal direction of rupture.
ECLAIRs detection plane: current state of development
NASA Astrophysics Data System (ADS)
Lacombe, K.; Pons, R.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Bordon, S.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Mercier, K.; Mandrou, P.; Marty, W.; Nasser, G.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.
2014-07-01
ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate Gamma-ray bursts (GRBs) in near real time in the 4-150 keV energy band. The design of ECLAIRs has been mainly driven by the objective of achieving a low-energy threshold of 4 keV, unprecedented for this type of instrument. The detection plane is an assembly of 6400 Schottky CdTe semiconductor detectors of size 4x4x1 mm3 organized on elementary hybrid matrices of 4x8 detectors. The detectors will be polarized from -300V to -500V and operated at -20°C to reduce both the leakage current and the polarization effect induced by the Schottky contact. The remarkable low-energy threshold homogeneity required for the detection plane has been achieved thanks to: i) an extensive characterization and selection of the detectors, ii) the development of a specific low-noise 32-channel ASIC, iii) the realization of an innovative hybrid module composed of a thick film ceramic (holding 32 CdTe detectors with their high voltage grid), associated to an HTCC ceramic (housing the ASIC chip within an hermetic enclosure). In this paper, we start describing a complete hybrid matrix, and then the manufacturing of a first set of 50 matrices (representing 1600 detectors, i.e. a quarter of ECLAIRs detector's array). We show how this manufacturing allowed to validate the different technologies used for this hybridization, as well as the industrialization processes. During this phase, we systematically measured the leakage current on Detector Ceramics after an outgassing, and the Equivalent Noise Charge (ENC) for each of the 32 channels on ASIC Ceramics, in order to optimize the coupling of the two ceramics. Finally, we performed on each hybrid module, spectral measurements at -20°C in our vacuum chamber, using several calibrated radioactive sources (241Am and 55Fe), to check the performance homogeneity of the 50 modules. The results demonstrated that the 32-detector hybrid matrices
A Methodology for Measuring Strain in Power Semiconductors
NASA Astrophysics Data System (ADS)
Avery, Seth M.
The objective of this work is to develop a strain measurement methodology for use in power electronics during electrical operation; such that strain models can be developed and used as the basis of an active strain controller---improving the reliability of power electronics modules. This research involves developing electronic speckle pattern interferometry (ESPI) into a technology capable of measuring thermal-mechanical strain in electrically active power semiconductors. ESPI is a non-contact optical technique capable of high resolution (approx. 10 nm) surface displacement measurements. This work has developed a 3-D ESPI test stand, where simultaneous in- and out-of-plane measured components are combined to accurately determine full-field surface displacement. Two cameras are used to capture both local (interconnect level) displacements and strains, and global (device level) displacements. Methods have been developed to enable strain measurements of larger loads, while avoiding speckle decorrelation (which limits ESPI measurement of large deformations). A method of extracting strain estimates directly from unfiltered and wrapped phase maps has been developed, simplifying data analysis. Experimental noise measurements are made and used to develop optimal filtering using model-based tracking and determined strain noise characteristics. The experimental results of this work are strain measurements made on the surface of a leadframe of an electrically active IGBT. A model-based tracking technique has been developed to allow for the optimal strain solution to be extracted from noisy displacement results. Also, an experimentally validated thermal-mechanical FE strain model has been developed. The results of this work demonstrate that in situ strain measurements in power devices are feasible. Using the procedures developed in the work, strain measurements at critical locations of strain, which limit device reliability, at relevant power levels can be completed.
Iterative diagonalization in augmented plane wave based methods in electronic structure calculations
Blaha, P.; Laskowski, R.; Schwarz, K.
2010-01-20
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.
NASA Astrophysics Data System (ADS)
Tolokonnikov, L. A.; Larin, N. V.
2017-01-01
An analytical solution of the problem of the propagation of a plane sound wave through a discretely inhomogeneous thermoelastic layer adjacent to inviscid heat-conducting liquids is obtained. Results of calculations of the dependences of the transmission coefficient on the wave incidence angle and frequency for discretely inhomogeneous and continuously inhomogeneous thermoelastic layers are given. It is shown that a thermoelastic layer with continuously inhomogeneous thickness can be simulated using a system of homogeneous thermoelastic layers.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Pujar, Vijay V.
2008-01-01
In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.
NASA Astrophysics Data System (ADS)
Gherrous, M.; Ferdjani, H.
2016-11-01
The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.
Focal-plane electric field sensing with pupil-plane holograms
NASA Astrophysics Data System (ADS)
Por, Emiel H.; Keller, Christoph U.
2016-07-01
The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.
One cutting plane algorithm using auxiliary functions
NASA Astrophysics Data System (ADS)
Zabotin, I. Ya; Kazaeva, K. E.
2016-11-01
We propose an algorithm for solving a convex programming problem from the class of cutting methods. The algorithm is characterized by the construction of approximations using some auxiliary functions, instead of the objective function. Each auxiliary function bases on the exterior penalty function. In proposed algorithm the admissible set and the epigraph of each auxiliary function are embedded into polyhedral sets. In connection with the above, the iteration points are found by solving linear programming problems. We discuss the implementation of the algorithm and prove its convergence.
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
NASA Astrophysics Data System (ADS)
Domann, John P.; Carman, Greg P.
2017-01-01
This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.
Lattice strain of osmium diboride under high pressure and nonhydrostatic stress
Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.
2012-01-01
The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostaticpressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.
Strain effects on the electronic properties in δ -doped oxide superlattices
You, Jeong Ho; Lee, Jun Hee; Okamoto, Satoshi; ...
2015-02-07
We investigated strain effects on the electronic properties of (LaTiO3)1/(SrTiO3)N superlattices using density functional theory. Under biaxial in-plane strain within the range of -5% ≤ ε// ≤ 5%, the dxy orbital electrons are highly localized at the interfaces whereas the dyz and dxz orbital electrons are more distributed in the SrTiO3 (STO) spacer layers. For STO thickness N ≥ 3 unit cells (u.c.), the dxy orbital electrons form two-dimensional (2D) electron gases (2DEGs). The quantized energy levels of the 2DEG are insensitive to the STO spacer thickness, but are strongly dependent on the applied biaxial in-plane strain. As the in-planemore » strain changes from compressive to tensile, the quantized energy levels of the dxy orbitals decrease thereby creating more states with 2D character. In contrast to the dxy orbital, the dyz and dxz orbitals always have three-dimensional (3D) transport characteristics and their energy levels increase as the strain changes from compressive to tensile. In conclusion, since the charge densities in the dxy orbital and the dyz and dxz orbitals respond to biaxial in-plane strain in an opposite way, the transport dimensionality of the majority carriers can be controlled between 2D and 3D by applying biaxial in-plane strain.« less
Coupled Riccati equations for complex plane constraint
NASA Technical Reports Server (NTRS)
Strong, Kristin M.; Sesak, John R.
1991-01-01
A new Linear Quadratic Gaussian design method is presented which provides prescribed imaginary axis pole placement for optimal control and estimation systems. This procedure contributes another degree of design freedom to flexible spacecraft control. Current design methods which interject modal damping into the system tend to have little affect on modal frequencies, i.e., they predictably shift open plant poles horizontally in the complex plane to form the closed loop controller or estimator pole constellation, but make little provision for vertical (imaginary axis) pole shifts. Imaginary axis shifts which reduce the closed loop model frequencies (the bandwidths) are desirable since they reduce the sensitivity of the system to noise disturbances. The new method drives the closed loop modal frequencies to predictable (specified) levels, frequencies as low as zero rad/sec (real axis pole placement) can be achieved. The design procedure works through rotational and translational destabilizations of the plant, and a coupling of two independently solved algebraic Riccati equations through a structured state weighting matrix. Two new concepts, gain transference and Q equivalency, are introduced and their use shown.
Multiwavelength infrared focal plane array detector
NASA Technical Reports Server (NTRS)
Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)
1995-01-01
A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.
NASA Astrophysics Data System (ADS)
Rode, J. P.
1984-09-01
Second-generation IR systems, consisting of 2-D mosaics of IR detectors, have been under intense development for the last few years. One of the most successful architectures has been a HgCdTe hybrid focal plane array (FPA), using a Si charge-coupled device (CCD) readout chip interfaced to epitaxial HgCdTe. Detection is made by backside-illuminated photovoltaic detectors with high fill factors and quantum efficiency. The detectors are coupled into the CCD by In bumps which mass bond each detector in the mosaic to a CCD input. Advances have been made in uniform, large area HgCdTe detector material that can be grown with a bandgap from less than 0.1 eV to greater than 1 eV. CCD architectures have been developed with simple, linear inputs and dynamic ranges up to 80 dB. Hybrid FPAs are currently being tested in prototype imaging systems, for detecting thermal differences as well as reflected sunlight in the IR. In the 3-5μm region, these arrays have proven capable of noise-equivalent temperature differences as low as 0.01 K, acquired at a 400 Hz frame rate. In addition to improving current imaging systems, these area arrays allow new system concepts to be brought to fruition.
Counterpropagating Rossby waves in confined plane wakes
Biancofiore, L.; Gallaire, F.
2012-01-01
In the present work, we revisit the temporal and the spatio-temporal stability of confined plane wakes under the perspective of the counterpropagating Rossby waves (CRWs). Within the context of broken line velocity profiles, each vorticity discontinuity can be associated to a counterpropagating Rossby wave. In the case of a wake modeled by a broken line profile, the interaction of two CRWs is shown to originate in a shear instability. Following this description, we first recover the stability results obtained by Juniper [J. Fluid Mech. 590, 163–185 (2007)]10.1017/S0022112007007975 and Biancofiore and Gallaire [Phys. Fluids 23, 034103 (2011)]10.1063/1.3554764 by means of the classical normal mode analysis. In this manner, we propose an explanation of the stabilizing influence of the confinement on the temporal stability properties. The CRW description further allows us to propose a new interpretation of the counterintuitive spatio-temporal destabilization in wake flows at moderate confinement noticed by Juniper [J. Fluid Mech. 565, 171–195 (2006)]10.1017/S0022112006001558: it is well predicted by the mean group velocity of the uncoupled CRWs. PMID:22865998
Advanced dynamic pyroelectric focal plane array
NASA Astrophysics Data System (ADS)
Unglaub, Ricardo A. G.; Celinska, Jolanta B.; McWilliams, Christopher R.; Paz de Araujo, Carlos A.; Forbes, Timothy; Pankin, Jayson D.
2010-04-01
The pyroelectric effect has been characterized for single-pixel elements consisting of strontium bismuth tantalate (SBT) ferroelectric material as the sensing elements. These pixels have been integrated into second-generation focal plane arrays. The constituent second-generation pixels include thermal insulating layers and an infrared absorber layer. The MEMS-less arrays are operated in active mode, a technique that eliminates radiation choppers found in other passive pyroelectric IR imagers. This paper addresses the results of precursor 2x2 to 14x14 second-generation arrays of SBT elements, the active detection mechanism, and the unique read-out, interrogation signal, and the synchronization electronics. The second-generation 14x14 pixels array was implemented to demonstrate the performance of an active pyroelectric array as a precursor to larger size arrays using different pixel dimensions. The active mode detection eliminates the use of a chopper, enables the dynamic partition of the array into pixel domains in which pixel sensitivity in the domains can be adjusted independently. This unique feature in IR detection can be applied to the simultaneous tracking of diverse contrast objects. In addition, by controlling the thickness of the absorber material the arrays can be optimized for maximum response at specified wavelengths by means of quarter-wavelength interferometry.
Quantum dynamics of a plane pendulum
Leibscher, Monika; Schmidt, Burkhard
2009-07-15
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution of the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.
ORFEUS focal plane instrumentation: The Berkeley spectrometer
NASA Technical Reports Server (NTRS)
Hurwitz, Mark; Bowyer, Stuart
1988-01-01
A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.
Granular avalanches down inclined and vibrated planes.
Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine
2016-09-01
In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
Granular avalanches down inclined and vibrated planes
NASA Astrophysics Data System (ADS)
Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine
2016-09-01
In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.
Avalanche dynamics on a rough inclined plane.
Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E
2008-07-01
The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Transition to turbulence in plane channel flow
NASA Technical Reports Server (NTRS)
Biringen, S.; Goglia, G. L.
1983-01-01
A numerical simulation of the final stages of transition to turbulence in plane channel flow is reported. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time-evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction-blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.
1997-01-01
Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.
Phase measurement profilometry based on a virtual reference plane method
NASA Astrophysics Data System (ADS)
Ren, Hongbing; Lee, Jinlong; Gao, Xiaorong
2016-09-01
In Phase Measurement Profilometry(PMP), the setting of the reference plane plays an important role. It is a critical step to capture the grating fringe projected onto the reference plane in PMP. However, it is sometimes difficult to choose and place the reference plane in practical applications. In this paper, a virtual reference plane is introduced into PMP, with which 3D measurement can be realized without using the physical reference plane. The virtual reference plane is generated through extracting a partial area of the deformed fringe image that corresponds to a planar region and employing the interpolation algorithm. The method is proved theoretically through simulation experiments, providing a new suggestion for actual measurement by PMP.
Systematic study of Reynolds stress closure models in the computations of plane channel flows
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Sarkar, S.
1992-01-01
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.
Error compensation research on the focal plane attitude measurement instrument
NASA Astrophysics Data System (ADS)
Zhou, Hongfei; Zhang, Feifan; Zhai, Chao; Zhou, Zengxiang; Liu, Zhigang; Wang, Jianping
2016-07-01
The surface accuracy of astronomical telescope focal plate is a key indicator to precision stellar observation. Combined with the six DOF parallel focal plane attitude measurement instrument that had been already designed, space attitude error compensation of the attitude measurement instrument for the focal plane was studied in order to measure the deformation and surface shape of the focal plane in different space attitude accurately.
While childbirth usually goes well, complications can happen. They can cause a risk to the mother, baby, or both. Possible complications include Preterm (premature) labor, when labor starts before 37 completed weeks of pregnancy Problems with the umbilical cord Problems with ...
... and the respiratory system . The ability to understand language and produce speech is coordinated by the brain. So a person with brain damage from an accident, stroke, or birth defect may have speech and language problems. Some people with speech problems, particularly articulation ...
ERIC Educational Resources Information Center
Skovhus, Randi Boelskifte; Thomsen, Rie
2017-01-01
This article introduces a method to critical reviews and explores the ways in which problems have been formulated in knowledge production on career guidance in Denmark over a 10-year period from 2004 to 2014. The method draws upon the work of Bacchi focussing on the "What's the problem represented to be" (WPR) approach. Forty-nine…
ERIC Educational Resources Information Center
Foster, Colin
2012-01-01
This is the story of a real problem, not a problem that is contrived, or invented for the convenience of the appropriate planning tool. This activity by a group of students, defined simply as "8FN", might be likened to an "end of term concert". If you just happened to be a delegate at the ATM Conference 2003 you might remember…
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
Angle measures, general rotations, and roulettes in normed planes
NASA Astrophysics Data System (ADS)
Balestro, Vitor; Horváth, Ákos G.; Martini, Horst
2016-11-01
In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.
Active focus stabilization for upright selective plane illumination microscopy
Hedde, Per Niklas; Gratton, Enrico
2015-01-01
Due to its sectioning capability, large field of view, and minimal light exposure, selective plane illumination microscopy has become the preferred choice for 3D time lapse imaging. Single cells in a dish can be conveniently imaged using an upright/inverted configuration. However, for measurements on long time scales (hours to days), mechanical drift is a problem; especially for studies of mammalian cells that typically require heating to 37°C which causes a thermal gradient across the instrument. Since the light sheet diverges towards the edges of the field of view, such a drift leads to a decrease in axial resolution over time. Or, even worse, the specimen could move out of the imaging volume. Here, we present a simple, cost-effective way to stabilize the axial position using the microscope camera to track the sample position. Thereby, sample loss is prevented and an optimal axial resolution is maintained by keeping the sample at the position where the light sheet is at its thinnest. We demonstrate the virtue of our approach by measurements of the light sheet thickness and 3D time lapse imaging of a cell monolayer at physiological conditions. PMID:26072829
Ascent performance feasibility of the national aerospace plane
Miele, A.; Lee, W.Y.; Wu, G.D.
1994-12-31
The national aerospace plane (NASP) is a proposed hypervelocity research vehicle which must take-off horizontally, achieve orbital speed, and then land horizontally. Its configuration is dominated by the powerplant, which includes the combination of turbojet engines for flight at subsonic speeds and low supersonic speeds, ramjet engines for flight at high supersonic speeds, scramjet engines for flight at hypersonic speeds, and rocket engines for flight at near-orbital speeds. Optimal trajectories are studied for a given NASP configuration, the so-called general hypersonic aerodynamics model example, under the assumption that the NASP is controlled via angle of attack and power setting. Three powerplant models are considered: (E1) and (E2) are turbojet, ramjet, scramjet combinations; (E3) is a turbojet, ramjet scramjet, rocket combination, with the rocket mode starting at M = 15. Realistic constraints are imposed on the peak dynamic pressure, peak heating rate, and peak tangential acceleration. Under this scenario, the time history of the controls is optimized simultaneously with the switch times from one engine mode to the next. The optimization criterion is the total mass of fuel required to achieve orbital speed. The optimization study employs the sequential gradient-restoration algorithm for optimal control problems.
Active focus stabilization for upright selective plane illumination microscopy.
Hedde, Per Niklas; Gratton, Enrico
2015-06-01
Due to its sectioning capability, large field of view, and minimal light exposure, selective plane illumination microscopy has become the preferred choice for 3D time lapse imaging. Single cells in a dish can be conveniently imaged using an upright/inverted configuration. However, for measurements on long time scales (hours to days), mechanical drift is a problem; especially for studies of mammalian cells that typically require heating to 37°C which causes a thermal gradient across the instrument. Since the light sheet diverges towards the edges of the field of view, such a drift leads to a decrease in axial resolution over time. Or, even worse, the specimen could move out of the imaging volume. Here, we present a simple, cost-effective way to stabilize the axial position using the microscope camera to track the sample position. Thereby, sample loss is prevented and an optimal axial resolution is maintained by keeping the sample at the position where the light sheet is at its thinnest. We demonstrate the virtue of our approach by measurements of the light sheet thickness and 3D time lapse imaging of a cell monolayer at physiological conditions.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin
1999-01-01
Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.