#### Sample records for plane strain problems

1. A Plane Strain Plasticity Analysis of the Anchor Pullout Problem.

DTIC Science & Technology

1981-01-01

recurrence formulas: 11 X. . t z i- l’j-zi’j -l +X W j- tan (O ii _j -l+ ) Xi -lW tan (e i l jIt] tan (8i , ) +)-tan -i_ ,-() (8a) Zi~ i_ 1 j + (x i ’ x...priori (although for computational purposes a and S are assumed). Therefore, zone OBD should be solved as a Cauchy problem. 20 2. In cohesionless...Therefore, the analytical I VI".I II I.. 28 approach of Nowatzki and Karafiath (1981) was extended to the problem at hand, with the rigid body surface

2. Analysis of plane-plastic stress problems with axial symmetry in strain-hardening range

NASA Technical Reports Server (NTRS)

Wu, M H Lee

1951-01-01

A simple method is developed for solving plane-plastic-stress problems with axial symmetry in the strain-hardening range which is based on the deformation theory of plasticity employing the finite-strain concept. The equations defining the problems are first reduced to two simultaneous nonlinear differential equations involving two dependent variables: (a) the octahedral shear strain, and (b) a parameter indicating the ratio of principal stresses. By multiplying the load and dividing the radius by an arbitrary constant, it is possible to solve these problems without iteration for any value of the modified load. The constant is determined by the boundary condition. This method is applied to a circular membrane under pressure, a rotating disk without and with a central hole, and an infinite plate with a circular hole. Two materials, inconel x and 16-25-6, the octahedral shear stress-strain relations of which do not follow the power law, are used. Distributions of octahedral shear strain, as well as of principal stresses and strains, are obtained. These results are compared with the results of the same problems in the elastic range.

3. Uniqueness of the interior plane strain time-harmonic viscoelastic inverse problem

Zhang, Yixiao; Barbone, Paul E.; Harari, Isaac; Oberai, Assad A.

2016-07-01

Elasticity imaging has emerged as a promising medical imaging technique with applications in the detection, diagnosis and treatment monitoring of several types of disease. In elasticity imaging measured displacement fields are used to generate images of elastic parameters of tissue by solving an inverse problem. When the tissue excitation, and the resulting tissue motion is time-harmonic, elasticity imaging can be extended to image the viscoelastic properties of the tissue. This leads to an inverse problem for the complex-valued shear modulus at a given frequency. In this manuscript we have considered the uniqueness of this inverse problem for an incompressible, isotropic linear viscoelastic solid in a state of plane strain. For a single measured displacement field we conclude that the solution is infinite dimensional, and the data required to render it unique is determined by the measured strain field. In contrast, for two independent displacement fields such that the principal directions of the resulting strain fields are different, the space of possible solutions is eight dimensional, and given additional data, like the value of the shear modulus at four locations, or over a calibration region, we may determine the shear modulus everywhere. We have also considered simple analytical examples that verify these results and offer additional insights. The results derived in this paper may be used as guidelines by the practitioners of elasticity imaging in designing more robust and accurate imaging protocols.

4. Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity

Gourgiotis, P. A.; Georgiadis, H. G.

2009-11-01

5. Approaches to accommodate noisy data in the direct solution of inverse problems in incompressible plane-strain elasticity.

PubMed

Albocher, U; Barbone, P E; Richards, M S; Oberai, A A; Harari, I

2014-01-01

We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems.

6. Approaches to accommodate noisy data in the direct solution of inverse problems in incompressible plane-strain elasticity

PubMed Central

Albocher, U.; Barbone, P.E.; Richards, M.S.; Oberai, A.A.; Harari, I.

2014-01-01

We apply the adjoint weighted equation method (AWE) to the direct solution of inverse problems of incompressible plane strain elasticity. We show that based on untreated noisy displacements, the reconstruction of the shear modulus can be very poor. We link this poor performance to loss of coercivity of the weak form when treating problems with discontinuous coefficients. We demonstrate that by smoothing the displacements and appending a regularization term to the AWE formulation, a dramatic improvement in the reconstruction can be achieved. With these improvements, the advantages of the AWE method as a direct solution approach can be extended to a wider range of problems. PMID:25383085

7. Plane Strain Deformation in Generalized Thermoelastic Diffusion

Sharma, Nidhi; Kumar, Rajneesh; Ram, Paras

2008-08-01

The present investigation is concerned with plane strain deformation in homogeneous isotropic generalized thermoelastic diffusion subjected to a normal force, thermal source, and chemical potential source. Laplace and Fourier transform techniques are employed to solve the problem. The integral transform have been inverted by using a numerical technique to obtain the displacements, stresses, temperature distribution, and chemical potential distribution. The numerical results of these quantities are illustrated graphically to depict the response of various sources in the theories of thermoelastic diffusion and thermoelasticity for a particular model. Some particular cases have been deduced from the present investigation.

8. Turbulent Plane Wakes Subjected to Successive Strains

NASA Technical Reports Server (NTRS)

Rogers, Michael M.

2003-01-01

Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

9. Geometric and analytic problems on bicomplex plane

Dimiev, Stancho; Stoev, Peter; Stoilova, Stanislava

2015-11-01

Let us recall that the bicomplex plane is a complex ring of complex dimension 2. It consists of couples of the kind (z, w) = z + jw, where z and w are complex numbers and j is a symbol with the property j2 = -1. We note that the bicomplex plane admits singular points. The set of these singular points coincides with the cross-choped set of complex bisectrices (z, ±z), z is a complex. The main problem in the function theory on the bicomplex plane is to describe the interconnection between the same theory of the cross-choped subset and whole bicomplex plane. The first theory is of one complex variable and the second one is of two complex variables. Another problems are related with the comformal mappings and the movement of a partials of this subset on the whole one. Presented paper is a start studies in this direction.

10. Spatial Reasoning and Polya's Five Planes Problem

ERIC Educational Resources Information Center

2008-01-01

Middle and High school students of the twenty-first century possess surprising powers of spatial reasoning. They are assisted by technologies not available to earlier generations. Both of these assertions are demonstrated by students who are challenged with George Polya's classic Five Planes Problem. (Contains 5 figures.)

11. Cutting Plane Algorithms for Maximum Problems

DTIC Science & Technology

1991-12-01

Bazaraa and Shetty (1979). For variational inequalities, references on the cutting plane approach are considerably less. Zuhovickii et al. (1969) (see...and can be expressed as a convex combination of a finite number of extreme points [see, e.g., Bazaraa et al., (1990)], For VI problems, both U and X are...unique solution (see, page 234 of Bazaraa and Shetty, 1979)., 32 Figure 4: A ’Strong’ Solution to a Variational Inequality Problem The rate of

12. The crack problem for a nonhomogeneous plane

NASA Technical Reports Server (NTRS)

Delale, F.; Erdogan, F.

1982-01-01

The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

13. Solution of the plane stochastic creep boundary value problem

Kovalenko, L. V.; Popov, N. N.; Radchenko, V. P.

2009-01-01

The solution of the non-linear stochastic boundary-value problem of the creep of a thin plate in a plane stress state when the elastic strains are small and can be neglected is presented. The plate material is stochastically inhomogeneous so that the stress and strain tensors are random functions of the coordinates. The constitutive creep relation, taken as in non-linear viscous flow theory, is formulated in a stochastic form. Using the perturbation method, the non-linear stochastic problem is reduced to a system of three linear partial differential equations in the fluctuations of the stress tensor and, then, changing by implementing the stress function, to a differential equation, the solution of which is represented in the form of the sum of two series. The first series is the solution far from the boundary of the plate, ignoring edge effects, and the second is the solution in the boundary layer, and its terms rapidly decay as the distance from the boundary of the plate increases. The stretching of a stochastically inhomogeneous half-plane in the direction of two mutually orthogonal axes is considered as an example. The stress concentration in the boundary of the half-plane is investigated. It is shown that the spread of the stresses in the surface layer, the width of which depends on the degree of non-linearity of the material, can be much greater than in the deep layers.

14. Plane-strain tension tests on aluminum alloy sheet

SciTech Connect

Taha, F.; Hosford, W.; Graf, A.

1995-04-01

A simple way of making plane-strain tension tests on sheet specimens has been developed. This method was used to test sheets of aluminum alloy 2008 T4 and the results were analyzed in terms of a high exponent yield criterion and isotropic hardening. Experimentally measured forces agreed with those calculated from strain measurements using uniaxial tension test curves.

15. In-plane strain capability of cellulose EAPap material

Kim, Jaehwan; Jung, Woochul; Kang, Yukeun; Jang, Sang-Dong

2006-03-01

Electro-Active Paper (EAPap) has been interested in due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage, low power consumption and biodegradability. EAPap actuator has been made with cellulose material. Cellulose fibers are dissolved into a solution and extruded in a sheet form, and thin gold electrodes are made on it. This out-of-plane bending deformation is useful for achieving flapping wings, micro-insect robots, and smart wall papers. On the other hand, in-plane strains, such as extension and contraction of EAPap materials are also promising for artificial muscle applications since the Young's modulus of EAPap materials is large. Therefore, we intended to investigate the in-plane strain of EAPap materials in the presence of electric fields. The EAPap samples preparation and the in-plane strain measurement are explained. The test results are shown in terms of electric field, frequency and the orientation of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap materials, this in-plane strain may be useful for artificial muscle applications.

16. Ultrafast vascular strain compounding using plane wave transmission.

PubMed

Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L

2014-03-03

Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future.

17. Assumed strain formulation for the four-node quadrilateral with improved in-plane bending behaviour

Stolarski, Henryk K.; Chen, Yung-I.

1995-04-01

A new assumed strain quadrilateral element with highly accurate in-plane bending behavior is presented for plane stress and plane strain analysis. The basic idea of the formulation consists in identification of various modes of deformation and then in proper modification of the strain field in some of these modes. In particular, the strain operator corresponding to the in-plane bending modes is modified to simulate the strain field resulting from the assumptions usually made in structural mechanics. The modification of the strain field leads to the assumed strain operator on the element level. As a result, the so-called shear and membrane locking phenomena are alleviated. The element exhibits remarkable success in bending-dominated problems even when severely distorted and high aspect ratio meshes are used. Another advantage of the present assumed strain element is that locking for nearly incompressible materials is also mitigated. While this assumed strain element passes the patch test only for the parallelogram shapes, the element provides convergent solutions as long as the initially general form of the element approaches a parallelogram shape with the refinement of the mesh.

18. The plane strain tests in the PROMETRA program

Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.

2016-04-01

A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.

19. Stokes problems for moving half-planes.

PubMed

Zeng, Y; Weinbaum, S

1995-01-01

New exact solutions of the Navier-Stokes equations are obtained for the unbounded and bounded oscillatory and impulsive tangential edgewise motion of touching half-infinite plates in their own plane. In contrast to Stokes classical solutions for the harmonic and impulsive motion of an infinite plane wall, where the solutions are separable or have a simple similarity form, the present solutions have a two-dimensional structure in the near region of the contact between the half-infinite plates. Nevertheless, it is possible to obtain relatively simple closed-form solutions for the flow field in each case by defining new variables which greatly simplify the r- and theta- dependence of the solutions in the vicinity of the contact region. These solutions for flow in a half-infinite space are then extended to bounded flows in a channel using an image superposition technique. The impulsive motion has application to the motion near geophysical faults, whereas the oscillatory motion has arisen in the design of a novel oscillating half-plate flow chamber for examining the effect of fluid shear stress on cultured cell monolayers.

20. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

SciTech Connect

Link, T.M.; Motta, A.T.; Koss, D.A.

1998-03-01

The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.

1. I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons

SciTech Connect

Cartamil-Bueno, S. J. E-mail: rbolivar@ugr.es; Rodríguez-Bolívar, S. E-mail: rbolivar@ugr.es

2015-06-28

The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A) and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focused on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length; while in the bent case, the strain is caused by the arc deformation. Based on the study, a new type of nanoelectromechanical system solid state switching device is proposed.

2. A plane strain analysis of the blunted crack tip using small strain deformation plasticity theory

NASA Technical Reports Server (NTRS)

Mcgowan, J. J.; Smith, C. W.

1976-01-01

A deformation plasticity analysis of the tip region of a blunted crack in plane strain is presented. The power hardening material is incompressible both elastically and plastically, in order to simulate behavior of a stress freezing material above critical temperature. Stress and displacement fields surrounding the crack tip are presented. The results indicate that the maximum stress seen at the crack tip is indeed limited and is determined by the tensile properties; however, the scale over which the stresses act is dependent on the loading. Comparisons are good between the forward crack tip displacement and micro-fractographic measurments of stretch zones observed in plane strain fracture toughness tests.

3. The Unloading Modulus of Akdq Steel after Uniaxial and Near Plane-Strain Plastic Deformation

Pavlina, E. J.; Levy, B. S.; van Tyne, C. J.; Kwon, S. O.; Moon, Y. H.

4. Shear Band Formation in Plane Strain Experiments of Sand

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.; Sture, Stein

2000-01-01

A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

5. Shear Band Formation in Plane Strain Experiments of Sand

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.; Sture, Stein

2000-01-01

A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

6. Concurrent Monitoring of In-plane Strain and Out-of-plane Displacement of Tire Using Digital Image Correlation Method

Hiraoka, Naoki; Matsuzaki, Ryosuke; Todoroki, Akira

In order to improve performance of anti lock brake system (ABS) and detect condition of road surface, intelligent tires that monitor strain of interior surface and rolling radius of tire are demanded. However, the high stiffness of an attached sensor like a strain gauge causes debonding of sensors from tire rubber. In the present study, noncontact concurrent monitoring method is proposed using digital image correlation method (DICM) and spotlight projection. In-plane strain and out-of-plane displacement (rolling radius) are calculated by using image processing with an image of interior surface of tire that is taken with a single CCD camera fixed on wheel rim. New monitoring system is applied to Al beam and commercially available radial tire. As a result, this monitoring system is proved to be able to measure in-plane strain and out-of-plane displacement with high accuracy, and confirmed to be effective for concurrent monitoring of tires.

7. Strained layer superlattice focal plane array having a planar structure

DOEpatents

Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

2012-10-23

An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

8. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

Liu, X.; Banerjee, J. R.

2017-03-01

A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

9. Characterization of network parameters for UHMWPE by plane strain compression.

PubMed

Abreu, E L; Ngo, H D; Bellare, A

2014-04-01

10. Strain hardening and ductility of iron: axisymmetric vs plane strain elongation. Technical progress report

SciTech Connect

Langford, G.

1980-05-01

The strain hardening of iron at high strains in plane strain elongation (strip drawing) is shown to fall increasingly below that of drawn iron wires at true strains above 2, going through zero strain hardening at epsilon = 3.0, and becoming strongly negative thereafter, at least up to epsilon = 4.1. High resolution selected area electron diffraction has been used to map the size, shape and crystallographic orientations of a group of about 50 contiguous cells centered around an incipient shear band in an edge section of a strip drawn to epsilon = 1.8. This map shows no textural instability or change in orientation associated with the shear band, although it does show substantial misorientations throughout the group of cells, the axis of these misorientations lying in the same direction as the trace of the shear band. No other large misorientations (i.e. 5/sup 0/ or so) are present. The only instability seen in this shear band is microstructural: the slip distances in the two primary slip directions are quite anisotropic, being much longer along the trace of the shear band. Note that this shear band has appeared during the linear hardening portion of the high-strain hardening curve of the drawn strip. It is therefore considered a direct weakening mechanism rather than a result of another weakening effect. Further such orientation maps have been or are being prepared for more highly deformed strip, and for wire and pure-shear specimens as well.

11. Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO

Matsui, Hiroaki; Tabata, Hitoshi

2012-12-01

In-plane lattice strains in a-plane zinc oxide (ZnO) homoepitaxial layers were selectively introduced by changing substrate type and growth conditions. Strain-free layers were observed when using a Crystec ZnO substrate, which resulted in atomically flat surfaces with nano-facets consisting of the m-plane (10-10) at atomic scale. In contrast, ZnO layers on Goodwill ZnO substrates possessed in-plane lattice strains due to generation of basal-plane stacking faults. The degree of lattice strains was systematically changed by the oxygen pressure, which clarified the close correlation between photoluminescence (PL) polarization and lattice strains. The polarization ratio of PL enhanced with the lattice strains.

12. Graphical statics a forgotten tool for solving plane mechanical problems.

PubMed

Baumgart, E

2000-05-01

Graphical statics is an almost forgotten, intuitive drawing method for solving plane mechanical problems. It was already in use in the 19th century for biomechanical problems. It was still a standard method employed by civil engineers in the 1940s. Superceded by modern analytical methods, graphical statics disappeared almost completely. The method is restricted to plane static problems, but still remains a useful tool for visualizing, understanding and checking the actions of force groups occurring in modern biomechanical problems. After defining the basic mechanical terminology (body, motion, forces), the paper is written mainly as a teaching tool for immediate application. Many illustrative examples (sporting activities, functional forces in joints) help to clarify the difficult biomechanical content. For application, it must be assumed that the bodies investigated behave as rigid bodies under the action of the forces, but this does not prevent application of the method to deformable living bodies if specific static configurations of the bodies are considered. The application of the method requires a good anatomical knowledge and experience with the function of the musculoskeletal apparatus of living bodies. If reliable models are used, the method delivers quantitative results of sufficient accuracy. The paper may also help provide a better understanding of publications containing graphical solutions to bio-static problems.

13. Evaluation of Instability Phenomena in Sands: Plane Strain Versus Triaxial Conditions

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.

2001-01-01

Extensive research was carried out in the 1950s on theories of plasticity to extend the concepts developed for metals to materials that failed according to the Mohr-Coulomb criterion. The new ideas made it possible to merge the two distinct concepts (strength and deformation techniques) into one that relies on better understanding of plasticity and resulted in a rapid growth in the field of constitutive modeling of soil behavior. At the same time advanced experimental apparatuses and laboratory procedures were developed to calibrate the models. However, most laboratory experiments on granular materials are performed under Conventional Triaxial Conditions (CTC) for the purposes of evaluating constitutive behavior and stability properties, whereas most geotechnical field problems are closer to the Plane Strain (PS) condition. The triaxial tests performed in most laboratories comprise a simplification over in situ states and allow easier and robust experimentation. Most landslide problems, failure of soils beneath shallow and deep foundations, and failure of retaining structures, are cases that can generally be considered as plane strain. Strength and deformation characteristics of granular materials loaded in plane strain may be considerably different from those observed in CTC. Most studies on sands were limited to evaluating the constitutive behavior and in some cases extended to briefly describing the associated instability phenomena. This paper presents the results of a series of PS and CTC experiments performed on fine uniform silica sand known as F-75 Ottawa sand. Advanced analysis techniques were used to study the instability phenomena, which yielded very accurate measurements of shear bands occurrences and patterns. Destructive thin-sectioning technique along with monitoring the specimen surface deformation was used in the PS experiments and Computed Tomography (CT) was used to investigate the progress of primary and secondary shear bands in specimens

14. Plane stress-strain state of a circular cylindrical bushing due to a finite out-of-plane shear

Zhukov, B. A.

2017-01-01

The paper deals with the determination of the stress-strain state due to a finite longitudinal shear in a circular cylindrical bushing manufactured from the Mooney-Rivlin material. Some expressions for the internal stresses and displacements in the plane perpendicular to the longitudinal shear are obtained.

15. Singular perturbation analysis of the atmospheric orbital plane change problem

NASA Technical Reports Server (NTRS)

Calise, A. J.

1988-01-01

A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers.

16. Cutting planes for the multistage stochastic unit commitment problem

DOE PAGES

Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

2016-04-20

As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

17. Cutting planes for the multistage stochastic unit commitment problem

SciTech Connect

Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

2016-04-20

As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program. Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.

18. Cutting planes for the multistage stochastic unit commitment problem

SciTech Connect

Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

2016-04-20

As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program. Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.

19. The Equilibrium Field Near the Tip of a Crack for Finite Plane Strain of Incompressible Elastic Materials.

DTIC Science & Technology

1980-07-01

certain properties of the solution to the analogous crack problem in the linearized theory. We then show that, at least for the Mooney - Rivlin material...an incompressible material con- forming to (1.18) is supplied by the Mooney - Rivlin material, with the complete plane-strain elastic potential (I) R... Mooney - Rivlin material, a solution with this parity cannot possibly exist. To this end suppose o0 !now that W is given by (1.19). Eliminating a between

20. The tangential breast match plane: Practical problems and solutions

SciTech Connect

Norris, M. )

1989-09-01

The three-field breast set-up, in which tangential oblique opposed fields are joined to an anterior supraclavicular field, has been the method of choice for treatment of breast cancer for many years. In the last several years many authors have suggested refinements to the technique that improve the accuracy with which fields join at a match plane. The three-field breast set-up, using a rotatable half-beam block is the technique used at our institution. In instituting this procedure, several practical problems were encountered. Due to the small collimator rotation angles used it is possible to clinically reverse the collimator angle without observing an error noticeable on fluoroscopy. A second error can occur when the table base angle is used to compensate for the incorrect collimator rotation. These potential sources of error can be avoided if a programmable calculator or computer program is used to assist the dosimetrist during the simulation. Utilization of fluoroscopy, digital table position displays and a caliper provide accurate input for the computer program. This paper will present a hybrid procedure that combines practical set-up procedures with the mathematical calculation of ideal angles to result in an accurate and practical approach to breast simulation.

1. Texture development and hardening characteristics of steel sheets under plane-strain compression

SciTech Connect

Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.

1999-04-01

Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.

2. A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares

Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.

2015-04-01

The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.

3. Problems and advances in monitoring horizontal strain

NASA Technical Reports Server (NTRS)

Caputo, M.

1978-01-01

The modern instrumentation is described for use in geodesy for the detection of the deformations of the crust of the earth. Problems are listed. Needs are discussed for the survey of the physical quantities of interest in geodesy, geology, geophysics, and engineering such as the strain invariants, the optimal network of baselines and the accuracy. An analytic method is also given for the computation of the effect of a source of dilatation in a spherical earth.

4. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

SciTech Connect

Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang; Zhou, Weidong; Gong, Shaoqin

2015-05-25

A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

5. Approximate analytical solution for the problem of an inclusion in a viscoelastic solid under finite strains

Zingerman, K. M.; Shavyrin, D. A.

2016-06-01

The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress-strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov-Muskhelishvili's potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.

6. Stretch bending - the plane within the sheet where strains reach the forming limit curve

Neuhauser, F. M.; Terrazas, O. R.; Manopulo, N.; Hora, P.; Van Tyne, C. J.

2016-11-01

Finite element analysis (FEA) was used to model the angular stretch bend test, where a strip of sheet metal is locked at both ends and a tool with a radius stretches and bends the center of the strip until failure. The FEA program used in the study was Abaqus. The FEA model was verified by experimental work using a dual phase steel (DP600) and with a simplified analytical analysis. The FEA model was used to simulate the experimental test for various frictional conditions and various radii of an upward moving tool. The primary objective of the study was to evaluate the concave-side rule, which states that during stretch bending the forming limit occurs when the strains on the concave surface plane of the bent sheet (i.e. bottom plane) reach the forming limit curve (FLC). The verification with experimental data indicates that the FEA model represents the process very well. Only conditions where failure occurred on or near the tooling are included in the results. The FEA simulations showed that the actual forming limit of the sheet occurs when the strains on the bottom plane of the sheet (i.e. concave side of the bend) reach the forming limit curve for high friction and small tool radii. For lower friction and for larger tool radii the actual forming limit occurs when strains on other planes in the sheet (i.e. mid planes or top surface plane) reach the forming limit curve. The implications of these results suggest that care must be taken in assessing forming operations when both stretch and bending occur. Although it is known that the FLC cannot predict the forming limit for small bend radii, the common assumption that the forming limit occurs when the strains for the middle thickness plane of the sheet reach the forming limit curve or that the concave side rule is often made. Understanding the limits of this assumption needs to be carefully and critically evaluated.

7. Reversed polarized emission in highly strained a -plane GaN/AlN multiple quantum wells

Mata, R.; Cros, A.; Budagosky, J. A.; Molina-Sánchez, A.; Garro, N.; García-Cristóbal, A.; Renard, J.; Founta, S.; Gayral, B.; Bellet-Amalric, E.; Bougerol, C.; Daudin, B.

2010-09-01

The polarization of the emission from a set of highly strained a -plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite c axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the c axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been performed to determine the three components of the strain tensor in the active region. Moreover, the experimental results have been compared with the strain values computed by means of a model based on the elastic continuum theory. A high anisotropic compressive in-plane strain has been found, namely, -0.6% and -2.8% along the in-plane directions [11¯00] and [0001], respectively, for the thickest quantum well. The oscillator strength of the lowest optical transition has been calculated within the framework of a multiband envelope function model for various quantum well widths and strain values. The influence of confinement and strain on the degree of polarization is discussed and compared with experiment considering various sets of material parameters.

8. Thermal and structural analyses of variable thickness plane problems

SciTech Connect

Wang, Zhibi; Kuzay, T.M.

1995-07-01

Finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window for synchrotron radiation beamline under very strong X-ray is provided.

9. Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains

SciTech Connect

Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi

2014-09-21

In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.

10. A numerical method for determining the strain rate intensity factor under plane strain conditions

Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.

2016-07-01

Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

11. Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy

Shuey, R. T.; Barlat, F.; Karabin, M. E.; Chakrabarti, D. J.

2009-02-01

Data are presented on plane strain fracture toughness, yield strength, and strain hardening for three orientations of samples from quarter-thickness ( t/4) and midthickness ( t/2) locations of alloy 7085 plates with different gages aged past peak strength with different 2nd step aging times (T7X). These data are fit to an expression adapted from Hahn and Rosenfield (1968), in which toughness is proportional to strain hardening, the square root of yield strength, and the square root of a critical strain ɛ c . Strain-hardening exponent n is replaced by an alternative measure, since the stress-strain data do not follow a power law. With increased overaging, the increase of strain hardening dominates the decrease of strength, such that toughness increases. The critical strain, which represents the influence of the microstructure on toughness, has no trend with overaging time. Constituents and grain boundary precipitates, thought to be the microstructural elements most differentiating alloy 7085 from alloy 7050, are quantified at t/4 and at t/2 on one plate. From this the greater critical strain at t/2 than at t/4 is mainly attributed to greater effective spacing of constituents. Critical strain is also greater with longitudinal loading and crack propagating in the long transverse direction, but definite understanding of this will require better anisotropic fracture mechanics and further microstructural characterization.

12. Rapid Calculation Procedure for the Analysis of a Functionally Graded Tube Subjected to Internal Pressure under Plane Strain Condition

Mirzana, Ishrat M.; Krishna Mohana Rao, G.; Rama Murthy, G.

2013-01-01

A rapid calculation procedure is presented for the analysis of a functionally graded tube subjected to internal pressure under plane strain condition. The exact analysis for the problem involves derivation of a hyper-geometric differential equation whose solution is a hyper-geometric function. The exact analysis involves the use of complicated terms and is time-consuming. In order to simplify the calculations, a procedure based on an approximation of variation of modulus of elasticity by an integral average value has been studied which resulted in faster calculation and results obtained have been in close agreement with exact solution highlighting the effect of material properties on stresses.

13. On the Displacement Problem of Plane Linear Elastostatics

Russo, R.

2010-09-01

We consider the displacement problem of linear elastostatics in a Lipschitz exterior domain of R2. We prove that if the boundary datum a lies in L2(∂Ω), then the problem has a unique very weak solution which converges to an assigned constant vector u∞ at infinity if and if a and u∞ satisfy a suitable compatibility condition.

14. The plane strain shear fracture of the advanced high strength steels

Sun, Li

2013-12-01

The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

15. The plane strain shear fracture of the advanced high strength steels

SciTech Connect

Sun, Li

2013-12-16

The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

16. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

2016-05-01

The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

17. A quarter-plane problem for the modified Burgers' equation

Leach, J. A.

2013-09-01

In this paper, we address an initial-boundary value problem for the modified Burgers' equation. The normalized modified Burgers' equation considered is given by ut + up ux - uxx = 0, 0 < x < ∞, t > 0, where x and t represent dimensionless distance and time, respectively, and p (>1) is a parameter. In particular, we consider the case when the initial and boundary conditions are given by u(x, 0) = ui for 0 < x < ∞ and u(0, t) = ub for t > 0, respectively. We initially focus attention on the case when ui = 0 and ub > 0. In this case, the method of matched asymptotic coordinate expansions is used to obtain the complete large-t asymptotic structure of the solution to this problem, which exhibits the formation of a permanent form travelling wave solution propagating with speed v=ubp/p+1 (>0) and connecting u = 0 ahead of the wave-front to u = ub at the rear of the wave. Further, the asymptotic correction to the propagation speed is of O(t^{-3/2} exp (-v^2/4t)) as t → ∞, and the rate of convergence of the solution of the initial-boundary value problem to the travelling wave is O(t^{-3/2} exp (-v^2/4t)) as t → ∞. We conclude the paper with a discussion of the structure of the large-time solution to the initial-boundary value problem for general values of ub and ui (excluding the trivial case when ui = ub).

18. Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy

Karabin, M. E.; Barlat, F.; Shuey, R. T.

2009-02-01

In this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves ( i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson-Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,[3] were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K Ic . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K Ic .

19. Numerical Analysis of the Influence of In-Plane Constraints on the Crack Tip Opening Displacement for SEN(B) Specimens Under Predominantly Plane Strain Conditions

Graba, M.

2016-12-01

This paper presents a numerical analysis of the relationship between in-plane constraints and the crack tip opening displacement (CTOD) for single-edge notched bend (SEN(B)) specimens under predominantly plane strain conditions. It provides details of the numerical model and discusses the influence of external load and in-plane constraints on the CTOD. The work also reviews methods for determining the CTOD. The new formula proposed in this paper can be used to estimate the value of the coefficient dn as a function of the relative crack length, the strain hardening exponent and the yield strength - dn(n, σ0/E, a/W), with these parameters affecting the level of in-plane constraints. Some of the numerical results were approximated using simple mathematical formulae.

20. Real-time measurement system for in-plane displacement and strain based on vision

Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao

2013-08-01

In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.

1. A cutting plane algorithm for semi-definite programming problems with applications to failure discriminant analysis

Konno, Hiroshi; Gotoh, Jun-Ya; Uno, Takeaki; Yuki, Atsushi

2002-09-01

We will propose a new cutting plane algorithm for solving a class of semi-definite programming problems (SDP) with a small number of variables and a large number of constraints. Problems of this type appear when we try to classify a large number of multi-dimensional data into two groups by a hyper-ellipsoidal surface. Among such examples are cancer diagnosis, failure discrimination of enterprises. Also, a certain class of option pricing problems can be formulated as this type of problem. We will show that the cutting plane algorithm is much more efficient than the standard interior point algorithms for solving SDP.

2. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

Downey, Austin; Laflamme, Simon; Ubertini, Filippo

2016-12-01

The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

3. Effect of sagittal plane mechanics on ACL strain during jump landing.

PubMed

Bakker, Ryan; Tomescu, Sebastian; Brenneman, Elora; Hangalur, Gajendra; Laing, Andrew; Chandrashekar, Naveen

2016-09-01

The relationships between non-contact anterior cruciate ligament injuries and the underlying biomechanics are still unclear, despite large quantities of academic research. The purpose of this research was to study anterior cruciate ligament strain during jump landing by investigating its correlation with sagittal plane kinetic/kinematic parameters and by creating an empirical model to estimate the maximum strain. Whole-body kinematics and ground reaction forces were measured from seven subjects performing single leg jump landing and were used to drive a musculoskeletal model that estimated lower limb muscle forces. These muscle forces and kinematics were then applied on five instrumented cadaver knees using a dynamic knee simulator system. Correlation analysis revealed that higher ground reaction force, lower hip flexion angle and higher hip extension moment among others were correlated with higher peak strain (p < 0.05). Multivariate regression analyses revealed that intrinsic anatomic factors account for most of the variance in strain. Among the extrinsic variables, hip and trunk flexion angles significantly contributed to the strain. The empirical relationship developed in this study could be used to predict the relative strain between jumps of a participant and may be beneficial in developing training programs designed to reduce an athlete's risk of injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1636-1644, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

4. Band gap modulation of transition-metal dichalcogenide MX2 nanosheets by in-plane strain

Su, Xiangying; Ju, Weiwei; Zhang, Ruizhi; Guo, Chongfeng; Yong, Yongliang; Cui, Hongling; Li, Xiaohong

2016-10-01

The electronic properties of quasi-two-dimensional honeycomb structures of MX2 nanosheets (M=Mo, W and X=S, Se) subjected to in-plane biaxial strain have been investigated using first-principles calculations. We demonstrate that the band gap of MX2 nanosheets can be widely tuned by applying tensile or compressive strain, and these ultrathin materials undergo a universal reversible semiconductor-metal transition at a critical strain. Compared to WX2, MoX2 need a smaller critical tensile strain for the band gap close, and MSe2 need a smaller critical compressive strain than MS2. Taking bilayer MoS2 as an example, the variation of the band structures was studied and the semiconductor-metal transition involves a slightly different physical mechanism between tensile and compressive strain. The ability to tune the band gap of MX2 nanosheets in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of application.

5. In-plane displacement and strain measurements using a camera phone and digital image correlation

Yu, Liping; Pan, Bing

2014-05-01

In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.

6. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

2007-04-01

An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

7. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

SciTech Connect

Suarez, L.; Houbaert, Y.; Eynde, X. van den; Lamberigts, M.

2007-04-07

An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 {mu}m) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050 deg. C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050 deg. C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050 deg. C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

8. Geometrical optics solutions of the inverse problem of focusing laser light into plane regions

Kharitonov, Sergey I.

2017-04-01

We propose a geometrical optics approach to calculating the eikonal function of a light field on the assumption of generating a desired intensity distribution in a given focal plane region. To solve the focusing problem in a more efficient way, we modify a conforming rectangles method used to design diffractive optical elements (DOE) to focus into plane regions. The novelty consists in a technique for reconstructing the eikonal function based on the known ray mapping relation between the DOE points and focal plane points. Results of focusing into a rhomb are presented. Simulation results show high quality of focusing, also corroborating the efficiency of the proposed method.

9. Revision of Standard Method of Test for Plane Strain Fracture Toughness

NASA Technical Reports Server (NTRS)

Shannon, John L., Jr.

1998-01-01

The purpose of this grant is to revise ASTM Standard Method of Test E-399 for Plane Strain Fracture Toughness of Metallic Materials based on users' experience, and to harmonize the Method with international standards in the interest of U. S. competitive participation in the global marketplace. Rewriting and reformatting the Method are well along. Research laboratories here and abroad have been engaged in developing technical bases for the Method's novel revision items. Close liaison is being maintained with experts in the field here and abroad to ensure consensus agreement on all substantive matters in anticipation of an eventual circulation of the document for ASTM worldwide approval.

10. Transient analysis of wave propagation problems by half-plane BEM

Panji, M.; Kamalian, M.; Marnani, J. Asgari; Jafari, M. K.

2013-09-01

In this paper, a half-plane time-domain boundary element method (BEM) was presented for analysing the 2-D scalar wave problems in a homogenous isotropic linear elastic medium. Using the existing transient full-plane fundamental solution and asking for the assistance of method of source image to satisfy the stress-free boundary conditions, first, a half-plane time-domain fundamental solution was obtained for displacement and traction fields. Then, the condensed closed-form of half-plane time-convoluted kernels were extracted analytically by applying the time-convolution integral on the determined half-plane fundamental solutions. After implementing the half-plane time-domain BEM in computer codes, its applicability and efficiency were verified and compared with those of the published works by analysing several practical examples. The studies showed that the proposed method had good agreement with the existing solutions. Compared to the full-plane time-domain BEM, half-plane time-domain BEM had more capability and better accuracy as well as much shorter run time. It is obvious that this method can be practically used to analyse the site response in substituting the old-style time-domain BEM formulation as well.

11. Strain compensated superlattices on m-plane gallium nitride by ammonia molecular beam epitaxy

Fireman, Micha N.; Bonef, Bastien; Young, Erin C.; Nookala, Nishant; Belkin, Mikhail A.; Speck, James S.

2017-08-01

The results of tensile strained AlN/GaN, AlGaN/GaN, and compressive strained InGaN/GaN superlattices (SLs) grown by Ammonia MBE (NH3-MBE) are presented. A combination of atom probe tomography and high-resolution X-ray diffraction confirms that periodic heterostructures of high crystallographic quality are achieved. Strain induced misfit dislocations (MDs), however, are revealed by cathodoluminescence (CL) of the strained AlN/GaN, AlGaN/GaN, and InGaN/GaN structures. MDs in the active region of a device are a severe problem as they act as non-radiative charge recombination centers, affecting the reliability and efficiency of the device. Strain compensated SL structures are subsequently developed, composed of alternating layers of tensile strained AlGaN and compressively strained InGaN. CL reveals the absence of MDs in such structures, demonstrating that strain compensation offers a viable route towards MD free active regions in III-Nitride SL based devices.

12. Comparison of experiment and theory for elastic-plastic plane strain crack growth

SciTech Connect

Hermann, L; Rice, J R

1980-02-01

Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

13. Acoustic Emission Analysis of Plane Strain-Compressed Mg Single Crystals

Drozdenko, Daria; Dobroň, Patrik; Knapek, Michal; Letzig, Dietmar; Bohlen, Jan; Chmelík, František

Mg single crystals with three different crystallographic orientations have been channel die (plane strain) compressed at applied rate of 10-3s-1 and at room temperature. The concurrent acoustic emission (AE) measurement was used as a method to analyze the dislocation dynamic during plastic deformation of Mg single crystals. The AE count rate and the maximum amplitudes of the AE event were correlated with stress-strain curves to determine the activity of various deformation mechanisms. The presence of large AE signals in the first stage of plastic deformation in single crystals with favorable orientation for (10.2)-twinning indicates twin nucleation and subsequent decrease of the AE activity, which can be connected with twin growth and collective dislocation processes. Compression along the c-axis (hard deformation mode) produces almost no AE activity.

14. Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory

Xiao, Weiwei; Li, Li; Wang, Meng

2017-06-01

The behaviors of monolayer graphene sheet have attracted increasing attention of many scientists and researchers. In this study, the propagation behaviors of in-plane wave in viscoelastic monolayer graphene are investigated. The constitutive equation and governing equation for in-plane wave propagation is developed by employing Hamilton's principle and nonlocal strain gradient theory. By solving the governing equation of motion, the closed-form dispersion relation between phase velocity and wave number is derived and an asymptotic phase velocity can be acquired. The effects of wave number, material length scale parameter, nonlocal parameter and damping coefficient on in-plane wave propagation behaviors are discussed in the numerical studies. It is found that, when exciting wavelengths or structural dimensions become comparable to the material length scale parameters and nonlocal parameters, the scaling effects on wave propagation behaviors are significant. For nanoscaled graphene sheet, the effects of nonlocal parameter, material length scale parameter and damping coefficient on phase velocity are tiny at low wave numbers while significant at high wave numbers. The phase velocity would increase with the increase of material length scale parameter or the decrease of nonlocal parameter and damping coefficient. Furthermore, results indicate that the asymptotic phase velocity can be increase by increasing material length scale parameter or decreasing nonlocal parameter.

15. Effects of Be and Fe content on plane strain fracture toughness in A357 alloys

SciTech Connect

Tan, Y.H.; Lee, S.L.; Lin, Y.L.

1995-11-01

The effect of Be and Fe content on the plane strain fracture toughness K{sub IC} of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicron-strengthening particles. The effect of Be on increasing K{sub IC} is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

16. Effects of be and fe content on plane strain fracture toughness in A357 alloys

Tan, Yen-Hung; Lee, Sheng-Long; Lin, Yu-Lom

1995-11-01

The effect of Be and Fe content on the plane strain fracture toughness K IC of aluminum-based A357 alloys is investigated. The fracture behavior of A357 alloys has been evaluated as a function of both the magnitude and morphology of iron-bearing compounds and silicon particles. Addition of Be is beneficial for tensile properties and fracture toughness in the case of alloys containing intermediate (0.07 pct) and higher (0.15 pct) Fe levels. On the other hand, Be added to alloys containing the lower Fe (0.01 pct) level appears detrimental to tensile strength, but the quality index, notch-yield ratio (NYR), and plane strain fracture toughness were improved. Fractographic analysis reveals that crack extension of A357 alloys occurs mainly in an intergranular fracture mode. The fracture processes are initiated by void nucleation at iron-bearing compounds or irregularly shaped eutectic silicon particles as a result of their cracking and decohesion from the matrix. Then, void growth and coalescence result in growth of the main crack by shear-linkage-induced breakdown of submicronstrengthening particles. The effect of Be on increasing K IC is more apparent in the higher Fe alloys than in the lower Fe alloys. Superior toughness obtained by microstructural control has also been achieved in the intermediate and higher Fe levels of Be-containing alloys, with values equal to those obtained in alloys of lower Fe content.

17. Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.

PubMed

Vasudeva, R Y; Sudheer, G; Vema, Anu Radha

2008-06-01

Dispersion spectra of circumferential waves along the periphery of circular pipes made of layered anisotropic materials do not seem to be available in literature. This note attempts to partially fill this gap by providing the dispersion spectra in two and three layered cylindrically anisotropic pipes in plane strain motion. The spectra for pipes executing time harmonic vibrations in plane strain condition are obtained as roots of a numerical characteristic equation derived extending a weighted residual method of solution of the governing equations for a single layer pipe [Towfighi et al., J. Appl. Mech. 69, 283-291 (2002)] to a general N layered pipe. The anisotropic elastic coefficients are considered to be independent of position coordinates and the bond condition at interfaces of the layers is assumed to be perfect. Numerical illustrations are presented for two and three layered pipes with anisotropy directions differing in adjacent layers. Increase in curvature of the pipe and inclination of the fiber orientation in the outermost layers to propagation direction are factors that seem to influence the mode number and pattern within the limited examples worked out.

18. Constructing generalized Cesàro formulas for finite plane strains

Georgievskii, D. V.

2014-05-01

The problem of finding the displacement vector from a system of nonlinear differential equations which includes displacement gradient components is studied. Expressions on the right side of this system for certain parameter values have the kinematic sense of Lagrange and Euler finite strain tensors. The task is to construct generalized Cesàro formulas for finite strains. The construction of the solution consists of two stages (algebraic and differential), and the second is performed for space whose dimension is greater than or equal to two. An algorithm for the inversion of the original system is proposed, and analytical constructions for the case of two-dimensional space are performed. The problem is solved at the first (algebraic) stage, i.e., an exact analytical expression for the displacement vector components is derived through the known finite strain tensor and an unknown scalar function having the kinematic sense of rotation. Necessary conditions for the existence of this relationship are formulated.

19. Derivation of a variational principle for plane strain elastic-plastic silk biopolymers

He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.

2014-01-01

Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.

20. Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.; Sture, Stein

2000-01-01

A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

1. A study of minimum quantity lubricant of refined bleached deodorized palm stearin in plane strain extrusion

Ridzuan, M. J. M.; Hafis, S. M.; Saifullah, K. N.; Syahrullail, S.

2012-06-01

Large quantities of lubricant are being widely used in the metal forming industry and this high consumption is negatively affecting the environment. Finding an alternative to this current situation is getting more serious and urgent in response to environmental and operational cost pressures. This paper deals with an experimental investigation to obtain the minimum quantity of lubricant (MQL) of RBD palm stearin, which is used as lubricant between the contact sliding surfaces of the taper die and billet via plane-strain-extrusion apparatus. The symmetrical workpieces are designed as combined billets made from pure aluminium A1100. The dies of the apparatus are made of SKD 11 steel. The extrusion ratio of the processes is 3 and the workpieces are extruded by hydraulic press machine. Four conditions of the quantity selected are 0.1 mg, 1 mg, 5 mg, and 20 mg. The analysis of the result shows that the conditions of the quantity are in the load reducing order from 0.1 mg, 1mg and 5 mg. The highest distribution of surface roughness is at 0.1 mg, whereby for others, the conditions are quite similar. However, the distribution of velocity and effective strain are lowest at 5 mg. The minimum quantity of lubricant (MQL) of the RBD palm stearin as lubricant on the contact sliding surfaces in planestrain-extrusion is determined based on the results of load, surface roughness, velocity and effective strain.

2. Assessment of Constitutive and Stability Behavior of Sands Under Plane Strain Condition

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.; Sture, Stein

2000-01-01

A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grains size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine, medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularity and size increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

3. Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept

ERIC Educational Resources Information Center

Kawam, Alae; Kouh, Minjoon

2011-01-01

In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…

4. From Number Lines to Graphs in the Coordinate Plane: Investigating Problem Solving across Mathematical Representations

ERIC Educational Resources Information Center

Earnest, Darrell

2015-01-01

This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…

5. Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept

ERIC Educational Resources Information Center

Kawam, Alae; Kouh, Minjoon

2011-01-01

In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…

6. From Number Lines to Graphs in the Coordinate Plane: Investigating Problem Solving across Mathematical Representations

ERIC Educational Resources Information Center

Earnest, Darrell

2015-01-01

This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…

7. Guidance analysis of the aeroglide plane change maneuver as a turning point problem

NASA Technical Reports Server (NTRS)

Gracey, Christopher

1989-01-01

The development of guidance approximations for the atmospheric (aeroglide) portion of the minimum fuel, orbital plane change, trajectory optimization problem is described. Asymptotic methods are used to reduce the two point, boundary value, optimization problem to a turning point problem from the bank angle control. The turning point problem solution, which yields an approximate optimal control policy, is given in terms of parabolic cylinder functions, which are tabulated, and integral expressions, which must be numerically computed. Comparisons of the former, over their region of validity, with optimal control solutions show good qualitative agreement. Additional work and analysis is needed to compute the guidance approximation work.

8. Strained-layer superlattice focal plane array having a planar structure

DOEpatents

Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM; Gin, Aaron [Albuquerque, NM; Marsh, Phillip F [Lowell, MA; Young, Erik W [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

2010-07-13

An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

9. Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures

NASA Technical Reports Server (NTRS)

Hall, L. R.; Finger, R. W.

1971-01-01

The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.

10. Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions

NASA Technical Reports Server (NTRS)

Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)

2002-01-01

A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.

11. A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime

Kroon, M.

2011-11-01

Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.

12. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

USGS Publications Warehouse

Andrews, D.J.

1985-01-01

A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

13. On out of plane equilibrium points in photo-gravitational restricted three-body problem

Das, M. K.; Narang, Pankaj; Mahajan, S.; Yuasa, M.

2009-12-01

We have investigated the out of plane equilibrium points of a passive micron size particle and their stability in the field of radiating binary stellar systems Krüger-60, RW-Monocerotis within the framework of photo-gravitational circular restricted three-body problem. We find that the out of plane equilibrium points ( L i , i = 6, 7, 8, 9) may exist for range of β 1 (ratio of radiation to gravitational force of the massive component) values for these binary systems in the presence of Poynting-Robertson drag (hereafter PR-drag). In the absence of PR-drag, we find that the motion of a particle near the equilibrium points L 6,7 is stable in both the binary systems for a specific range of β 1 values. The PR-drag is shown to cause instability of the various out of plane equilibrium points in these binary systems.

14. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

NASA Technical Reports Server (NTRS)

Woodard, Stanley E. (Inventor)

2014-01-01

A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

15. In-plane uniaxial magnetic anisotropy induced by anisotropic strain relaxation in high lattice-mismatched Dy/Sc superlattices

Benito, L.; Ballesteros, C.; Ward, R. C. C.

2014-04-01

We report on the magnetic and structural characterization of high lattice-mismatched [Dy2nm/SctSc] superlattices, with variable Sc thickness tSc= 2-6 nm. We find that the characteristic in-plane effective hexagonal magnetic anisotropy K66,ef reverses sign and undergoes a dramatic reduction, attaining values of ≈13-24 kJm-3, when compared to K66=-0.76 MJm-3 in bulk Dy. As a result, the basal plane magnetic anisotropy is dominated by a uniaxial magnetic anisotropy (UMA) unfound in bulk Dy, which amounts to ≈175-142 kJm-3. We attribute the large downsizing in K66,ef to the compression epitaxial strain, which generates a competing sixfold magnetoelastic (MEL) contribution to the magnetocrystalline (strain-free) magnetic anisotropy. Our study proves that the in-plane UMA is caused by the coupling between a giant symmetry-breaking MEL constant Mγ ,22≈1 GPa and a morphic orthorhombiclike strain ɛγ ,1≈10-4, whose origin resides on the arising of an in-plane anisotropic strain relaxation process of the pseudoepitaxial registry between the nonmagnetic bottom layers in the superstructure. This investigation shows a broader perspective on the crucial role played by epitaxial strains at engineering the magnetic anisotropy in multilayers.

16. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

ERIC Educational Resources Information Center

Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

2015-01-01

This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

17. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

ERIC Educational Resources Information Center

Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

2015-01-01

This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

18. CLFE2D: A generalized plane strain finite element program laminated composites subject to mechanical and hygrothermal loading

NASA Technical Reports Server (NTRS)

Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.

1983-01-01

CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.

19. Strain and water effects on the electronic structure and chemical activity of in-plane graphene/silicene heterostructure

Kistanov, Andrey A.; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V.; Zhou, Kun

2017-03-01

By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from  ‑7% (compression) to  +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H2O molecule. It shows that compressive/tensile strain is able to increase the binding energy of H2O compared with the adsorption on a planar surface, and the charge transfer between the water molecule and the graphene/silicene sheet can be modulated by strain. Moreover, the presence of the boron-nitride (BN)-substrate significantly influences the chemical activity of the graphene/silicene heterostructure upon its interaction with the H2O molecule and may cause an increase/decrease of the charge transfer between the H2O molecule and the heterostructure. These findings provide insights into the modulation of electronic properties of the in-plane free-standing/substrate-supported graphene/silicene heterostructure, and render possible ways to control its electronic structure, carrier density and redox characteristics, which may be useful for its potential applications in nanoelectronics and gas sensors.

20. Perturbation method in the problem on a nearly circular hole in an elastic plane

Bashkankova, E. A.; Vakaeva, A. B.; Grekov, M. A.

2015-03-01

The perturbation method is used to construct the solution of the plane elasticity problem for a plane with a curvilinear nearly circular hole. An algorithm for calculating any approximation represented as a Cauchy type integral depending on all preceding approximations is given. The complex potentials of the first approximation are obtained for an elliptic hole and a curvilinear hole whose boundary deviates from the unit circle in the radial direction according to the cosine law. An example of elliptic hole is used to analyze the error in the first approximation of the stress concentration factor by comparing it with the exact solution. The influence of the hole shape on the distribution of circular stresses on the boundary is studied.

1. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin

2016-01-01

As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

2. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies.

PubMed

Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W; Fragapane, Alex H; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C; Abild-Pedersen, Frank; Nørskov, Jens K; Zheng, Xiaolin

2016-01-01

As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

3. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

DOE PAGES

Li, Hong; Tsai, Charlie; Koh, Ai Leen; ...

2015-11-09

As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposedmore » Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.« less

4. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

2016-04-01

A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

5. A continuous Riemann–Hilbert problem for colliding plane gravitational waves

Palenta, Stefan; Meinel, Reinhard

2017-10-01

We present the foundations of a new solution technique for the characteristic initial value problem (IVP) of colliding plane gravitational waves. It has extensive similarities to the approach of Alekseev and Griffiths in 2001, but we use an inverse scattering method with a Riemann–Hilbert problem (RHP), which allows for a transformation to a continuous RHP with a solution given in terms of integral equations for non-singular functions. Ambiguities in this procedure lead to the construction of a family of spacetimes containing the solution to the IVP. Therefore the described technique also serves as an interesting solution generating method. The procedure is exemplified by extending the Szekeres class of colliding wave spacetimes with 2 additional real parameters. The obtained solution seems to feature a limiting case of a new type of impulsive waves, which are circularly polarised.

6. Characterization of the process of the strain localization in some porous rocks in plane strain condition using a new true triaxial apparatus

Besuelle, P.

2012-04-01

Failure by strain localization is commonly observed in geomaterials. Generaly, experimental characterization of the localization in a porous sandstone are performed with classical axisymmetric triaxial compression tests. The effect of the confining pressure is observed on several aspects: onset of localization, pattern of localization, porosity evolution inside bands, grain scale mechanisms of deformation. Complex patterns of localization can be observed at high confining pressure in the transition between the brittle and ductile regime, showing several deformation bands in the specimens ([1]). However the history (time evolution) of the localization is not accessible because the observations are post-mortem. Strain field measurement and evolution in time of the strain field are particularly useful to study the strain localization (initiation of the deformation bands) and the post-localization regime. Such tools have been developed for soils (e.g., sand specimens in plane strain condition [2] or in triaxial conditions using X-ray tomography [3]). Similar developments for rocks are still difficult, especially because the pertinent confining pressure to reproduce in situ stresses are higher than for soils. We present here first results obtained in a new true triaxial apparatus that allows observation of the rock specimen under loading and especially the complex development of deformation bands and faults. As for [4] and [5], the three principal stresses are different, however the intermediate stress is controlled in order to impose a plane strain condition (zero strain in this direction). Observation of a specimen under load is possible as one surface of the prismatic specimen, which is orthogonal to the plane strain direction, is in contact with a hard transparent window. The deformation of this surface is representative of the deformation in the whole specimen, up to and beyond strain localization. Therefore the evolution of the strain field in the sample can be

7. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

2013-04-01

This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

8. 3D Arrangement of Slip Systems in Non-Plane Strain: Experimental Plastic Deformation of Fine-Grained Limestone

Llana-Funez, S.; Rutter, E. H.

2006-12-01

The condition of simultaneous operation of five slip systems to produce homogeneous deformation by intracrystalline plasticity in polycrystalline aggregates is frequently simplified when applied to studying deformation in nature by considering other deformation mechanisms that relax the strict geometric condition. Insufficient knowledge of how these complementary mechanisms interact and accommodate geometrically non-plane strain situations obscure somehow subsequent interpretation of slip patterns in relation to principal strain axes. We ran an experimental program isolating intracrystalline plasticity from other deformation mechanisms with the aim of testing the effect of non-plane strain geometries in the 3D arrangement of crystallographic elements from which we inferred the orientation of active slip systems. We use a fine grained polycrystalline aggregate (Solnhofen Limestone), naturally doped at grain boundaries with organic matter preventing grain growth, that deforms plastically at the experimental conditions used (600 °C, 200 MPa confining pressure and 10^{- 4}s-1 strain rates). To maximize the number of strain geometries we used different experimental configurations (axi-symmetric shortening and extension, and direct shear) and also study in detail volumes where deformation is heterogeneous but still relatively simple. The aim of the work is to relate strain geometry and the development of crystallographic fabrics in different strain paths. We produced constrictional, flattening, and nearly plane strain deformations. We were also able to obtain strain geometries where the vorticity axis in a non-coaxial deformation was either perpendicular to the extension direction (as in simple and sub-simple shear) or parallel to it. We measured the crystallographic preferred orientation (CPO) of calcite in deformed specimens by electron back-scattered diffraction techniques (EBSD), which allowed us to scan relatively small areas within already small specimens

9. Plane contact problem on indentation of a flat punch into a transversely-isotropic half-plane with functionally graded transversely-isotropic coating

Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.

2017-02-01

Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.

10. First-principles study of nanometer-sharp domain walls in ferromagnetic Fe monolayers under in-plane strain.

PubMed

Shimada, T; Okuno, J; Ishii, Y; Kitamura, T

2012-03-07

We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy.

11. Orientation control of the orbital ordering plane in epitaxial LaMnO3 thin films by misfit strain

Kim, Yong-Jin; Lee, Jin Hong; Kim, Sang-Woo; Koo, Tae Yeong; Yang, Chan-Ho

2016-10-01

We investigate the effects of misfit strain on the orbital order of epitaxial lanthanum manganite thin films grown on (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT) and GdScO3 (GSO) substrates. Resonant X-ray scattering near the Mn K-edge is employed to identify the cooperative Jahn-Teller distortion at room temperature and determine the orientation of the orbital-ordered plane (OOP). We find that coherent growth on LSAT (GSO) makes the OOPs be vertical (parallel) to the film surface. This finding not only offers useful insight into the interplay between misfit strain and orbital order, but also holds promise for strain control of orbital-dependent physical properties.

12. Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys

Baxevanis, T.; Chemisky, Y.; Lagoudas, D. C.

2012-09-01

The plane strain mechanical fields near a stationary crack tip in a pseudoelastic shape memory alloy (SMA) are analyzed via the finite element method. The small scale transformation assumption is employed for the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law used adopts the classical rate-independent small strain flow theory for the evolution equations of both the transformation and plastic strains. Results on the size and shape of the stress-induced transformation and plastic zone formed near the stationary crack are obtained and a fracture toughness criterion based on the J-integral is discussed in view of the observed path-dependence of J. Moreover, the obtained results are discussed in relation to results for stationary cracks in conventional elastic-plastic materials.

13. Full in-plane strain tensor analysis using the microscale ring-core FIB milling and DIC approach

Lunt, Alexander J. G.; Salvati, Enrico; Ma, Lifeng; Dolbyna, Igor P.; Neo, Tee K.; Korsunsky, Alexander M.

2016-09-01

Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding of residual stress and mechanical failure in many applications. This study outlines the first Focused Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of performing precise, reliable and rapid quantification of this behaviour. The nature of semi-destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor quantification: unstrained lattice parameter estimates are not required, analysis is performed in within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be studied and access to X-ray/neutron facilities is not required. The FIST FIB milling and DIC experimental technique is based on extending the ring-core milling geometry to quantify the strain variation with angle and therefore benefits from the excellent precision and simple analytical approach associated with this method. In this study in-plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. The two methods sample different gauge volumes and mechanical states: approximately plane stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using complex analysis methods and Finite Element (FE) modelling that valid comparisons can be drawn between these two stress states. Excellent agreement was obtained between principal stress orientation and magnitudes, leading to realistic residual stress estimates that agree well with the literature (σAv ≈ 460 MPa) . As a measure of validity of the matching approach we report the upper and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the range 2.9586 - 2.9596 Å , closely matching published values.

14. Discontinuous Galerkin methods with plane waves for time-harmonic problems

SciTech Connect

Gabard, Gwenael . E-mail: gabard@soton.ac.uk

2007-08-10

A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented. The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each element. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroacoustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles. Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from a two-dimensional jet.

15. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

DOE PAGES

Yu, K. Y.; Chen, Y.; Li, J.; ...

2016-11-28

Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

16. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

SciTech Connect

Yu, K. Y.; Chen, Y.; Li, J.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

2016-11-28

Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

17. Comparison tests and experimental compliance calibration of the proposed standard round compact plane strain fracture toughness specimen

NASA Technical Reports Server (NTRS)

Fisher, D. M.; Buzzard, R. J.

1979-01-01

18. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

SciTech Connect

Carvalho, M.S.; Scriven, L.E.

1997-12-01

In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

19. On one contact problem of plane elasticity for a doubly connected domain: application to a hexagon

2013-02-01

The paper addresses a problem of plane elasticity theory for a doubly connected body whose external boundary is a regular hexagon boundary, and the internal boundary is the required full-strength hole including the origin of coordinates. Hexagon's two vertices are laid at the axis Oy, and the middle points of its two opposite sides are laid at the axis Ox. This full-strength hole is cycle symmetric. It is assumed that to every link of the broken line of the outer boundary of the given body are applied absolutely smooth rigid stamps with rectilinear bases, which are under action of the force P that applies to their middle points. There is no friction between the surface of given elastic body and stamps. The unknown full-strength contour is free from outer actions. Using the methods of complex analysis, the analytical image of Kolosov-Muskhelishvili's complex potentials (characterizing an elastic equilibrium of the body) and unknown parts of its boundary are determined under the condition that the tangential normal moment arising at it takes a constant value. Such holes are called full-strength holes. Numerical analysis are also performed and the corresponding graphs are constructed.

20. In-plane anisotropy of electrical resistivity in strain-detwinned SrFe[subscript 2]As[subscript 2

SciTech Connect

Blomberg, E.C.; Tanatar, M.A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Budko, S.L.; Canfield, P.C.; Goldman, A.I.; Prozorov, R.

2011-12-09

Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe{sub 2}As{sub 2} above and below the temperature of the coupled structural/magnetic transition, T{sub TO}. Resistivity is smaller for electrical current flow along the orthorhombic a{sub o} direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the b{sub o} direction (direction of ferromagnetic chains), which is similar to CaFe{sub 2}As{sub 2} and BaFe{sub 2}As{sub 2} compounds. A strongly first-order structural transition in SrFe{sub 2}As{sub 2} was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above T{sub TO}. With the increase of strain, the resistivity anisotropy starts to develop above T{sub TO}, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.

1. In-plane anisotropy of electrical resistivity in strain-detwinned SrFe2As2

Blomberg, E. C.; Tanatar, M. A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Bud'Ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.

2011-04-01

Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe2As2 above and below the temperature of the coupled structural/magnetic transition, TTO. Resistivity is smaller for electrical current flow along the orthorhombic ao direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the bo direction (direction of ferromagnetic chains), which is similar to CaFe2As2 and BaFe2As2 compounds. A strongly first-order structural transition in SrFe2As2 was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above TTO. With the increase of strain, the resistivity anisotropy starts to develop above TTO, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.

2. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF) Loaded Perpendicularly to the Plane of the Board

PubMed Central

Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich

2012-01-01

Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup. PMID:28817026

3. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF) Loaded Perpendicularly to the Plane of the Board.

PubMed

Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich

2012-06-19

Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.

4. Effect of out-of-plane specimen movement on the accuracy of the smallest specimen strain measurable using the digital image correlation technique

Poling, Joel; Desai, Niranjan

2017-04-01

This investigation determined the smallest strain accurately measurable by a state-of-the-art digital image correlation (DIC) - based tool used in structural health monitoring, in a specimen subjected to out-of-plane movement, building upon a study that concluded that out-of-plane specimen movement results in noise in DIC-based strain measurements. This study was motivated by initially undetected damage at low strains in connections of a real-world bridge, whose detection would have prevented its propagation, resulting in lower repair costs. The smallest strains accurately measurable using the state-of-the-art DIC tool, over a range of specimen out-of-plane displacement amplitudes, were determined.

5. Shear bands formation after a strain path change for AA1050 alloy pre-deformed by ECAP and subsequently plane strain compressed

Paul, H.; Tarasek, A.; Wajda, W.; Berent, K.

2014-08-01

Crystal lattice rotations induced by shear bands developed in an AA1050 aluminium alloy have been examined in order to investigate the influence of the finegrained structure on the slip propagation across the grain boundaries and the resulting texture evolution. Samples of the AA1050 alloy were pre-deformed in ECAP up to 6 passes via route C, then machined and further compressed in a channel-die up to ~25% at room temperature. The microstructure and texture were characterized by SEM equipped with a high resolution EBSD facility. The ECAP-processing leads to the formation of a fine grained structure. The grains were grouped into nearly complementarily oriented layers. During the secondary straining in the channel-die, the layers of fine grains, initially situated almost parallel to the compression plane, undergo deflection within some narrow areas. This is the beginning stage of the macroscopic shear band (MSB) formation. In all the deformed grains examined (within MSB) a strong tendency for strain-induced re-orientation could be observed. The SEM orientation mapping shows how the layers of flattened grains are incorporated into the MSB area, and what kinds of mechanisms are responsible for the strain accommodation at the macro-scale. Finally, a crystallographic description of the mechanism of MSB formation in AA1050 aluminium alloy is proposed based on the local lattice re-orientations due to localized kinking.

6. The strain in the array is mainly in the plane (waves below ~1 Hz)

USGS Publications Warehouse

Gomberg, J.; Pavlis, G.; Bodin, P.

1999-01-01

We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering

7. Behaviour of Cohesionless Soil Reinforced with Three Dimensional Inclusions Under Plane Strain Conditions

Harikumar, M.; Sankar, N.; Chandrakaran, S.

2015-09-01

Since 1969, when the concept of earth reinforcing was brought about by Henry Vidal, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibres, coir and jute fibres etc. have been widely added to soil mass randomly or in a regular, oriented manner. The conventional reinforcements in use were two dimensional or planar, in the form of strips with negligible widths or in the form of sheets. In this investigation, a novel concept of multi oriented plastic reinforcement (hexa-pods) is discussed. Direct shear tests were conducted on unreinforced and reinforced dry fine, medium and coarse sands. Detailed parametric studies with respect to the effective grain size of soil (d10), normal stress (σ) and the volume ratio of hexa-pods (Vr) were performed. It was noticed that addition of hexa-pods resulted in increase in the shear strength parameters viz. peak deviatoric stresses and increased angle of internal friction. The hexa-pods also changed the brittle behaviour of unreinforced sand samples to ductile ones. Although the peak shear stress did not show a considerable improvement, the angle of internal friction improved noticeably. Addition of a single layer of reinforcement along the shear plane also reduced the post peak loss of strength and changed the soil behavior from brittle to a ductile one.

8. Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear.

PubMed

Gerstein, Gregory; Klusemann, Benjamin; Bargmann, Swantje; Schaper, Mirko

2015-01-15

In the current work, the evolutions of grain and dislocation microstructures are investigated on the basis of plane strain tension and simple shear tests for an interstitial free steel (DC06) and a 6000 series aluminum alloy (AA6016-T4). Both materials are commonly-used materials in the automobile industry. The focus of this contribution is on the characterization and comparison of the microstructure formation in DC06 and AA6016-T4. Our observations shed light on the active mechanisms at the micro scale governing the macroscopic response. This knowledge is of great importance to understand the physical deformation mechanisms, allowing the control and design of new, tailor-made materials with the desired material behavior.

9. A Numerical Analysis of Selected Elastic-Plastic Fracture Parameters for DEN(T) Plates under Plane Strain Conditions

Graba, M.

2017-02-01

This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening displacement, and the load line displacement were determined using the numerical method to propose the new hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the plate geometry and the material characteristics on the parameters under consideration. This paper is a continuation of the author's previous studies and simulations in the field of elastic-plastic fracture mechanics.

10. Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear

PubMed Central

Gerstein, Gregory; Klusemann, Benjamin; Bargmann, Swantje; Schaper, Mirko

2015-01-01

In the current work, the evolutions of grain and dislocation microstructures are investigated on the basis of plane strain tension and simple shear tests for an interstitial free steel (DC06) and a 6000 series aluminum alloy (AA6016-T4). Both materials are commonly-used materials in the automobile industry. The focus of this contribution is on the characterization and comparison of the microstructure formation in DC06 and AA6016-T4. Our observations shed light on the active mechanisms at the micro scale governing the macroscopic response. This knowledge is of great importance to understand the physical deformation mechanisms, allowing the control and design of new, tailor-made materials with the desired material behavior. PMID:28787938

11. Vibrations in a Fluid-Loaded Poroelastic Hollow Cylinder Surrounded by a Fluid in Plane-Strain Form

Shanker, B.; Nath, C. N.; Shah, S. A.; Reddy, P. M.

2013-03-01

Plane-strain vibrations in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid are investigated employing Biot's theory of wave propagation in poroelastic media. The poroelastic hollow cylinder is homogeneous and isotropic, while the inner and outer fluids are homogeneous, isotropic and inviscid. The frequency equation of the fluid-loaded poroelastic cylinder surrounded by a fluid is obtained along with several particular cases, namely, fluid-loaded poroelastic cylinder, fluid-loaded bore, poroelastic cylinder surrounded by a fluid and poroelastic solid cylinder submerged in a fluid. The frequency equations are obtained for axially symmetric, flexural and anti-symmetric vibrations each for a pervious and an impervious surface. Nondimensional frequency for propagating modes is computed as a function of the ratio of thickness to the inner radius of the core. The results are presented graphically for two types of poroelastic cylinders and then discussed.

12. Solving ethanol production problems with genetically modified yeast strains

PubMed Central

Abreu-Cavalheiro, A.; Monteiro, G.

2013-01-01

The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

13. Solving ethanol production problems with genetically modified yeast strains.

PubMed

Abreu-Cavalheiro, A; Monteiro, G

2013-01-01

The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

14. A plane strain model of soil saturation effect on dynamic stiffness functions of embedded footings

SciTech Connect

Simos, N.; Philippacopoulos, A.J.; Reich, M.; McSpadden, T.

1995-10-01

Impedance functions associated with horizontal and vertical vibrations of rigid massless strip footings embedded in a saturated soil stratum are evaluated using a finite element approach The foundation medium is treated as a two-phase continuum which behaves according to Blots classical theory of wave propagation in fluid-saturated porous media. Parametric studies have been recently performed by the authors in an effort to verify that the adopted finite element approach and associated numerical procedures yield reasonable correlations with analytic solutions of soil-structure interaction problems. Horizontal and vertical impedance functions are presented for various embedment depth/soil layer thickness configurations. It is shown that saturation influences the foundation impedances especially their imaginary parts which can be reasonably explained as being the result of additional dissipation in the system associated with the motion of pore fluid relative to the soil skeleton. It is further shown that, as anticipated, soil stiffnesses increase with increasing embedment depth.

15. Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition

SciTech Connect

Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei

2015-07-13

Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.

16. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer.

PubMed

Omote, Kazuhiko

2010-12-01

We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.

17. An exact plane-stress solution for a class of problems in orthotropic elasticity

NASA Technical Reports Server (NTRS)

Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.

1982-01-01

An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.

18. Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction

SciTech Connect

Wu, Huaping; Chai, Guozhong; Zhou, Ting; Zhang, Zheng; Kitamura, Takayuki; Zhou, Haomiao

2014-03-21

The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship among ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.

19. Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity

Senashov, Sergey I.; Yakhno, Alexander

2012-10-01

For the hyperbolic system of quasilinear first-order partial differential equations, linearizable by hodograph transformation, the conservation laws are used to solve the Cauchy problem. The equivalence of the initial problem for quasilinear system and the problem for conservation laws system permits to construct the characteristic lines in domains, where Jacobian of hodograph transformations is equal to zero. Moreover, the conservation laws give all solutions of the linearized system. Some examples from the gas dynamics and theory of plasticity are considered.

20. Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in the Cartesian Plane.

DTIC Science & Technology

1987-06-01

reasoning problems can be varied in nature; there does not seem to be a single spatial reasoning problem that represents the entire set of such problems...be the set of all simple, start-to-goal paths for a specific instance of a least-cost-path problem. For each piEPSG, let pi be the locus of points (z...piecewise-linear paths from the start to the goal that have locally optimal cost, locally optimal among the set of all start-to-goal paths that intersect

1. A Cutting Plane Algorithm for Problems Containing Convex and Reverse Convex Constraints,

DTIC Science & Technology

The method of cut generation used in this paper was initially described by Tui for minimizing a concave function subject to linear constraints. Balas...Glover, and Young have recognized the applicability of such ’convexity cuts ’ to integer problems. This paper shows that these cuts can be used in the solution of an even larger class of nonconvex problems.

2. Effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films on their phase transition temperature and tetragonal distortion

Nakashima, Takaaki; Ichinose, Daichi; Ehara, Yoshitaka; Shimizu, Takao; Kobayashi, Takeshi; Yamada, Tomoaki; Funakubo, Hiroshi

2017-03-01

(100)/(001)-oriented epitaxial lead titanate (PbTiO3) films with various thicknesses were grown on (100) KTaO3 substrates by pulsed metal-organic chemical vapor deposition. The change of crystal structure with film thickness and deposition temperature was investigated. The paraelectric phase of 50 and 1000 nm-thick films had a tensile strain of 0.5% and almost 0% at 700 °C, respectively. The phase change temperature from the paraelectric phase to the ferroelectric phase, the Curie temperature (Tc), increased with the in-plane strain of the paraelectric phase; that is, Tc increased with decreasing film thickness. In contrast, room-temperature tetragonal distortion decreased as the film became thinner. This study reveals the effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films with higher Tc and smaller tetragonal distortion at room temperature.

3. Effect of in-plane magnetic field and applied strain in quantum spin Hall systems: Application to InAs/GaSb quantum wells

Hu, Lun-Hui; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi

2016-08-01

Motivated by the recent discovery of quantized spin Hall effect in InAs/GaSb quantum wells [Du, Knez, Sullivan, and Du, Phys. Rev. Lett. 114, 096802 (2015), 10.1103/PhysRevLett.114.096802], we theoretically study the effects of in-plane magnetic field and strain effect to the quantization of charge conductance by using Landauer-B ütikker formalism. Our theory predicts a robustness of the conductance quantization against the in-plane magnetic field up to a very high field of 20 T. We use a disordered hopping term to model the strain and show that the strain may help the quantization of the conductance. Relevance to the experiments will be discussed.

4. Solving the multiple competitive facilities location and design problem on the plane.

PubMed

Redondo, Juana López; Fernández, José; García, Inmaculada; Ortigosa, Pilar M

2009-01-01

A continuous location problem in which a firm wants to set up two or more new facilities in a competitive environment is considered. Other facilities offering the same product or service already exist in the area. Both the locations and the qualities of the new facilities are to be found so as to maximize the profit obtained by the firm. This is a global optimization problem, with many local optima. In this paper we analyze several approaches to solve it, namely, three multistart local search heuristics, a multistart simulated annealing algorithm, and two variants of an evolutionary algorithm. Through a comprehensive computational study it is shown that the evolutionary algorithms are the heuristics that provide the best solutions. Furthermore, using a set of problems for which the optimal solutions are known, only the evolutionary algorithms were able to find the optimal solutions for all the instances. The evolutionary strategies presented in this paper can be easily adapted to handle other continuous location problems.

5. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

SciTech Connect

Li, Hong; Tsai, Charlie; Koh, Ai Leen; Cai, Lili; Contryman, Alex W.; Fragapane, Alex H.; Zhao, Jiheng; Han, Hyun Soon; Manoharan, Hari C.; Abild-Pedersen, Frank; Nørskov, Jens K.; Zheng, Xiaolin

2015-11-09

As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

6. The role of convexity for solving some shortest path problems in plane without triangulation

An, Phan Thanh; Hai, Nguyen Ngoc; Hoai, Tran Van

2013-09-01

Solving shortest path problems inside simple polygons is a very classical problem in motion planning. To date, it has usually relied on triangulation of the polygons. The question: "Can one devise a simple O(n) time algorithm for computing the shortest path between two points in a simple polygon (with n vertices), without resorting to a (complicated) linear-time triangulation algorithm?" raised by J. S. B. Mitchell in Handbook of Computational Geometry (J. Sack and J. Urrutia, eds., Elsevier Science B.V., 2000), is still open. The aim of this paper is to show that convexity contributes to the design of efficient algorithms for solving some versions of shortest path problems (namely, computing the convex hull of a finite set of points and convex rope on rays in 2D, computing approximate shortest path between two points inside a simple polygon) without triangulation on the entire polygons. New algorithms are implemented in C and numerical examples are presented.

7. On Numerical Methods of Solving Some Optimal Path Problems on the Plane

Ushakov, V. N.; Matviychuk, A. R.; Malev, A. G.

Three numerical methods of solution of some time optimal control problems for a system under phase constraints are described in the paper. Two suggested methods are based on transition to the discrete time model, constructing attainability sets and application of the guide construction. The third method is based on the Deikstra algorithm.

8. An Interactive Artificial Cutting Plane Method for Bicriterion Integer Programming Problems

DTIC Science & Technology

1992-08-01

finding a balance between cost and quality or compromising between conflicting interests of two decision makers. Although much research has been done in...Bicriterion Solution Method and Its Application to CPM Problems. M.S. Thesis, Mississippi State University. Reklaitis , G. V., A. Ravindran and K. M. Ragsdell

9. Improving Problem-Solving Skills with the Help of Plane-Space Analogies

ERIC Educational Resources Information Center

Budai, László

2013-01-01

We live our lives in three-dimensional space and encounter geometrical problems (equipment instructions, maps, etc.) every day. Yet there are not sufficient opportunities for high school students to learn geometry. New teaching methods can help remedy this. Specifically our experience indicates that there is great promise for use of geometry…

10. Inverse problems of determining the shape of incompressible bodies under finite strains

Zhukov, B. A.

2014-05-01

Transformations preserving the volume under finite strains are given for some classes of two-dimensional problems. Several settings of nonlinear elasticity problems meant for determining the shape of mechanical rubber objects from a given configuration in a strained state are proposed on the basis of these transformations. Two axisymmetric problems are solved as an example. In the first problem, we determine the shape of a rubber bushing in a combined rubber-metal joint which has a prescribed configuration in the assembled state. In the second problem, we determine the shape of the rubber element of a cylindrical compression damper in working state.

11. Domain structure and in-plane switching in a highly strained Bi0.9Sm0.1FeO3 film

Chen, Weigang; Ren, Wei; You, Lu; Yang, Yurong; Chen, Zuhuang; Qi, Yajun; Zou, Xi; Wang, Junling; Sritharan, Thirumany; Yang, Ping; Bellaiche, L.; Chen, Lang

2011-11-01

We report the domain structure and ferroelectric properties of a 32 nm-thick Bi0.9Sm0.1FeO3 film epitaxially grown on a LaAlO3 (LAO) substrate. This film exhibits a monoclinic Mc phase, with its monoclinic distortion and anisotropy of in-plane (IP) lattice parameters being both smaller than those of pure BiFeO3 (BFO) grown on LaAlO3. Polarization hysteresis loops measured using a quasi-planar capacitor show an in-plane polarization up to 30 μC/cm2. Piezoresponse force microcopy demonstrates that a 180° in-plane polarization switching accompanied by a 90° domain wall rotation takes place after electric poling. First-principles calculations suggest the differences between highly strained Sm-substituted and pure BiFeO3.

12. Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate

Qiao, Liang; Bi, Xiaofang

2008-02-01

Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.

13. Maternal Caregiving Strain as a Mediator in the Relationship between Child and Mother Mental Health Problems

ERIC Educational Resources Information Center

Sales, Esther; Greeno, Catherine; Shear, M. Katherine; Anderson, Carol

2004-01-01

This study examined whether the general stress--caregiver strain--mental health outcome model may be as appropriate for caregivers of minor-age children as it has been for caregivers of adults with chronic illness. The authors examined whether children's behavioral problems are related to mothers' caregiving strains, which then is related to…

14. Maternal Caregiving Strain as a Mediator in the Relationship between Child and Mother Mental Health Problems

ERIC Educational Resources Information Center

Sales, Esther; Greeno, Catherine; Shear, M. Katherine; Anderson, Carol

2004-01-01

This study examined whether the general stress--caregiver strain--mental health outcome model may be as appropriate for caregivers of minor-age children as it has been for caregivers of adults with chronic illness. The authors examined whether children's behavioral problems are related to mothers' caregiving strains, which then is related to…

15. Social strain, couple dynamics and gender differences in gambling problems: evidence from Chinese married couples.

PubMed

Cheung, Nicole W T

2015-02-01

Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. Copyright © 2014 Elsevier Ltd. All rights reserved.

16. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains

Qiu, J. H.; Jiang, Q.

2007-02-01

A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.

17. Eshelby's problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane

PubMed Central

Lee, Y.-G.; Zou, W.-N.; Pan, E.

2015-01-01

This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141

18. Shear-strain-induced structural and electronic modifications of the molecular crystal 1,1-diamino-2,2-dinitroethylene: Slip-plane flow and band gap relaxation

Kuklja, Maija M.; Rashkeev, Sergey N.

2007-03-01

First-principles calculations of the structural and electronic properties of the deformed molecular crystal 1,1-diamino-2,2-dinitroethylene (FOX-7) under shear-strain loading are presented. The reaction of the crystal to applied shear-strain loading is found to be highly anisotropic. When the external loading is removed, the relaxation of the system is mainly defined by stretching, bending, and rotations of the NO2 groups of neighboring molecules from the two adjacent zigzag-shaped crystalline planes that were initially shifted. In general, the deformed molecular crystal relaxes to its initial, ideal crystalline FOX-7 structure. However, different planes remain shifted relatively to each other on vectors, which are typically incommensurated with any translational vector of the ideal crystal. This fact makes an existence of ideal crystals of this material quite problematic. We also found that no metallization occurs under shear-strain loading. We suggest that the considered mechanisms of the shear-strain relaxation of the structural and electronic degrees of freedom are typical for layered anisotropic molecular crystals, and that they should significantly affect their chemical reactivity, conductivity, optical properties, and initiation of detonation in energetic materials.

19. Anisotropic optical properties of free and bound excitons in highly strained A-plane ZnO investigated with polarized photoreflectance and photoluminescence spectroscopy

Nam, Yoon Sung; Lee, Sang Wook; Baek, K. S.; Chang, S. K.; Song, Jae-Ho; Song, Jung-Hoon; Han, Seok Kyu; Hong, Soon-Ku; Yao, Takafumi

2008-05-01

We have investigated the polarization dependence of the near-band-edge photoluminescence and photoreflectance spectra in nonpolar (A-plane) ZnO films under strong biaxial compressive strain. We show that anisotropic strain and the orientation of the nonpolar plane play an important role in determining the polarization selectivity and properties of excitonic transitions. We identified four distinct band-edge transitions at 3.449, 3.420, 3.386, and 3.326eV. They were identified as E2 and E1 free excitons, E1 excitons bound to a donor, and free-electron-to-bound-hole transition, respectively. Unlike previously reported results on relatively thick nonpolar films, the E1 exciton (lowest energy) was mainly polarized to E ⊥c and weakly polarized to E ∥c under strong biaxial compressive strain in the 100nm thick film. The E2 exciton (next higher energy) was exclusively polarized to E ∥c. The localization energy of DX is 34meV, which is much larger than that in polar ZnO, and the DX was not thermally delocalized even at room temperature.

20. Anisotropic strain relaxation and the resulting degree of polarization by one- and two-step growth in nonpolar a-plane GaN grown on r-sapphire substrate

SciTech Connect

Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung

2013-12-21

Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.

1. Time-Harmonic Lamb Problem for a System Consisting of a Prestressed Piezoelectric Covering Layer and a Prestressed Half-Plane

Akbarov, S. D.; İlhan, N.; Koc, N.

2015-09-01

Within the framework of a piecewise homogeneous body model, with the use of exact equations of the linearized theory of electroelasticity for initially stressed bodies, the time-harmonic Lamb problem for a system consisting of a prestressed piezoelectric covering layer and a half-plane is studied. The boundary value problem considered is solved by employing the Fourier exponential transformation technique with respect to the coordinates along the interface. An algorithm is proposed and employed to obtain numerical results for the distribution of the normal and shear stresses acting on the interface plane.

2. Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films

SciTech Connect

Matzen, Sylivia; Nesterov, Okeksiy; Rispens, Gregory; Heuver, J. A.; Bark, C; Biegalski, Michael D; Christen, Hans M; Noheda, Beatriz

2014-01-01

Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.

3. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

2013-03-01

The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

4. Optical gain characteristics of a-plane GaN/AlGaN quantum well lasers grown on strain-engineered MgZnO layer

Park, Seoung-Hwan

2017-09-01

Optical gain characteristics of a-plane (11 2 bar 0) AlGaN/GaN quantum well (QW) lasers grown on a GaN buffer with strain anisotropy using a strain-engineered MgZnO layer were investigated using the multiband effective mass theory. The calculated transition energies for QW structures grown on MgZnO layer are in good agreement with experimental results. The optical gain of the QW structure grown on the MgZnO substrate is dominated by the z ‧ -polarization because the dominant states constituting the topmost valence subband for the QW structure changes from | Y ‧ > - to | Z ‧ > -like and carriers occupy higher states above k∥ = 0 at a higher carrier density. On the other hand, the optical gain of the QW structure grown on conventional GaN buffer is dominated by both y ‧ - and z ‧ -polarizations. Thus, the optical polarization characteristics of a-plane AlGaN/GaN QW lasers can be engineered by using MgZnO substrate.

5. Parental Strain, Mental Health Problems, and Parenting Practices: A Longitudinal Study.

PubMed

Borre, Alicia; Kliewer, Wendy

2014-10-01

Although poor parenting practices place youth living in under resourced communities at heightened risk for adjustment difficulties, less is known about what influences parenting practices in those communities. The present study examines prospective linkages between three latent constructs: parental strain, mental health problems and parenting practices. Parental victimization by community violence and life stressors were indicative of parental strain; depressive, anxious, and hostile symptoms were indicators of parental mental health; and parental knowledge of their child's activities and child disclosure were indicators of parenting practices. Interviews were conducted annually for 3 waves with 316 female caregivers (92% African American) parenting youth in low-income inner-city communities. Structural equation modeling revealed that parental strain, assessed at Wave 1, predicted changes in mental health problems one year later, which in turn predicted parenting practices at Wave 3. These results suggest that parental strain can compromise a caregiver's ability to parent effectively by impacting their mental health. Opportunities for intervention include helping caregivers process trauma and mental health problems associated with parental strain.

6. Parental Strain, Mental Health Problems, and Parenting Practices: A Longitudinal Study

PubMed Central

Borre, Alicia; Kliewer, Wendy

2014-01-01

Although poor parenting practices place youth living in under resourced communities at heightened risk for adjustment difficulties, less is known about what influences parenting practices in those communities. The present study examines prospective linkages between three latent constructs: parental strain, mental health problems and parenting practices. Parental victimization by community violence and life stressors were indicative of parental strain; depressive, anxious, and hostile symptoms were indicators of parental mental health; and parental knowledge of their child's activities and child disclosure were indicators of parenting practices. Interviews were conducted annually for 3 waves with 316 female caregivers (92% African American) parenting youth in low-income inner-city communities. Structural equation modeling revealed that parental strain, assessed at Wave 1, predicted changes in mental health problems one year later, which in turn predicted parenting practices at Wave 3. These results suggest that parental strain can compromise a caregiver's ability to parent effectively by impacting their mental health. Opportunities for intervention include helping caregivers process trauma and mental health problems associated with parental strain. PMID:24976666

7. In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique

SciTech Connect

Lagattu, Fabienne . E-mail: lagattu@lmpm.ensma.fr; Bridier, Florent; Villechaise, Patrick; Brillaud, Jean

2006-01-15

The purpose of this paper is to present a method based on the correlation of digital images obtained on a microscopic scale. A specific grainy pattern has been developed. The use of the scanning electron microscopy (SEM) allowed the determination of full-field 2D displacements on an object surface with a spatial resolution of about 1 {mu}m. Validation tests were performed in order to quantify performances and limits of this method. An example of its application is presented for a Ti-6Al-4V titanium alloy. Results show that it is possible to obtain in-plane displacement values on the object surface with efficient spatial resolution and accuracy. Thus, such a technique can be used to highlight on a relevant scale the role of the microstructure in material deformation processes.

8. Strain effects on in-plane conductance of the topological insulator Bi{sub 2}Te{sub 3}

SciTech Connect

Heui Hwang, Jin; Kwon, Sangku; Hun Kim, Jong; Young Park, Jeong; Park, Joonbum; Sung Kim, Jun; Lee, Jhinhwan; Lyeo, Ho-Ki

2014-04-21

We investigated the correlation between electrical transport and mechanical stress in a topological insulator, Bi{sub 2}Te{sub 3}, using conductive probe atomic force microscopy in an ultrahigh vacuum environment. After directly measuring charge transport on the cleaved Bi{sub 2}Te{sub 3} surface, we found that the current density varied with applied load. Current mapping revealed a variation of the current on different terraces. The current density increased in the low-pressure regime and then decreased in the high-pressure regime. This variation of current density was explained in light of the combined effect of changes in the in-plane conductance due to spin–orbit coupling and hexagonal warping.

9. The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage.

PubMed

Yang, Nicholas H; Canavan, Paul K; Nayeb-Hashemi, Hamid

2010-11-01

Subject-specific models were developed and finite element analysis was performed to observe the effect of the frontal plane tibiofemoral angle on the normal stress, Tresca shear stress and normal strain at the surface of the knee cartilage. Finite element models were created for three subjects with different tibiofemoral angle and physiological loading conditions were defined from motion analysis and muscle force mathematical models to simulate static single-leg stance. The results showed that the greatest magnitude of the normal stress, Tresca shear stress and normal strain at the medial compartment was for the varus aligned individual. Considering the lateral knee compartment, the individual with valgus alignment had the largest stress and strain at the cartilage. The present investigation is the first known attempt to analyze the effects of tibiofemoral alignment during single-leg support on the contact variables of the cartilage at the knee joint. The method could be potentially used to help identify individuals most susceptible to osteoarthritis and to prescribe preventive measures.

10. X-ray Microbeam Three-Dimensional Topography Imaging and Strain Analysis of Basal-Plane Dislocations and Threading Edge Dislocations in 4H-SiC

Tanuma, Ryohei; Mori, Daisuke; Kamata, Isaho; Tsuchida, Hidekazu

2012-06-01

This paper demonstrates the X-ray microbeam three-dimensional (3D) topography of basal-plane dislocations (BPDs) and threading edge dislocations (TEDs) in 4H-SiC. Stereographic images showing the propagation of BPDs from a substrate to an epilayer and the conversion of BPDs into TEDs near the epilayer/substrate interface are successfully obtained. The narrowing of BPD images is observed just before the BPD-TED conversion points. The images of effective misorientations Δω provide a spatial resolution of 1-2 µm for a TED, and the range of Δω corresponds to strains on the order of +/-10-5. We also discuss the image-formation mechanism in 3D topography.

11. A preliminary study of the mechanical effects of polymer crystallization in the vicinity of a rigid cylindrical inclusion: Homogeneous crystallization under plane strain

SciTech Connect

Ma, R.; Negahban, M.

1995-12-31

12. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

PubMed

Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

2017-07-03

In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga1-x N layer releases through surface roughening and the 3D growth-mode.

13. On MTE-Model of Mathematics Teaching: Studying the Problems Related to a Plane Division Using the MTE-Model

ERIC Educational Resources Information Center

Bodroza-Pantic, O.; Matic-Kekic, Snezana; Jakovljev, Bogdanka; Markovic, Doko

2008-01-01

In this paper the didactically-methodological procedure named the MTE-model of mathematics teaching (Motivation test-Teaching-Examination test) is suggested and recommended when the teacher has subsequent lessons. This model is presented in detail through the processing of a nonstandard theme--the theme of decomposition of planes. Its efficiency…

14. On the Origin of the Fundamental Plane and Faber–Jackson Relations: Implications for the Star Formation Problem

D'Onofrio, Mauro; Cariddi, Stefano; Chiosi, Cesare; Chiosi, Emanuela; Marziani, Paola

2017-04-01

We provide an explanation of the properties of the fundamental plane (FP) relation and its observed projections for a sample of nearby early-type galaxies (ETGs) in terms of a fine-tuning between the time-averaged star formation rate < {{\\Psi }}> and their structural and dynamical characteristics. Their total V luminosity is linked with < {{\\Psi }}> and the central velocity dispersion σ through the relation {log}(L)=0.48(+/- 0.06){log}(< {{\\Psi }}> )+1.00 (+/- 0.13){log}(σ )+7.81(+/- 0.26), with an rms = 0.215 (R = 0.64 and P< 1.2× {10}-16). This fine-tuning permits us to obtain the FP in terms of two distinct “virtual planes” in the {log}({R}e){--}{log}(< {I}e> ){--}{log}(σ ) space. The first one (the virial plane; VP) represents the total galaxy mass derived from the scalar virial theorem and the mass-to-light ratio M/L, while the second plane comes from the relation L={L}0\\prime {σ }-2, where {L}0\\prime is a parameter connected with < {{\\Psi }}> . This is a mathematically convenient way for expressing the independence of the galaxy light from the virial equilibrium. Each galaxy in the {log}({R}e){--}{log}(< {I}e> ){--}{log}(σ ) space is identified by the intersection of these two planes. A posteriori, we show that the properties of the FP (tilt and scatter) and the zone of exclusion visible in the FP projections are consequences of this fine-tuning. The link between the FP properties and the SFR of galaxies provides a new view of the star formation phenomenon. The star formation history of an unperturbed galaxy seems to be driven by the initial conditions in the protogalaxies and is regulated across cosmic epochs by the variation of the main galaxy parameters (mass, luminosity, structural shape, and velocity dispersion).

15. Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2

Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano

2005-05-01

The Kepler problem is a dynamical system that is well defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane. First, the theory of central potentials on spaces of constant curvature is studied. All the mathematical expressions are presented using the curvature κ as a parameter, in such a way that they reduce to the appropriate property for the system on the sphere S2, or on the hyperbolic plane H2, when particularized for κ >0, or κ <0, respectively; in addition, the Euclidean case arises as the particular case κ =0. In the second part we study the main properties of the Kepler problem on spaces with curvature, we solve the equations and we obtain the explicit expressions of the orbits by using two different methods, first by direct integration and second by obtaining the κ-dependent version of the Binet's equation. The final part of the paper, that has a more geometric character, is devoted to the study of the theory of conics on spaces of constant curvature.

16. Problems Associated with Attaching Strain Gages to Titanium Alloy Ti-61-4V

NASA Technical Reports Server (NTRS)

Jenkins, J. M.; Lemcoe, M. M.

1977-01-01

Weldable strain gages have shown excellent high temperature characteristics for supersonic cruise aircraft application. The spotwelding attachment method, however, has resulted in serious reductions in the fatigue life of titanium alloy (Ti-6Al-4V) fatigue specimens. The reduction is so severe that the use of weldable strain gages on operational aircraft must be prohibited. The cause of the fatigue problem is thought to be a combination of the microstructure changes in the material caused by spotwelding and the presence of the flange of the stain gage. Brazing, plating, and plasma spraying were investigated as substitutes for spotwelding. The attachment of a flangeless gage by plasma spraying provided the most improvement in the fatigue life of the titanium.

17. Prognostic value of right ventricular free wall strain in pulmonary hypertension patients with pseudo-normalized tricuspid annular plane systolic excursion values.

PubMed

van Kessel, Marco; Seaton, David; Chan, Jonathan; Yamada, Akira; Kermeen, Fiona; Butler, Thomas; Sabapathy, Surendran; Morris, Norman

2016-06-01

Pulmonary hypertension (PH) is a progressively fatal disease having a significant impact on right ventricular (RV) function, a major determinant of long-term outcome in PH patients. In our clinic we frequently noticed the combination of PH and reduced RV function, but with discordant Tricuspid Annular Plane Systolic Excursion (TAPSE) values. The present study focuses on whether RV free wall strain measured using 2-dimensional speckle-tracking echocardiography is able to predict mortality in this subgroup of PH patients. 57 patients with PH and RV dysfunction (visual echocardiographic assessment of ≥2) and pseudo-normalized TAPSE values (defined as ≥16 mm) were retrospectively evaluated. Patients were divided by RV free -20 % as cut-off value. Follow-up data on all-cause mortality were registered after a median follow-up time of 27.9 ± 1.7 months. RV free of ≥-20 % was predictive of all-cause mortality after a median follow-up time of 27.9 ± 1.7 months (HR 3.76, 95 % CI 1.02-13.92, p = 0.05). RV free ≥-20 % remained a significant predictor of all-cause mortality (HR 4.30, 95 % CI 1.11-16.61, p = 0.04) after adjusting for PH-specific treatment. On the contrary, TAPSE was not a significant predictor of all-cause mortality. RV free wall strain provides prognostic information in patients with PH and RV dysfunction, but with normal TAPSE values. Future studies with larger cohorts, longer follow-up periods and inclusion of more echocardiographic parameters measuring LV and RV function could confirm the strength of RV free ≥-20 % as a predictor of mortality for this subgroup of patients with PH.

18. Experiments with Planing Surfaces

NASA Technical Reports Server (NTRS)

Sottorf, W

1934-01-01

A previous report discusses the experimental program of a systematic exploration of all questions connected with the planing problem as well as the first fundamental results of the investigation of a flat planing surface. The present report is limited to the conversion of the model test data to full scale.

19. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

PubMed

Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

2016-12-01

The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

20. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD

Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

2016-11-01

The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

1. A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems

Nedjar, B.

2017-05-01

The first objective of this contribution is the formulation of nonlinear problems in magneto-elasticity involving finite geometry of the surrounding free space. More specifically for the magnetic part of the problem, the surrounding free space is described by means of a boundary integral equation for which boundary elements are used that are appropriately coupled with the finite element discretization used inside the material. The second objective is to develop a numerical strategy to solve the strongly coupled magneto-mechanics problem at hand. Herein we provide a staggered scheme consisting of a magnetostatic resolution employing the above coupled BEM-FEM procedure at fixed deformation, followed by a mechanical resolution at fixed magnetic fields. This decoupled method renders the whole solution strategy very appealing since, among others, the first BEM-FEM resolution is linear for some prototype models, and the remaining mechanical resolution is analogous to nowadays classical nonlinear elastostatic problems in the finite strain range. Some nonlinear boundary-value problems are simulated to demonstrate the applicability of the proposed framework.

2. On the Dirichlet problem for the Helmholtz equation on the plane with boundary conditions on an almost closed curve

SciTech Connect

2000-06-30

In this article the two-dimensional Dirichlet boundary-value problem is considered for the Helmholtz operator with boundary conditions on an almost closed curve {gamma}{sub {epsilon}} where {epsilon}<<1 is the distance between the end-points of the curve. A complete asymptotic expression is constructed for a pole of the analytic continuation of the Green's function of this problem as the pole converges to a simple eigenfrequency of the limiting interior problem in the case when the corresponding eigenfunction of the limiting problem has a second-order zero at the centre of contraction of the gap. The influence of symmetry of the gap on the absolute value of the imaginary parts of the poles is investigated.

3. Large degree of polarization of photoluminescence caused by anisotropic strain in nonpolar a-plane MgxZn1-xO layers grown by plasma-assisted molecular beam epitaxy.

PubMed

Chen, X Y; Pan, X H; Chen, W; Chen, S S; Huang, J Y; Ye, Z Z

2016-10-15

A large degree of polarization (ρ) of photoluminescence (PL) approximate to 1 is obtained in each nonpolar a-plane MgxZn1-xO layer grown by plasma-assisted molecular beam epitaxy (MBE) with x=0.01, 0.03, and 0.10, respectively. Anisotropic in-plane strains are selectively introduced by using foreign substrates and doping with different Mg contents, which strongly modify the valence band structures, leading to anisotropic optical properties. A polarized Raman measurement shows that anisotropic in-plane strains along the y and z axes increase with the increasing Mg contents. Polarized PL spectra show that ρ gradually increases to 0.97 with decreasing in-plane strains, resulting from an increasing difference in transition energy (ΔE) between E⊥c and E‖c caused by a lift of the degeneracy of valence band structures. The obtained highly polarized emission is close to linear polarized light, which is desirable in the backlighting of liquid crystal displays.

4. Plane strain extension of a strip made of a material with stress state type dependent properties and weakened by cuts with circular base

Lomakin, E. V.; Fedulov, B. N.

2013-07-01

The limit properties of many heterogeneous materials such as grounds, concrete, ceramics, cast-iron alloys, and various heat-resistant and powder materials, as well as the properties of many composite materials, depend on the loading conditions. Neglecting the effects exhibited by such materials may result in nonconservative limit load analysis for some types of loading and possibly in an overly increased end product weight by failing to take into account stronger material properties for other types of loading. This paper presents a possible approach to modeling the behavior of such materials under plastic deformation, which is demonstrated for the sample problem on the extension of a strip weakened by cuts with circular base. An analytic solution on the basis of a rigid-plastic model of the material and a numerical solution by the finite elementmethod with elastic strains and small strengthening taken into account are presented.

5. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

Nguyen, Trung Kien; Claramunt, Albert Argilaga; Caillerie, Denis; Combe, Gaël; Dal Pont, Stefano; Desrues, Jacques; Richefeu, Vincent

2017-06-01

The paper presents a multi-scale modeling of Boundary Value Problem (BVP) approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE). It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

6. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

NASA Technical Reports Server (NTRS)

Krempl, Erhard; Hong, Bor Zen

1989-01-01

A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

7. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

NASA Technical Reports Server (NTRS)

Krempl, Erhard; Hong, Bor Zen

1989-01-01

A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

8. Structure and switching of in-plane ferroelectric nano-domains in strained Pb(x)Sr(1-x)TiO(3) thin films

Matzen, Sylvia; Nesterov, Oleksiy; Rispens, Gijsbert; Heuver, Jeroen; Noheda, Beatriz; Biegalski, Michael; Christen, Hans

2014-03-01

Understanding and controlling domain formation in nanoscale ferroelectrics is interesting from a fundamental point of view and of great technological importance. Increasing miniaturization allows creating complex domain structures, offering novel functionalities that could be particularly useful for the development of nanoelectronic devices. While most studies in thin films focus on domain patterns with up/down polarization for ferroelectric memories, domain structures with purely in-plane polarization have not been much investigated. However, such structures are potentially useful in optical devices or to avoid depolarization fields in ultra-thin films, as long as the domains can be addressed and switched. We use a combination of compositional substitutions and epitaxial growth on a substrate in order to tune the domain configuration. The substitution of Pb by Sr in PbxSr1-xTiO3 thin films grown epitaxially on (110)-DyScO3, stabilizes a domain structure with purely in-plane polarization. In this work, we show that it is possible to stabilize and control a complex domain architecture at two different length scales, yielding periodic ferroelectric nano-domains with purely in-plane polarization. Most importantly, these in-plane domains can be switched by a scanning probe.

9. Strain on the gastrocnemii and hamstrings affecting standing balance on an inclined plane in spastic cerebral palsy. A study using a geometric model.

PubMed

Suzuki, N; Mita, K; Watakabe, M; Akataki, K; Okagawa, T; Kimizuka, M

1998-01-01

The purpose of this study was to use an non-invasive method to determine whether strain on the gastrocnemii and hamstrings influences postural balance in spastic cerebral palsy (CP). Changes in alignment during standing posture with subjects positioned on a platform that was gradually inclined were measured in 10 normal children and 11 children with CP. The changes in postural alignment were plotted and geometric models used to determine the lines where the gastrocnemii and hamstrings were maximally stretched. In this way the relationship between postural alignment and the amount of strain on the gastrocnemii and hamstrings was investigated. On the inclined platform, which caused ankle joints to become dorsiflexed as the inclination angle increased, the gastrocnemii began to be strained and the hip joints began to be flexed (trunk bent forward) at the same time. In the children with CP, the gastrocnemii were more strained by smaller degrees of inclination. Furthermore, there was one child with CP whose hamstrings were also strained on the inclined platform. We confirmed that postural balance was affected by strain on the gastrocnemii and hamstrings.

10. Sharply notch cylindrical tension specimen for screening plane-strain fracture toughness. I - Influence of fundamental testing variables on notch strength. II Applications in aluminum alloy quality assurance of fracture toughness

NASA Technical Reports Server (NTRS)

Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.; Bucci, R. J.; Collis, S. F.; Kohm, R. F.; Kaufman, J. G.

1977-01-01

A description is presented of studies which have been conducted to establish an improved technology base for a use of the sharply notched cylindrical specimen in quality assurance tests of aluminum alloy products. The results are presented of an investigation of fundamental variables associated with specimen preparation and testing, taking into account the influence of the notch root radius, the eccentricity of loading, the specimen diameter, and the notch depth on the sharp notch strength. Attention is given to the statistical procedures which are necessary to establish correlations between the sharp notch strength and the plane-strain fracture toughness for high-strength aluminum alloys.

11. Computational strategy for the solution of large strain nonlinear problems using the Wilkins explicit finite-difference approach

NASA Technical Reports Server (NTRS)

Hofmann, R.

1980-01-01

The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.

12. [Problem in the hygienic regulation and standardization of biotechnological strains in reservoir water].

PubMed

Sheina, N I; Zholdakova, Z I; Ivanov, N G

2010-01-01

The pattern of the negative effect of biotechnological strains belonging to different taxons was experimentally studied. The effect of the strains manifested as imbalance of immunocompetent cells, development of immediate and delayed hypersensitivity, and altered qualitative and quantitative characteristics of the autochtonic microflora of the intestine. The minimum acting (10(5) cells/l) and non-acting (10(4) cells/l) enteral exposure levels were determined for the bulk of the test strains. Analysis of the authors' findings and the data available in the literature made it possible to propose a study program on the hygienic regulation and standardization of industrial microorganisms and their based microbiological products in the reservoir water.

13. Implementation of strain rate sensitive material properties into impact related problems

SciTech Connect

Laubscher, R.F.; Merwe, P. van der

1995-12-31

Strain rate sensitivity is discussed in general. A general strain rate sensitive constitutive model is then derived with a yield criterion for an isotropic hardening material incorporating a modified version of the Cowper Symonds equation. Experimental data for 10 different metals ranging from carbon steels to titanium alloys are fitted to this constitutive model. It is shown that with this relatively simple model a good agreement can be achieved between the constitutive model and the experimental data for most metals. The manner in which this constitutive model may be used in design is discussed along with its incorporation into numerical methods such as finite elements.

14. The Role of Personal and Job Resources in the Relationship between Psychosocial Job Demands, Mental Strain, and Health Problems

PubMed Central

Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang

2016-01-01

Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N1 = 8657 and N2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources. PMID:27582717

15. The Role of Personal and Job Resources in the Relationship between Psychosocial Job Demands, Mental Strain, and Health Problems.

PubMed

Mayerl, Hannes; Stolz, Erwin; Waxenegger, Anja; Rásky, Éva; Freidl, Wolfgang

2016-01-01

Recent research highlights the importance of both job resources and personal resources in the job demands-resources model. However, the results of previous studies on how these resources are related to each other and how they operate in relation to the health-impairment process of the job demands-resources model are ambiguous. Thus, the authors tested an alternative model, considering job and personal resources to be domains of the same underlying factor and linking this factor to the health-impairment process. Survey data of two Austrian occupational samples (N 1 = 8657 and N 2 = 9536) were analyzed using confirmatory factor analysis (CFA) and structural equation modeling (SEM). The results revealed that job and personal resources can be considered as indicators of a single resources factor which was negatively related to psychosocial job demands, mental strain, and health problems. Confirming previous studies, we further found that mental strain mediated the relationship between psychosocial job demands and health problems. Our findings suggest that interventions aimed at maintaining health in the context of work may take action on three levels: (1) the prevention of extensive job demands, (2) the reduction of work-related mental strain, and (3) the strengthening of resources.

16. The nonconforming linear strain tetrahedron for a large deformation elasticity problem

2016-12-01

In this paper we investigate the performance of the nonconforming linear strain tetrahedron element introduced by Hansbo (Comput Methods Appl Mech Eng 200(9-12):1311-1316, 2011; J Numer Methods Eng 91(10):1105-1114, 2012). This approximation uses midpoints of edges on tetrahedra in three dimensions with either point continuity or mean continuity along edges of the tetrahedra. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration in the form of one point Gauss integration of volumetric terms in near incompressible situations. We combine under-integration of the volumetric terms with houglass stabilization for the isochoric terms.

17. Effect of nano/micro B4C and SiC particles on fracture properties of aluminum 7075 particulate composites under chevron-notch plane strain fracture toughness test

Morovvati, M. R.; Lalehpour, A.; Esmaeilzare, A.

2016-12-01

Reinforcing aluminum with SiC and B4C nano/micro particles can lead to a more efficient material in terms of strength and light weight. The influence of adding these particles to an aluminum 7075 matrix is investigated using chevron-notch fracture toughness test method. The reinforcing factors are type, size (micro/nano), and weight percent of the particles. The fracture parameters are maximum load, notch opening displacement, the work up to fracture and chevron notch plane strain fracture toughness. The findings demonstrate that addition of micro and nano size particles improves the fracture properties; however, increasing the weight percent of the particles leads to increase of fracture properties up to a certain level and after that due to agglomeration of the particles, the improvement does not happen for both particle types and size categories. Agglomeration of particles at higher amounts of reinforcing particles results in improper distribution of particles and reduction in mechanical properties.

18. Study of Superconvergence by a Computer-Based Approach: Superconvergence of the Gradient of the Displacement, The Strain and Stress in Finite Element Solutions for Plane Elasticity.

DTIC Science & Technology

1994-02-01

LOO estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Anal...Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numir., 13 (1979), pp. 139-166. 11. R.Z. DAUTOV, A.V. LAPIN AND A.D...PDEs, 3 (1987), pp. 65-82. 15. M.T. NAKAo, Superconvergence of the gradient of Galerkin approzimations for elliptic problems, RAIRO Math. Model

19. Differences in the Experience of Caregiver Strain between Families Caring for Youth with Substance Use Disorders and Families of Youth with Mental Health Problems

ERIC Educational Resources Information Center

Heflinger, Craig Anne; Brannan, Ana Maria

2006-01-01

This study examined caregiver strain (i.e., burden of care, caregiver burden) among families of adolescents in treatment for substance abuse disorders compared to youth with mental health problems. We used descriptive and regression analyses to compare groups and to examine the youth and family variables associated with caregiver strain across the…

20. [Organizational problems of disaster victim identification in mass casualties as exemplified by Tu 154-M and Airbus A310 passenger plane crashes].

PubMed

Volkov, A V; Kolkutin, V V; Klevno, V A; Shkol'nikov, B V; Kornienko, I V

2008-01-01

Managerial experience is described that was gained during the large-scale work on victim identification following mass casualties in the Tu 154-M and Airbus A310 passenger plane crashes. The authors emphasize the necessity to set up a specialized agency of constant readiness meeting modern requirements for the implementation of a system of measures for personality identification. This agency must incorporate relevant departments of the Ministries of Health, Defense, and Emergency Situations as well as investigative authorities and other organizations.

1. MCFET - A MICROSTRUCTURAL LATTICE MODEL FOR STRAIN ORIENTED PROBLEMS: A COMBINED MONTE CARLO FINITE ELEMENT TECHNIQUE

NASA Technical Reports Server (NTRS)

Gayda, J.

1994-01-01

A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.

2. MCFET - A MICROSTRUCTURAL LATTICE MODEL FOR STRAIN ORIENTED PROBLEMS: A COMBINED MONTE CARLO FINITE ELEMENT TECHNIQUE

NASA Technical Reports Server (NTRS)

Gayda, J.

1994-01-01

A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.

3. Strain and in-plane orientation effects on the ferroelectricity of (111)-oriented tetragonal Pb(Zr0.35Ti0.65)O3 thin films prepared by metal organic chemical vapor deposition

Kuwabara, Hiroki; Menou, Nicolas; Funakubo, Hiroshi

2007-05-01

The growth and characterization of epitaxial (111)-oriented Pb(Zr0.35Ti0.65)O3 films deposited by metal organic chemical vapor deposition on (100)-oriented silicon substrates [(111)SrRuO3‖(111)Pt ‖(100)yttria-stabilizedzirconia‖(100)Si] are reported. The orientation, microstructure, and electric properties of these films are compared to those of fiber-textured highly (111)-oriented lead zirconate titanate (PZT) films deposited on (111)SrRuO3/(111)Pt/TiOx/SiO2/(100)Si substrates and epitaxial (111)-oriented PZT films deposited on (111)SrRuO3‖(111)SrTiO3 substrates. The ferroelectric properties of these films are not drastically influenced by the in-plane orientation of the film and by the strain state imposed by the underlying substrate. These results support the use of fiber-textured highly (111)-oriented films in highly stable ferroelectric capacitors.

4. The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity

Reddy, B. D.

2011-11-01

A general set of flow laws and associated variational formulations are constructed for small-deformation rate-independent problems in strain-gradient plasticity. The framework is based on the thermodynamically consistent theory due to Gurtin and Anand (J Mech Phys Solids 53:1624-1649, 2005), and includes as variables a set of microstresses which have both energetic and dissipative components. The flow law is of associative type. It is expressed as a normality law with respect to a convex but otherwise arbitrary yield function, or equivalently in terms of the corresponding dissipation function. Two cases studied are, first, an extension of the classical Hill-Mises or J 2 flow law and second, a form written as a linear sum of the magnitudes of the plastic strain and strain gradient. This latter form is motivated by work of Evans and Hutchinson (Acta Mater 57:1675-1688, 2009) and Nix and Gao (J Mech Phys Solids 46:411-425, 1998), who show that it leads to superior correspondence with experimental results, at least for particular classes of problems. The corresponding yield function is obtained by a duality argument. The variational problem is based on the flow rule expressed in terms of the dissipation function, and the problem is formulated as a variational inequality in the displacement, plastic strain, and hardening parameter. Dissipative components of the microstresses, which are indeterminate, are absent from the formulation. Existence and uniqueness of solutions are investigated for the generalized Hill-Mises and linear-sum dissipation functions, and for various combinations of defect energy. The conditions for well-posedness of the problem depend critically on the choice of dissipation function, and on the presence or otherwise of a defect energy in the plastic strain or plastic strain gradient, and of internal-variable hardening.

5. NASA Connect: 'Plane Weather'

NASA Technical Reports Server (NTRS)

1999-01-01

Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

6. A Case for Plane-Strain during the Development of the Indo-Burma Fold-Thrust Belt in Tripura and Mizoram, Northeast India (23-24°N; 91-93°E)

Betka, P. M.; Seeber, L.; Steckler, M. S.

2015-12-01

, contractional structures that formed internally within the FTB are indicative of east-west horizontal shortening and plane strain. This result suggests that the dextral component of shear measured by geodetic data is primarily partitioned onto discrete right-lateral strike-slip faults such as the Churachandpur-Mao and Kabaw faults.

7. Finite Plane and Anti-Plane Elastostatic Fields with Discontinuous Deformation Gradients Near the Tip of a Crack.

DTIC Science & Technology

1982-07-01

which makes no use of the hodograph transformation. The advantage of the procedure used here lies in its applicability to the plane strain Mode I problem...solutions of the displacement equation of equilibrium valid on overlapping domains . The final solution is then generated by a consistent matching...y(x)=x+u(x) for all xE%, (1.1)1 is a mappi;: of 9 onto a domain 6* in which u(x) is the displace- ment field. We assume the transformation (1.1) to be

8. Principal Strain Vascular Elastography: Simulation and Preliminary Clinical Evaluation.

PubMed

Nayak, Rohit; Huntzicker, Steven; Ohayon, Jacques; Carson, Nancy; Dogra, Vikram; Schifitto, Giovanni; Doyley, Marvin M

2017-03-01

It is difficult to produce reliable polar strain elastograms (radial and circumferential) because the center of the carotid artery is typically unknown. Principal strain imaging can overcome this limitation, but suboptimal lateral displacement estimates make this an impractical approach for visualizing mechanical properties within the carotid artery. We hypothesized that compounded plane wave imaging can minimize this problem. To test this hypothesis, we performed (i) simulations with vessels of varying morphology and mechanical behavior (i.e., isotropic and transversely isotropic), and (ii) a pilot study with 10 healthy volunteers. The accuracy of principal and polar strain (computed using knowledge of the precise vessel center) elastograms varied between 7% and 17%. In both types of elastograms, strain concentrated at the junction between the fibrous cap and the vessel wall, and the strain magnitude decreased with increasing fibrous cap thickness. Elastograms of healthy volunteers were consistent with those of transversely isotropic homogeneous vessels; they were spatially asymmetric, a trend that was common to both principal and polar strains. No significant differences were observed in the mean strain recovered from principal and polar strains (p > 0.05). This investigation indicates that principal strain elastograms measured with compounding plane wave imaging overcome the problems incurred when polar strain elastograms are computed with imprecise estimates of the vessel center. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

9. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems.

PubMed

Sood, Nitu; Lal, Banwari

2008-02-01

Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems.

10. PLASTICITY AND NON-LINEAR ELASTIC STRAINS

DTIC Science & Technology

conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)

11. Epidemiology of trauma: Childhood adversities, neighborhood problems, discrimination, chronic strains, life events, and daily hassles among people with a severe mental illness.

PubMed

Adams, Richard E; Ritter, Christian; Bonfine, Natalie

2015-12-15

Trauma during childhood and adolescence is a common event among people with a serious psychological disorder. Few studies assess a wide range of stressors for this population. This is surprising given that these stressful events are implicated in poorer outcomes related to course and treatment of mental health problems. This study of 214 people with serious mental illness examines the prevalence of childhood traumas, perceived neighborhood problems, discrimination, chronic strains, negative life events, and daily hassles. We use regression analyses to determine if these stressors are associated with quality of life. Results show that 95% of the sample report at least one childhood adversity. Perceived neighborhood problems, experiences of discrimination, chronic strains, life events, and daily hassles were also common. Examining the relationship between demographic factors and stressors suggests that older respondents, Whites, those who have never been married, and people diagnosed with Schizophrenia reported fewer stressors compared to those who are older, non-White, ever married, or suffering from other types of mental health problems. Finally, three of the six types of stressors were related to lower quality of life and depression. We discuss the implications of these findings for the treatment of severe psychological problems.

12. The plane problem of the flapping wing

NASA Technical Reports Server (NTRS)

Birnbaum, Walter

1954-01-01

In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.

13. In plane oscillation of a bifilar pendulum

Hinrichsen, Peter F.

2016-11-01

The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

14. Fourier plane imaging microscopy

SciTech Connect

Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

2014-09-14

We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

15. Attitude analysis in Flatland: The plane truth

NASA Technical Reports Server (NTRS)

Shuster, Malcolm D.

1993-01-01

Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.

16. Fixed Sagittal Plane Imbalance

PubMed Central

Savage, Jason W.; Patel, Alpesh A.

2014-01-01

Study Design Literature review. Objective To discuss the evaluation and management of fixed sagittal plane imbalance. Methods A comprehensive literature review was performed on the preoperative evaluation of patients with sagittal plane malalignment, as well as the surgical strategies to address sagittal plane deformity. Results Sagittal plane imbalance is often caused by de novo scoliosis or iatrogenic flat back deformity. Understanding the etiology and magnitude of sagittal malalignment is crucial in realignment planning. Objective parameters have been developed to guide surgeons in determining how much correction is needed to achieve favorable outcomes. Currently, the goals of surgery are to restore a sagittal vertical axis < 5 cm, pelvic tilt < 20 degrees, and lumbar lordosis equal to pelvic incidence ± 9 degrees. Conclusion Sagittal plane malalignment is an increasingly recognized cause of pain and disability. Treatment of sagittal plane imbalance varies according to the etiology, location, and severity of the deformity. Fixed sagittal malalignment often requires complex reconstructive procedures that include osteotomy correction. Reestablishing harmonious spinopelvic alignment is associated with significant improvement in health-related quality-of-life outcome measures and patient satisfaction. PMID:25396111

17. Fixed sagittal plane imbalance.

PubMed

Savage, Jason W; Patel, Alpesh A

2014-12-01

Study Design Literature review. Objective To discuss the evaluation and management of fixed sagittal plane imbalance. Methods A comprehensive literature review was performed on the preoperative evaluation of patients with sagittal plane malalignment, as well as the surgical strategies to address sagittal plane deformity. Results Sagittal plane imbalance is often caused by de novo scoliosis or iatrogenic flat back deformity. Understanding the etiology and magnitude of sagittal malalignment is crucial in realignment planning. Objective parameters have been developed to guide surgeons in determining how much correction is needed to achieve favorable outcomes. Currently, the goals of surgery are to restore a sagittal vertical axis < 5 cm, pelvic tilt < 20 degrees, and lumbar lordosis equal to pelvic incidence ± 9 degrees. Conclusion Sagittal plane malalignment is an increasingly recognized cause of pain and disability. Treatment of sagittal plane imbalance varies according to the etiology, location, and severity of the deformity. Fixed sagittal malalignment often requires complex reconstructive procedures that include osteotomy correction. Reestablishing harmonious spinopelvic alignment is associated with significant improvement in health-related quality-of-life outcome measures and patient satisfaction.

18. Eight plane IPND mechanical testing.

SciTech Connect

Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL

2008-03-18

A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND

19. Symmetry in finite phase plane

Zak, J.

2010-03-01

The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.

20. Plane elasto-plastic analysis of v-notched plate under bending by boundary integral equation method. Ph.D. Thesis

NASA Technical Reports Server (NTRS)

Rzasnicki, W.

1973-01-01

A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.

1. SNAP focal plane

SciTech Connect

Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.

2002-07-29

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.

2. Axial Plane Optical Microscopy

PubMed Central

Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang

2014-01-01

We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. PMID:25434770

3. Out of plane analysis for composite structures

NASA Technical Reports Server (NTRS)

Paul, P. C.; Saff, C. R.; Sanger, Kenneth B.; Mahler, M. A.; Kan, Han Pin; Kautz, Edward F.

1990-01-01

Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed.

4. Precise measurement of planeness.

PubMed

Schulz, G; Schwider, J

1967-06-01

Interference methods are reviewed-particularly those developed at the German Academy of Sciences in Berlin-with which the deviations of an optically flat surface from the ideal plane can be measured with a high degree of exactness. One aid to achieve this is the relative methods which measure the differences in planeness between two surfaces. These are then used in the absolute methods which determine the absolute planeness of a surface. This absolute determination can be effected in connection with a liquid surface, or (as done by the authors) only by suitable evaluation of relative measurements between unknown plates in various positional combinations. Experimentally, one uses two- or multiple-beam interference fringes of equal thickness(1) or of equal inclination. The fringes are observed visually, scanned, or photographed, and in part several wavelengths or curves of equal density (Aquidensiten) are employed. The survey also brings the following new methods: a relative method, where, with the aid of fringes of superposition, the fringe separation is subdivided equidistantly thus achieving an increase of measuring precision, and an absolute method which determines the deviations of a surface from ideal planeness along arbitrary central sections, without a liquid surface, from four relative interference photographs.

5. Plane Jane(s).

ERIC Educational Resources Information Center

Greenman, Geri

2001-01-01

Describes an assignment that was used in an advanced drawing class in which the students created self-portraits, breaking up their images using planes and angles to suggest their bone structure. Explains that the students also had to include three realistic portions in their drawings. (CMK)

6. Optical strain measuring techniques for high temperature tensile testing

NASA Technical Reports Server (NTRS)

Gyekenyesi, John Z.; Hemann, John H.

1987-01-01

A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.

Matsushima, Koichi; Murata, Masaaki; Shingu, Hirokimi; Shimizu, Tetsuo; Mikami, Tatsuo; Hashida, Yoshikazu

A simulation program for a future Japanese space-plane (SP) considered for development is presented along with the results of the analysis of a candidate navigation configuration, focused on the terminal area energy management phase and the approach/landing phase of SP. The guidance laws and aerodynamic parameters which are applied to the program for the analysis are modeled using the laws and parameters of the U.S. Space Suttle, assuming typical values for the accuracy of sensors.

8. Parameter Plane Design Method

DTIC Science & Technology

1989-03-01

Th usr a toente aninteer a thca sms b esta 1 Fp-ocsing 2. Enter P1 values, lwgt, ldig - > 9 Table I give us proper values. Table 1. PARAMETER TABLE...necessary and identify by block number) In this thesis a control systems analysis package is developed using parameter plane methods. It is an interactive...designer is able to choose values of the parameters which provide a good compromise between cost and dynamic behavior. 20 Distribution Availability of

9. The tail plane

NASA Technical Reports Server (NTRS)

Munk, Max M

1923-01-01

This report deals with the calculation of the equilibrium, statistical stability, and damping of the tail plane. The author has simplified the present theory of longitudinal stability for the particular purpose of obtaining one definite coefficient characteristics of the effect of the tail plane. This coefficient is obtained by substituting certain aerodynamic characteristics and some dimensions of the airplane in a comparatively simple mathematical expression. Care has been taken to confine all aerodynamical information necessary for the calculation of the coefficient to the well-known curves representing the qualities of the wing section. This is done by making use of the present results of modern aerodynamics. All formulas and relations necessary for the calculation are contained in the paper. They give in some cases only an approximation of the real values. An example of calculation is added in order to illustrate the application of the method. The coefficient indicates not only whether the effect of the tail plane is great enough, but also whether it is not too great. It appears that the designer has to avoid a certain critical length of the fuselage, which inevitably gives rise to periodical oscillations of the airplane. The discussion also shows the way and in what direction to carry out experimental work.

10. Image plane sweep volume illumination.

PubMed

Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

2011-12-01

In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.

11. Analytical modeling of PWAS in-plane and out-of-plane electromechanical impedance spectroscopy (EMIS)

Kamas, Tuncay; Lin, Bin; Giurgiutiu, Victor

2013-04-01

This paper discusses theoretical analysis of electro-mechanical impedance spectroscopy (EMIS) of piezoelectric wafer active sensor (PWAS). Both free and constrained PWAS EMIS models are developed for in-plane (lengthwise) and outof plane (thickness wise) mode. The paper starts with the general piezoelectric constitutive equations that express the linear relation between stress, strain, electric field and electric displacement. This is followed by the PWAS EMIS models with two assumptions: 1) constant electric displacement in thickness direction (D3) for out-of-plane mode; 2) constant electric field in thickness direction (E3) for in-plane mode. The effects of these assumptions on the free PWAS in-plane and out-of-plane EMIS models are studied and compared. The effects of internal damping of PWAS are considered in the analytical EMIS models. The analytical EMIS models are verified by Coupled Field Finite Element Method (CF-FEM) simulations and by experimental measurements. The extent of the agreement between the analytical and experimental EMIS results is discussed. The paper ends with summary, conclusions, and suggestions for future work.

12. Trajectory optimization for the National Aerospace Plane

NASA Technical Reports Server (NTRS)

Lu, Ping

1993-01-01

The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

13. An information-theoretic approach to designing the plane spacing for multifocal plane microscopy

PubMed Central

Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

2015-01-01

Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup. PMID:26113764

14. The Aerodynamic Plane Table

NASA Technical Reports Server (NTRS)

Zahm, A F

1924-01-01

This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

15. Fourier plane image amplifier

DOEpatents

Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

1995-12-12

A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

16. Fourier plane image amplifier

DOEpatents

Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

1995-01-01

A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

17. Precession of a Spinning Ball Rolling down an Inclined Plane

ERIC Educational Resources Information Center

Cross, Rod

2015-01-01

A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

18. Precession of a Spinning Ball Rolling down an Inclined Plane

ERIC Educational Resources Information Center

Cross, Rod

2015-01-01

A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

19. Thin-film light-intensity measurement strain-analysis technique.

NASA Technical Reports Server (NTRS)

Williams, J. G.

1972-01-01

The optical response to loading of a thin metallic film deposited on a low-modulus structural substrate is studied theoretically and experimentally. Two types of optical properties called total and central-image transmittance (or reflectance) are shown to be related to the mechanical state of the substrate. Empirical optical-mechanical relationships are proposed between these optical properties and the substrate strain field of a general plane-stress problem. A technique based on wrinkle and microfracture patterns is described for determining principal directions of strain. Experimental results for uniaxially loaded specimens show that it is possible to obtain a nearly linear relationship between transmittance and strain for certain materials combinations.

20. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

Milani, G.; Bertolesi, E.

2017-07-01

A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

1. Focal plane polarimeter design

SciTech Connect

McClelland, J.B.

1983-10-12

Measurement of polarization transfer or so-called triple-scattering parameters have been made recently for proton-nucleon scattering at TRIUMF, SIN, and LAMPF using carbon polarimeters and have been essential in determining the proton-nucleon amplitudes up to 800 MeV. An extension to the case is described where the scattered proton polarization is analyzed after passage through some type of spectrometer. Most of the experience with this type of focal plane polarimeter (FPP) has been gained in the field of proton-nucleus scattering at intermediate energies but is certainly not confined to such specific cases. The salient features of an FPP are emphasized by describing a minimal system which includes all the necessary components then go on to a more complete system. 10 references. (WHK)

2. [A path to spatial irradiation planning. I. The problem of dose homogeneity within the area of crossing ray beams with different planes of incidence; basic examinations leading to an optimization procedure].

PubMed

Sonntag, A

1975-11-01

Under certain circumstances, foci within distinct regions of the body are optimally included by irradiation from different directions of the space. In practice, such plannings mostly fail from the difficulty to produce a sufficiently homogenous dose distribution within the target volume. The present considerations disclose the possibility to determine certain parameters or irradiation in an explicit form, based on a vectorial view of the dose distribution, thus obtaining homogeneity of the radiation dose. Part I of this paper is presenting the foundations of a procedure which aims at dose homogeneity in cross-fire techniques with different planes of incidence, utilizing simple mathematical correlations among the vectorial dose quantities.

3. In-plane magnetization-induced quantum anomalous Hall effect.

PubMed

Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

2013-08-23

The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

4. Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.

2016-09-01

This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

5. Fourier plane filters

NASA Technical Reports Server (NTRS)

Oliver, D. S.; Aldrich, R. E.; Krol, F. T.

1972-01-01

An electrically addressed liquid crystal Fourier plane filter capable of real time optical image processing is described. The filter consists of two parts: a wedge filter having forty 9 deg segments and a ring filter having twenty concentric rings in a one inch diameter active area. Transmission of the filter in the off (transparent) state exceeds fifty percent. By using polarizing optics, contrast as high as 10,000:1 can be achieved at voltages compatible with FET switching technology. A phenomenological model for the dynamic scattering is presented for this special case. The filter is designed to be operated from a computer and is addressed by a seven bit binary word which includes an on or off command and selects any one of the twenty rings or twenty wedge pairs. The overall system uses addressable latches so that once an element is in a specified state, it will remain there until a change of state command is received. The drive for the liquid crystal filter is ? 30 V peak at 30 Hz to 70 Hz. These parameters give a rise time for the scattering of 20 msec and a decay time of 80 to 100 msec.

6. Plane and Coloured

ERIC Educational Resources Information Center

Vajda, S.

1969-01-01

Discussed are some applications of Euler's Formula N plus F minus E equals Z, where N, F, and E are respectively the number of vertices, faces, and edges of a planar figure. In particular, the Four-Color Problem is proved for the special case of five countries. (CT)

7. Plane impact response of PBX 9501 below 2 GPA

SciTech Connect

Dick, J.J.; Martinez, A.R.; Hixson, R.S.

1998-12-31

The plane impact response of PBX 9501 was measured below 2 GPa using a light-gas gun facility. Time-resolved wave profiles were obtained in a state of uniaxial strain for impact stresses between 0.3 to 1.2 GPa. The dynamic strength of PBX 9501 was measured at high strain rates in both compression and tension. The Hugoniot equation of state was measured.

8. Plane Smoothers for Multiblock Grids: Computational Aspects

NASA Technical Reports Server (NTRS)

Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane

1999-01-01

Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.

9. Viewing Saturn from the Plane

NASA Image and Video Library

2006-04-19

This view of the ringed planet shows its tilt relative to the plane of its orbit around the Sun. The planet tilts nearly 27 degrees relative to the ecliptic plane giving rise to seasons in which the rings shadow each hemisphere in its respective winter

10. Modeling of fan formation in a shear rupture head on the basis of singular solutions of plane elasticity

Tarasov, B. G.; Sadovskii, V. M.

2016-10-01

Mathematical model of the equilibrium fan-structure formation between two elastic half-planes is constructed, simulating a shear rupture at stress conditions of seismogenic depths. The stress-strain state far from the fan-structure is analyzed with the help of solution of the problem on the Volterra edge dislocation resulted in estimation of the fan length. The model of formation of two differently directed fans due to the localized action of tangential stress, which pushes two edge dislocations with the antiparallel Burgers vectors, is proposed and analysed.

11. Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation.

PubMed

Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

2010-11-20

The two-dimensional in-plane displacement and strain calculation problem through digital image processing methods has been studied extensively in the past three decades. Out of the various algorithms developed, the Newton-Raphson partial differential correction method performs the best quality wise and is the most widely used in practical applications despite its higher computational cost. The work presented in this paper improves the original algorithm by including adaptive spatial regularization in the minimization process used to obtain the motion data. Results indicate improvements in the strain accuracy for both small and large strains. The improvements become even more significant when employing small displacement and strain window sizes, making the new method highly suitable for situations where the underlying strain data presents both slow and fast spatial variations or contains highly localized discontinuities.

12. Validation of a Scaled Plane Strain Hypervelocity Gouging Model

DTIC Science & Technology

2006-03-01

These are the Analytic Equation of State (ANEOS), and SNL- SESAME , a tabular EOS . 42 In this work, materials are modeled using the SESAME EOS ... eos * Eq Of State 81 MAT1 SES STEEL_V300 * Sesame Eq of State...mass of material with the internal energy Eo . Because the mass in front of the shock was assumed stationary, this also happens to be the internal

13. Directly probing the effect of strain on magnetic exchange interactions

Dorr, Kathrin

2012-02-01

Thin films of transition metal oxides of the perovskite type ABO3 (B = 3d or 4d metal) have revealed abundant examples for strain-driven changes of magnetic ordering. One most popular is the strain-induced ferromagnetic ferroelectric state of otherwise antiferromagnetic paraelectric EuTiO3. Another promising example is the strain control of orbital occupation and magnetic coupling at oxide interfaces of SrRuO3 with manganites. In spite of strong efforts, the theoretical treatment of magnetic exchange in complex oxides has remained a challenge, and experiments continue to show unpredicted / unexplained large effects of the epitaxial strains in films. In order to provide meaningful experimental data on strain dependences, epitaxial thin films should be grown in various coherent strain states on different substrates without changing anything but the strain. This is inherently difficult: possible problems may arise from a strain-dependent oxidation level or microstructure. As a complementary approach, the in-plane strain of epitaxial oxide films can be controlled reversibly using a piezoelectric substrate, even though the accessible reversible strain of 0.1 -- 0.2% is an order of magnitude smaller. In my talk, I will address reversible-strain studies on La0.7Sr0.3MnO3, La1-xSrxCoO3 (x = 0, 0.2, 0.3) und SrRuO3 films, showing the strain response of the magnetic Curie temperature, the magnetization and the electrical resistance and discussing the current understanding of the strain effects on magnetic ordering. In La0.8Sr0.2CoO3, a strain-driven phase transition between ferromagnetic and spin-glass-like could be established by combining the piezoelectric substrate with a tuned buffer system providing varied as-grown strain states. In SrRuO3, a tetragonal tensile strain state shows a suppression of the ordered magnetic moment. Lattice parameters and symmetries of the films were determined by x-ray diffraction. It is noted that the atomic displacements (bond lengths and

14. Traffic noise and the hyperbolic plane

SciTech Connect

Gibbons, G.W. Warnick, C.M.

2010-04-15

We consider the problem of sound propagation in a wind. We note that the rays, as in the absence of a wind, are given by Fermat's principle and show how to map them to the trajectories of a charged particle moving in a magnetic field on a curved space. For the specific case of sound propagating in a stratified atmosphere with a small wind speed, we show that the corresponding particle moves in a constant magnetic field on the hyperbolic plane. In this way, we give a simple 'straightedge and compass' method to estimate the intensity of sound upwind and downwind. We construct Mach envelopes for moving sources. Finally, we relate the problem to that of finding null geodesics in a squashed anti-de Sitter spacetime and discuss the SO(3,1)xR symmetry of the problem from this point of view.

15. Trajectory optimization for the National Aerospace Plane

NASA Technical Reports Server (NTRS)

Lu, Ping

1992-01-01

The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.

16. General image method in a plane-layered elastostatic medium

NASA Technical Reports Server (NTRS)

Fares, N.; Li, V. C.

1988-01-01

The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.

17. Percolation threshold of the permeable disks on the projective plane

Borman, V. D.; Grekhov, A. M.; Tronin, I. V.; Tronin, V. N.

2016-09-01

The percolation threshold and wrapping probability for the two-dimensional problem of continuum percolation on the projecive plane have been calculated by the Monte Carlo method with the Newman-Ziff algorithm for completely permeable disks. It has been shown that the percolation threshold of disks on the projective plane coincides with the percolation threshold of disks on the surfaces of a torus and Klein bottle, indicating that this threshold is topologically invariant.

18. Plane reconstruction ultrasound tomography device

SciTech Connect

Hassler, D.

1984-10-23

An ultrasound tomography device for scanning an object under examination from a plurality of directions. Coronal slice images of the plane areas near or at the female breast wall are obtained. Ultrasound lobes from ultrasound transducers are electronically directed or mechanically positioned to obliquely strike the coronal slice located at or near the breast wall. A full image of the coronal slice plane is reconstructed through section by section combination of the images obtained from the several ultrasound lobes.

19. A method of plane geometry primitive presentation

Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

2014-11-01

Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

20. [Tail Plane Icing

NASA Technical Reports Server (NTRS)

1997-01-01

The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

1. Röthlisberger Channel Model with Anti-­Plane Shear Loading Superposed on In-Plane Compression

Fernandes, M. C.; Meyer, C. R.; Rice, J. R.

2014-12-01

The Röthlisberger channel (R­-channel) is a commonly adopted model that balances creep closure by Nye 2D in-plane straining, driven by the ice overburden pressure, against the melt rate from viscous energy dissipation in turbulent flow within the channel. Perol and Rice (AGU abstr. C11B-0677, 2011; JGR 2014 in review) and Suckale et al. (JGR F003008, 2014) have conjectured that these R-Channels may exist at the beds of rapidly straining West Antarctic Ice Stream shear margins. That is expected as a result of melt generation and drainage from forming temperate ice, and the channels may interact through the bed hydrology to partially stabilize the shear margin against lateral expansion. However, at those locations the overburden stresses, driving in-plane flow, are supplemented by substantial anti­-plane shear stresses. Similarly, R-channels in mountain glaciers are also subject to both in-plane and anti-plane stresses. These channels usually form in the downstream direction, where anti-plane shear effects arise horizontally from drag at lateral moraines and vertically from the downslope gravity component. Here we examine how superposed anti-plane loading can alter results of the Nye solution for a 2D R-­channel. We use a combination of perturbation analyses and finite element methods, varying the amount of applied anti-plane stress. A closed-form solution is derived for imposing a small anti-plane perturbation, which has no effect at linear order on the Nye closure rate. Such effects become strong at more substantial perturbations, and the in­plane stress and strain fields are then significantly altered from the Nye solution. We further extend our model to compute channel size in terms of the external stressing and flow rate. Understanding the effect of the ice flow on channel size and formation is important to subglacial hydrology, as well as a potentially vital component for our understanding of the formation and motion of ice streams found in West Antarctica.

2. Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane: comment.

PubMed

Skigin, Diana C; Depine, Ricardo A

2008-05-01

We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals.

3. Plane wave reflection at flow intakes

Davies, P. O. A. L.

1987-06-01

A treatment is presented for prediction of the acoustic field associated with an open duct termination whose inflow is at a mean Mach number, and requires a quantitative description of both the acoustic and flow conditions in the vicinity of the open end. This problem is presently simplified by restricting the acoustic field within the duct to plane wave motion, with component wave amplitudes p(+) and p(-), where p(+) is incident at the termination. A 'vena contracta' develops in the pipe just downstream of the intake, leading to a significant mean pressure loss.

4. Nonlinear interaction of plane elastic waves

SciTech Connect

Korneev, V.A.; Nihei, K.T.; Myer, L.R.

1998-06-01

The paper presents basic first order results of nonlinear elastic theory by Murnaghan for elastic wave propagation in isotropic solids. The authors especially address the problem of resonant scattering of two collimated beams and present analytical solutions for amplitudes of all possible types of resonant interactions for elastic plane waves. For estimation of nonlinear scattered waves they use measured elastic parameters for sandstone. The most profound nonlinear effect is expected for interactions of two SH waves generating compressional P wave at sum frequency. Estimations show that nonlinear phenomena is likely to be observed in seismic data. Basic equations of nonlinear five-constant theory by Murnaghan are also presented.

5. Coincidence lattices in the hyperbolic plane.

PubMed

Rodríguez-Andrade, M A; Aragón-González, G; Aragón, J L; Gómez-Rodríguez, A

2011-01-01

The problem of coincidences of lattices in the space R(p,q), with p + q = 2, is analyzed using Clifford algebra. We show that, as in R(n), any coincidence isometry can be decomposed as a product of at most two reflections by vectors of the lattice. Bases and coincidence indices are constructed explicitly for several interesting lattices. Our procedure is metric-independent and, in particular, the hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of the Cartan-Dieudonné theorem for R(p,q), with p + q = 2, that includes an algorithm to decompose an orthogonal transformation into a product of reflections.

6. Surface deformation from a pressurized subsurface fracture: Problem description

SciTech Connect

Fu, Pengcheng

2014-09-15

This document speci es a set of problems that entail the calculation of ground surface deformation caused by a pressurized subsurface fracture. The solid medium is assumed to be isotropic-homogeneous where linear elasticity applies. The e ects of the uid in the fracture is represented by a uniform pressure applied onto the two fracture walls. The fracture is assumed to be rectangular in shape and various dipping angles are considered. In addition to the full 3D solution, we reduce the 3D problem to a plane-strain geometry, so that 2D codes can participate in the comparison and results can be compared with those available in the literature.

7. Stresses and strains in thick perforated orthotropic plates

Treesearch

A. Alshaya; John Hunt; R. Rowlands

2016-01-01

Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...

8. The Laplace Planes of Uranus and Pluto

NASA Technical Reports Server (NTRS)

Dobrovolskis, Anthony R.

1993-01-01

Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.

9. Plane waves as tractor beams

Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz

2013-12-01

It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.

10. Explosive plane-wave lens

DOEpatents

Marsh, S.P.

1988-03-08

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

11. Explosive plane-wave lens

DOEpatents

Marsh, Stanley P.

1988-01-01

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

12. Explosive plane-wave lens

DOEpatents

Marsh, S.P.

1987-03-12

An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

NASA Technical Reports Server (NTRS)

Mackall, Dale

1993-01-01

Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.

NASA Technical Reports Server (NTRS)

Mackall, Dale

1993-01-01

Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.

15. On a Minimum Problem in Smectic Elastomers

SciTech Connect

Buonsanti, Michele; Giovine, Pasquale

2008-07-08

Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.

16. On a Minimum Problem in Smectic Elastomers

Buonsanti, Michele; Giovine, Pasquale

2008-07-01

Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress.

17. Finite-element formulations for problems of large elastic-plastic deformation

NASA Technical Reports Server (NTRS)

Mcmeeking, R. M.; Rice, J. R.

1975-01-01

An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

18. Finite element formulations for problems of large elastic-plastic deformation

NASA Technical Reports Server (NTRS)

Mcmeeking, R. M.; Rice, J. R.

1974-01-01

An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

19. Finite-element formulations for problems of large elastic-plastic deformation

NASA Technical Reports Server (NTRS)

Mcmeeking, R. M.; Rice, J. R.

1975-01-01

An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

20. National Transonic Facility model and model support vibration problems

NASA Technical Reports Server (NTRS)

Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

1990-01-01

Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

1. Computing Displacements And Strains From Video Images

NASA Technical Reports Server (NTRS)

Russell, Samuel S.; Mcneill, Stephen R.; Lansing, Matthew D.

1996-01-01

Subpixel digital video image correlation (SDVIC) technique for measuring in-plane displacements on surfaces of objects under loads, without contact. Used for analyses of experimental research specimens or actual service structures of virtually any size or material. Only minimal preparation of test objects needed, and no need to isolate test objects from minor vibrations or fluctuating temperatures. Technique implemented by SDVIC software, producing color-graduated, full-field representations of in-plane displacements and partial derivatives with respect to position along both principal directions in each image plane. From representations, linear strains, shear strains, and rotation fields determined. Written in C language.

2. Affine Contractions on the Plane

ERIC Educational Resources Information Center

Celik, D.; Ozdemir, Y.; Ureyen, M.

2007-01-01

Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

3. Affine Contractions on the Plane

ERIC Educational Resources Information Center

Celik, D.; Ozdemir, Y.; Ureyen, M.

2007-01-01

Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

4. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

SciTech Connect

Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

2017-01-01

Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

5. Plane stress analysis of wood members using isoparametric finite elements, a computer program

Treesearch

Gary D. Gerhardt

1983-01-01

A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...

6. Natural Strain

NASA Technical Reports Server (NTRS)

Freed, Alan D.

1995-01-01

The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

7. Applications of FEM and BEM in two-dimensional fracture mechanics problems

NASA Technical Reports Server (NTRS)

Min, J. B.; Steeve, B. E.; Swanson, G. R.

1992-01-01

A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.

8. First-principles study of the effect of (111) strain on octahedral rotations and structural phases of LaAl O3

Moreau, Magnus; Marthinsen, Astrid; Selbach, Sverre M.; Tybell, Thomas

2017-02-01

The structural and electronic response of LaAl O3 to biaxial strain in the (111) plane is studied by density functional theory (DFT) and compared with strain in the (001) plane and isostatic strain. For (111) strain, in-plane rotations are stabilized by compressive strain and out-of-plane rotations by tensile strain. This is an opposite splitting of the modes compared with (001) strain. Furthermore, for compressive (111) strain, in-plane rotations are degenerate with respect to the rotation axis, giving rise to Goldstone-like modes. We rationalize these changes in octahedral rotations by analyzing the VA/VB polyhedral volume ratios. Finally, we investigate how strain affects the calculated band gap, and find a 28% difference between the strain planes under 4% tension. This effect is attributed to different A-site dodecahedral crystal field splitting for (001) and (111) strains.

9. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

NASA Technical Reports Server (NTRS)

Erdogan, F.; Aksel, B.

1986-01-01

The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

10. Plane stress problems using hysteretic rigid body spring network models

Christos, Sofianos D.; Vlasis, Koumousis K.

2016-08-01

In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.

11. Spacefilling Curves and Routing Problems in the Plane,

DTIC Science & Technology

1983-02-11

requires only O(N) meory , and May be impleMented to execute in O(N log N) operations at Most, or O(N) operations on the average. If the points lie in...produces a tour whose length, L, satisfies L 4 NP(I/N) = N - We also consider ihow long the heuristic tour may be In relation to the optimal tour. Theorem...is lengthy and will be given in Section 8. We note that the dominant term In the exact bound for L/L* (Eq. (6.5)) increases slowly in N but rapidly in

12. Symmetrically converging plane thermonuclear burn waves

Charakhch'yan, A. A.; Khishchenko, K. V.

2013-10-01

Five variants of a one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density, where the solution includes two thermonuclear burn waves propagating to meet one another at the symmetry plane, are simulated. A laser pulse with total absorption of energy at the critical density (in two variants) and a proton bunch that provides for a nearly isochoric heating (in three variants) are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burn wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0, where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ≈ 1 g cm-2 and about 0.7 at Hρ0 ≈ 5 g cm-2. The expansion stage of the flow (after reflecting the burn or detonation wave from the symmetry plane) gives the main contribution in forming the final values of the burn-up factor and the gain at Hρ0 ≈ 1 g cm-2 and increases them approximately two times at Hρ0 ≈ 5 g cm-2. In the case of the proton driver, the final value of the gain is about 200 at Hρ0 ≈ 1 g cm-2 and about 2000 at Hρ0 ≈ 5 g cm-2. In the case of the laser driver, the above values are four times less in conformity with the difference between the driver energies.

13. On the Influence of Strain-Path Changes on Fracture.

DTIC Science & Technology

1986-08-01

BEFORE COMPLETING FORM I. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Report No. 1 4 7,/f2. ? 4. TITLE (and Subtitle) S. TYPE OF...uniaxial and equibiaxial tension are shown to have a large effect on plane-strain ductility. Data for titanium sheets, both with and without hydrides, show...that a significant ductility enhancement occurs at a final strain state of plane-strain tension following multi-stage deformation sequences comprised

14. SETI in the Ecliptic Plane

Conn Henry, Richard; Kilston, S.; Shostak, S.

2008-05-01

The strong advantages of SETI searches in the ecliptic plane have been pointed out by Kilston, Shostak, and Henry (2008). In our poster we show one possible history of civilizations in the galaxy, from birth, through galactic colonization, up to death - and even beyond. Should this scenario be correct, the pattern suggests that the best hope for success in SETI is exploration of the possibility that there are a few extremely ancient but non-colonizing civilizations; civilizations that, aeons ago, detected the existence of Earth (oxygen, and hence life) and of its Moon (stabilizing Earth's rotation) via observations of transits of the Sun (hence, ecliptic, which is stable over millions of years [Laskar et al. 2004]), and have been beaming voluminous information in our direction ever since, in their faint hope (now realized) that a technological "receiving” species would appear. To maintain such a targeted broadcast would be extremely cheap for an advanced civilization. A search of a swath centered on our ecliptic plane should easily find such civilizations, if they exist. We hope to carry out such a search, using the Allen Telescope Array. http://henry.pha.jhu.edu/poster.SETI.pdf References: Kilston, Steven; Shostak, Seth; & Henry, Richard Conn; "Who's Looking at You, Kid?: SETI Advantages near the Ecliptic Plane," AbSciCon 2008, April 14-17, Santa Clara, CA.; Laskar, J., et al., A&A 428, 261, 2004 This work was supported by Maryland Space Grant Consortium.

15. Orbital Space Plane (OSP) Program

NASA Technical Reports Server (NTRS)

McKenzie, Patrick M.

2003-01-01

Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

16. Object tracking based on bit-planes

Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng

2016-01-01

Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.

17. Serial Back-Plane Technologies in Advanced Avionics Architectures

NASA Technical Reports Server (NTRS)

Varnavas, Kosta

2005-01-01

Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

18. Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids

Malkawi, Ghazi

An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new

19. Kauffman bracket of plane curves

Chmutov, S.; Goryunov, V.

1996-12-01

We lower the Kauffman bracket for links in a solid torus (see [16]) to generic plane fronts. It turns out that the bracket can be entirely defined in terms of a front itself without using the Legendrian lifting. We show that all the coefficients of the lowered bracket are in fact Vassilev type invariants of Arnold's J +-theory [3, 4]. We calculate their weight systems. As a corollary we obtain that the first coefficient is essentially the quantum deformation of the Bennequin invariant introduced recently by M. Polyak [19].

20. SNAP Satellite Focal Plane Development

SciTech Connect

Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

2003-07-07

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.

1. Augmented-plane-wave forces

Soler, José M.; Williams, Arthur R.

1990-11-01

Results are presented that demonstrate the effectiveness of a calculational method of electronic-structure theory. The method combines the power (tractable basis-set size) and flexibility (transition and first-row elements) of the augmented-plane-wave method with the computational efficiency of the Car-Parrinello method of molecular dynamics and total-energy minimization. Equilibrium geometry and vibrational frequencies in agreement with experiment are presented for Si, to demonstrate agreement with existing methods and for Cu, N2, and H2O to demonstrate the broader applicability of the approach.

2. Orbital Space Plane Cost Credibility

NASA Technical Reports Server (NTRS)

Creech, Steve

2003-01-01

NASA's largest new start development program is the Orbital Space Plane (OSP) Program. The program is currently in the formulation stage. One of the critical issues to be resolved, prior to initiating full-scale development, is establishing cost credibility of NASA s budget estimates for development, production, and operations of the OSP. This paper will discuss the processes, tools, and methodologies that NASA, along with its industry partners, are implementing to assure cost credibility for the OSP program. Results of benchmarking of current tools and the development of new cost estimating capabilities and approaches will be discussed.

3. Focal-Plane Alignment Sensing

DTIC Science & Technology

1993-02-01

and V.Y. Arsenin , Solutions of Ill - Posed Problems , Winston, Minneapolis ( 1977 ). [2.6] A.K. Katsaggelos, "Iterative image restoration algorithms," ()pt...Diversity (APD) software package. We have obser,,ed that noise amplification poses a significant problem both in the nonlinear optimization procedure and...will pose severe problems for almost any nonlinear optimization algorithm. We believe that this fractal-like texture is the direct result of noise

4. Response of an orthotropic half-plane subjected to transient anti-plane loading with multiple edge cracks

Ayatollahi, M.

2017-05-01

This study deals with the problem of multiple edge cracks in an elastic orthotropic half-plane under transient loading. The dislocation solution is utilized to derive integral equations for multiple interacting edge cracks in an orthotropic half-plane. These equations are solved numerically thereby obtaining the dislocation density function on the crack faces and stress intensity factors at crack tips. Numerical results are obtained to illustrate the variation of the dynamic stress intensity factors as a function of crack length and material properties.

5. Detection of Equine Herpesvirus (EHV) -1, -2, -4 and -5 in Ethiopian Equids with and without Respiratory Problems and Genetic Characterization of EHV-2 and EHV-5 Strains.

PubMed

Negussie, H; Gizaw, D; Tesfaw, L; Li, Y; Oguma, K; Sentsui, H; Tessema, T S; Nauwynck, H J

2017-01-18

Infections with equine herpesviruses (EHVs) are widespread in equine populations worldwide. Whereas both EHV-1 and EHV-4 produce well-documented respiratory syndromes in equids, the contribution of EHV-2 and EHV-5 to disease of the respiratory tract is still enigmatic. This study describes the detection and genetic characterization of EHVs from equids with and without clinical respiratory disease. Virus-specific PCRs were used to detect EHV-1, -2, -4 and -5. From the total of 160 equids with respiratory disease, EHV-5 was detected at the highest prevalence (23.1%), followed by EHV-2 (20.0%), EHV-4 (8.1%) and EHV-1 (7.5%). Concurrent infections with EHV-2 and EHV-5 were recorded from nine (5.2%) diseased horses. Of the total of 111 clinically healthy equids, EHV-1 and EHV-4 were never detected whereas EHV-2 and EHV-5 were found in 8 (7.2%) and 18 (16.2%) horses, respectively. A significantly higher proportion of EHV-2-infected equids was observed in the respiratory disease group (32/160, 20.0%; P = 0.005) compared to those without disease (8/111; 7.2%). EHV-2-positive equids were three times more likely to display clinical signs of respiratory disease than EHV-2-negative equids (OR 3.22, 95% CI: 1.42-7.28). For EHV-5, the observed difference was not statistically significant (P = 0.166). The phylogenetic analysis of the gB gene revealed that the Ethiopian EHV-2 and EHV-5 strains had a remarkable genetic diversity, with a nucleotide sequence identity among each other that ranged from 94.0 to 99.4% and 95.1 to 100%, respectively. Moreover, the nucleotide sequence identity of EHV-2 and EHV-5 with isolates from other countries acquired from GenBank ranged from 92.9 to 99.1% and 95.1 to 99.5%, respectively. Our results suggest that besides EHV-1 and EHV-4, EHV-2 is likely to be an important contributor either to induce or predispose equids to respiratory disease. However, more work is needed to better understand the contribution of EHV-2 in the establishment of

6. The Bolocam Galactic Plane Survey

NASA Technical Reports Server (NTRS)

Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II;

2009-01-01

The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

7. NASA Technical Reports Server (NTRS)

Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan

2009-01-01

The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

8. Singularities from colliding plane gravitational waves

Tipler, Frank J.

1980-12-01

A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

9. Scattering by a groove in an impedance plane

NASA Technical Reports Server (NTRS)

Bindiganavale, Sunil; Volakis, John L.

1993-01-01

An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

10. Scattering by a groove in an impedance plane

Bindiganavale, Sunil; Volakis, John L.

1993-09-01

An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

11. A multilinear constraint on dichromatic planes for illumination estimation.

PubMed

Toro, Javier; Funt, Brian

2007-01-01

A new multilinear constraint on the color of the scene illuminant based on the dichromatic reflection model is proposed. The formulation avoids the problem, common to previous dichromatic methods, of having to first identify pixels corresponding to the same surface material. Once pixels from two or more materials have been identified, their corresponding dichromatic planes can be intersected to yield the illuminant color. However, it is not always easy to determine which pixels from an arbitrary region of an image belong to which dichromatic plane. The image region may cover an area of the scene encompassing several different materials and, hence, pixels from several different dichromatic planes. The new multilinear constraint accounts for this multiplicity of materials and provides a mechanism for choosing the most plausible illuminant from a finite set of candidate illuminants. The performance of this new method is tested on a database of real images.

12. Assessment of the out-of-plane parameter Tz for a non-hardening three-dimensional thin plate boundary layer formulation

Yusoff, Norwahida; Yusof, Feizal

2017-07-01

A detailed of finite element analysis of an elastic perfectly-plastic thin boundary layer formulations has been used to determine the crack-tip constraint in a through-thickness crack subjected to mode I loading under small scale yielding conditions. The variations of the degree of plane strain, Tz with respect to the radial distance ahead of the crack, r, the angles around the crack, θ, and the out-of-plane direction, x3 are examined and compared to an existing analytical solution based on a deformation plasticity for the given crack problem. The results show that Tz is strongly dependent on angles with significant variation observed on the planes near the free-surface, which is in contrast to the current understanding of Tz that is claimed to be independent of angles. Apparent deviations have been observed between the current results and the analytical analyse of Tz for non-hardening material in a contained yielding condition particularly in the region close to the crack tip within the quarter-plane and the free-surface.

13. Material mechanical characterization method for multiple strains and strain rates

SciTech Connect

Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

2016-01-19

A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

14. Strain Gage

NASA Technical Reports Server (NTRS)

1995-01-01

HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

15. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

NASA Technical Reports Server (NTRS)

Rojas, Roberto G.

1985-01-01

A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

16. Broken chiral symmetry on a null plane

SciTech Connect

Beane, Silas R.

2013-10-15

On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

17. Smov Baseline Focal Plane Check

Gilmozzi, Roberto

1994-01-01

This test will be executed during the period after the servicing mission and before the extension of the COSTAR assembly. Its purpose is to verify that the FOS, HRS, and FOC focal planes have not been altered by the activities performed by Story and the Astronauts during the servicing mission. A large unknown deviation in aperture position would severly impact subsequent COSTAR alignment activities. If this test reveals a deviation, we may be able to compensate for any offsets prior to the complex and delicate COSTAR alignment calibrations. This enhanced version of the Heptathlon is designed to verify course alignments and measure relative aperture positions to within a few arcsecs. SPECIAL REQUIREMENTS: ***This test uses pre-servicing parameters for HRS, FOS, and FOC and the Cycle 4 parameters for WFPC2.*** ***This test requires special alignment and special guide stars.** ***This test requires special commanding for telemetry setups.**

18. Thermodynamics of black plane solution

Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay

2013-11-01

We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

19. Snakes Out of the Plane

McCormick, Andrew; Young, Bruce A.; Mahadevan, L.

2012-02-01

We develop a new computational model of elastic rods, taking into account shear and full rotational dynamics, as well as friction, adhesion, and collision. This model is used to study the movement of snakes in different environments. By applying different muscular activation patterns to the snake, we observe many different patterns of motion, from planar undulation to sudden strikes. Many of the most interesting behaviors involve the snake rising out of the horizontal plane in the vertical direction. Such behaviors include a sand snake sidewinding over the hot desert sand and a cobra rearing up into a defensive striking position. Experimental videos of live snakes are analyzed and compared with computational results. We identify and explain a new form of movement previously unobserved: collateral locomotion.''

20. Functional Aesthetic Occlusal Plane (FAOP)

PubMed Central

Câmara, Carlos Alexandre; Martins, Renato Parsekian

2016-01-01

ABSTRACT Introduction: A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. Objective: The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP), which aims to help in the diagnosis of the relationships established among molars, incisors and the upper lip. Conclusion: FAOP can complement an existing and established orthodontic treatment plan, facilitating the visualization of functional and aesthetic demands by giving a greater focus on the position of incisors in the relationship established among the incisors, molars and the upper lip stomion. PMID:27653271

1. Stationary equilibrium singularity distributions in the plane

Newton, P. K.; Ostrovskyi, V.

2012-02-01

We characterize all stationary equilibrium point singularity distributions in the plane of logarithmic type, allowing for real, imaginary or complex singularity strengths. The dynamical system follows from the assumption that each of the N singularities moves according to the flow field generated by all the others at that point. For strength vector \\vec{\\Gamma} \\in {\\Bbb R}^N , the dynamical system is the classical point vortex system obtained from a singular discrete representation of the vorticity field from ideal, incompressible fluid flow. When \\vec{\\Gamma} \\in \\Im , it corresponds to a system of sources and sinks, whereas when \\vec{\\Gamma} \\in {\\Bbb C}^N the system consists of spiral sources and sinks discussed in Kochin et al (1964 Theoretical Hydromechanics 1 (London: Interscience)). We formulate the equilibrium problem as one in linear algebra, A \\vec{\\Gamma} = 0 , A \\in {\\Bbb C}^{N \\times N} , \\vec{\\Gamma} \\in {\\Bbb C}^N , where A is a N × N complex skew-symmetric configuration matrix which encodes the geometry of the system of interacting singularities. For an equilibrium to exist, A must have a kernel and \\vec{\\Gamma} must be an element of the nullspace of A. We prove that when N is odd, A always has a kernel, hence there is a choice of \\vec{\\Gamma} for which the system is a stationary equilibrium. When N is even, there may or may not be a non-trivial nullspace of A, depending on the relative position of the points in the plane. We provide examples of evenly and randomly distributed points on curves such as circles, figure eights, flower-petal configurations and spirals. We then show how to classify the stationary equilibria in terms of the singular spectrum of A.

2. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics

Kim, Wansun; Lee, Inhwa; Kim, Dong Yoon; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Park, Weon Seo; Kim, Taek-Soo

2017-05-01

To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

3. An investigation of the accuracy of finite difference methods in the solution of linear elasticity problems

NASA Technical Reports Server (NTRS)

Bauld, N. R., Jr.; Goree, J. G.

1983-01-01

The accuracy of the finite difference method in the solution of linear elasticity problems that involve either a stress discontinuity or a stress singularity is considered. Solutions to three elasticity problems are discussed in detail: a semi-infinite plane subjected to a uniform load over a portion of its boundary; a bimetallic plate under uniform tensile stress; and a long, midplane symmetric, fiber reinforced laminate subjected to uniform axial strain. Finite difference solutions to the three problems are compared with finite element solutions to corresponding problems. For the first problem a comparison with the exact solution is also made. The finite difference formulations for the three problems are based on second order finite difference formulas that provide for variable spacings in two perpendicular directions. Forward and backward difference formulas are used near boundaries where their use eliminates the need for fictitious grid points.

4. Difference Between Strain and Sprain.

ERIC Educational Resources Information Center

Connors, G. Patrick

Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

5. Difference Between Strain and Sprain.

ERIC Educational Resources Information Center

Connors, G. Patrick

Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

6. In-plane heterostructures of Sb/Bi with high carrier mobility

Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

2017-06-01

In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

7. In-plane heterostructures of Sb/Bi with high carrier mobility.

PubMed

Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

2017-06-23

In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (∼4000 cm(2) V(-1) s(-1)). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

8. Strain engineering of Kapitza resistance in few-layer graphene.

PubMed

Chen, Jie; Walther, Jens H; Koumoutsakos, Petros

2014-02-12

We demonstrate through molecular dynamics simulations that the Kapitza resistance in few-layer graphene (FLG) can be controlled by applying mechanical strain. For unstrained FLG, the Kapitza resistance decreases with the increase of thickness and reaches an asymptotic value of 6 × 10(-10) m(2)K/W at a thickness about 16 nm. Uniaxial cross-plane strain is found to increase the Kapitza resistance in FLG monotonically, when the applied strain varies from compressive to tensile. Moreover, uniaxial strain couples the in-plane and out-of-plane strain/stress when the surface of FLG is buckled. We find that with a compressive cross-plane stress of 2 GPa, the Kapitza resistance is reduced by about 50%. On the other hand it is almost tripled with a tensile cross-plane stress of 1 GPa. Remarkably, compressive in-plane strain can either increase or reduce the Kapitza resistance, depending on the specific way it is applied. Our study suggests that graphene can be exploited for both heat dissipation and insulation through strain engineering.

9. Tilted planes in 3D image analysis

Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza

1998-03-01

Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.

10. Determining the pivotal plane of fluid lipid membranes in simulations

Wang, Xin; Deserno, Markus

2015-10-01

Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.

11. The UKIDSS Galactic Plane Survey

Lucas, P. W.; Hoare, M. G.; Longmore, A.; Schröder, A. C.; Davis, C. J.; Adamson, A.; Bandyopadhyay, R. M.; de Grijs, R.; Smith, M.; Gosling, A.; Mitchison, S.; Gáspár, A.; Coe, M.; Tamura, M.; Parker, Q.; Irwin, M.; Hambly, N.; Bryant, J.; Collins, R. S.; Cross, N.; Evans, D. W.; Gonzalez-Solares, E.; Hodgkin, S.; Lewis, J.; Read, M.; Riello, M.; Sutorius, E. T. W.; Lawrence, A.; Drew, J. E.; Dye, S.; Thompson, M. A.

2008-11-01

The UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 deg2 of the northern and equatorial Galactic plane at Galactic latitudes -5° < b < 5° in the J, H and K filters and a ~200-deg2 area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 μm (1-0) H2 filter. It will provide data on ~2 × 109 sources. Here we describe the properties of the data set and provide a user's guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science comprises six studies. (1) A GPS-Spitzer-GLIMPSE cross-match for the star formation region G28.983-0.603 to identify YSOs. This increases the number of YSOs identified by a factor of 10 compared to GLIMPSE alone. (2) A wide-field study of the M17 nebula, in which an extinction map of the field is presented and the effect of source confusion on luminosity functions in different subregions is noted. (3) H2 emission in the ρ Ophiuchi dark cloud. All the molecular jets are traced back to a single active clump containing only a few protostars, which suggests that the duration of strong jet activity and associated rapid accretion in low-mass protostars is brief. (4) X-ray sources in the nuclear bulge. The GPS data distinguishes local main-sequence counterparts with soft X-ray spectra from nuclear bulge giant counterparts with hard X-ray spectra. (5) External galaxies in the zone of avoidance. The galaxies are clearly distinguished from stars in fields at longitudes l > 90°. (6) IPHAS-GPS optical-infrared spectrophotometric typing. The (i' - J) versus (J - H) diagram is used to distinguish A-F type

12. Out-of-plane properties

NASA Technical Reports Server (NTRS)

Jackson, Wade C.; Portanova, Marc A.

1995-01-01

This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage

13. Out-of-plane properties

SciTech Connect

Jackson, W.C.; Portanova, M.A.

1995-10-01

This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent, penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method.

14. On the propagation of plane waves above an impedance surface

NASA Technical Reports Server (NTRS)

Zhong, F. H.; Vanmoorhem, W. K.

1990-01-01

The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered.

15. Parametrics of submarine dynamic stability in the vertical plane

SciTech Connect

Papoulias, F.A.; Papanikolaou, S.

1996-12-31

The problem of dynamic stability of submersible vehicles in the dive plane is examined utilizing bifurcation techniques. The primary mechanism of loss of stability is identified in the form of generic Hopf bifurcations to periodic solutions. Stability of the resulting limit cycles is established using center manifold approximations and integral averaging. Parametric studies are performed with varying vehicle geometric properties. The methods described in this work could lead to techniques resulting in enlargement of the submerged operational envelope of a vehicle.

16. Stretching of a plane with a lattice of cuts

Dahl, Yu. M.

2016-06-01

An exact analytical solution of the problem in elasticity theory about stretching of a plane with an infinite lattice of rectilinear cuts has been obtained. The analysis is based on G.V. Kolosov's formulas associating the stress components with two regular functions of a complex variable. The obtained solution revealed the original effects of stretching stress screening and localization of compressive stresses between cuts.

NASA Technical Reports Server (NTRS)

Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

1979-01-01

Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

18. On plane submerged laminar jets

Coenen, Wilfried; Sanchez, Antonio L.

2016-11-01

We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α <129o in a limited range of Reynolds numbers 0 <=Re <=Rec (α) (e.g. Rec = 1 . 43 for α = π / 2). It is reasoned that an alternative solution, driven by a fraction of the momentum flux of the feed stream, may also exist for all values of Re and α, including a near-centerline Bickley jet, a surrounding Taylor potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.

19. Radioactivity in the galactic plane

NASA Technical Reports Server (NTRS)

Walraven, G. D.; Haymes, R. C.

1976-01-01

The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

20. Duel-Plane Optical Disdrometer

Winsky, B. E.; Eichinger, W. E.

2011-12-01

Acquiring better drop-size distributions of rainfall will improve our understanding of the spatial and temporal variability of rainfall. In order to fully capture the spatial and temporal variability of rainfall, a robust, calibration free, low-cost instrument that provides an accurate drop-size distribution is required. Therefore, The University of Iowa Lidar Group has developed and built a new duel-plane optical disdrometer that meets these criteria. Two sheets of laser light, vertically spaced by 1 cm are produced by two 670nm laser beams passing through a collecting lens and culminating lens, respectively. The two sheets of laser light then pass through a convex lens located 20 cm from the lasers that focuses the light on a photo detector. A computer reads in and stores the voltages at 10 kHz. The velocity, diameter, shape and drop-size distribution of raindrops are extracted from the voltage measurements. Rainfall data collected in Iowa City, IA tested our disdrometer's robustness and accuracy of providing drop-size distributions. Our distrometer is advantageous because it is simple, low-cost, and requires no calibration.

1. StrainModeler: A MATHEMATICA™-based program for 3D analysis of finite and progressive strain

Bobillo-Ares, Nilo C.; Aller, Jesús; Bastida, Fernando; Menéndez, Omar; Lisle, Richard J.

2015-05-01

StrainModeler is a program constructed in the MATHEMATICA™ environment that performs 3D progressive strain calculations for lines and planes undergoing any sequence of homogeneous deformations. The main inputs to the system define the initial line or plane to be deformed and the deformation sequence to be applied, including combinations of simple shear, pure shear and volume change. For the deformation of lines, the output of the program is the change of attitude of the initial line, which can be represented by graphics or plotted in an equal-area projection. For the deformation of planes, the program has several outputs: (i) change of attitude of the initial plane; (ii) magnitudes and ratio of the semi-axes of the strain ellipse on the deformed plane; (iii) orientation of the major and minor axes of the strain ellipse on the deformed plane; (iv) orientations of the axial planes of the folds formed on the deformed plane, and (v) area change on the deformed plane. The variation of any of these parameters can be shown against a linear parameter only linked to the number of steps involved in the deformation, as a kind of "time" line, or it can be shown against the variation of a parameter of the strain ellipsoid (e. g.: major axis/minor axis ratio). A sequence of directions can be also visualized as a curve in an equal-area plot. Three applications of the program are presented. In the first, the deformation by simple shear of a plane with any orientation is analyzed. In the second, we explore the formation of recumbent folds in layers with different initial orientations for simple shear and pure shear deformations. In the third, we use StrainModeler to analyze the deformation of a set of folds located in a ductile shear zone in the Variscan Belt of NW Spain.

2. Application of boundary integral equations to elastoplastic problems

NASA Technical Reports Server (NTRS)

Mendelson, A.; Albers, L. U.

1975-01-01

The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.

3. Determination of Dynamic Recrystallization Process by Equivalent Strain

Qin, Xiaomei; Deng, Wei

Based on Tpнoвckiй's displacement field, equivalent strain expression was derived. And according to the dynamic recrystallization (DRX) critical strain, DRX process was determined by equivalent strain. It was found that equivalent strain distribution in deformed specimen is inhomogeneous, and it increases with increasing true strain. Under a certain true strain, equivalent strains at the center, demisemi radius or on tangential plane just below the surface of the specimen are higher than the true strain. Thus, micrographs at those positions can not exactly reflect the true microstructures under the certain true strain. With increasing strain rate, the initial and finish time of DRX decrease. The frozen microstructures of 20Mn23AlV steel with the experimental condition validate the feasibility of predicting DRX process by equivalent strain.

4. Towards Dualband Megapixel QWIP Focal Plane Arrays

DTIC Science & Technology

2006-01-01

Journal Article PREPRINT 3. DATES COVERED (From - To) 2006 4. TITLE AND SUBTITLE Towards dualband megapixel QWIP focal plane arrays (PREPRINT) 5a...pixel quantum well infrared photodetector ( QWIP ) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array...registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency

5. RF/Optical Demonstration: Focal Plane Assembly

Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.

2016-11-01

In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.

6. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

SciTech Connect

Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.

2014-11-03

Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

7. Digital scanner infrared focal plane technology

Ortiz, M. A.; Malone, N. R.; Harris, M.; Shin, J.; Byers, S.; Price, D.; Vampola, J.

2011-09-01

Advancements in finer geometry and technology advancements in circuit design now allow placement of digital architecture on cryogenic focal planes while using less power than heritage analog designs. These advances in technology reduce the size, weight, and power of modern focal planes. In addition, the interface to the focal plane is significantly simplified and is more immune to Electromagnetic Interference (EMI). The cost of the customer's instrument after integration with the digital scanning Focal Plane Array (FPA) has been significantly reduced by placing digital architecture such as Analog to digital convertors and Low Voltage Differential Signaling (LVDS) Inputs and Outputs (I/O) on the Read Out Integrated Circuit (ROIC).

8. Nanostructured carbon films with oriented graphitic planes

SciTech Connect

Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

2011-03-21

Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

9. Anti-plane interface cracks between two dissimilar orthotropic layers

Ayatollahi, M.; Varasteh, S.

2017-05-01

The problem of an anti-plane crack situated in the interface between two bonded dissimilar orthotropic layers is considered. Fourier transforms are used to reduce the problem to a system of singular integral equations with simple Cauchy kernel. The integral equations are solved numerically by converting to a system of linear algebraic equations and by using a collocation technique. The equations are solved for various crack length, material combinations, and external loads. The numerical results given in the paper include the stress intensity factors of several interfacial cracks

10. Hybrid inflation in the complex plane

Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

2014-07-01

Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.

11. A Cool Tool for Deicing Planes

NASA Technical Reports Server (NTRS)

2001-01-01

Nicknamed the "ice zapper," the Electro Expulsive Separation System (EESS) is an aircraft ice removal system that "pulverizes ice and removes layers of ice as thin as frost or as thick as an inch of glaze," according to the principle inventor of the technology. Patented by NASA's Ames Research Center, the EESS consists of layers of conductors encased in materials that are bonded directly to the airframe structure. When ice accumulates on the aircraft, an electric current is sent through the conductors, causing them to pulse. Even though the conductors move less than a twenty-thousandth of an inch in just a millisecond, the movement is sufficient to pulverize the ice. It is this highly accelerated motion that shatters the ice into particles the size of table salt; too small to be harmful to the aircraft. When compared with other systems in use, such as thermal deicers and pneumatic boots, the ice zapper does very well. Thermal deicers are fairly common, although they use an enormous amount of energy and present the possibility of ice refreezing. Pneumatic boots are not always effective because they require an inflation device that is unable to work until a quarter inch of ice has accumulated. With both systems, the ice that is loosened may still be large enough to cause problems for the plane once dislodged.

12. Estimating Tsunami Runup with Fault Plane Parameters

Sepulveda, I.; Liu, P. L. F.

2016-12-01

The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional

13. Solar UV geometric conversion factors: horizontal plane to cylinder model.

PubMed

Pope, Stanley J; Godar, Dianne E

2010-01-01

Most solar UV measurements are relative to the horizontal plane. However, problems arise when one uses those UV measurements to perform risk or benefit assessments because they do not yield the actual doses people get while they are outdoors. To better estimate the UV doses people actually get while outdoors, scientists need geometric conversion factors (GCF) that change horizontal plane irradiances to average irradiances on the human body. Here we describe a simple geometric method that changes unweighted, erythemally weighted and previtamin D(3)-weighted UV irradiances on the horizontal plane to full cylinder and semicylinder irradiances. Scientists can use the full cylinder model to represent the complete human body, while they can use the semicylinder model to represent the face, shoulders, tops of hands and feet. We present daily, monthly and seasonally calculated averages of the GCF for these cylinder models every 5 degrees from 20 to 70 degrees N so that scientists can now get realistic UV doses for people who are outdoors doing a variety of different activities. The GCF show that people actually get less than half their annual erythemally weighted, and consequently half their previtamin D(3)-weighted, UV doses relative to the horizontal plane. Thus, scientists can now perform realistic UV risk and benefit assessments.

14. Autonomous Real-Time Interventional Scan Plane Control With a 3-D Shape-Sensing Needle

PubMed Central

Plata, Juan Camilo; Holbrook, Andrew B.; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L.; Cutkosky, Mark R.

2016-01-01

This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle’s estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner’s frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle’s profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response. PMID:24968093

15. Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.

PubMed

Elayaperumal, Santhi; Plata, Juan Camilo; Holbrook, Andrew B; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L; Cutkosky, Mark R

2014-11-01

This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle's estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner's frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle's profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response.

16. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

SciTech Connect

Chou, Namsun; Lee, Jongho; Kim, Sohee

2014-12-15

This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanical characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.

17. Slipping and Rolling on an Inclined Plane

ERIC Educational Resources Information Center

2011-01-01

In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

18. Solar Impulse's Solar-Powered Plane

ScienceCinema

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2016-07-12

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

19. CUTTING PLANE METHODS WITHOUT NESTED CONSTRAINT SETS

DTIC Science & Technology

General conditions are given for the convergence of a class of cutting -plane algorithms without requiring that the constraint sets for the... cutting -planes include that of Kelley and a generalization of that used by Zoutendisk and Veinott. For algorithms with nested constraint sets, these

20. Slipping and Rolling on an Inclined Plane

ERIC Educational Resources Information Center

2011-01-01

In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

1. Solar Impulse's Solar-Powered Plane

SciTech Connect

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2013-07-08

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

2. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

NASA Technical Reports Server (NTRS)

Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

2003-01-01

This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

3. Strained Ring Energetic Binders

DTIC Science & Technology

1993-08-27

polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report

4. Study the Z-Plane Strip Capacitance

SciTech Connect

Parikh, H.; Swain, S.; /SLAC

2005-12-15

The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

5. Influence of strain on the conduction band structure of strained silicon nanomembranes.

PubMed

Euaruksakul, C; Li, Z W; Zheng, F; Himpsel, F J; Ritz, C S; Tanto, B; Savage, D E; Liu, X S; Lagally, M G

2008-10-03

The influence of in-plane biaxial strain on the conduction bands of Si is explored using elastically strained Si(001) nanomembranes and high-resolution x-ray absorption measurements with electron yield detection. The strain-induced splitting of the conduction band minimum and the energy shifts of two higher conduction bands near L1 and L3 are clearly resolved. The linear increase of the splitting of the conduction band minimum with increasing strain and the nonlinear shift of the L1 point toward the conduction band minimum agree quantitatively with current theories.

6. Simple Numerical Simulation of Strain Measurement

NASA Technical Reports Server (NTRS)

Tai, H.

2002-01-01

By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

7. Strain: Fact or Fiction?

Heilbronner, Renée

2017-04-01

2017 marks the 50th anniversary of the publication of John Ramsay's well known textbook "Folding and Fracturing of Rocks" - ... and the 30th anniversary of the rejection of a rather less well known paper entitled "Strain: Fact or Fiction?" submitted by Renée Panozzo to the Journal of Structural Geology. The gist of the paper was simple and straight forward: it was argued that not every fabric that can be observed in deformed rocks is necessarily a measure of the amount of strain the rock incurred. A distinction was made between a general "fabric", i.e., the traceable geometry of grain boundaries, for example, and a so-called "strain fabric", i.e., the model geometry that would result from homogeneously straining an initially isotropic fabric and that would exhibit at least orthorhombic symmetry. To verify if a given fabric was indeed a strain fabric it was therefore suggested to use the SURFOR method (published by Panozzo) and to carry out a so-called strain test, i.e., a check of symmetry, before interpreting the results of a fabric analysis in terms of strain. The problem with the paper was that it was very obviously written out of frustration. The frustration came form having reviewed a number of manuscripts which tried to use the then novel SURFOR method for strain analysis without first checking if the the fabric was a indeed a "strain fabric" or not, and then blaming the SURFOR method for producing ambiguous results. As a result, the paper was not exactly well balanced and carefully thought out. It was considered "interesting but not scholarly" by one of the reviewers and down-right offensive by the second. To tell the truth, however, the paper was not formally rejected. The editor Sue Treagus strongly encouraged Panozzo to revise the paper, ... and 30 years later, I will follow her advise and offer a revised paper as a tribute to John Ramsay. To quote from the original manuscript: "We should be a little more impressed that strain works so well, and less

8. Theoretical study of stress concentrations at circular holes and inclusions in strain hardening materials.

NASA Technical Reports Server (NTRS)

Huang, W. C.

1972-01-01

Nonlinear boundary value problems of an infinite elastic-plastic plate with a circular hole subjected to pure tension and pure shear at infinity are solved by a method involving Fourier series and finite difference. On the basis of these solutions, the validity of Neuber's relationship between the stress and strain concentration factors for the plane stress problems is examined and a generalized Stowell formula for the stress concentration factor is proposed for problems in which the applied loading may be pure shear as well as pure tension and, furthermore, other stress states. By the same method of solution, the stress distributions around a rigid circular cylindrical inclusion embedded in an infinite rigid-plastic matrix subjected to uniform transverse pure shear and tension are obtained.

9. Brain symmetry plane detection based on fractal analysis.

PubMed

Jayasuriya, S A; Liew, A W C; Law, N F

2013-01-01

In neuroimage analysis, the automatic identification of symmetry plane has various applications. Despite the considerable amount of research, this remains an open problem. Most of the existing work based on image intensity is either sensitive to strong noise or not applicable to different imaging modalities. This paper presents a novel approach for identifying symmetry plane in three-dimensional brain magnetic resonance (MR) images based on the concepts of fractal dimension and lacunarity analysis which characterizes the complexity and homogeneity of an object. Experimental results, evaluation, and comparison with two other state-of-the-art techniques show the accuracy and the robustness of our method. Copyright © 2013 Elsevier Ltd. All rights reserved.

10. Transverse plane motion at the ankle joint.

PubMed

Nester, Christopher J; Findlow, Andrew F; Bowker, Peter; Bowden, Peter D

2003-02-01

The ankle is often considered to have little or no capacity to move in the transverse plane. This is clear in the persistent concept that it is the role of the subtalar joint to accommodate the transverse plane motion of the leg while the foot remains in a fixed transverse plane position on the floor. We present data from noninvasive in vivo study of the ankle subtalar complex during standing internal and external rotation of the leg and study of the ankle subtalar complex during walking. These data reinforce the results of cadaver study and invasive in vivo study of the ankle/subtalar complex. We suggest that the ankle is capable of considerable movement in the transverse plane (generally greater than 15 degrees) and that its role in the mechanism that allows the foot to remain in a fixed transverse plane position on the floor while the leg rotates in the transverse plane, is not simply the transfer of the transverse plane moment to the subtalar joint, but is accommodation of some of the necessary movement.

11. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

PubMed

Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

2016-03-21

Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.

12. Lower incisor inclination regarding different reference planes.

PubMed

Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

2016-09-01

The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination.

13. A half plane and a strip with an arbitrarily located crack

NASA Technical Reports Server (NTRS)

Erdogan, F.; Arin, K.

1973-01-01

A technique is presented for dealing with the problem of an elastic domain containing an arbitrarily oriented internal crack. The problem is formulated as a system of integral equations for a fictitious layer of body forces imbedded in the plane along a closed smooth curve encircling the original domain. The problems of a half plane with a crack in the neighborhood of its free boundary and of an infinite strip containing a symmetrically located internal crack with an arbitrary orientation are considered as examples. In each case the stress intensity factors are computed and are given as functions of the crack angle.

14. Mosaic focal plane for star sensors

Chang, N. C.

1981-02-01

The basic principles of star sensors are reviewed with reference to the advantages of replacing photodiodes, image dissectors, and vidicons with mosaic charge transfer device (CTD) focal planes. The desirable characteristics of CTD focal planes include: high uniformity, high transfer effect, low dark current, low hot and cold spots, low dead space, low angular misalignment, high coplanarity, and high thermal stability. An implementation of a mosaic CTD array star sensor which achieves high angular position accuracy and frequency attitude update is presented. Two focal plane packaging concepts, the planar and vertical board packagings, are examined.

15. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

2017-04-01

We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

16. High temperature capacitive strain gage

Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

1990-01-01

Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

17. High Temperature Capacitive Strain Gage

NASA Technical Reports Server (NTRS)

Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

1990-01-01

Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

18. Molecular spiders on a plane

Antal, Tibor; Krapivsky, P. L.

2012-06-01

Synthetic biomolecular spiders with “legs” made of single-stranded segments of DNA can move on a surface covered by single-stranded segments of DNA called substrates when the substrate DNA is complementary to the leg DNA. If the motion of a spider does not affect the substrates, the spider behaves asymptotically as a random walk. We study the diffusion coefficient and the number of visited sites for spiders moving on the square lattice with a substrate in each lattice site. The spider's legs hop to nearest-neighbor sites with the constraint that the distance between any two legs cannot exceed a maximal span. We establish analytic results for bipedal spiders, and investigate multileg spiders numerically. In experimental realizations legs usually convert substrates into products (visited sites). The binding of legs to products is weaker, so the hopping rate from the substrates is smaller. This makes the problem non-Markovian and we investigate it numerically. We demonstrate the emergence of a counterintuitive behavior—the more spiders are slowed down on unvisited sites, the more motile they become.

19. High temperature strain measurement with a resistance strain gage

NASA Technical Reports Server (NTRS)

Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

1993-01-01

A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

20. Plane surfaces characterization by stereo vision and manipulation: a method to enhance assembly cell efficiency

Da Forno, Roberto; Angrilli, Francesco

1995-10-01

This paper analyzes a strategy for characterization of plane surfaces using stereo vision and manipulation. Characterization involves three steps: definition of orientation (normal versor to the plane), definition of the figure center of massand definition of a proper frame of reference solidal to such plane. When all these quantities are defined, the plane can be considered as characterized. In this work, plane orientation is obtained using stereo vision and structured light. The second step is solved by power manipulation, orienting the plane orthogonal to the camera focal axes to give the figure center of mass. The frame of reference solidal to the plane can now be placed as an example in the center of mass. In this work, kinematic analysis is fully developed, considering a robot with six degrees of freedom. The proposed method can be applied to enhance the efficiency of robotized assembly cells. The main problem in assembly is actually continuity in the dimension of assembled parts. Parts with working errors beyond a fixed limit can cause plant stoppage. The proposed method can be used to avoid this problem or at least to extend dimensional limits.

1. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments.

PubMed

Shirazi-Adl, A; Ahmed, A M; Shrivastava, S C

1986-01-01

A nonlinear finite element program has been developed and applied to the analysis of a three-dimensional model of the lumbar L2-3 motion segment subjected to sagittal plane moments. The analysis accounts for both material and geometric nonlinearities and is based on the Updated Lagrangian approach. The disc nucleus has been considered as an incompressible inviscid fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. Articulation at the facet joints has been treated as a general moving contact problem and the spinal ligaments have been modelled as a collection of nonlinear axial elements. Effects of the loss of intradiscal pressure in flexion and of facetectomy in extension have been analyzed. Comparison of the predicted gross response characteristics with available measurements indicates satisfactory agreement. In flexion relatively large intradiscal pressures are generated, while in extension negative pressures (i.e. suction) of low magnitude are predicted. The stress distribution results indicate that the load transfer path through the posterior elements of the joint in flexion is different from that in extension. In flexion the ligaments are the means of load transfer, while in extension the load is transmitted through the pedicles, laminae and articular processes. In flexion, the inner annulus fibres at the posterolateral location are subject to maximum tensile strain. It is suggested that large flexion moment in combination with other loads is a likely cause of disc prolapse commonly found at this location of the annulus.

2. Structural Affects on the Slamming Pressures of High-Speed Planing Craft

Ikeda, Christine; Taravella, Brandon; Judge, Carolyn

2015-11-01

High-speed planing craft are subjected to repeated slamming events in waves that can be very extreme depending on the wave topography, impact angle of the ship, forward speed of the ship, encounter angle, and height out of the water. The current work examines this fluid-structure interaction problem through the use of wedge drop experiments and a CFD code. In the first set of experiments, a rigid 20-degree deadrise angle wedge was dropped from a range of heights (0 <= H <= 0 . 6 m) and while pressures and accelerations of the slam even were measured. The second set of experiments involved a flexible-bottom 15-degree deadrise angle wedge that was dropped from from the same range of heights. In these second experiments, the pressures, accelerations, and strain field were measured. Both experiments are compared with a non-linear boundary value flat cylinder theory code in order to compare the pressure loading. The code assumes a rigid structure, therefore, the results between the code and the first experiment are in good agreement. The second experiment shows pressure magnitudes that are lower than the predictions due to the energy required to deform the structure. Funding from University of New Orleans Office of Research and Sponsored Programs and the Office of Naval Research.

3. Complex space monofilar approximation of diffraction currents on a conducting half plane

NASA Technical Reports Server (NTRS)

Lindell, I. V.

1987-01-01

Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

4. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

NASA Technical Reports Server (NTRS)

Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

1995-01-01

The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

5. Strain engineered barium strontium titanate for tunable thin film resonators

SciTech Connect

Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

2014-05-19

Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

6. Hydrodynamic stability of compressible plane Couette flow

SciTech Connect

Chagelishvili, G.D. Department of Plasma Physics, Space Research Institute, str. Profsoyuznaya 84 Rogava, A.D. ); Segal, I.N. Department of Plasma Physics, Space Research Institute, str. Profsoyuznaya 84/32, 117810 Moscow )

1994-12-01

The evolution of two-dimensional spatial Fourier harmonics in a compressible plane Couette flow is considered. A new mechanism of energy exchange between the mean flow and sound-type perturbations is discovered.

7. Causal inheritence in plane wave quotients

SciTech Connect

Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

2003-11-24

We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.

8. Reconnaissance with slant plane circular SAR imaging.

PubMed

Soumekh, M

1996-01-01

This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle.

9. Single plane angiography: Current applications and limitations

NASA Technical Reports Server (NTRS)

Falsetti, H. L.; Carroll, R. J.

1975-01-01

Technical errors in measurement of one plane cineangiography are identified. Examples of angiographic estimates of left ventricular geometry are given. These estimates of contractility are useful in evaluating myocardial performance.

10. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

2016-03-01

High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

11. Machine Learning for the Knowledge Plane

DTIC Science & Technology

2006-06-01

methods rely on careful engineering of the representation, the choice of algorithm, and so forth. The knowledge plane requires a more autonomous...learning capability that can operate in real time without continuous knowledge engineering . 2. Learning online. Most existing learning methods learn...detection and fault diagnosis. The central task of the knowledge plane is to detect anomalies and faults. Machine learning methods can be applied to learn

12. Trajectories of balls on the inclined plane

Schröer, H.

We view trajectories of projection on the inclined plane. We will see that the inclined throw in the homogeneous field is a special case of the throw on the inclined plane. Here the trajectories of projection are dependent upon throwing angle and initial velocity. First we will treat the frictionless case. Thereafter, it will be easier to understand the friction case. In chapter 2 we take into consideration friction. There is an english and a german edition.

13. Carroll symmetry of plane gravitational waves

Duval, C.; Gibbons, G. W.; Horvathy, P. A.; Zhang, P.-M.

2017-09-01

The well-known 5-parameter isometry group of plane gravitational waves in 4 dimensions is identified as Lévy-Leblond’s Carroll group in 2+1 dimensions with no rotations. Our clue is that plane waves are Bargmann spaces into which Carroll manifolds can be embedded. We also comment on the scattering of light by a gravitational wave and calculate its electric permittivity considered as an impedance-matched metamaterial.

14. Strain-phonon coupling in (111)-oriented perovskite oxides

Moreau, Magnus; Marthinsen, Astrid; Selbach, Sverre M.; Tybell, Thomas

2017-09-01

Strain-phonon coupling, in terms of the shift in phonon frequencies under biaxial strain, is studied by density functional theory calculations for 20 perovskite oxides strained in their (111) and (001) planes. While the strain-phonon coupling under (001) strain follows the established, intuitive trends, the response to (111) strain is more complex. Here we show that strain-phonon coupling under (111) strain can be rationalized in terms of the Goldschmidt tolerance factor and the formal cation oxidation states. The established trends for coupling between (111) strain and in-phase and out-of-phase octahedral rotational modes as well as polar modes provide guidelines for rational design of (111)-oriented perovskite thin films.

15. In-plane Anisotropy of Cobalt Nanoparticles

Leslie-Pelecky, Diandra L.; Gibson, Charles P.

1996-03-01

Hexagonal cobalt platelets of diameter 150 nm and thickness 15 nm have been fabricated using ultrasonic-assisted chemical reduction.(Charles P. Gibson and Kathy J. Putzer, Science 267, 1338 (1995)) Lorenz microscopy indicated that the magnetic moment of these particles lies in the basal plane of the platelets (unlike bulk cobalt in which the moment is preferentially oriented perpendicular to the basal plane). Disks with approximately 75to the plane of the disk have been measured and confirm a strong in-plane anisotropy with saturation magnetization of 150 emu/g (compared with the bulk value of 163 emu/g). The anisotropy field is approximately 2.5 T at room temperature. Temperature-dependent magnetization shows irreversibility between field cooled and zero-field-cooled configurations. A large, broad cusp at 150 K and a smaller cusp at 12 K are observed in both field-parallel-to-the-plane and field-perpendicular-to-the-plane configurations. The 12 K feature is also seen in assemblies of randomly oriented particles and is attributed to random anisotropy; however, the cusp at 150 K is only seen in the oriented samples.

16. An interferometric strain-displacement measurement system

NASA Technical Reports Server (NTRS)

Sharpe, William N., Jr.

1989-01-01

A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.

17. Strain effect in group-III nitride semiconductors and their alloys

Yan, Qimin; Rinke, Patrick; Scheffler, Matthias; van de Walle, Chris

2009-11-01

Strain plays a crucial role in group-III nitride semiconductor based devices since it affects the band structure near the valence- and conduction-band edges and thus the optical properties and the device characteristics. However, the deformation potentials that describe the change in band structure under strain have not yet been reliably determined. We present a systematic study of the strain effects in AlN, GaN and InN in the wurtzite phase. We apply density functional theory and hybrid functionals to address the band-gap problem. We observe nonlinearities of transition energies under realistic strain condition that may, in part, explain the appreciable scatter in previous theoretical work on deformation potentials of group-III-nitrides. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials. Applying our deformation potentials, we study strain effects in InGaN alloys (including c-, m-, and semi-polar planes) grown on GaN substrates. We make predictions for the transition energies in these systems and their dependence on In composition.

Freilich, Daniel; Llewellyn Smith, Stefan

2015-11-01

Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

19. Enhanced in-plane mechanical properties of nanoporous graphene-carbon nanotube network

Qin, Huasong; Sun, Yu; Liu, Jefferson Zhe; Liu, Yilun

2017-06-01

Three dimensional graphene-carbon nanotube networks (3D-GC) have attracted great interests due to their superior thermal, optical, and hydrogen storage properties. In our work, the in-plane mechanical properties of nanoporous 3D-GC with different diameters of the joint carbon nanotube (CNT) and porosity have been studied. During in-plane tension, the fracture of 3D-GC first initiates at the heptagonal defects of the junctions between graphene sheets and CNTs where large tensile residual stress is observed. The in-plane tensile strength of 3D-GC decreases with the increasing of CNT parameter and porosity, and the tensile modulus is mainly determined by the porosity. Although the fracture strain decreases with the CNT diameter, it increases with the porosity. Compared to the nanoporous graphene, 3D-GC has larger in-plane tensile strength and fracture strain due to the additional support of CNTs. However, the in-plane tensile modulus of 3D-GC is usually smaller than that of the nanoporous graphene due to the wrinkled configuration of 3D-GC. By considering the stress concentration and additional support of CNTs, a theoretical model is proposed which can describe the molecular dynamics simulation results well.

20. Strain effects on oxygen vacancy energetics in KTaO3

DOE PAGES

Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...

2017-02-07

Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO3. We find that themore » formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

1. Planing-surface Tests at Large Froude Numbers - Airfoil Comparison

NASA Technical Reports Server (NTRS)

Sambraus, A

1938-01-01

The take-off capacity of a flying boat depends upon the design of the hull bottom ahead as well as aft of the step. Systematic tests - largely made by industry itself - had proved the benefit accruing from a well designed hull bottom long before theoretical insight into the flow phenomena involved had been obtained. The theoretical framing of the problem was beset with serious difficulties and, though restricted to the processes within range of the planing bottom ahead of the step, the solutions do not yet afford a comprehensive survey.

2. Plane elastostatic analysis of V-notched plates.

NASA Technical Reports Server (NTRS)

Gross, B.; Mendelson, A.

1972-01-01

Solutions are given for several plane elastostatic problems of plates having a V-notch on one edge, and subjected to a variety of boundary conditions. The effect of the magnitude of the V-notch angle and specimen geometry on stress intensity factors KI and KII are obtained for unloaded notch surfaces. There is less than one per cent difference in opening model stress intensity factor in going from a zero degree notch angle to a 30 degree notch angle. Notch opening displacements at the plate edge were measured experimentally, and the results obtained were in excellent agreement with the computed results.

3. Decoding the matrix: Coincident membranes on the plane wave

SciTech Connect

Bousso, Raphael; Mints, Aleksey L.

2006-03-15

At the core of nonperturbative theories of quantum gravity lies the holographic encoding of bulk data in large matrices. At present this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view, one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation.

4. Analysis and modeling for thermal focal plane arrays

Tuer, T. W.; Ball, B. W.; Freeling, J. R.; Lennington, J. W.; Lindquist, G. H.

1984-07-01

The development of a first principles computer simulation of a generic pyroelectric thermal detector is described. Formulation of the pertinent equations (based on a thorough literature survey) is presented. This simulation incorporates a finite difference treatment of the transient three-dimensional thermal response of composite focal plane arrays, with treatments of the signal generation, readout and processing including all pertinent noise sources. A number of simplified problems having analytical solutions were treated to validate various portions of the simulation to within a few percent. Performance estimates were made for conceptual several configurations and materials.

5. Evidence for residual elastic strain in deformed natural quartz

SciTech Connect

Kunz, Martin; Chen, Kai; Tamura,Nobumichi; Wenk, Hans-Rudolf

2009-01-30

Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron x-rays. The measurements with a resolution of one micrometer allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress in the order of {approx} 50 MPa.

6. Strain modification on electronic transport of the phosphorene nanoribbon

Yuan, Yawen; Cheng, Fang

2017-07-01

We demonstrate theoretically how local strains can be tailored to control quantum transport of carriers on monolayer armchair and zigzag phosphorene nanoribbon. We find that the electron tunneling is forbidden when the in-plane strain exceeds a critical value. The critical strain is different for different crystal orientation of the ribbons, widths, and incident energies. By tuning the Fermi energy and strain, the channels can be transited from opaque to transparent. Moreover, for the zigzag-phosphorene nanoribbon, the two-fold degenerate quasi-flat edge band splits completely under certain strain. These properties provide us an efficient way to control the transport of monolayer phosphorene-based microstructure.

7. Vortex motion around a circular cylinder above a plane

Vasconcelos, G. L.; Moura, M.

2017-08-01

The study of vortex flows around solid obstacles is of considerable interest from both a theoretical and practical perspective. One geometry that has attracted renewed attention recently is that of vortex flows past a circular cylinder placed above a plane wall, where a stationary recirculating eddy can form in front of the cylinder, in contradistinction to the usual case (without the plane boundary) for which a vortex pair appears behind the cylinder. Here we analyze the problem of vortex flows past a cylinder near a wall through the lenses of the point-vortex model. By conformally mapping the fluid domain onto an annular region in an auxiliary complex plane, we compute the vortex Hamiltonian analytically in terms of certain special functions related to elliptic theta functions. A detailed analysis of the equilibria of the model is then presented. The location of the equilibrium in front of the cylinder is shown to be in qualitative agreement with recent experimental findings. We also show that a topological transition occurs in phase space as the parameters of the systems are varied.

8. Rivulet between two planes: effect of inlet angle

Vorobieff, Peter; Fathi, Nima

2013-11-01

The behavior of gravity-driven rivulets flowing down between two vertical planes has attracted considerable recent attention, driven both by practical interest and by the attractiveness of the problem from the point of view of nonlinear physics. In this investigation, we study the effects of Reynolds number and variations of the inlet boundary conditions on the rivulet flow. The latter include variation in the entrance angle of the inlet with respect to vertical in the plane containing the rivulet. The experimental arrangement allows to create or eliminate fluctuations in the discharge that drives the rivulet, which leads to changes in the flow patterns we observe, including transitions between different flow regimes, and in some cases coexistence of straight and meandering flow. For a wide range of flow regimes, elimination of fluctuations in the discharge rate leads to emergence of stable, straight, non-meandering flow. While a similar observation had been previously made for flows down an inclined plane, this result is interesting, because of differences in the boundary conditions. This research is partly supported by a gift from the Procter & Gamble Company.

9. Hip flexor strain - aftercare

MedlinePlus

... flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

10. Double plane wave reverse time migration with plane wave Green's function

Zhao, Z.; Sen, M. K.; Stoffa, P. L.

2015-12-01

Reverse time migration (RTM) is effective in obtaining complex subsurface structures from seismic data. By solving the two-way wave equation, RTM can use entire wavefield for imaging. Although powerful computer are becoming available, the conventional pre-stack shot gather RTM is still computationally expensive. Solving forward and backward wavefield propagation for each source location and shot gather is extremely time consuming, especially for large seismic datasets. We present an efficient, accurate and flexible plane wave RTM in the frequency domain where we utilize a compressed plane wave dataset, known as the double plane wave (DPW) dataset. Provided with densely sampled seismic dataset, shot gathers can be decomposed into source and receiver plane wave components with minimal artifacts. The DPW RTM is derived under the Born approximation and utilizes frequency domain plane wave Green's function for imaging. Time dips in the shot profiles can help to estimate the range of plane wave components present in shot gathers. Therefore, a limited number of plane wave Green's functions are needed for imaging. Plane wave Green's functions can be used for imaging both source and receiver plane waves. Source and receiver reciprocity can be used for imaging plane wave components at no cost and save half of the computation time. As a result, the computational burden for migration is substantially reduced. Plane wave components can be migrated independently to recover specific targets with given dips, and ray parameter common image gathers (CIGs) can be generated after migration directly. The ray parameter CIGs can be used to justify the correctness of velocity models. Subsurface anisotropy effects can also be included in our imaging condition, provided with plane wave Green's functions in the anisotropic media.

11. Biomechanical differences between incline and plane hopping.

PubMed

Kannas, Theodoros M; Kellis, Eleftherios; Amiridis, Ioannis G

2011-12-01

Kannas, TM, Kellis, E, and Amiridis, IG. Biomechanical differences between incline and plane hopping. J Strength Cond Res 25(12): 3334-3341, 2011-The need for the generation of higher joint power output during performance of dynamic activities led us to investigate the force-length relationship of the plantar flexors during consecutive stretch-shortening cycles of hopping. The hypothesis of this study was that hopping (consecutive jumps with the knee as straight as possible) on an inclined (15°) surface might lead to a better jumping performance compared with hopping on a plane surface (0°). Twelve active men performed 3 sets of 10 consecutive hops on both an incline and plane surface. Ground reaction forces; ankle and knee joint kinematics; electromyographic (EMG) activity from the medial gastrocnemius (MG), soleus (Sol) and tibialis anterior (TA); and architectural data from the MG were recorded. The results showed that participants jumped significantly higher (p < 0.05) when hopping on an inclined surface (30.32 ± 8.18 cm) compared with hopping on a plane surface (27.52 ± 4.97 cm). No differences in temporal characteristics between the 2 types of jumps were observed. Incline hopping induced significantly greater ankle dorsiflexion and knee extension at takeoff compared with plane hopping (p < 0.05). The fascicle length of the MG was greater at initial contact with the ground during incline hopping (p < 0.05). Moreover, the EMG activities of Sol and TA during the propulsion phase were significantly higher during incline compared with that during plane hopping (p < 0.05). It does not seem unreasonable to suggest that, if the aim of hopping plyometrics is to improve plantar flexor explosivity, incline hopping might be a more effective exercise than hopping on a plane surface.

12. The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator

Moutanabbir, O.; Reiche, M.; Erfurth, W.; Naumann, F.; Petzold, M.; Gösele, U.

2009-06-01

The strain behavior in nanoscale patterned biaxial tensile strained Si layer on insulator is investigated in 60-nm-thick nanostructures with dimensions in the 80-400 nm range. The in-plane strain is evaluated by using UV micro-Raman. We found that less than 30% of the biaxial strain is maintained in the 200×200 nm2 nanostructures. This relaxation, due to the formation of free surfaces, becomes more important in smaller nanostructures. The strain is completely relieved at 80 nm. This phenomenon is described based on detailed three-dimensional finite element simulations. The anisotropic relaxation in rectangular nanostructures is also discussed.

13. Empirical paths of poles to planes (eppps) constrain the kinematics of geological shear zones

Talbot, Christopher J.

2014-09-01

Ductile shear zones are tabular bodies of deformed rocks bound by less deformed wall rocks. This work introduces a simple empirical approach to analysing the 3D kinematics of shear zones. The orientations of pre-shear planar markers distorted across natural shear zones by local strains are systematically measured and plotted as poles on lower hemisphere equal area projections that constrain smooth empiricalpaths ofpoles toplanes (eppps). Such eppps recording local strain gradients are used to fix a reference frame to the plane of greatest shear in any homogeneous bulk strain. Assuming that space can be taken as a proxy for time, the curvatures of pre-shear planar markers across shear zones are interpreted as the records of the 3D bulk strain histories of shear zones. The sig- or zig-moidal symmetries of sheared markers record different amounts of the same general strain within the same overall movement pattern (i.e. in a constant flow field) whatever its geometry or history. In effect eppps represent the strain memories of shear zones with successively inward readings recording successively younger shearing. In planes other than the bulk XY, great circle eppps indicate simple shear while hyperbolic eppps indicate pure shear. Eppps for suites of shear zones in Proterozoic gneisses in Sweden exhibit the parabolic shapes indicative of pure rather than simple shear.

14. On the theory of unsteady planing and the motion of a wing with vortex separation

NASA Technical Reports Server (NTRS)

Sedov, L

1940-01-01

The disturbance imparted to water by a planing body give rise to a wave form of motion on the free surface, the length of the waves increasing indefinitely with increase in the Froude number and being directly proportional to the latter in the case of the plane or two-dimensional problem. At large Froude numbers the effect of the weight shows up to any appreciable extent only at some distance from the body, so that the flow near the body can be considered as part of a flow of an infinitely extending weightless fluid. This paper is a consideration of these characteristics as well as a formulation of the planing problem and its relation to the problem of a thin wing.

15. Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane

ERIC Educational Resources Information Center

Chick, Helen

2016-01-01

The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…

16. Plane of elastic non-resisting tension material under foundation structures

Baratta, A.; Corbi, I.

2004-05-01

In the frame of 2D-static problems one approaches the problem of elastic-NRT (not-resisting tension) semi-plane loaded on its limit line. This problem is intended to model the stress situation induced in the soil by a foundation structure. The solution, in terms of activated stress field, is searched for in the class of stress fields satisfying equilibrium and admissibility conditions, by applying an energy approach. Copyright

17. Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane

ERIC Educational Resources Information Center

Chick, Helen

2016-01-01

The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…

18. Geometric structure of pseudo-plane quadratic flows

Sun, Che

2017-03-01

Quadratic flows have the unique property of uniform strain and are commonly used in turbulence modeling and hydrodynamic analysis. While previous applications focused on two-dimensional homogeneous fluid, this study examines the geometric structure of three-dimensional quadratic flows in stratified fluid by solving a steady-state pseudo-plane flow model. The complete set of exact solutions reveals that steady quadratic flows have an invariant conic type in the non-rotating frame and a non-rotatory vertical structure in the rotating frame. Three baroclinic solutions with vertically non-aligned formulation disprove an earlier conjecture. All elliptic and hyperbolic solutions, except for the inertial ones, exhibit vertical concentricity. The rich geometry of quadratic flows stands in contrast to the depleted geometry of high-degree polynomial flows. A paradox in the steady solutions of shallow-water reduced-gravity models is also explained.

19. INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR ...

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

INTERIOR OF SECOND FLOOR BRIDGE BETWEEN PLANING MILL AND CAR MACHINE SHOP, LOOKING SOUTH TOWARD PLANING MILL. - Southern Pacific, Sacramento Shops, Planing Mill, 111 I Street, Sacramento, Sacramento County, CA

20. Focal Plane Metrology for the LSST Camera

SciTech Connect

A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

2007-01-10

Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

1. GLAMER - II. Multiple-plane gravitational lensing

Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo

2014-12-01

We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.

2. Exhumation by gravitational sliding up an inclined plane

Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre

2015-04-01

Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.

3. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

PubMed

Frazin, Richard A

2016-04-01

A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

4. BaO Planes, not CuO2 Planes, Contain HIGH-TC Superconductivity

Dow, John D.; Harshman, Dale R.

Muon spin rotation (μ+SR) measurements conducted on crystalline YBa2Cu3O7 are consistent with s-wave pairing, not d-wave, suggesting that the superconducting hole condensate resides in the BaO layers, not in the cuprate-planes. The specific heat and thermal conductivity data are explained by the superconducting BaO layers alone, unlike the failed interpretation based on CuO2-plane superconductivity. The layer charges of the CuO2 planes are almost -2 |e|, indicating that those planes are primarily carriers of electrons, not holes. The cuprate-planes are not the dominant hole-carriers of high-TC superconductivity, as demonstrated by doped YBa2RuO6, which has no such CuO2 lanes, yet superconducts at ~ 93 K. Moreover the trio of related compounds, YSr2RuO6 (doped with Cu on Ru sites), undoped GdSr2Cu2RuO8, and undoped Gd2-zCezSr2Cu2RuO10 all start superconducting near 49 K in their SrO layers, not in the cuprate planes of the two compounds that have such planes, because those planes are either antiferromagnetic or weakly ferromagnetic and so do not superconduct. In PrBa2Cu3O7, a Pr-on-Ba-site (PrBa) defect kills the superconductivity, but Pr-on-Pr-site (PrPr) does not. Both defects are approximately equidistant from the intervening cuprate plane, suggesting that the cuprate plane does not carry significant superconductivity. In GdBa2Cu3O7, Gd-on-a-Gd-site (GdGd) does not break Cooper pairs, but Gd-on-a-Ba-site (GdBa) does, indicating that the superconductivity is in the BaO layers, and not in the cuprate-planes. In HgBa2Can-1CunO2n+2, the BaO layers, not the cuprate-planes, gain positive charge as TC, pressure, and the number of layers n increase. The reason that theories based on holes in the cuprate-planes have done so poorly is that those planes were incorrectly identified as the source of high-temperature superconductivity on the basis of a single datum by Cava et al., that was first contradicted by Jorgensen et al., and then endorsed by Jorgensen alone on the

5. The MSX Galactic Plane Survey Submillimeter Results

Price, S.; Carey, S.; Egan, M. P.

The MidCourse Space eXperiment (MSX) surveyed the Galactic plane within 5° latitude in four mid-infrared spectral bands. A set of full resolution (20'') 1.5^circ×1.5^circ images on 6'' pixel centers has been created in each spectral band by co-adding all the survey data. A lower (1.2') resolution atlas of 10^circ×10^circ images provide large-scale panoramas of the plane. A new class of objects has been identified in the images, infrared dark clouds, which are silhouetted against the mid-infrared background emission from the interstellar medium in the Galactic plane. The IRAS ISSA plates indicate that these clouds are dark out to 100 μm. Submillimeter emission traces the form of the dark cloud and reveals cores indicative of class 0 protostars.

6. Solid-state curved focal plane arrays

NASA Technical Reports Server (NTRS)

Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

2010-01-01

The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

7. Problem Solving

ERIC Educational Resources Information Center

Kinsella, John J.

1970-01-01

Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)

8. Sagittal plane deformity: an overview of interpretation and management

PubMed Central

Roussouly, Pierre

2010-01-01

The impact of sagittal plane alignment on the treatment of spinal disorders is of critical importance. A failure to recognise malalignment in this plane can have significant consequences for the patient not only in terms of pain and deformity, but also social interaction due to deficient forward gaze. A good understanding of the principles of sagittal balance is vital to achieve optimum outcomes when treating spinal disorders. Even when addressing problems in the coronal plane, an awareness of sagittal balance is necessary to avoid future complications. The normal spine has lordotic curves in the cephalad and caudal regions with a kyphotic curve in between. Overall, there is a positive correlation between thoracic kyphosis and lumbar lordosis. There are variations on the degree of normal curvature but nevertheless this shape allows equal distribution of forces across the spinal column. It is the disruption of this equilibrium by pathological processes or, as in most cases, ageing that results in deformity. This leads to adaptive changes in the pelvis and lower limbs. The effects of limb alignment on spinal posture are well documented. We now also know that changes in pelvic posture also affect spinal alignment. Sagittal malalignment presents as an exaggeration or deficiency of normal lordosis or kyphosis. Most cases seen in clinical practise are due to kyphotic deformity secondary to inflammatory, degenerative or post-traumatic disorders. They may also be secondary to infection or tumours. There is usually pain and functional disability along with concerns about self-image and social interaction due to inability to maintain a horizontal gaze. The resultant pelvic and lower limb posture is an attempt to restore normal alignment. Addressing this complex problem requires detailed expertise and awareness of the potential pitfalls surrounding its treatment. PMID:20567858

9. Sagittal plane deformity: an overview of interpretation and management.

PubMed

2010-11-01

The impact of sagittal plane alignment on the treatment of spinal disorders is of critical importance. A failure to recognise malalignment in this plane can have significant consequences for the patient not only in terms of pain and deformity, but also social interaction due to deficient forward gaze. A good understanding of the principles of sagittal balance is vital to achieve optimum outcomes when treating spinal disorders. Even when addressing problems in the coronal plane, an awareness of sagittal balance is necessary to avoid future complications. The normal spine has lordotic curves in the cephalad and caudal regions with a kyphotic curve in between. Overall, there is a positive correlation between thoracic kyphosis and lumbar lordosis. There are variations on the degree of normal curvature but nevertheless this shape allows equal distribution of forces across the spinal column. It is the disruption of this equilibrium by pathological processes or, as in most cases, ageing that results in deformity. This leads to adaptive changes in the pelvis and lower limbs. The effects of limb alignment on spinal posture are well documented. We now also know that changes in pelvic posture also affect spinal alignment. Sagittal malalignment presents as an exaggeration or deficiency of normal lordosis or kyphosis. Most cases seen in clinical practise are due to kyphotic deformity secondary to inflammatory, degenerative or post-traumatic disorders. They may also be secondary to infection or tumours. There is usually pain and functional disability along with concerns about self-image and social interaction due to inability to maintain a horizontal gaze. The resultant pelvic and lower limb posture is an attempt to restore normal alignment. Addressing this complex problem requires detailed expertise and awareness of the potential pitfalls surrounding its treatment.

10. Plane acoustic wave propagation through a composite of elastic and Kelvin-Voigt viscoelastic material layers

Shamaev, A. S.; Shumilova, V. V.

2017-01-01

The problem of plane wave propagation through a plane composite layer of thickness h is considered. The composite consists of periodically repeated elastic and Kelvin-Voigt viscoelastic material layers, and all layers are either parallel or perpendicular to the incident wave front. Moreover, it is assumed that the thickness of each separate layer of the composite is much less than the acoustic wave length and the thickness h of the entire composite. We study the problem by using a homogenized model of the composite, which allows us to find the reflection and transmission factors and the variation in the sound intensity level as it propagates though the composite layer of thickness h.

11. Achromatic phase shifting focal plane masks

Newman, Kevin

12. Source localization using rational approximation on plane sections

Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.

2012-05-01

In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.

13. Flow of granular materials down an inclined plane

SciTech Connect

Gudhe, R.; Rajagopal, K.R.; Massoudi, M.; Chi, R.

1993-05-01

The mechanics of flowing granular materials such as coal, sand, fossil-fuel energy recovery, metal ores, etc., and their flow characteristics have received considerable attention in recent years because it has relevance to several technological problems. In a number of instances these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials taking into account the heat transfer mechanism are derived using the continuum model proposed by Rajagopal and Massoudi (1990). For a fully developed flow of granular materials down an inclined plane, these equations reduce to a system of coupled ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented. For a special case, it is possible to obtain an analytic solution; this is given in the Appendix A of this report.

14. Plane shock wave structure in a dilute granular gas

Reddy, M. H. Lakshminarayana; Alam, Meheboob

2016-11-01

We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.

15. Mixed boundary conditions for FFT-based homogenization at finite strains

Kabel, Matthias; Fliegener, Sascha; Schneider, Matti

2016-02-01

In this article we introduce a Lippmann-Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann-Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann-Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton-Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.

16. Staring Focal Plane Array System Modeling

DTIC Science & Technology

1989-12-01

C’, DTIC SELECTENI ODEC271 D B mU STARING FOCAL PLANE ARRAY SYSTEM MODELING THESIS John Gerard Murphy Captain, USAF AFIT/GEO/ENP/89D- 3 DEPARTMENT OF...m mmmmmmmm .. \\FlIT/GEO/ENP/89D- 3 STARING FOCAL PLANE ARRAY SYSTEM MODELING THESIS Presented to the Faculty of the School of Engineering of the Air...Background. .. .. ... ... .... ... .... ..... 1-2 1.1.1 MRTD .. .. .. ... ... .... .... ..... 1-2 01.1.2 MIRTD in Modeling. .. .. .. ... .... .... 1- 3 113MRTD

17. [Normolipemic plane xanthomas and mycosis fungoides].

PubMed

García-Arpa, Mónica; Rodríguez-Vázquez, María; Vera, Elena; Romero, Guillermo; González-García, Jesús; Cortina, Pilar

2005-06-01

Diffuse normolipemic plane xanthomas are characterized by the presence of yellowish plaques on the eyelids, neck, upper trunk, buttocks and flexures. Histology shows foamy histiocytes in the dermis. Approximately half of all cases are associated with hematological disorders. On rare occasions, they have been described in the context of cutaneous T-cell lymphomas. We present the case of a female patient with tumor-stage mycosis fungoides who developed normolipemic plane xanthomas coinciding with the appearance of new lymphoma lesions. We review English-language literature regarding the rare association of xanthomas and cutaneous T-cell lymphomas.

18. Trajectory optimization for the national aerospace plane

NASA Technical Reports Server (NTRS)

Lu, Ping

1993-01-01

During the past six months the research objectives outlined in the last semi-annual report were accomplished. Specifically, these are: three-dimensional (3-D) fuel-optimal ascent trajectory of the aerospace plane and the effects of thrust vectoring control (TVC) on the fuel consumption and trajectory shaping were investigated; the maximum abort landing area (footprint) was studied; preliminary assessment of simultaneous design of the ascent trajectory and the vehicle configuration for the aerospace plane was also conducted. The work accomplished in the reporting period is summarized.

19. Slant plane CSAR processing using Householder transform.

PubMed

Burki, Jehanzeb; Barnes, Christopher F

2008-10-01

Fourier analysis-based focusing of synthetic aperture radar (SAR) data collected during circular flight path is a recent advancement in SAR signal processing. This paper uses the Householder transform to obtain a ground plane circular SAR (CSAR) signal phase history from the slant plane CSAR phase history by inverting the linear shift-varying system model, thereby circumventing the need for explicitly computing a pseudo-inverse. The Householder transform has recently been shown to have improved error bounds and stability as an underdetermined and ill-conditioned system solver, and the Householder transform is computationally efficient.

20. Toward loop quantization of plane gravitational waves

Hinterleitner, Franz; Major, Seth

2012-03-01

The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.

1. Comparison of interferometric spectral imaging techniques near the pupil plane and image plane

Itoh, Kazuyoshi; Inoue, Takashi; Ichioka, Yoshiki

1990-07-01

We present an analysis of signal to noise ratios of two interferometric techniques for spectral imaging and its experimental verification. One technique makes use of interference signals detected near the pupil plane and the other uses the signals near the image plane. The experiments showed that the latter technique is superior to the former under the normal conditions. 1.

2. Note: A novel integrated microforce measurement system for plane-plane contact research

Dong, W.; Rostoucher, D.; Gauthier, M.

2010-11-01

The evaluation of plane-plane contact force has become a big issue in micro-/nano research, for example in microassembly. However with the lack of effective experimental equipments, the research on plane-plane contact has been limited to theoretical formulations or virtual simulation. In this paper, a microforce sensor and precision parallel robot integrated system is proposed for the microforce measurement of plane-plane contact. In the proposed system, the two objects are fixed on the parallel robot end-platform and the microforce sensor probe tip, respectively, and the high precision robot system is employed to provide six degree-of-freedom motions between both objects. So it is convenient for the microforce measurement between the planar objects with different orientations. As a significant application, the proposed system is utilized for measurements of pull-off force between planar objects, in which the validation of the system is demonstrated in practice. The proposed microforce measurement system is generic, which can be extended to a variety of microforce measurements in plane-plane contact.

3. Analytic theory of optimal plane change by low aerodynamic forces

Ma, Der-Ming; Wu, Chi-Hang; Vinh, Nguyen X.

The properites of the optimal and sub-optimal solutions to multiple-pass aeroassisted plane change were previously studied in terms of the trajectory variables. The solutions show the strong orbital nature. Then, it is proposed to obtain the variational equations of the orbital elements. We shall use these equations and the approximate control derived in Vinh and Ma (1990) to calculate the trajectories. In this respect, the approximate control law and the transversality condition are transformed in terms of the orbital elements. Following the above results, we can reduce the computational task by further simplification. Within omega and Omega being small and returning to the value of zero after each revolution, we neglect the equations for omega, and Omega. Also, since omega approximately equal to 0, that is alpha approximately equal to f, we can neglect the equation for the alpha and have only three state equations for the integration. Still the computation over several revolutions is long since it is performed using the eccentric anomaly along the osculating orbit as the independent variable. Here, we shall use the method of averaging as applied to the problem of orbit contraction to solve the problem of optimal plane change. This will lead to the integration of a reduced set of two nonlinear equations.

4. Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity

Lai, Timothy Yu

2002-01-01

Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The

5. Magnetization process in holmium: easy axis spin reorientation induced by the magnetostrictive basal plane distortion.

PubMed

Benito, L; Ciria, M; de la Fuente, C; Arnaudas, J I; Ward, R C C; Wells, M R

2005-06-10

We report on the change of the easy axis direction in holmium, from the a to the b axis, under the application of a magnetic field in the basal plane. This spin reorientation is observed by measuring the magnetic torque in Ho(n)/Lu(15) superlattices (n and 15 are the number of atomic planes in the Ho and Lu blocks). We also observe that, at the field H0 and temperature at which the reorientation occurs, both axes are easy directions. Based on the fact that the field H0 depends on n in the same way as the field-induced magnetoelastic distortion does, we propose that this spin reorientation originates from the strong field-induced magnetoelastic deformation within the basal plane. The modulation of the alpha strains with sixfold symmetry originates a 12-fold term in the magnetic anisotropy energy.

6. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear

Lei, Zhenkun; Bai, Ruixiang; Tao, Wang; Wei, Xiao; Leng, Ruijiao

2016-12-01

The buckling behavior and failure mode of a composite panel stiffened by I-shaped stringers under in-plane shear is studied using digital fringe projection profilometry. The basic principles of the dynamic phase-shifting technique, multi-frequency phase-unwrapping technique and inverse-phase technique for nonlinear error compensation are introduced. Multi-frequency fringe projection profilometry was used to monitor and measure the change in the morphology of a discontinuous surface of the stiffened composite panel during in-plane shearing. Meanwhile, the strain history of multiple points on the skin was obtained using strain rosettes. The buckling mode and deflection of the panel at different moments were analyzed and compared with those obtained using the finite element method. The experimental results validated the FEM analysis.

7. The surface and through crack problems in layered orthotropic plates

NASA Technical Reports Server (NTRS)

Erdogan, Fazil; Wu, Binghua

1991-01-01

An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

8. MTI Focal Plane Assembly Design and Performance

SciTech Connect

Ballard, M.; Rienstra, J.L.

1999-06-17

The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

9. VLBI Ecliptic Plane Survey: VEPS-1

Shu, Fengchun; Petrov, Leonid; Jiang, Wu; Xia, Bo; Jiang, Tianyu; Cui, Yuzhu; Takefuji, Kazuhiro; McCallum, Jamie; Lovell, Jim; Yi, Sang-oh; Hao, Longfei; Yang, Wenjun; Zhang, Hua; Chen, Zhong; Li, Jinling

2017-06-01

We present here the results of the first part of the VLBI Ecliptic Plane Survey (VEPS) program. The goal of the program is to find all compact sources within 7\\buildrel{\\circ}\\over{.} 5 of the ecliptic plane that are suitable as calibrators for anticipated phase referencing observations of spacecraft, and determine their positions with accuracy at the 1.5 nrad level. We run the program in two modes: search and refine. In the search mode, a complete sample of all sources brighter than 50 mJy at 5 GHz listed in the Parkes-MIT-NRAO and Green Bank 6 cm (GB6) catalogs, except those previously detected with VLBI, is observed. In the refining mode, the positions of all ecliptic plane sources, including those found in the search mode, are improved. By 2016 October, thirteen 24 hr sessions that targeted all sources brighter than 100 mJy have been observed and analyzed. Among 3320 observed target sources, 555 objects have been detected. We also conducted a number of follow-up VLBI experiments in the refining mode and improved the positions of 249 ecliptic plane sources.

10. Towards Dualband Megapixel QWIP Focal Plane Arrays

NASA Technical Reports Server (NTRS)

Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

2006-01-01

Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 x 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEDT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEDT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEDT, uniformity, operability, and modulation transfer functions of the 1024 x 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

11. Microscale out-of-plane anemometer

NASA Technical Reports Server (NTRS)

Liu, Chang (Inventor); Chen, Jack (Inventor)

2005-01-01

A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.

12. Dual band QWIP focal plane array

NASA Technical Reports Server (NTRS)

Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

2005-01-01

A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

13. Large Format Multicolor QWIP Focal Plane Arrays

NASA Technical Reports Server (NTRS)

Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.

2009-01-01

Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.

14. Deep-Plane Lipoabdominoplasty in East Asians

PubMed Central

Jang, Jun-Young; Hong, Yoon Gi; Sim, Hyung Bo; Sun, Sang Hoon

2016-01-01

Background The objective of this study was to develop a new surgical technique by combining traditional abdominoplasty with liposuction. This combination of operations permits simpler and more accurate management of various abdominal deformities. In lipoabdominoplasty, the combination of techniques is of paramount concern. Herein, we introduce a new combination of liposuction and abdominoplasty using deep-plane flap sliding to maximize the benefits of both techniques. Methods Deep-plane lipoabdominoplasty was performed in 143 patients between January 2007 and May 2014. We applied extensive liposuction on the entire abdomen followed by a sliding flap through the deep plane after repairing the diastasis recti. The abdominal wound closure was completed with repair of Scarpa's fascia. Results The average amount of liposuction aspirate was 1,400 mL (700–3,100 mL), and the size of the average excised skin ellipse was 21.78×12.81 cm (from 15×10 to 25×15 cm). There were no major complications such as deep-vein thrombosis or pulmonary embolism. We encountered 22 cases of minor complications: one wound infection, one case of skin necrosis, two cases of undercorrection, nine hypertrophic scars, and nine seromas. These complications were solved by conservative management or simple revision. Conclusions The use of deep-plane lipoabdominoplasty can correct abdominal deformities more effectively and with fewer complications than traditional abdominoplasty. PMID:27462568

15. Selective plane illumination microscopy on a chip.

PubMed

Paiè, Petra; Bragheri, Francesca; Bassi, Andrea; Osellame, Roberto

2016-04-26

Selective plane illumination microscopy can image biological samples at a high spatiotemporal resolution. Complex sample preparation and system alignment normally limit the throughput of the method. Using femtosecond laser micromachining, we created an integrated optofluidic device that allows obtaining continuous flow imaging, three-dimensional reconstruction and high-throughput analysis of large multicellular spheroids at a subcellular resolution.

16. Simple Harmonic Motion in Harmonic Plane Waves.

ERIC Educational Resources Information Center

Benumof, Reuben

1980-01-01

Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

17. Optical interconnections to focal plane arrays

SciTech Connect

Rienstra, J.L.; Hinckley, M.K.

2000-11-01

The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

18. End Site Control Plane Subsystem (ESCPS)

SciTech Connect

Swany, Douglas Martin

2014-08-12

This project researched extending the control plane for dynamic networks into end sites like campuses and laboratories. Key aspects of consideration were signaling over local area network technologies, application integration and monitoring. We studied design considerations for such environments and developed and demonstrated a useful proof of concept implementation and documented implementation strategies for heterogeneous networks.

19. Simple Harmonic Motion in Harmonic Plane Waves.

ERIC Educational Resources Information Center

Benumof, Reuben

1980-01-01

Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

20. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

SciTech Connect

Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

2014-09-22

Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

1. Highly bendable characteristics of amorphous indium-gallium-zinc-oxide transistors embedded in a neutral plane

Park, Chang Bum; Na, HyungIl; Yoo, Soon Sung; Park, Kwon-Shik

2015-11-01

The electromechanical response of an amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) fabricated on a polyimide substrate was investigated as a function of the neutral axis location and strain history of the bending system. Here, we demonstrate the pronounced bending characteristics of a-IGZO TFTs and their backplane under extreme mechanical strain when they are embedded in a neutral plane (NP). After being subjected to tensile stress, the devices positioned near the NP were observed to function well against a cyclic bending stress of 2 mm radius with 100,000 times, while TFTs farther from the neutral surface exhibited modified electrical properties.

2. High-strain composites and dual-matrix composite structures

Maqueda Jimenez, Ignacio

another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods. High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

PubMed

Rolland, J P; Krueger, M W; Goon, A

2000-07-01

Stereoscopic head-mounted displays (HMD's) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD's. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD's. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 microm.

4. High temperature strain gage apparent strain compensation

NASA Technical Reports Server (NTRS)

Holmes, Harlan K.; Moore, T. C., Sr.

1992-01-01

Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

5. Rupture Plane Determination of Small to Moderate Earthquakes by Finite Moment Tensor Inversion

Chao, W.; Zhao, L.; Wu, Y.

2009-12-01

The Chia-Yi area in southwestern Taiwan is a region of relatively high seismicity with frequent earthquakes of variable magnitudes in the shallow crust. These events provide valuable information for the understanding of seismotectonics of this region. In this study, we investigate the source properties of small to moderate earthquakes (3.0 < ML < 5.5) in the Chia-Yi region by inverting for their point as well as finite moment tensors. Finite moment tensor is a simplified representation of a finite source, and it can be used to resolve the fault-plane ambiguity of a point source model and determine the actual rupture plane of an earthquake. Based on a three-dimensional (3D) structural model for the Chia-Yi region, we compute the strain Green tensors by the finite-difference method. These strain Green tensors can be used to compute the synthetic seismograms as well as the partial derivatives for the inversion of point and finite moment tensor parameters. Frequency-dependent P-wave amplitude perturbations are measured from broadband and strong-motion seismograms and inverted for the point and finite moment tensors, which are then used to identify the actual rupture planes of earthquakes. With this approach, more details of small and moderate earthquakes, in particular their actual rupture fault planes, can be determined in realistic 3D structure, which helps us to understand the regional seismotectonics and the stress field. Keywords: Taiwan, Green function, finite moment tensors (FMTs).

6. Theoretical calculation of plane wave speeds for alkali metals under pressure.

NASA Technical Reports Server (NTRS)

Eftis, J.; Macdonald, D. E.; Arkilic, G. M.

1971-01-01

Theoretical calculations of the variation with pressure of small amplitude plane wave speeds are performed for sodium and potassium at zero temperature. The results obtained for wave speeds associated with volume dependent second-order elastic coefficients show better agreement with experimental data than for wave speeds associated with shear dependent coefficients. This result is believed to be due to omission of the band structure correction to the strain energy density.

7. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

PubMed Central

Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

2014-01-01

Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

8. Step-induced in-plane orbital anisotropy in FeNi films on Cu(111) probed by magnetic circular x-ray dichroism

Cherifi, S.; Boeglin, C.; Stanescu, S.; Deville, J. P.; Mocuta, C.; Magnan, H.; Le Fèvre, P.; Ohresser, P.; Brookes, N. B.

2001-11-01

The effects of nanostructured magnetic Fe65Ni35 films deposited on a vicinal Cu(111) single-crystal surface on the magnetic anisotropy have been studied using magnetic circular x-ray dichroism (MCXD) at the Fe L2,3 edges. In the one-dimensional (1D) limit a large dipolar out-of-plane anisotropy is evidenced with in-plane isotropic magnetic moments. After the 1D coalescence the orbital moment shows a more complex behavior depending on the in-plane direction of saturation. We show that MCXD is strongly sensitive to in-plane orbital anisotropy for the 1D stripes. We demonstrate the importance of the step induced in-plane anisotropy by measuring the orbital magnetic moment dependence as a function of the in-plane azimuth angle. In the submonolayer regime an in-plane magnetic anisotropy is observed related to the step decoration growth mode. In the thickness range of 2-4 equivalent monolayers, 2D coalescence induces a strong in-plane magnetic anisotropy of the magnetic orbital moment. The microscopic origin of the strong in-plane variation of ML has been attributed to magnetocrystalline effects. Strained films give rise to an in-plane magnetic anisotropy energy up to 2 meV/at., which is larger than those measured out of the plane (0-1 meV/at.).

9. Integrated focal-plane array /IFPA/ approach to large-area infrared focal plane architecture

Warren, R. E.

1980-01-01

A modular approach to IFPA design is presented which makes it possible to obtain a high-density infrared focal plane amendable to parallel manufacturing techniques as well as to serial plane integration and test. The percent fill factor of the design is dependent on the dimension of the individual detectors; each submodule is manufactured from identical components. The technologies including cables, interconnects, multilayer interconnect structures, and subassembly test requirements, which have direct application to scanning as well as staring integrated focal plane arrays, are discussed.

10. Balance Problems

MedlinePlus

... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady. You may ... related injuries, such as a hip fracture. Some balance problems are due to problems in the inner ...

11. Optimal structural design via optimality criteria as a nonsmooth mechanics problem

Tzaferopoulos, M. Ap.; Stravroulakis, G. E.

1995-06-01

In the theory of plastic structural design via optimality criteria (due to W. Prager), the optimal design problem is transformed to a nonlinear elastic structural analysis problem with appropriate stress-strain laws, which generally include complete vertical branches. In this context, the concept of structural universe (in the sense of G. Rozvany) permits the treatment of complicated optimal layout problems. Recent progress in the field of nonsmooth mechanics makes the solution of structural analysis problems with this kind of 'complete' law possible. Elements from the two fields are combined in this paper for the solution of optimal design and layout problems for structures. The optimal layout of plane trusses with various specific cost functions is studied here as a representative problem. The use of convex, continuous and piecewise linear specific cost functions for the structural members leads to problems of linear variational inequalities or equivalently piecewise linear, convex but nonsmooth optimization problems, which are solved by means of an iterative algorithm based on sequential linear programming techniques. Numerical examples illustrate the theory and its applicability to practical engineering structures. Following a parametric investigation of an optimal bridge design, certain aspects of the optimal truss layout problem are discussed, which can be extended to other types of structural systems as well.

12. Comparison of strains of Mycoplasma iowae.

PubMed

1984-01-01

Comparison of biochemical test results and protein electrophoretic patterns of 21 strains of Mycoplasma iowae indicated that all were similar. Comparison of agglutination test results indicated marked within-species antigenic variation. None of 21 antigens prepared from different strains were effective in demonstrating turkey antibody against five reference strains. Examination of sera from turkeys exposed by intra-air-sac inoculation to two pathogenic strains also indicated antigenic variation. Neither the M. iowae type-strain, Iowa 695, nor the other reference strains were effective in demonstrating antibody against both strains used to expose the turkeys. These findings suggest that antigenic variation may be a major problem in effective serodiagnosis of M. iowae infections.

13. Effect of strain on thermoelectric power of suspended graphene

SciTech Connect

Vaidya, R. G.; Sankeshwar, N. S. Mulimani, B. G.

2013-12-04

Thermoelectric power, S, of suspended graphene in the presence of strain is investigated. The electrons are considered to be scattered by in-plane and flexural phonons. The dominant contribution to S of non-strained and strained suspended graphene (SG) is found to be from the phonon drag component, S{sub g} for T < 90K. For T > 150 K contribution from diffusion thermopower becomes important. The effect of strain is found to be suppress S{sub d} and to alter its behavior, the effect being larger at higher temperatures.

14. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

SciTech Connect

Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

2014-06-07

Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

15. Geobacteraceae strains and methods

DOEpatents

Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

2015-07-07

Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

16. Theory of Lattice Strain for Materials Undergoing Plastic Deformation

Karato, S.

2008-12-01

Radial x-ray diffraction is used to probe physical properties of materials including elastic and plastic properties. The theory used behind such an practice is the one developed by Singh (1993) in which the relation between lattice strain and elastic constants and macroscopic stress is derived. In this theory, the variation of inferred stress with the crystallographic planes, (hkl), is due to the elastic anisotropy. However, recent experimental studies showed that in many cases, the variation of stress with (hkl) far exceeds the value expected from this theory. I have developed a modified theory to rectify this problem with Singh's theory. In Singh's theory, the stress distribution in a polycrystalline material is treated only either unrelaxed or relaxed state. The role of plastic deformation is included only to the extent that plastic flow influences this stress state. Such an assumption corresponds to a Voigt model behavior, which is not an appropriate model at high temperatures where continuing plastic flow occurs with concurrent microscopic equilibrium, elastic deformation. This is a Maxwell model type behavior, and my model provides a stress analysis in a Maxwell material with anisotropic and non-linear power-law rheology. In this theory, the lattice strain corresponding to an imposed macroscopic strain-rate is calculated by three steps: (i) conversion of macroscopic strain-rate to macroscopic stress, (ii) conversion of macroscopic stress to microscopic stress at individual grains, and (iii) calculation of microscopic strain due to microscopic stress. The first step involves anisotropy in macroscopic viscosity that depends on anisotropy in crystal plasticity and lattice-preferred orientation. The second step involves anisotropic crystal plasticity and finally the third step involves elastic crystal anisotropy. In most cases, the influence of LPO is weak and in such a case, the lattice strain depends on (hkl) due to the anisotropy in both elastic and plastic

17. The Development of Electrical Strain Gages

NASA Technical Reports Server (NTRS)

De Forest, A V; Leaderman, H

1940-01-01

The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.

18. An Energy-Critical Plane Based Fatigue Damage Approach for the Life Prediction of Metal Alloys

Pitatzis, N.; Savaidis, G.

2016-11-01

This paper presents a new energy-critical plane based fatigue damage approach for the assessment of the fatigue life under uniaxial and multiaxial proportional and non-proportional fatigue loading. The proposed approximate method, based on Farahani's multiaxial fatigue damage model, takes into account the critical plane orientations during a loading cycle and the values of the respective damage parameters on them. The uniqueness of the proposed method lies on the fact that it considers a weighted contribution of each critical plane orientation to the material damage. The relative weighting factors depend on the declination of each critical plane with respect to the critical plane, where the damage parameters exhibit their maximum values during a fatigue loading cycle. Herein, several low, mid and high-cycle fatigue loading cases are being investigated. The induced elastic-plastic stress-strain states are approximated by means of respective finite element analyses (FEA). Several experimental fatigue data derived from uniaxial and multiaxial fatigue tests on StE460 steel alloy thin-walled hourglass-type specimens have been used to verify the model's calculation accuracy. Comparison of experimental and calculated fatigue lives confirm remarkable fatigue life calculation accuracy in all cases examined.

19. The crack problem in bonded nonhomogeneous materials

NASA Technical Reports Server (NTRS)

Erdogan, F.; Joseph, P. F.; Kaya, A. C.

1991-01-01

The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

20. Dual Plane Augmentation Genioplasty Using Gore-Tex Chin Implants

PubMed Central

Kim, Byung Jun; Lim, Jong Woo; Park, Ji Hoon

2014-01-01

Background The chin shape and position is important in determining the general shape of the face, and augmentation genioplasty is performed alone or in combination with other aesthetic procedures. However, augmentation genioplasty using osteotomy is an invasive and complex procedure with the potential to damage mentalis muscle and mental nerve, to affect chin growth, and prolonged recovery. Our aim was to present our experience with a modified augmentation genioplasty procedure for hypoplastic chins using a Gore-Tex implant. Methods Two vertical slit incisions were made at the canine level to create a supraperiosteal pocket between the incisions, preserving the periosteum and mentalis muscle. Minimal sub-periosteal dissection was performed lateral to the incisions along the mandibular border. The both wings of implant were inserted under the periosteum to achieve a stable dual plane implantation. Results In total, 47 patients underwent dual plane chin augmentation using a Gore-Tex implant between January 2008 and May 2013. The mean age at operation was 25.77 years (range, 15-55 years). There were 3 cases of infection; one patient was treated with antibiotics, the others underwent implant removal. Additionally, two patients complained of postoperative parasthesia that spontaneously improved without any additional treatment. Most patients were satisfied with the postoperative outcomes, and no chin growth problems were observed among the younger patients. Conclusion Dual plane Gore-Tex chin augmentation is a minimally-invasive operation that is simple and safe. All implants yielded satisfactory results with no significant complications such as mental nerve injury, lower lip incompetence, or chin growth limitation.

1. Laser speckle strain and deformation sensor using linear array image cross-correlation method for specifically arranged triple-beam triple-camera configuration

NASA Technical Reports Server (NTRS)

2000-01-01

The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.

2. An Exact Solution for Geophysical Edge Waves in the {β}-Plane Approximation

Ionescu-Kruse, Delia

2015-12-01

By taking into account the {β}-plane effects, we provide an exact nonlinear solution to the geophysical edge-wave problem within the Lagrangian framework. This solution describes trapped waves propagating eastward or westward along a sloping beach with the shoreline parallel to the Equator.

3. [Population problem, comprehension problem].

PubMed

Tallon, F

1993-08-01

Overpopulation of developing countries in general, and Rwanda in particular, is not just their problem but a problem for developed countries as well. Rapid population growth is a key factor in the increase of poverty in sub-Saharan Africa. Population growth outstrips food production. Africa receives more and more foreign food, economic, and family planning aid each year. The Government of Rwanda encourages reduced population growth. Some people criticize it, but this criticism results in mortality and suffering. One must combat this ignorance, but attitudes change slowly. Some of these same people find the government's acceptance of family planning an invasion of their privacy. Others complain that rich countries do not have campaigns to reduce births, so why should Rwanda do so? The rate of schooling does not increase in Africa, even though the number of children in school increases, because of rapid population growth. Education is key to improvements in Africa's socioeconomic growth. Thus, Africa, is underpopulated in terms of potentiality but overpopulated in terms of reality, current conditions, and possibilities of overexploitation. Africa needs to invest in human resources. Families need to save, and to so, they must refrain from having many children. Africa should resist the temptation to waste, as rich countries do, and denounce it. Africa needs to become more independent of these countries, but structural adjustment plans, growing debt, and rapid population growth limit national independence. Food aid is a means for developed countries to dominate developing countries. Modernization through foreign aid has had some positive effects on developing countries (e.g., improved hygiene, mortality reduction), but these also sparked rapid population growth. Rwandan society is no longer traditional, but it is also not yet modern. A change in mentality to fewer births, better quality of life for living infants, better education, and less burden for women must occur

4. The national aero-space plane

NASA Technical Reports Server (NTRS)

Mendez, Bruce

1988-01-01

The National Aerospace Plane is an extremely versatile and adaptable aircraft. It can be developed into an Orient Express that would dramatically improve trade with countries in Asia and elsewhere: a commuter transport to ferry men and materials to space, an advanced tactical fighter or bomber, and an unparalleled high altitude spy-plane to observe troubled spots all over the globe. Utilizing the technology developed by this pilot program, it will be possible to quickly and easily get to low Earth orbit, go halfway around the world in a fraction of the time it previously took, and lead the world in the development of advanced technology to improve our lives and the lives of many others.

5. Split-field pupil plane determination apparatus

DOEpatents

Salmon, Joseph T.

1996-01-01

A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).

6. Structure analysis for plane geometry figures

Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi

2013-12-01

As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.

7. Multi-planed unified switching topologies

DOEpatents

Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

2017-07-04

An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

8. Image-plane processing of visual information

NASA Technical Reports Server (NTRS)

Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

1984-01-01

Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

9. Division plane determination during plant somatic cytokinesis.

PubMed

Van Damme, Daniel

2009-12-01

Division plane determination in plant cells involves the transformation of the cortical microtubular array into a preprophase band (PPB) with the nucleus anchored at the center. This likely occurs through polarity cues controlling proteins affecting cytoskeletal dynamics. Crosstalk with cell cycle machinery should assure that this happens in concert with cell cycle progression. Before PPB breakdown, targeted deposition of factors at the position of the PPB translates this position into a signal which remains present throughout cytokinesis and directs the centrifugal growing cell plate to the correct cortical position. Anchoring and maturation of the cell plate ultimately divides the two daughter cells. This review aims to provide an up-to-date overview of the mechanisms and molecular players in division plane determination in plant somatic cytokinesis.

10. Progress on the VLBI Ecliptic Plane Survey

Shu, Fengchun; Petrov, Leonid; Jiang, Wu; McCallum, Jamie; Yi, Sang-oh; Takefuji, Kazuhiro; Li, Jinling; Lovell, Jim

2016-12-01

We launched the VLBI Ecliptic Plane Survey program in 2015. The goal of this program is to find all compact sources within 7.5° of the ecliptic plane which are suitable as phase calibrators for anticipated phase referencing observations of spacecrafts. We planned to observe a complete sample of the sources brighter than 50 mJy at 5 GHz listed in the PMN and GB6 catalogs that have not yet been observed with VLBI. By April 2016, eight 24-hour sessions had been performed and processed. Among 2,227 observed sources, 435 sources were detected in three or more observations. We also ran three eight-hour segments with the VLBA for improving the positions of 71 ecliptic sources.

11. The iPTF Galactic Plane Survey

Bellm, Eric Christopher; Prince, Thomas A.; Miller, Adam; Kulkarni, Shrinivas R.; Kupfer, Thomas; Laher, Russ; Masci, Frank J.; Oded Ofek, Eran; Shupe, David L.; Surace, Jason A.; Intermediate Palomar Transient Factory Collaboration

2016-01-01

Beginning in 2013, the Intermediate Palomar Transient Factory has conducted a survey of the Northern Galactic Plane. The major science goals of the survey include mapping variable stars throughout the Galaxy; discovering outbursting sources such as Cataclysmic Variables, FU Ori outbursts, and M-dwarf flares; and identifying rare types of compact binaries. Through 2015 the survey has obtained an average of 60 epochs in R-band in the spatial region 0 < l < 150 degrees, |b| < 20 degrees, with greatest coverage in the |b| < 5 degree region.I will describe the performance of the survey and present initial results, with a focus on variability-based identification of X-ray sources. The Zwicky Transient Facility, to begin in 2017, will include an extensive public variability survey of the Galactic Plane.

12. Image-plane processing of visual information

NASA Technical Reports Server (NTRS)

Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

1984-01-01

Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

13. High speed multi focal plane optical system

NASA Technical Reports Server (NTRS)

Minott, P. O. (Inventor)

1983-01-01

An apparatus for eliminating beamsplitter generated optical aberrations in a pupil concentric optical system providing a plurality of spatially separated images on different focal planes or surfaces is presented. The system employs a buried surface beamsplitter having spherically curved entrance and exit faces which are concentric to a system aperture stop with the entrance face being located in the path of a converging light beam directed there from an image forming objective element which is also concentric to the aperture stop.

14. Orbital Space Plane Program Flight Demonstrators Status

NASA Technical Reports Server (NTRS)

Turner, Susan G.

2003-01-01

Under the Orbital Space Plane Program, NASA is currently pursuing the maturation of technologies via three flight demonstrators - DART (Demonstration of Autonomous Rendezvous Technology), X-37, and PAD (Pad Abort Demonstrator). Flight demonstrators provide the opportunity to test key technologies in their actual working environment. These flight demonstrators are required at this stage to mature technologies needed to support full-scale development design of a future competitively selected Orbital Space.

15. Transition between free-space Helmholtz equation solutions with plane sources and parabolic wave equation solutions.

PubMed

Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C

2011-06-01

The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.

16. Plane Wave Diffraction by a Finite Plate with Impedance Boundary Conditions

PubMed Central

Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

2014-01-01

In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in. PMID:24755624

17. In-plane and out-of-plane motions of the human tympanic membrane

PubMed Central

Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

2016-01-01

Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009

18. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

DOE PAGES

Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

2017-05-19

Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

19. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

Chen, Gong; Kang, Sang Pyo; Ophus, Colin; N'diaye, Alpha T.; Kwon, Hee Young; Qiu, Ryan T.; Won, Changyeon; Liu, Kai; Wu, Yizheng; Schmid, Andreas K.

2017-05-01

Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.

20. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

PubMed Central

Chen, Gong; Kang, Sang Pyo; Ophus, Colin; N'Diaye, Alpha T.; Kwon, Hee Young; Qiu, Ryan T.; Won, Changyeon; Liu, Kai; Wu, Yizheng; Schmid, Andreas K.

2017-01-01

Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii–Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices. PMID:28524875