NASA Astrophysics Data System (ADS)
Kilcrease, D. P.; Brookes, S.
2013-12-01
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less
Quantum scattering beyond the plane-wave approximation
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry
2017-12-01
While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.
Complex space monofilar approximation of diffraction currents on a conducting half plane
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.
A plane wave generation method by wave number domain point focusing.
Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann
2010-11-01
A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.
NASA Technical Reports Server (NTRS)
Giltrud, M. E.; Lucas, D. S.
1979-01-01
The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J
2014-12-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.
NASA Astrophysics Data System (ADS)
Martin, Calin Iulian
2017-12-01
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f-plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ1 adjacent to the surface situated above another layer of constant non-zero vorticity γ2≠γ1 adjacent to the bed. For certain vorticities γ1,γ2, we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue 'Nonlinear water waves'.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Basis for paraxial surface-plasmon-polariton packets
NASA Astrophysics Data System (ADS)
Martinez-Herrero, Rosario; Manjavacas, Alejandro
2016-12-01
We present a theoretical framework for the study of surface-plasmon polariton (SPP) packets propagating along a lossy metal-dielectric interface within the paraxial approximation. Using a rigorous formulation based on the plane-wave spectrum formalism, we introduce a set of modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. The use of this set of modes allows us to fully analyze the evolution of the transversal structure of SPP packets beyond the single plane-wave approximation. As a paradigmatic example, we analyze the case of a Gaussian SPP mode, for which, exploiting the analogy with paraxial optical beams, we introduce a set of parameters that characterize its propagation.
GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT
NASA Astrophysics Data System (ADS)
Strubbe, David A.
GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
ERIC Educational Resources Information Center
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Sound pressure distribution within natural and artificial human ear canals: Forward stimulation
Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.
2014-01-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061
Gaussian and Airy wave packets of massive particles with orbital angular momentum
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry V.
2015-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.
Martin, Calin Iulian
2018-01-28
We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
Direct pair production in heavy-ion--atom collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.
1983-02-01
Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
On Periodic Water Waves with Coriolis Effects and Isobaric Streamlines
NASA Astrophysics Data System (ADS)
Matioc, Anca-Voichita; Matioc, Bogdan-Vasile
2012-10-01
In this paper we prove that solutions of the f-plane approximation for equatorial geophysical deep water waves, which have the property that the pressure is constant along the streamlines and do not possess stagnation points, are Gerstner-type waves. Furthermore, for waves traveling over a flat bed, we prove that there are only laminar flow solutions with these properties.
Computation of tightly-focused laser beams in the FDTD method
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2013-01-01
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software (“Angora”). PMID:23388899
Computation of tightly-focused laser beams in the FDTD method.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2013-01-14
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").
NASA Astrophysics Data System (ADS)
London, Steven D.
2018-01-01
In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.
Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.
Sagers, Jason D; Haberman, Michael R; Wilson, Preston S
2013-09-01
Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.
Generation of an incident focused light pulse in FDTD.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2008-11-10
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.
Generation of an incident focused light pulse in FDTD
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2009-01-01
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas. PMID:19582013
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
Trapped waves on the mid-latitude β-plane
NASA Astrophysics Data System (ADS)
Paldor, Nathan; Sigalov, Andrey
2008-08-01
A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...
2015-10-28
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Li-Ming
2012-05-01
In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.
Quantitative molecular orbital energies within a G0W0 approximation
NASA Astrophysics Data System (ADS)
Sharifzadeh, S.; Tamblyn, I.; Doak, P.; Darancet, P. T.; Neaton, J. B.
2012-09-01
Using many-body perturbation theory within a G 0 W 0 approximation, with a plane wave basis set and using a starting point based on density functional theory within the generalized gradient approximation, we explore routes for computing the ionization potential (IP), electron affinity (EA), and fundamental gap of three gas-phase molecules — benzene, thiophene, and (1,4) diamino-benzene — and compare with experiments. We examine the dependence of the IP and fundamental gap on the number of unoccupied states used to represent the dielectric function and the self energy, as well as the dielectric function plane-wave cutoff. We find that with an effective completion strategy for approximating the unoccupied subspace, and a well converged dielectric function kinetic energy cutoff, the computed IPs and EAs are in excellent quantitative agreement with available experiment (within 0.2 eV), indicating that a one-shot G 0 W 0 approach can be very accurate for calculating addition/removal energies of small organic molecules.
Transmission of sound across a vortex layer enclosing a cylindrical column of jet
NASA Technical Reports Server (NTRS)
Luh, R.; Chao, C. C.
1982-01-01
An approximate solution to the problem of transmission of sound across a cylindrical vortex was obtained. Results are considerably different from the plane vortex sheet case because of the added role played by the curvature of the jet. In comparison with the plane case, the specularly transmitted waves are more complex and require some numerical integration. Resonance waves are identically predicted for M 2, but there is also a wave field whose modified effect appears to extend the region of resonance just as the instability waves cover a region in space and time. The instability waves are predicted to exist for all Mach numbers but vanish for wavelengths that are large compared to the jet radius. The region of propagation is similarly wavelength dependent.
Hydrodynamic waves in films flowing under an inclined plane
NASA Astrophysics Data System (ADS)
Rohlfs, Wilko; Pischke, Philipp; Scheid, Benoit
2017-04-01
This study addresses the fluid dynamics of two-dimensional falling films flowing underneath an inclined plane using the weighted integral boundary layer (WIBL) model and direct numerical simulations (DNSs). Film flows under an inclined plane are subject to hydrodynamic and Rayleigh-Taylor instabilities, leading to the formation of two- and three-dimensional waves, rivulets, and eventually dripping. The latter can only occur in film flows underneath an inclined plane such that the gravitational force acts in a destabilizing manner by pulling liquid into the gaseous atmosphere. The DNSs are performed using the solver interFoam of the open-source code OpenFOAM with a gradient limiter approach that avoids artificial oversharpening of the interface. We find good agreement between the two model approaches for wave amplitude and wave speed irrespectively of the orientation of the gravitational force and before the onset of dripping. The latter cannot be modeled with the WIBL model by nature as it is a single-value model. However, for large-amplitude solitarylike waves, the WIBL model fails to predict the velocity field within the wave, which is confirmed by a balance of viscous dissipation and the change in potential energy. In the wavy film flows, different flow features can occur such as circulating waves, i.e., circulating eddies in the main wave hump, or flow reversal, i.e., rotating vortices in the capillary minima of the wave. A phase diagram for all flow features is presented based on results of the WIBL model. Regarding the transition to circulating waves, we show that a critical ratio between the maximum and substrate film thickness (approximately 2.5) is also universal for film flows underneath inclined planes (independent of wavelength, inclination, viscous dissipation, and Reynolds number).
NASA Astrophysics Data System (ADS)
Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo
2018-06-01
Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.
Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael
2015-11-07
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.
Bumps of the wave structure function in non-Kolmogorov turbulence
NASA Astrophysics Data System (ADS)
Qiao, Chunhong; Lu, Lu; Zhang, Pengfei; Wang, Haitao; Huang, Honghua; Fan, Chengyu
2015-10-01
The analytical expressions for wave structure function of plane and spherical waves are derived both in the viscous dissipation and inertial range. Due to previously research, there is a discrepancy between theoretical results and the experimental datum in viscous dissipation range. In this paper, only considering the inertial range, taking plane waves for example, we give a comparison of results of WSF calculated by the analytical formula obtained in this paper and the numerical calculations of the definition at the fixed parameter (i.e., the generalized exponent α), it can be seen that the two results are in agreement with each other exactly. Based on non-Kolmogorov power spectrum, new characteristics for wave structure function (WSF) have been found for plane and spherical wave models when the different ratio of inner scale l0 and outer scale of turbulence L0 is obtained. In outer scale assumed finite case (i.e., L0 =1m), WSF obtains the maximum when α approximates to 3.3 both for plane and spherical wave models. In outer scale assumed infinite case (i.e., L0 = ∞), the WSF can be sorted into three parts, including two rapid-rising regions (i.e., 3.0 < α < 3.3 and 3.8 < α < 4.0 ) and one gently rising region (i.e., 3.3 < α < 3.8 ).Further, the changes of scaled WSF versus the ratio of separation distance and inner scale ( p/ l0 ) are investigated under mentioned above conditions for two models. In L0 = 1m case, both for plane and spherical waves, the value of α determines the bump position of WSF. In L0 = ∞ case, the bump of scaled WSF disappears when the generalized exponent has large values. The changings of scaled WSF monotonically increase as α increased when the generalized exponent is larger than11/3 for two models. Besides, the properties of spherical waves are similar to plane waves, except which the values of WSF and the scaled WSF are smaller than plane ones.
Faranosov, Georgy A; Bychkov, Oleg P
2017-01-01
The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.
Pseudopotential plane-wave calculation of the structural properties of yttrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Chou, M.Y.
1991-11-01
The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Coherence and dimensionality of intense spatiospectral twin beams
NASA Astrophysics Data System (ADS)
Peřina, Jan
2015-07-01
Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.
A class of reduced-order models in the theory of waves and stability.
Chapman, C J; Sorokin, S V
2016-02-01
This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation.
NASA Astrophysics Data System (ADS)
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
Evidence of iridescence in TiO2 nanostructures: An approximation in plane wave expansion method
NASA Astrophysics Data System (ADS)
Quiroz, Heiddy P.; Barrera-Patiño, C. P.; Rey-González, R. R.; Dussan, A.
2016-11-01
Titanium dioxide nanotubes, TiO2 NTs, can be obtained by electrochemical anodization of Titanium sheets. After nanotubes are removed by mechanical stress, residual structures or traces on the surface of titanium sheets can be observed. These traces show iridescent effects. In this paper we carry out both experimental and theoretical study of those interesting and novel optical properties. For the experimental analysis we use angle resolved UV-vis spectroscopy while in the theoretical study is evaluated the photonic spectra using numerical simulations into the frequency-domain and the framework of the wave plane approximation. The iridescent effect is a strong property and independent of the sample. This behavior can be important to design new materials or compounds for several applications such as, cosmetic industry, optoelectronic devices, photocatalysis, sensors, among others.
2005-11-25
fact, Koutandos et al. (2004) even now have had to limit their work only to the x–z plane while using a similar approach. In this paper, therefore, we...breakwater Koutandos et al. (2004) have presented data pertaining to transmission coefficients for waves passing a fixed, infinitely long, floating...4. Values of A and B for determining α. Fig. 5. Wave height comparison with data presented in Koutandos et al. (2004). Fig. 6. Wave transmission past
Joint Services Electronics Program. Appendix
1992-11-01
the accu- clude surface waves, creeping waves, multiple racy, convergence, and CPU times for the MM diffractions, shadowing effects , etc. A second ad...Method which is an approximation to the true current J Jn= A /m on the strip. The next section will discuss the - computation of the far zone...to the cavity (0 part of the incident plane wave captured by interior E•,. After a background discussion of the aperture at the open end is divided
Rupture dimensions of the 1998 Antarctic Earthquake from low-frequency waves
NASA Astrophysics Data System (ADS)
McGuire, Jeffrey J.; Zhao, Li; Jordan, Thomas H.
2000-08-01
We inverted frequency dependent phase and amplitude measurements from 1st orbit Rayleigh waves at global stations for the 1st and 2nd degree polynomial moments of the stress-glut rate tensor. The higher moments of the slip-rate distribution determine the fault plane and approximate rupture dimensions. The results show strong rupture propagation to the west with an average velocity of the instantaneous centroid of 3.6±.1 km/s. The rupture had a characteristic length of 178±46 km in the east-west direction and a characteristic duration of 48±2 s. The results are consistent with unilateral rupture on the east-west fault plane of the focal mechanism and rule out significant rupture on the north-south nodal plane.
Impulse approximation in nuclear pion production reactions: Absence of a one-body operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Miller, Gerald A.
2011-06-15
The impulse approximation of pion production reactions is studied by developing a relativistic formalism, consistent with that used to define the nucleon-nucleon potential. For plane wave initial states we find that the usual one-body (1B) expression O{sub 1B} is replaced by O{sub 2B}=-iK(m{sub {pi}}/2)O{sub 1B}/m{sub {pi}}, where K(m{sub {pi}}/2) is the sum of all irreducible contributions to nucleon-nucleon scattering with energy transfer of m{sub {pi}}/2. We show that O{sub 2B}{approx_equal}O{sub 1B} for plane wave initial states. For distorted waves, we find that the usual operator is replaced with a sum of two-body operators that are well approximated by the operatormore » O{sub 2B}. Our new formalism solves the (previously ignored) problem of energy transfer forbidding a one-body impulse operator. Using a purely one pion exchange deuteron, the net result is that the impulse amplitude for np{yields}d{pi}{sup 0} at threshold is enhanced by a factor of approximately two. This amplitude is added to the larger ''rescattering'' amplitude and, although experimental data remain in disagreement, the theoretical prediction of the threshold cross section is brought closer to (and in agreement with) the data.« less
Interference effects in phased beam tracing using exact half-space solutions.
Boucher, Matthew A; Pluymers, Bert; Desmet, Wim
2016-12-01
Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.
A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales
NASA Astrophysics Data System (ADS)
Elliott, Frank W.; Majda, Andrew J.
1995-03-01
A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.
Metastable Bound States of Two-Dimensional Magnetoexcitons in the Lowest Landau Levels Approximation
NASA Astrophysics Data System (ADS)
Moskalenko, S. A.; Khadzhi, P. I.; Podlesny, I. V.; Dumanov, E. V.; Liberman, M. A.; Zubac, I. A.
2017-12-01
The possible existence of the two-dimensional bimagnetoexcitons and metastable bound states formed by two magnetoexcitons with opposite in-plane wave vectors k and -k has been studied. Magnetoexcitons taking part in the formation of molecules look as two electric dipoles with the arms oriented in-plane perpendicular to the respective wave vectors and with the length of the arms d=k(l_0)^2, where l_0 is the magnetic length. Two antiparallel dipoles moving with equal, yet antiparallel, wave vectors have the possibility of moving with equal probability in any direction of the plane, which is determined by the trial wave function of relative motion φ_n(|k|), depending on modulus k. The magnetoexcitons are composed of electrons and holes situated on the lowest Landau levels with the cyclotron energies greater than the binding energy of the 2D Wannier-Mott exciton. The description has been made in Landau gauge. The spin states of two electrons have been chosen in the form of antisymmetric or symmetric combinations with parameter η=+/-1. The effective spins of two heavy holes have been combined in the same resultant spinor states as the spin of the electrons. Because the projections of the both spinor states with η=+/-1 are equal to zero, the influence of the Zeeman splitting effect vanishes. In the case of trial wave function, the maximal density of the magnetoexcitons in the momentum space is concentrated on the in-plane ring. In the approximation of the lowest Landau levels, when the influence of the excited Landau levels is neglected, stable bound states of bimagnetoexcitons do not exist for both spin orientations. Instead, in the case of α=0.5 and η=1, a deep metastable bound state with the activation barrier comparable with two magnetoexciton ionization potentials 2I_l has been revealed. In the case of η=-1 and α=3.4, only a shallow metastable bound state can appear.
NASA Astrophysics Data System (ADS)
Olano, C. A.
2009-11-01
Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced exact solutions for the four media in terms of elemental functions. The exact solution for shock wave propagation in a medium of quadratic hyperbolic-secant density distribution is very appropriate to describe the growth of superbubbles in the Galactic disk. Member of the Carrera del Investigador Científico del CONICET, Argentina.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
A plane wave source with minimal harmonic distortion for investigating nonlinear acoustic properties
Lloyd, Christopher W.; Wallace, Kirk D.; Holland, Mark R.; Miller, James G.
2008-01-01
The objective of this investigation is to introduce and validate a practical ultrasound source to be used in the investigation of the nonlinear material properties of liquids and soft tissues studied in vitro. Methods based on the progressive distortion of finite amplitude ultrasonic waves in the low megahertz frequency-range are most easily implemented under the assumption of plane wave propagation. However, achieving an approximately planar ultrasonic field over substantial propagation distances can be challenging. Furthermore, undesired harmonic distortion of the ultrasonic field prior to insonification of the specified region of interest represents another serious limitation. This paper introduces an approach based on the use of the ultrasonic field emanating from a stainless-steel delay line. Both simulation and direct experimental measurement demonstrate that such a field exhibits relatively planar wavefronts to a good approximation (such that a 3 mm diameter receiver would be exposed to no more than 3 dB of loss across its face) and is free from the significant harmonic distortion that would occur in a conventional water path. PMID:17614467
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
NASA Astrophysics Data System (ADS)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.
2016-05-01
In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.
Pulse wave imaging using coherent compounding in a phantom and in vivo
NASA Astrophysics Data System (ADS)
Zacharias Apostolakis, Iason; McGarry, Matthew D. J.; Bunting, Ethan A.; Konofagou, Elisa E.
2017-03-01
Pulse wave velocity (PWV) is a surrogate marker of arterial stiffness linked to cardiovascular morbidity. Pulse wave imaging (PWI) is a technique developed by our group for imaging the pulse wave propagation in vivo. PWI requires high temporal and spatial resolution, which conventional ultrasonic imaging is unable to simultaneously provide. Coherent compounding is known to address this tradeoff and provides full aperture images at high frame rates. This study aims to implement PWI using coherent compounding within a GPU-accelerated framework. The results of the implemented method were validated using a silicone phantom against static mechanical testing. Reproducibility of the measured PWVs was assessed in the right common carotid of six healthy subjects (n = 6) approximately 10-15 mm before the bifurcation during two cardiac cycles over the course of 1-3 d. Good agreement of the measured PWVs (3.97 ± 1.21 m s-1, 4.08 ± 1.15 m s-1, p = 0.74) was obtained. The effects of frame rate, transmission angle and number of compounded plane waves on PWI performance were investigated in the six healthy volunteers. Performance metrics such as the reproducibility of the PWVs, the coefficient of determination (r 2), the SNR of the PWI axial wall velocities (\\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} ) and the percentage of lateral positions where the pulse wave appears to arrive at the same time-point, indicating inadequacy of the temporal resolution (i.e. temporal resolution misses) were used to evaluate the effect of each parameter. Compounding plane waves transmitted at 1° increments with a linear array yielded optimal performance, generating significantly higher r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} values (p ⩽ 0.05). Higher frame rates (⩾1667 Hz) produced improvements with significant gains in the r 2 coefficient (p ⩽ 0.05) and significant increase in both r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} from single plane wave imaging to 3-plane wave compounding (p ⩽ 0.05). Optimal performance was established at 2778 Hz with 3 plane waves and at 1667 Hz with 5 plane waves.
Bruce, Neil C
2008-08-01
This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.
Factorization breaking of A d T for polarized deuteron targets in a relativistic framework
Jeschonnek, Sabine; Van Orden, J. W.
2017-04-17
We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less
Energy propagation by transverse waves in multiple flux tube systems using filling factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less
CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.
1962-07-01
Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Diffraction and geometrical optical transfer functions: calculation time comparison
NASA Astrophysics Data System (ADS)
Díaz, José Antonio; Mahajan, Virendra N.
2017-08-01
In a recent paper, we compared the diffraction and geometrical optical transfer functions (OTFs) of an optical imaging system, and showed that the GOTF approximates the DOTF within 10% when a primary aberration is about two waves or larger [Appl. Opt., 55, 3241-3250 (2016)]. In this paper, we determine and compare the times to calculate the DOTF by autocorrelation or digital autocorrelation of the pupil function, and by a Fourier transform (FT) of the point-spread function (PSF); and the GOTF by a FT of the geometrical PSF and its approximation, the spot diagram. Our starting point for calculating the DOTF is the wave aberrations of the system in its pupil plane, and the ray aberrations in the image plane for the GOTF. The numerical results for primary aberrations and a typical imaging system show that the direct integrations are slow, but the calculation of the DOTF by a FT of the PSF is generally faster than the GOTF calculation by a FT of the spot diagram.
Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package
NASA Astrophysics Data System (ADS)
Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack
Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.
Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khamlichi, A.; Jezequel, L.; Jacques, Y.
1995-11-01
Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less
Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
de Barros, Louis; Dietrich, Michel
2008-03-01
Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.
Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance
NASA Technical Reports Server (NTRS)
Hwang, Y. M.
1974-01-01
The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.
Justification of Shallow-Water Theory
NASA Astrophysics Data System (ADS)
Ostapenko, V. V.
2018-01-01
The basic conservation laws of shallow-water theory are derived from multidimensional mass and momentum integral conservation laws describing the plane-parallel flow of an ideal incompressible fluid above the horizontal bottom. This conclusion is based on the concept of hydrostatic approximation, which generalizes the concept of long-wavelength approximation and is used for justifying the applicability of the shallow-water theory in the simulation of wave flows of fluid with hydraulic bores.
Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system
NASA Astrophysics Data System (ADS)
Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa
2018-07-01
The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.
Ultrasonic waves in classical gases
NASA Astrophysics Data System (ADS)
Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.
2017-12-01
The velocity and absorption coefficient for the plane sound waves in a classical gas are obtained by solving the Boltzmann kinetic equation, which describes the reaction of the single-particle distribution function to a periodic external field. Within the linear response theory, the nonperturbative dispersion equation valid for all sound frequencies is derived and solved numerically. The results are in agreement with the approximate analytical solutions found for both the frequent- and rare-collision regimes. These results are also in qualitative agreement with the experimental data for ultrasonic waves in dilute gases.
Monochromatic plane-fronted waves in conformal gravity are pure gauge
NASA Astrophysics Data System (ADS)
Fabbri, Luca; Paranjape, M. B.
2011-05-01
We consider plane-fronted, monochromatic gravitational waves on a Minkowski background, in a conformally invariant theory of general relativity. By this we mean waves of the form: gμν=ημν+γμνF(k·x), where γμν is a constant polarization tensor, and kμ is a lightlike vector. We also assume the coordinate gauge condition |g|-1/4∂τ(|g|1/4gστ)=0 which is the conformal analog of the harmonic gauge condition gμνΓμνσ=-|g|-1/2∂τ(|g|1/2gστ)=0, where det[gμν]≡g. Requiring additionally the conformal gauge condition g=-1 surprisingly implies that the waves are both transverse and traceless. Although the ansatz for the metric is eminently reasonable when considering perturbative gravitational waves, we show that the metric is reducible to the metric of Minkowski space-time via a sequence of coordinate transformations which respect the gauge conditions, without any perturbative approximation that γμν be small. This implies that we have, in fact, exact plane-wave solutions; however, they are simply coordinate/conformal artifacts. As a consequence, they carry no energy. Our result does not imply that conformal gravity does not have gravitational wave phenomena. A different, more generalized ansatz for the deviation, taking into account the fourth-order nature of the field equation, which has the form gμν=ημν+Bμν(n·x)G(k·x), indeed yields waves which carry energy and momentum [P. D. Mannheim, Gen. Relativ. Gravit.GRGVA80001-7701 43, 703 (2010)10.1007/s10714-010-1088-z]. It is just surprising that transverse, traceless, plane-fronted gravitational waves, those that would be used in any standard, perturbative, quantum analysis of the theory, simply do not exist.
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
Jing, Yun; Tao, Molei; Clement, Greg T.
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985
NASA Astrophysics Data System (ADS)
Gunnoo, Hans; Abcha, Nizar; Ezersky, Alexander
2016-02-01
The influence of harmonic surface wave on non-regular Karman Vortex Street is investigated. In our experiments, Karman Street arises behind a vertical circular cylinder in a water flow and harmonic surface waves propagating upstream. It is found that surface waves can modify regimes of shedding in Karman Street: frequency lock-in and synchronization of vortex shedding can arise. Intensive surface waves can excite symmetric vortex street instead of chess-like street, and completely suppress shedding behind the cylinder. It is shown experimentally that such effects occur if frequency of harmonic surface wave is approximately twice higher than the frequency of vortex shedding. Region of frequency lock-in is found on the plane amplitude-frequency of surface wave.
Generalized self-similar unsteady gas flows behind the strong shock wave front
NASA Astrophysics Data System (ADS)
Bogatko, V. I.; Potekhina, E. A.
2018-05-01
Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.
Magnetic droplet soliton nucleation in oblique fields
NASA Astrophysics Data System (ADS)
Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid
2018-05-01
We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.
High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method
NASA Astrophysics Data System (ADS)
Starrett, C. E.
2018-05-01
Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.
Wavespace-Based Coherent Deconvolution
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Cattafesta, Louis N., III
2012-01-01
Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.
NASA Astrophysics Data System (ADS)
Banet, Matthias T.; Spencer, Mark F.
2017-09-01
Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.
NASA Astrophysics Data System (ADS)
Calderín, L.; Karasiev, V. V.; Trickey, S. B.
2017-12-01
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system
NASA Astrophysics Data System (ADS)
Tang, Xiao-yan; Liang, Zu-feng; Hao, Xia-zhi
2018-07-01
A new general nonlocal modified KdV equation is derived from the nonlinear inviscid dissipative and equivalent barotropic vorticity equation in a β-plane. The nonlocal property is manifested in the shifted parity and delayed time reversal symmetries. Exact solutions of the nonlocal modified KdV equation are obtained including periodic waves, kink waves, solitary waves, kink- and/or anti-kink-cnoidal periodic wave interaction solutions, which can be utilized to describe various two-place and time-delayed correlated events. As an illustration, a special approximate solution is applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric dynamical systems.
Modeling boundary measurements of scattered light using the corrected diffusion approximation
Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.
2012-01-01
We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102
Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Whistler mode waves in the Jovian magnetosheath
NASA Technical Reports Server (NTRS)
Lin, Naiguo; Kellogg, P. J.; Thiessen, J. P.; Lengyel-Frey, D.; Tsurutani, B. T.; Phillips, J. L.
1994-01-01
During the Ulysses flyby of Jupiter in February 1992, the spacecraft traversed the Jovian magnetosheath for a few hours during the inbound pass and for aa few days during the outbound pass. Burstlike electomagnetic waves at frequencies of approximately 0.1-0.4 of the local electron cyclotron frequency have been observed by the Unified Radio and Plasma Wave (URAP) experiement. The waves were more often observed in the regions which were probably the outer or the middle magnetosheath, especially near the bow shock, and rarely seen in the magnetosphere/magnetosheath boundary layer. The propagation angles of the waves are estimated by comparing the measurements of the wave electric and magnetic fields in the spacecraft spin plane with the corresponding values calculated using the cold plasma dispersion relation under local field and plasma conditions. It is found that the waves propagate obliquely with wave angles between approximately 30 deg and 50 deg. These waves are likely to be the whistler mode waves which are excited by suprathermal electrons with a few hundred eV and a slight anisotropy (T(sub perp)/T(sub parallel) approximately 1.1-1.5). They are probably similar in nature to the lion roars observed in the Earth's magnetosheath. Signature of coupling between the mirror and the whistler mode have also been observed. The plasma conditions which favor the excitation of the whistler mode instability during the wave events exists as observed by the plasma experiement of Ulysses.
Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu
2006-07-10
The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.
On the dipole approximation with error estimates
NASA Astrophysics Data System (ADS)
Boßmann, Lea; Grummt, Robert; Kolb, Martin
2018-01-01
The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.
NASA Astrophysics Data System (ADS)
Paldor, N.
2017-12-01
The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966
An array effect of wave energy farm buoys
NASA Astrophysics Data System (ADS)
Kweon, Hyuck-Min; Lee, Jung-Lyul
2012-12-01
An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.
Catastrophe optics of sharp-edge diffraction.
Borghi, Riccardo
2016-07-01
A classical problem of diffraction theory, namely plane wave diffraction by sharp-edge apertures, is here reformulated from the viewpoint of the fairly new subject of catastrophe optics. On using purely geometrical arguments, properly embedded into a wave optics context, uniform analytical estimates of the diffracted wavefield at points close to fold caustics are obtained, within paraxial approximation, in terms of the Airy function and its first derivative. Diffraction from parabolic apertures is proposed to test reliability and accuracy of our theoretical predictions.
Gudimetla, V S Rao; Holmes, Richard B; Smith, Carey; Needham, Gregory
2012-05-01
The effect of anisotropic Kolmogorov turbulence on the log-amplitude correlation function for plane-wave fields is investigated using analysis, numerical integration, and simulation. A new analytical expression for the log-amplitude correlation function is derived for anisotropic Kolmogorov turbulence. The analytic results, based on the Rytov approximation, agree well with a more general wave-optics simulation based on the Fresnel approximation as well as with numerical evaluations, for low and moderate strengths of turbulence. The new expression reduces correctly to previously published analytic expressions for isotropic turbulence. The final results indicate that, as asymmetry becomes greater, the Rytov variance deviates from that given by the standard formula. This deviation becomes greater with stronger turbulence, up to moderate turbulence strengths. The anisotropic effects on the log-amplitude correlation function are dominant when the separation of the points is within the Fresnel length. In the direction of stronger turbulence, there is an enhanced dip in the correlation function at a separation close to the Fresnel length. The dip is diminished in the weak-turbulence axis, suggesting that energy redistribution via focusing and defocusing is dominated by the strong-turbulence axis. The new analytical expression is useful when anisotropy is observed in relevant experiments. © 2012 Optical Society of America
The generalized scattering coefficient method for plane wave scattering in layered structures
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song
2017-02-01
The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.
NASA Astrophysics Data System (ADS)
Petersen, John; Bechstedt, Friedhelm; Furthmüller, Jürgen; Scolfaro, Luisa
LSNO (La2-xSrxNiO4) is of great interest due to its colossal dielectric constant (CDC) and rich underlying physics. While being an antiferromagnetic insulator, localized holes are present in the form of stripes in the Ni-O planes which are commensurate with the inverse of the Sr concentration. The stripes are a manifestation of charge density waves with period approximately 1/x and spin density waves with period approximately 2/x. Here, the spin ground state is calculated via LSDA + U with the PAW method implemented in VASP. Crystal structure and the effective Hubbard U parameter are optimized before calculating ɛ∞ within the independent particle approximation. ɛ∞ and the full static dielectric constant (including the lattice polarizability) ɛ0 are calculated within Density Functional Perturbation Theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
Transversally periodic solitary gravity–capillary waves
Milewski, Paul A.; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
The role of the complete Coriolis force in weakly stratified oceanic flows
NASA Astrophysics Data System (ADS)
Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.
2016-02-01
Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).
NASA Astrophysics Data System (ADS)
Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard
2018-06-01
Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.
High-frequency techniques for RCS prediction of plate geometries
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.
1992-01-01
The principal-plane scattering from perfectly conducting and coated strips and rectangular plates is examined. Previous reports have detailed Geometrical Theory of Diffraction/Uniform Theory of Diffraction (GTD/UTD) solutions for these geometries. The GTD/UTD solution for the perfectly conducting plate yields monostatic radar cross section (RCS) results that are nearly identical to measurements and results obtained using the Moment Method (MM) and the Extended Physical Theory of Diffraction (EPTD). This was demonstrated in previous reports. The previous analysis is extended to bistatic cases. GTD/UTD results for the principal-plane scattering from a perfectly conducting, infinite strip are compared to MM and EPTD data. A comprehensive overview of the advantages and disadvantages of the GTD/UTD and of the EPTD and a detailed analysis of the results from both methods are provided. Several previous reports also presented preliminary discussions and results for a GTD/UTD model of the RCS of a coated, rectangular plate. Several approximations for accounting for the finite coating thickness, plane-wave incidence, and far-field observation were discussed. Here, these approximations are replaced by a revised wedge diffraction coefficient that implicitly accounts for a coating on a perfect conductor, plane-wave incidence, and far-field observation. This coefficient is computationally more efficient than the previous diffraction coefficient because the number of Maliuzhinets functions that must be calculated using numerical integration is reduced by a factor of 2. The derivation and the revised coefficient are presented in detail for the hard polarization case. Computations and experimental data are also included. The soft polarization case is currently under investigation.
The Bolocam Galactic Plane Survey
NASA Technical Reports Server (NTRS)
Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II;
2009-01-01
The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.
Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY
NASA Astrophysics Data System (ADS)
Soares, S. M.; Natarov, A.; Richards, K. J.
2016-05-01
A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.
Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2017-12-01
An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.
Waves in a plane graphene - dielectric waveguide structure
NASA Astrophysics Data System (ADS)
Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.
2017-10-01
The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.
Electronic wave function and binding effects in M-shell ionization of gold by protons
NASA Astrophysics Data System (ADS)
Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.
2018-02-01
The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.
The Atomic Origin of the Reflection Law
ERIC Educational Resources Information Center
Prytz, Kjell
2016-01-01
It will be demonstrated how the reflection law may be derived on an atomic basis using the plane wave approximation together with Huygens' principle. The model utilized is based on the electric dipole character of matter originating from its molecular constituents. This approach is not new but has, since it was first introduced by Ewald and Oseen…
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Plane Evanescent Waves and Interface Waves
NASA Astrophysics Data System (ADS)
Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.
The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2005-10-01
Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.
Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry
NASA Astrophysics Data System (ADS)
Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.
2003-10-01
The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.
NASA Astrophysics Data System (ADS)
Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut
2016-04-01
Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
Analysis of THG modes for femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Sidorov, Pavel S.
2017-05-01
THG is used nowadays in many practical applications such as a substance diagnostics, and biological objects imaging, and etc. With developing of new materials and technology (for example, photonic crystal) an attention to THG process analysis grow. Therefore, THG features understanding are a modern problem. Early we have developed new analytical approach based on using the problem invariant for analytical solution construction of the THG process. It should be stressed that we did not use a basic wave non-depletion approximation. Nevertheless, a long pulse duration approximation and plane wave approximation has applied. The analytical solution demonstrates, in particular, an optical bistability property (and may other regimes of frequency tripling) for the third harmonic generation process. But, obviously, this approach does not reflect an influence of a medium dispersion on the frequency tripling. Therefore, in this paper we analyze THG efficiency of a femtosecond laser pulse taking into account a second order dispersion affect as well as self- and crossmodulation of the interacting waves affect on the frequency conversion process. Analysis is made using a computer simulation on the base of Schrödinger equations describing the process under consideration.
Nonviral transfection of suspension cells in ultrasound standing wave fields.
Lee, Yu-Hsiang; Peng, Ching-An
2007-05-01
Ultrasound-induced cavitation has been widely used for delivering DNA vectors into cells. However, this approach may seriously disrupt cell membranes and cause lethal damage when cells are exposed to the inertial cavitation field. In this study, instead of using sonoporation, ultrasound standing wave fields (USWF) were explored for nonviral transfection of suspension cells. Acoustic resonance in a tubular chamber was generated from the interference of waves emitted from a piezoelectric transducer and consequently reflected from a borosilicate glass coverslip. The suspended K562 erythroleukemia cells were transfected by polyethyleneimine (PEI)/DNA complexes with and without exposure to 1-MHz USWF for 5 min. During USWF exposure, K562 cells moved to the pressure nodal planes first and formed cell bands by the primary radiation force. Nanometer-sized PEI/DNA complexes, circulated between nodal planes by acoustic microstreaming, then used the cell agglomerates as the nucleating sites on which to attach. After incubation at 37 degrees C for 48 h, the efficiency of nonviral transfection based on EGFP transgene expression was determined by fluorescent microscopy and fluorometry. Both studies showed that USWF brought suspended K562 cells and PEI/DNA complexes into close contact at the pressure nodal planes, yielding an approximately 10-fold increment of EGFP transgene expression compared with the group without ultrasonic treatment.
Nonlinear wave runup in long bays and firths: Samoa 2009 and Tohoku 2011 tsunamis
NASA Astrophysics Data System (ADS)
Didenkulova, I.; Pelinovsky, E.
2012-04-01
Last catastrophic tsunami events in Samoa on 29 September 2009 and in Japan on 11 March 2011 demonstrated that tsunami may experience abnormal amplification in long bays and firths and result in an unexpectedly high wave runup. The capital city Pago Pago, which is located at the toe of a narrow 4-km-long bay and represents the most characteristic example of a long and narrow bay, was considerably damaged during Samoa 2009 tsunami (destroyed infrastructures, boats and shipping containers carried inland into commercial areas, etc.) The runup height there reached 8 m over an inundation of 538 m at its toe, while the tsunami wave height measured by the tide-gauge at the entrance of the bay was at most 3 m. The same situation was observed during catastrophic Tohoku tsunami in Japan, which coast contains numerous long bays and firths, which experienced the highest wave runup and the strongest amplification. Such examples are villages: Ofunato, Ryori Bay, where the wave runup reached 30 m high, and Onagawa, where the wave amplified up to 17 m. Here we study the nonlinear dynamics of tsunami waves in an inclined U-shaped bay. Nonlinear shallow water equations can in this case be written in 1D form and solved analytically with the use of the hodograph transformation. This approach generalizes the well-known Carrier-Greenspan transformation for long wave runup on a plane beach. In the case of an inclined U-shaped bay it leads to the associated generalized wave equation for symmetrical wave in fractal space. In the special case of the channel of parabolic cross-section it is a spherical symmetrical linear wave equation. As a result, the solution of the Cauchy problem can be expressed in terms of elementary functions and has a simple form (with respect to analysis) for any kind of initial conditions. Wave regimes associated with various localized initial conditions, corresponding to problems of evolution and runup of tsunami, are considered and analyzed. Special attention is paid to the wave breaking criterion. Theoretical estimates of tsunami runup are applied to cases of 2009 Samoa and 2011 Tohoku tsunamis. The data of tide-gauges or computed tide-gauges are used to calculate wave runup for two approximations of the bottom topography: a plane beach and for a narrow bay. It is shown that theory of 1D runup on a plane beach underestimate the tsunami runup height and the influence of the narrow bay geometry should be taken into account. The differences in estimated shoreline velocity, travel time and wave breaking regime, calculated in the framework of these two approximations are also discussed. It is concluded that the wave runup in narrow bays should by calculated by the corresponding formulas, which should be taken into account by TEWS.
Scattering of plane transverse waves by spherical inclusions in a poroelastic medium
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing
2009-03-01
The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
NASA Technical Reports Server (NTRS)
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
Approximate optimal tracking control for near-surface AUVs with wave disturbances
NASA Astrophysics Data System (ADS)
Yang, Qing; Su, Hao; Tang, Gongyou
2016-10-01
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.
A simplified method of evaluating the stress wave environment of internal equipment
NASA Technical Reports Server (NTRS)
Colton, J. D.; Desmond, T. P.
1979-01-01
A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.
Goedel, Penrose, anti-Mach: Extra supersymmetries of time-dependent plane waves
NASA Astrophysics Data System (ADS)
Blau, Matthias; Meessen, Patrick; O'Loughlin, Martin
2003-09-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Gödel-like metrics, show that the Penrose limit of the M-theory Gödel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves.
Small scatterers in the lower mantle observed at German broadband arrays
Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.
1999-01-01
Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.
Wang, Chong
2018-03-01
In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0 is also given.
Surface acoustic wave micromotor with arbitrary axis rotational capability
NASA Astrophysics Data System (ADS)
Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.
2011-11-01
A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.
Parametric resonant triad interactions in a free shear layer
NASA Technical Reports Server (NTRS)
Mallier, R.; Maslowe, S. A.
1993-01-01
We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Spin waves in planar quasicrystal of Penrose tiling
NASA Astrophysics Data System (ADS)
Rychły, J.; Mieszczak, S.; Kłos, J. W.
2018-03-01
We investigated two-dimensional magnonic structures which are the counterparts of photonic quasicrystals forming Penrose tiling. We considered the slab composed of Ni (or Py) disks embedded in Fe (or Co) matrix. The disks are arranged in quasiperiodic Penrose-like structure. The infinite quasicrystal was approximated by its rectangular section with periodic boundary conditions applied. This approach allowed us to use the plane wave method to find the frequency spectrum of eigenmodes for spin waves and their spatial profiles. The calculated integrated density of states shows more distinctive magnonic gaps for the structure composed of materials of high magnetic contrast (Ni and Fe) and relatively high filling fraction. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves. We also investigated the localization of spin wave eingenmodes resulting from the quasiperiodicity of the structure.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-11
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
NASA Astrophysics Data System (ADS)
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
On the Scattering of Sound by a Rectilinear Vortex
NASA Astrophysics Data System (ADS)
HOWE, M. S.
1999-11-01
A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.
Iida, M.; Miyatake, T.; Shimazaki, K.
1990-01-01
We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors
Tunable Snell's law for spin waves in heterochiral magnetic films
NASA Astrophysics Data System (ADS)
Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.
2018-03-01
Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy
2018-06-01
The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.
Ultrafast dynamic response of single crystal β-HMX
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.
2017-01-01
We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
Bistability By Self-Reflection In A Saturable Absorber
NASA Astrophysics Data System (ADS)
Roso-Franco, Luis
1987-01-01
Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.
Evanescent waves and deaf bands in sonic crystals
NASA Astrophysics Data System (ADS)
Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.
2011-12-01
The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.
Single-Slit Diffraction: Transitioning from Geometric Optics to the Fraunhofer Regime
ERIC Educational Resources Information Center
Panuski, Christopher L.; Mungan, Carl E.
2016-01-01
Suppose a red laser beam (of wavelength ? equal to 0.660 µm) is expanded using an optical telescope into a collimated, approximately plane wave that is 5.68 mm in diameter. Pass that beam through a tall rectangular slit whose width "a" is gradually reduced from 3.30 to 0.100 mm. Look at its image on a screen located at a distance…
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Projection operators for the Rossby and Poincare waves in a beta-plane approximation
NASA Astrophysics Data System (ADS)
Lebedkina, Anastasia; Ivan, Karpov; Sergej, Leble
2013-04-01
Study of the wave structure variations of atmospheric parameters is a due to a solving of number practical problems associated with the weather and the state of the environment requires knowledge of the spectral characteristics of atmospheric waves. Modern methods, for identification of wave disturbances in the atmosphere, based on the harmonic analysis of observations. The success of these application is determined by the presence of sets of experimental data obtained in the long-term (over the period of the wave) of the atmosphere on a large number of independent observation stations. Currently, the system of observation in the atmosphere, both terrestrial and satellite, unevenly covers the surface of the Earth and, despite the length of observation, doesn't solve the problem of identification of waves. Thus, the problem of identification wave disturbances conflicts fundamental difficulties, and solution needs in a new methods for the analysis of observations. The work complete a procedure to construct a projection operators for large-scale waves in the atmosphere. Advantage of this method is the ability to identify type of wave and its characteristics only on the base of a time series of observations. It means that the problem of waves identification can be solved on the basis of only one station observations. In the method assumed that the observed spatial and temporal structure of the atmosphere is determined by the superposition of different type waves. For each type of waves involved in this superposition, dispersion and polarization relations (between the components of the wave vector of the field) expect as known. Based on these assumptions, we can construct projection operators on the initial superposition state on the linear basis of vectors corresponding to the known type of atmospheric waves. The action of the design on the superposition state, which, in fact, is the result of observations, determine the amplitude and phase of the waves of a known type. The idea to use the polarization relations for the classification of waves originated in radio physics in the works of A. A. Novikov. In the theory of the electromagnetic field polarization relations is traditionally included in the analysis of wave phenomena. In the theory of acoustic-gravity waves, projection operators were introduced in a works of S. B. Leble. The object of study is a four-dimentional vector (components of the velocity, pressure and temperature). Based on these assumptions, we can construct the projection operators for superposition state on the linear basis, corresponding to the well-known type of waves. In this paper we consider procedure for construction of a projection operators for planetary Rossby and Poincare waves in the Earth's atmosphere in the approximation of the "beta-plane". In a result of work we constructed projection operators in this approximation for Poincare and Rossby waves. The tests for operators shown, that separation of the contribution of corresponding waves from source of the wave field is possible. Estimation accuracy of the operators and results of applying operators to the data TEC presented.
Declercq, Nico F; Leroy, Oswald
2011-08-01
Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.
Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field.
Bayindir, Cihan
2016-03-01
In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k. The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the probability of rogue wave occurrence depends on k. Additionally, we have showed that the probability of rogue wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Li, Li
2012-07-01
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Weil, H.
1977-01-01
Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.
Non-plane-wave Hartree-Fock states and nuclear homework potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, G.; Plastino, A.; de Llano, M.
1979-12-01
It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Bircher, Martin P; Rothlisberger, Ursula
2018-06-12
Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strengthmore » can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.« less
Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
NASA Astrophysics Data System (ADS)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong
2015-12-01
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
NASA Astrophysics Data System (ADS)
Wertgeim, Igor I.
2018-02-01
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.
Vacuum electron acceleration by coherent dipole radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troha, A.L.; Van Meter, J.R.; Landahl, E.C.
1999-07-01
The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannarelli, Massimo; Sharma, Rishi; Rajagopal, Krishna
2006-06-01
It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple 'crystal' structure in which there are only two condensates
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A
2017-01-23
We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.
Measurements of the scattering of sound by a line vortex
NASA Technical Reports Server (NTRS)
Horne, W. C.
1983-01-01
This paper presents measurements of the phase and magnitude of the scattered field arising from the incidence of a monochromatic plane sound field as a steady vortex. The amplitude of the scattered field was found to vary linearly with the vortex strength, and with the incident wave amplitude and frequency as predicted by solutions based on the Born approximation. The scattered field was observed to be nonsingular in the incidence direction, and this was similar to predictions by the Parabolic Equation Method (PEM) rather than the Born approximation, which predicts singular behavior in the incidence direction.
Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure
NASA Astrophysics Data System (ADS)
Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.
2018-04-01
Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.
Dynamics of coupled mode solitons in bursting neural networks
NASA Astrophysics Data System (ADS)
Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.
2018-02-01
Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.
Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington
Frankel, Arthur; Thorne, Paul; Rohay, Alan
2014-01-01
This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.
Dynamics of coupled mode solitons in bursting neural networks.
Nfor, N Oma; Ghomsi, P Guemkam; Moukam Kakmeni, F M
2018-02-01
Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.
1990-03-12
where this is not so (see, e.g., the Jaynes - Cummings problem). This is why this model , and the closely related micromaser, remain exceedingly important...55 one calculates the plane- wave spectrum ( without 7.), one must arbitrarily impose nearly zero phase mismatch to obtain a similar spectrum.3" 2.7...taking approximately 3 CPU minutes. To model the intentionally introduced astigmatism, a phase term was added to the input wavefront at the cell entrance
NASA Astrophysics Data System (ADS)
Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.
2018-05-01
We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
High spatial resolution with zoomable saw-tooth refractive lenses?
NASA Astrophysics Data System (ADS)
Jark, Werner
2011-09-01
Refractive x-ray lenses can be assembled from two opposing saw-tooth structures, when they are inclined with respect to each other and almost touch at one end. An incident plane wave will then traverse a varying number of triangular prisms, which direct the beam towards the optical axis and focus it. Optically speaking the plane wave traverses a parabolic lens profile, which is approximated by trapezoidal segments. The parabolic profile will focus ideally, when a lens can be discussed in the "thin lens" approximation. Now the saw-tooth refractive lens is found to be too "thick". The residual aberrations limit the focusing capability to just submicrometer focusing, significantly above the limit in diffraction limited focusing. It is shown that the aberrations can be removed by introducing a variation into the originally constant saw-tooth angle. After this modification the lens can be operated in the diffraction limited regime. Spot sizes even below 0.1 micrometer are then feasible. This performance in terms of spatial resolution is found to be limited to focusing to microspots and is not available, when the saw-tooth refractive lens is used in an imaging setup. In this case the spatial resolution deteriorates rapidly with increasing off axis distance of the object to be imaged.
Mellow, Tim; Kärkkäinen, Leo
2014-03-01
An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.
NASA Astrophysics Data System (ADS)
Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic
2017-04-01
On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.
Ingle, Atul; Varghese, Tomy
2014-09-03
This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.
Effects of volcano topography on seismic broad-band waveforms
NASA Astrophysics Data System (ADS)
Neuberg, Jürgen; Pointer, Tim
2000-10-01
Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near-field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress-free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near-field source effects. We derive a correction term for plane seismic waves and a plane-free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo-volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2-D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad-band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.
Transport Theory for Propagation and Reverberation
2016-07-20
mentioned that our transport theory method is essentially 2-D (range and depth), so that out-of- plane forward scattering (a 3-D effect) is not treated...roughness spectrum, it is useful to consider scattering based on perturbation theory in some detail with a plane wave incident on the rough surface. The...the wave vector for the water wave. Let an incident acoustic plane wave have wave vector ki = kiH + kiz, where kiH denotes the horizontal component
Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media
NASA Astrophysics Data System (ADS)
Botet, R.; Kuratsuji, H.; Seto, R.
2006-08-01
Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material
NASA Technical Reports Server (NTRS)
Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.
1984-01-01
The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.
Effect of polarization force on the Jeans instability in collisional dusty plasmas
NASA Astrophysics Data System (ADS)
A, ABBASI; M, R. RASHIDIAN VAZIRI
2018-03-01
The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.
Methods And Apparatus For Acoustic Fiber Fractionation
Brodeur, Pierre
1999-11-09
Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.
Johnson, R S
2018-01-28
This review makes a case for describing many of the flows observed in our oceans, simply based on the Euler equation, with (piecewise) constant density and with suitable boundary conditions. The analyses start from the Euler and mass conservation equations, expressed in a rotating, spherical coordinate system (but the f -plane and β -plane approximations are also mentioned); five examples are discussed. For three of them, a suitable non-dimensionalization is introduced, and a single small parameter is identified in each case. These three examples lead straightforwardly and directly to new results for: waves on the Pacific Equatorial Undercurrent (EUC) with a thermocline (in the f -plane); a nonlinear, three-dimensional model for EUC-type flows (in the β -plane); and a detailed model for large gyres. The other two examples are exact solutions of the complete system: a flow which corresponds to the underlying structure of the Pacific EUC; and a flow based on the necessary requirement to use a non-conservative body force, which produces the type of flow observed in the Antarctic Circumpolar Current. (All these examples have been discussed in detail in the references cited.) This review concludes with a few comments on how these solutions can be extended and expanded.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar
NASA Astrophysics Data System (ADS)
van der A, Dominic A.; van der Zanden, Joep; O'Donoghue, Tom; Hurther, David; Cáceres, Iván.; McLelland, Stuart J.; Ribberink, Jan S.
2017-04-01
A large-scale wave flume experiment has been carried out involving a T = 4 s regular wave with H = 0.85 m wave height plunging over a fixed barred beach profile. Velocity profiles were measured at 12 locations along the breaker bar using LDA and ADV. A strong undertow is generated reaching magnitudes of 0.8 m/s on the shoreward side of the breaker bar. A circulation pattern occurs between the breaking area and the inner surf zone. Time-averaged turbulent kinetic energy (TKE) is largest in the breaking area on the shoreward side of the bar where the plunging jet penetrates the water column. At this location, and on the bar crest, TKE generated at the water surface in the breaking process reaches the bottom boundary layer. In the breaking area, TKE does not reduce to zero within a wave cycle which leads to a high level of "residual" turbulence and therefore lower temporal variation in TKE compared to previous studies of breaking waves on plane beach slopes. It is argued that this residual turbulence results from the breaker bar-trough geometry, which enables larger length scales and time scales of breaking-generated vortices and which enhances turbulence production within the water column compared to plane beaches. Transport of TKE is dominated by the undertow-related flux, whereas the wave-related and turbulent fluxes are approximately an order of magnitude smaller. Turbulence production and dissipation are largest in the breaker zone and of similar magnitude, but in the shoaling zone and inner surf zone production is negligible and dissipation dominates.
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
NASA Astrophysics Data System (ADS)
Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg
2017-03-01
We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.
NASA Astrophysics Data System (ADS)
Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah
2017-12-01
In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzone, R. G.; Spitaleri, C.; Lamia, L.
2011-04-15
The Trojan horse nucleus invariance for the binary reaction cross section extracted from the Trojan horse reaction was tested using the quasifree {sup 3}He({sup 6}Li,{alpha}{alpha})H and {sup 3}He({sup 7}Li,{alpha}{alpha}){sup 2}H reactions. The cross sections for the {sup 6}Li(d,{alpha}){sup 4}He and {sup 7}Li(p,{alpha}){sup 4}He binary processes were extracted in the framework of the plane wave approximation. They are compared with direct behaviors as well as with cross sections extracted from previous indirect investigations of the same binary reactions using deuteron as the Trojan horse nucleus instead of {sup 3}He. The very good agreement confirms the applicability of the plane wave approximationmore » which suggests the independence of the binary indirect cross section on the chosen Trojan horse nucleus, at least for the investigated cases.« less
NASA Astrophysics Data System (ADS)
Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.
2018-04-01
In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.
Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y
2010-02-26
The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.
Improved computational treatment of transonic flow about swept wings
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Bailey, F. R.; Frick, J.
1976-01-01
Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.
Diffraction of a plane wave by a three-dimensional corner
NASA Technical Reports Server (NTRS)
Ting, L.; Kung, F.
1971-01-01
By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.
Introduction to Radar Polarimetry
1991-04-23
Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission
Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.
2009-01-01
In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448
NASA Astrophysics Data System (ADS)
Bini, Donato; Chicone, Carmen; Mashhoon, Bahram
2018-03-01
In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.
Stress wave calculations in composite plates using the fast Fourier transform.
NASA Technical Reports Server (NTRS)
Moon, F. C.
1973-01-01
The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.
Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets
NASA Astrophysics Data System (ADS)
Surov, V. S.
1993-02-01
The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.
Sauter-Schwinger pair creation dynamically assisted by a plane wave
NASA Astrophysics Data System (ADS)
Torgrimsson, Greger; Schneider, Christian; Schützhold, Ralf
2018-05-01
We study electron-positron pair creation by a strong and constant electric field superimposed with a weaker transversal plane wave which is incident perpendicularly (or under some angle). Comparing the fully nonperturbative approach based on the world-line instanton method with a perturbative expansion into powers of the strength of the weaker plane wave, we find good agreement—provided that the latter is carried out to sufficiently high orders. As usual for the dynamically assisted Sauter-Schwinger effect, the additional plane wave induces an exponential enhancement of the pair-creation probability if the combined Keldysh parameter exceeds a certain threshold.
Beason, Melissa; Smith, Christopher; Coffaro, Joseph; Belichki, Sara; Spychalsky, Jonathon; Titus, Franklin; Crabbs, Robert; Andrews, Larry; Phillips, Ronald
2018-06-01
Experimental measurements were recently made which displayed characteristics of plane wave propagation through anisotropic optical turbulence. A near-plane wave beam was propagated a distance of 1 and 2 km at a height of 2 m above the concrete runway at the Shuttle Landing Facility, Kennedy Space Center, Florida, during January and February of 2017. The spatial-temporal fluctuations of the beam were recorded, and the covariance of intensity was calculated. These data sets were compared to a theoretical calculation of covariance of intensity for a plane wave.
First plasma wave observations at neptune.
Gurnett, D A; Kurth, W S; Poynter, R L; Granroth, L J; Cairns, I H; Macek, W M; Moses, S L; Coroniti, F V; Kennel, C F; Barbosa, D D
1989-12-15
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.
Screw-symmetric gravitational waves: A double copy of the vortex
NASA Astrophysics Data System (ADS)
Ilderton, A.
2018-07-01
Plane gravitational waves can admit a sixth 'screw' isometry beyond the usual five. The same is true of plane electromagnetic waves. From the point of view of integrable systems, a sixth isometry would appear to over-constrain particle dynamics in such waves; we show here, though, that no effect of the sixth isometry is independent of those from the usual five. Many properties of particle dynamics in a screw-symmetric gravitational wave are also seen in a (non-plane-wave) electromagnetic vortex; we make this connection explicit, showing that the screw-symmetric gravitational wave is the classical double copy of the vortex.
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2004-12-01
Pseudodifferential operators (PSDOs) yield in principle exact one--way seismic wave equations, which are attractive both conceptually and for their promise of computational efficiency. The one--way operators can be extended to include multiple--scattering effects, again in principle exactly. In practice approximations must be made and, as an example, the variable--wavespeed Helmholtz equation for scalar waves in two space dimensions is here factorized to give the one--way wave equation. This simple case permits clear identification of a sequence of physically reasonable approximations to be used when the mathematically exact PSDO one--way equation is implemented on a computer. As intuition suggests, these approximations hinge on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow--angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so--called ``standard--ordering'' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane--wave synthesis lying at the heart of the calculations. The decision on whether a slow or a fast Fourier transform code should be used rests upon how many lateral model parameters are truly distinct. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one--way propagator for the laterally varying case, representing the intuitive extension of classical integral--transform solutions for a laterally homogeneous medium. This exponential propagator suggests the use of larger discrete step sizes, and it can also be used to approach phase--screen like approximations (though the latter are not the main interest here). Numerical comparisons with finite--difference solutions will be presented in order to assess the approximations being made and to gain an understanding of computation time differences. The ideas described extend to the three--dimensional, generally anisotropic case and to multiple scattering by invariant embedding.
Radiation from a current filament driven by a traveling wave
NASA Technical Reports Server (NTRS)
Levine, D. M.; Meneghini, R.
1976-01-01
Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum.
On a method computing transient wave propagation in ionospheric regions
NASA Technical Reports Server (NTRS)
Gray, K. G.; Bowhill, S. A.
1978-01-01
A consequence of an exoatmospheric nuclear burst is an electromagnetic pulse (EMP) radiated from it. In a region far enough away from the burst, where nonlinear effects can be ignored, the EMP can be represented by a large-amplitude narrow-time-width plane-wave pulse. If the ionosphere intervenes the origin and destination of the EMP, frequency dispersion can cause significant changes in the original pulse upon reception. A method of computing these dispersive effects of transient wave propagation is summarized. The method described is different from the standard transform techniques and provides physical insight into the transient wave process. The method, although exact, can be used in approximating the early-time transient response of an ionospheric region by a simple integration with only explicit knowledge of the electron density, electron collision frequency, and electron gyrofrequency required. As an illustration of the method, it is applied to a simple example and contrasted with the corresponding transform solution.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
NASA Astrophysics Data System (ADS)
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke
2018-05-01
We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.
Matrix basis for plane and modal waves in a Timoshenko beam
Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-01-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668
Strong shock implosion, approximate solution
NASA Astrophysics Data System (ADS)
Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.
1983-01-01
The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.
Waveguide Calibrator for Multi-Element Probe Calibration
NASA Technical Reports Server (NTRS)
Sommerfeldt, Scott D.; Blotter, Jonathan D.
2007-01-01
A calibrator, referred to as the spider design, can be used to calibrate probes incorporating multiple acoustic sensing elements. The application is an acoustic energy density probe, although the calibrator can be used for other types of acoustic probes. The calibrator relies on the use of acoustic waveguide technology to produce the same acoustic field at each of the sensing elements. As a result, the sensing elements can be separated from each other, but still calibrated through use of the acoustic waveguides. Standard calibration techniques involve placement of an individual microphone into a small cavity with a known, uniform pressure to perform the calibration. If a cavity is manufactured with sufficient size to insert the energy density probe, it has been found that a uniform pressure field can only be created at very low frequencies, due to the size of the probe. The size of the energy density probe prevents one from having the same pressure at each microphone in a cavity, due to the wave effects. The "spider" design probe is effective in calibrating multiple microphones separated from each other. The spider design ensures that the same wave effects exist for each microphone, each with an indivdual sound path. The calibrator s speaker is mounted at one end of a 14-cm-long and 4.1-cm diameter small plane-wave tube. This length was chosen so that the first evanescent cross mode of the plane-wave tube would be attenuated by about 90 dB, thus leaving just the plane wave at the termination plane of the tube. The tube terminates with a small, acrylic plate with five holes placed symmetrically about the axis of the speaker. Four ports are included for the four microphones on the probe. The fifth port is included for the pre-calibrated reference microphone. The ports in the acrylic plate are in turn connected to the probe sensing elements via flexible PVC tubes. These five tubes are the same length, so the acoustic wave effects are the same in each tube. The flexible nature of the tubes allows them to be positioned so that each tube terminates at one of the microphones of the energy density probe, which is mounted in the acrylic structure, or the calibrated reference microphone. Tests performed verify that the pressure did not vary due to bends in the tubes. The results of these tests indicate that the average sound pressure level in the tubes varied by only 0.03 dB as the tubes were bent to various angles. The current calibrator design is effective up to a frequency of approximately 4.5 kHz. This upper design frequency is largely due to the diameter of the plane-wave tubes.
Noise Equalization for Ultrafast Plane Wave Microvessel Imaging.
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D; Chen, Shigao
2017-11-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enable more robust clutter filtering based on singular value decomposition. However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This paper was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation induced) and microvessel blood flow signal and 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality.
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi
2018-01-01
We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have significantly different directions of incident waves to the scatterers. Furthermore, weak but coherent P-to-P scattered waves as well as S-to-P waves are observed for a few of the scatterers. These observations indicate that the locally plane scatterers also possess substantial topography.
Finite-surface method for the Maxwell equations with corner singularities
NASA Technical Reports Server (NTRS)
Vinokur, Marcel; Yarrow, Maurice
1994-01-01
The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.
Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penel-Nottaris, Emilie
The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm
Yang, Shang-Te; Ling, Hao
2013-01-01
An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less
Photoelectron Diffraction from Valence States of Oriented Molecules
NASA Astrophysics Data System (ADS)
Krüger, Peter
2018-06-01
The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.
Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli
2017-05-01
A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.
Procedure for noise prediction and optimization of advanced technology propellers
NASA Technical Reports Server (NTRS)
Jou, W. H.; Bernstein, S.
1979-01-01
The sound field due to a propeller operating at supersonic tip speed in a uniform flow was investigated. Using the fact that the wave front in a uniform stream is a convected sphere, the fundamental solution to the convected wave equation was easily obtained. The Fourier coefficients of the pressure signature were obtained by a far field approximation, and are expressed as an integral over the blade platform. It is shown that cones of silence exist fore and aft the propeller plane. The semiapex angles are shown. These angles are independent of the individual Mach components such as the flight Mach number and the rotation Mach number. The result is confirmed by the computation of the ray path of the emitted Mach waves. The Doppler amplification factor strengthens the signal behind the propeller while it weakens that upstream.
Wang, L; Rokhlin, S I
2002-09-01
An inversion method based on Floquet wave velocity in a periodic medium has been introduced to determine the single ply elastic moduli of a multi-ply composite. The stability of this algorithm is demonstrated by numerical simulation. The applicability of the plane wave approximation to the velocity measurement in the double-through-transmission self-reference method has been analyzed using a time-domain beam model. It shows that the finite width of the transmitter affects only the amplitudes of the signals and has almost no effect on the time delay. Using this method, the ply moduli for a multiply composite have been experimentally determined. While the paper focuses on elastic constant reconstruction from phase velocity measurements by the self-reference double-through-transmission method, the reconstruction methodology is also applicable to assessment of data collected by other methods.
Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.
2017-01-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169
Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations
NASA Astrophysics Data System (ADS)
Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf
2018-05-01
One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.
Xu, Minzhong; Bacić, Zlatko
2007-08-09
We report accurate quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complexes tetracene.He and pentacene.He in the S1 excited electronic state. The aromatic molecules were taken to be rigid and the intermolecular potential energy surfaces (IPESs) were modeled as a sum of atom-atom Lennard-Jones pair potentials. The IPESs are corrugated in the direction of the long (x) axis of the aromatic molecules, due to the presence of the symmetrically equivalent global double minimum for tetracene.He, and a triple minimum (central global minimum and two equivalent local minima) for pentacene.He, on each side of the aromatic plane. Both IPESs have two additional minor equivalent local minima further away from the center of the molecule. The vdW vibrational states analyzed in this work cover about 80% of the well depths of the IPESs. The mode coupling is generally weak for those states whose out-of-plane (z) mode is unexcited. However, the z-mode fundamental is strongly coupled to the short-axis (y) in-plane mode, so that the pure z-mode excitation could not be identified. The He atom exhibits large in-plane spatial delocalizaton already in the ground vdW vibrational state, which increases rapidly upon the excitation of the in-plane x and y modes, with little hindrance by the corrugation of the aromatic microsurfaces. For the vdW vibrational energies considered, the He atom spatial delocalization reaches Deltax and Deltay values of approximately 5 and 4 A, respectively, and is limited only by the finite size of the aromatic substrates. Side-crossing delocalization of the wave functions on both sides of the molecular plane is found at excitation energies >30 cm(-1), giving rise to the energy splittings of the pairs of states symmetric/antisymmetric with respect to the aromatic plane; the splittings show strong vdW vibrational mode specificity.
Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations
NASA Astrophysics Data System (ADS)
Al-Saidi, W. A.; Walter, E. J.; Rappe, A. M.
2008-02-01
We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe , Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r , and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.
NASA Astrophysics Data System (ADS)
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
Grating tuned unstable resonator laser cavity
Johnson, Larry C.
1982-01-01
An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf von der Pahlen, J.; Tsiklauri, D.
2014-01-15
Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reachedmore » in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that the waves predominantly correspond to the ordinary and the extraordinary mode and hence may correspond to observable radio waves such as solar radio burst fine structure spikes.« less
Linear shoaling of free-surface waves in multi-layer non-hydrostatic models
NASA Astrophysics Data System (ADS)
Bai, Yefei; Cheung, Kwok Fai
2018-01-01
The capability to describe shoaling over sloping bottom is fundamental to modeling of coastal wave transformation. The linear shoaling gradient provides a metric to measure this property in non-hydrostatic models with layer-integrated formulations. The governing equations in Boussinesq form facilitate derivation of the linear shoaling gradient, which is in the form of a [ 2 P + 2 , 2 P ] expansion of the water depth parameter kd with P equal to 1 for a one-layer model and (4 N - 4) for an N-layer model. The expansion reproduces the analytical solution from Airy wave theory at the shallow water limit and maintains a reasonable approximation up to kd = 1.2 and 2 for the one and two-layer models. Additional layers provide rapid and monotonic convergence of the shoaling gradient into deep water. Numerical experiments of wave propagation over a plane slope illustrate manifestation of the shoaling errors through the transformation processes from deep to shallow water. Even though outside the zone of active wave transformation, shoaling errors from deep to intermediate water are cumulative to produce appreciable impact to the wave amplitude in shallow water.
40 MHz high-frequency ultrafast ultrasound imaging.
Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang
2017-06-01
Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
Defect-mediated phonon dynamics in TaS2 and WSe2
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2017-01-01
We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630
An accelerated hologram calculation using the wavefront recording plane method and wavelet transform
NASA Astrophysics Data System (ADS)
Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi
2017-06-01
Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.
Modal method for Second Harmonic Generation in nanostructures
NASA Astrophysics Data System (ADS)
Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.
2015-05-01
Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.
Paraboloid-aspheric lenses free of spherical aberration
NASA Astrophysics Data System (ADS)
Lozano-Rincón, Ninfa del C.; Valencia-Estrada, Juan Camilo
2017-07-01
A method to design singlet paraboloid-aspheric lenses free of all orders of spherical aberration with maximum aperture is described. This work includes all parametric formulas to describe paraboloid-aspheric or aspheric-paraboloid lenses for any finite conjugated planes. It also includes the Schwarzchilds approximations (which can be used to calculate one rigorous propagation of light waves in physic optics) to design convex paraboloid-aspheric lenses for imaging an object at infinity, with explicit formulas to calculate thicknesses easily. The results were verified with software through ray tracing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, U. P.; Nayak, V.
Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.
Kashima, Ryota; Koyama, Daisuke; Matsukawa, Mami
2015-12-01
This paper investigates a two-dimensional ultrasonic manipulation technique for small objects in air. The ultrasonic levitation system consists of a rectangular vibrating plate with four ultrasonic transducers and a reflector. The configuration of the vibrator, the resonant frequency, and the positions of the four transducers with step horns were determined from finite element analysis such that an intense acoustic standing-wave field could be generated between the plates. A lattice flexural vibration mode with a wavelength of 28.3 mm was excited on the prototype plate at 24.6 kHz. Small objects could get trapped in air along the horizontal nodal plane of the standing wave. By controlling the driving phase difference between the transducers, trapped objects could be transported without contact in a two-dimensional plane. When the phase difference was changed from 0° to 720°, the distance moved by a small particle in the orthogonal direction was approximately 29 mm, which corresponds with the wavelength of the flexural vibration on the vibrating plate.
First-Principles Study on the Structural and Magnetic Properties of Iron Hydride
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Matsuura, Yasuyuki; Shishidou, Tatsuya; Oguchi, Tamio
2012-06-01
The magnetic and structural properties of iron hydride FeH with the double hexagonal close-packed (dhcp) and hexagonal close-packed (hcp) structures are investigated by first-principles density-functional theory calculations with a spin-polarized form of generalized gradient approximation. All the calculations are performed using all-electron full-potential linearized augmented plane wave method. Both dhcp and hcp FeH are ferromagnetic at ambient pressure. The ferromagnetic ordering of the dhcp structure collapses at a pressure of 48 GPa, while that of the hcp structure vanishes gradually from 48 GPa. The modification in the density of states (DOS) due to the applied pressure causes the collapse of the magnetization. The difference in magnetic moment reduction between dhcp and hcp FeH is attributed to their DOS around the Fermi level. The calculated magnetocrystalline anisotropy energies between in-plane and out-of-plane spin orientations are found to be 124 μeV/Fe for the dhcp structure, and 100 μeV/Fe for the hcp structure. The easy axis is in-plane direction for both structures.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Meneghini, R.
1978-01-01
A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.
NASA Astrophysics Data System (ADS)
Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.
2016-09-01
Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.
NASA Astrophysics Data System (ADS)
Kim, Jung-Soon; Kim, Moo-Joon; Kim, Jung-Ho; Ha, Kang-Lyeol
2005-06-01
In this study, ultrasonic array transducers with 32 vibrators arranged on the internal surface of a part of a cylinder were fabricated. The vibrators were operated by the piezoelectric transverse effect. By controlling the phase of the input signal for every vibrator, a quasi plane wave was synthesized. Using the fabricated array, inverse scattering ultrasonic computed tomography (UCT) was carried out with a phantom specimen after checking the plane wave generation. It was confirmed that the plane wave was synthesized successfully and a sound velocity image of the phantom was obtained by the plane wave. Consequently, it was noted that the array could be employed as a transmitter and receiver for data acquisition in UCT.
Amplitudes on plane waves from ambitwistor strings
NASA Astrophysics Data System (ADS)
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2017-11-01
In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.
Making waves round a structured cloak: lattices, negative refraction and fringes
Colquitt, D. J.; Jones, I. S.; Movchan, N. V.; Movchan, A. B.; Brun, M.; McPhedran, R. C.
2013-01-01
Using the framework of transformation optics, this paper presents a detailed analysis of a non-singular square cloak for acoustic, out-of-plane shear elastic and electromagnetic waves. Analysis of wave propagation through the cloak is presented and accompanied by numerical illustrations. The efficacy of the regularized cloak is demonstrated and an objective numerical measure of the quality of the cloaking effect is provided. It is demonstrated that the cloaking effect persists over a wide range of frequencies. As a demonstration of the effectiveness of the regularized cloak, a Young's double slit experiment is presented. The stability of the interference pattern is examined when a cloaked and uncloaked obstacle are successively placed in front of one of the apertures. This novel link with a well-known quantum mechanical experiment provides an additional method through which the quality of cloaks may be examined. In the second half of the paper, it is shown that an approximate cloak may be constructed using a discrete lattice structure. The efficiency of the approximate lattice cloak is analysed and a series of illustrative simulations presented. It is demonstrated that effective cloaking may be obtained by using a relatively simple lattice structure, particularly, in the low-frequency regime. PMID:24062625
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352
2015-09-01
In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less
Fourier optics of constant-thickness three-dimensional objects on the basis of diffraction models
NASA Astrophysics Data System (ADS)
Chugui, Yu. V.
2017-09-01
Results of investigations of diffraction phenomena on constant-thickness three-dimensional objects with flat inner surfaces (thick plates) are summarized on the basis of our constructive theory of their calculation as applied to dimensional inspection. It is based on diffraction models of 3D objects with the use of equivalent diaphragms (distributions), which allow the Kirchhoff-Fresnel approximation to be effectively used. In contrast to available rigorous and approximate methods, the present approach does not require cumbersome calculations; it is a clearly arranged method, which ensures sufficient accuracy for engineering applications. It is found that the fundamental diffraction parameter for 3D objects of constant thickness d is the critical diffraction angle {θ _{cr}} = √ {λ /d} at which the effect of three-dimensionality on the spectrum of the 3D object becomes appreciable. Calculated Fraunhofer diffraction patterns (spectra) and images of constant-thickness 3D objects with absolutely absorbing, absolutely reflecting, and gray internal faces are presented. It is demonstrated that selection of 3D object fragments can be performed by choosing an appropriate configuration of the wave illuminating the object (plane normal or inclined waves, spherical waves).
Plasmon dispersion in strongly correlated superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.; Golden, K.I.; Kalman, G.
The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Topics in electron capture by fast ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsin, S.H.
1987-01-01
The post-collision interaction (PCI) model was applied, together with the eikonal approximation, to study the (n = 2,3) capture cross sections in p + H(ls) collisions. The results indeed improve the previous eikonal calculations for l = 0 cases, and agree quite well with present experimental data. Calculations using the strong-potential Born (SPB) approximation, with the Sil and McGuire technique, for capture into the np, nd levels are also presented. While these cross sections are smaller than cross sections for capture into the ns levels at high velocities, nevertheless the Thomas peak is clearly evident in both the absolute valuemore » m = 2, absolute value m = 1 and m = 0 magnetic substates in p + H(ls) collisions. Also calculated were corrections to the SPB using the Distorted-Wave Born formalism of Taulbjerg and Briggs. In the sense of a plane-wave Born expansion, all terms of the third Born approximation and all single switching fourth Born terms are included, but a peaking approximation is needed to reduce the calculation to tractable form. Effects of the higher terms are most visible in the valley between the Thomas peak and the forward peak. The Thomas peak is visible in the correction term, even though it includes no second Born contributions.« less
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
NASA Technical Reports Server (NTRS)
Kleinstein, G. G.; Gunzburger, M. D.
1977-01-01
The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.
NASA Astrophysics Data System (ADS)
Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick
2017-12-01
This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru
2013-04-15
Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive forcemore » in the cases of circularly and linearly polarized waves has been confirmed.« less
Radar cross section fundamentals for the aircraft designer
NASA Technical Reports Server (NTRS)
Stadmore, H. A.
1979-01-01
Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.
Plane waves and structures in turbulent channel flow
NASA Technical Reports Server (NTRS)
Sirovich, L.; Ball, K. S.; Keefe, L. R.
1990-01-01
A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
Reduced-rank approximations to the far-field transform in the gridded fast multipole method
NASA Astrophysics Data System (ADS)
Hesford, Andrew J.; Waag, Robert C.
2011-05-01
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.
Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method.
Hesford, Andrew J; Waag, Robert C
2011-05-10
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.
Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method
Hesford, Andrew J.; Waag, Robert C.
2011-01-01
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly. PMID:21552350
Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space
NASA Astrophysics Data System (ADS)
Kunnath, R.
2012-12-01
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.
Control of Love waves by resonant metasurfaces.
Palermo, Antonio; Marzani, Alessandro
2018-05-08
Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.
NASA Astrophysics Data System (ADS)
Lewis, Ray A.; Modanese, Giovanni
Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.
Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects
NASA Technical Reports Server (NTRS)
Fung, A. K.
1983-01-01
The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Plane wave gravitons, curvature singularities and string physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, R.
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco
NASA Astrophysics Data System (ADS)
Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.
2016-07-01
The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.
Density functional theory calculations of III-N based semiconductors with mBJLDA
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi
2017-02-01
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.
2018-06-01
We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
An anisotropic lens for transitioning plane waves between media of different permittivities
NASA Astrophysics Data System (ADS)
Stone, Alexander P.; Baum, Carl E.
1988-11-01
A particularly simple geometry is considered in which an inhomogeneous and anisotropic lens is specified for the transition of plane waves between media of different permittivities. The permittivities of the regions outside of the lens can be constant, but the permittivity of the lens region depends on position. Results are presented for a plane wave in the second medium propagating normally to the assumed plane boundary of that medium. The results for the case of normal incidence are then generalized to the case of nonnormal incidence. The conditions of transit time conservation and impedance matching are related to the Brewster angle.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
Helicons in uniform fields. I. Wave diagnostics with hodograms
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2018-03-01
The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.
Geometrical optics in the near field: local plane-interface approach with evanescent waves.
Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari
2015-01-12
We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.
Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3
NASA Astrophysics Data System (ADS)
Correia, Simão; Figueira, Mário
2018-03-01
We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.
Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam
NASA Astrophysics Data System (ADS)
Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.
2018-06-01
We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.
Lee waves, benign and malignant
NASA Technical Reports Server (NTRS)
Wurtele, M. G.; Datta, A.
1992-01-01
The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.
1993-04-01
An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less
NASA Astrophysics Data System (ADS)
Hsu, Chen-Hsuan; Wang, Zhiqiang; Chakravarty, Sudip
2012-12-01
In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave, the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies. From numerical calculations within the framework of random phase approximation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energy ω≤90meV, which are reminiscent of the experiments. At very high energy ω≥165meV, we also find energy-dependent incommensurability. Although there are some important differences between the three cases, unpolarized neutron measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass shape dispersion.
NASA Astrophysics Data System (ADS)
Folesky, Jonas; Kummerow, Jörn
2015-04-01
The Empirical Green's Function (EGF) method uses pairs of events of high wave form similarity and adjacent hypocenters to decompose the influences of source time function, ray path, instrument site, and instrument response. The seismogram of the smaller event is considered as the Green's function which then can be deconvolved from the other seismogram. The result provides a reconstructed relative source time function (RSTF) of the larger event of that event pair. The comparison of the RSTFs at all stations of the observation systems produces information on the rupture process of the event based on an apparent directivity effect and possible changes in the RSTFs complexities. The Basel EGS dataset of 2006-2007 consists of about 2800 localized events of magnitudes between 0.0 < ML < 3.5 with event pairs of adequate magnitude difference for EGF analysis. The data has sufficient quality to analyse events with magnitudes down to ML = 0.0 for an apparent directivity effect although the approximate rupture duration for those events is of only a few milliseconds. The dataset shows a number of multiplets where fault plane solutions are known from earlier studies. Using the EGF method we compute rupture orientations for about 190 event pairs and compare them to the fault plane solutions of the multiplets. For the majority of events we observe a good consistency between the rupture direction found there and one of the previously determined nodal planes from fault plane solutions. In combination this resolves the fault plane ambiguity. Furthermore the rupture direction fitting yields estimates for projections of the rupture velocity on the horizontal plane. They seem to vary between the multiplets in the reservoir from 0.3 to 0.7 times the S-wave velocity. To our knowledge source characterization by EGF analysis has not yet been introduced to microseismic reservoirs with the data quality found in Basel. Our results show that EGF analysis can provide valuable additional insights on the distribution of rupture properties within the reservoir.
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
From plane waves to local Gaussians for the simulation of correlated periodic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de
2016-08-28
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less
The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram
NASA Astrophysics Data System (ADS)
Janicijevic, L.
1985-03-01
Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.
Orbital dependent functionals: An atom projector augmented wave method implementation
NASA Astrophysics Data System (ADS)
Xu, Xiao
This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Isotropic transmission of magnon spin information without a magnetic field
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-01-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033
A combined representation method for use in band structure calculations. 1: Method
NASA Technical Reports Server (NTRS)
Friedli, C.; Ashcroft, N. W.
1975-01-01
A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.
Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
NASA Technical Reports Server (NTRS)
Noh, H. M.; Pathak, P. H.
1986-01-01
An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
Hybrid Simulation of the Shock Wave Trailing the Moon
NASA Technical Reports Server (NTRS)
Israelevich, P.; Ofman, Leon
2012-01-01
A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (T(sub i) much less than T(sub e) approximately 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of approximately 7R(sub M) downstream of the Moon.
Absolute instabilities of travelling wave solutions in a Keller-Segel model
NASA Astrophysics Data System (ADS)
Davis, P. N.; van Heijster, P.; Marangell, R.
2017-11-01
We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.
Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination
NASA Astrophysics Data System (ADS)
Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.
2017-11-01
Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
The Existence of Topological Edge States in Honeycomb Plasmonic Lattices
NASA Astrophysics Data System (ADS)
Wang, Li
In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed k∥, Zak phases of the bulk bands and the winding number associated with the bulk hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D vector wave systems.
On the estimation of ice thickness from scattering observations
NASA Astrophysics Data System (ADS)
Williams, T. D.; Squire, V. A.
2010-04-01
This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges are not sizeable, i.e. away from coastal regions of high deformation.
Numerical Investigation of Three-dimensional Instability of Standing Waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2002-11-01
We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
Probing the smearing effect by a pointlike graviton in the plane-wave matrix model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Bum-Hoon; Nam, Siyoung; Shin, Hyeonjoon
2010-08-15
We investigate the interaction between a flat membrane and pointlike graviton in the plane-wave matrix model. The one-loop effective potential in the large-distance limit is computed and is shown to be of r{sup -3} type where r is the distance between two objects. This type of interaction has been interpreted as the one incorporating the smearing effect due to the configuration of a flat membrane in a plane-wave background. Our results support this interpretation and provide more evidence about it.
Applicability of geometrical optics to in-plane liquid-crystal configurations.
Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G
2010-02-15
We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.
A parallel orbital-updating based plane-wave basis method for electronic structure calculations
NASA Astrophysics Data System (ADS)
Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui
2017-11-01
Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.
Solid explosive plane-wave lenses pressed-to-shape with dies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olinger, B.
2007-11-01
Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.
RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination
NASA Astrophysics Data System (ADS)
Vokura, V. J.; Balanis, Constantine A.; Birtcher, Craig R.
1994-03-01
Monostatic RCS measurements of a long bar (at X-band) and of a scale model aircraft (at C-band) were performed under the quasi-plane wave illumination produced by a dual parabolic-cylinder CATR. At Arizona State University's ElectroMagnetic Anechoic Chamber (EMAC) facility, these measurements were repeated under the cylindrical wave illumination produced by a March Microwave Single-Plane Collimating Range (SPCR). The SPRC measurements were corrected using corrected using the 'reference target method.' The corrected SPCR measurements are in good agreement with the CATR measurements.
NASA Astrophysics Data System (ADS)
van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen
2014-05-01
We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1994-01-01
The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.
NASA Astrophysics Data System (ADS)
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
Use of complex frequency plane to design broadband and sub-wavelength absorbers.
Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V
2016-06-01
The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.
NASA Astrophysics Data System (ADS)
Shao, Tongbin; Ji, Shaocheng; Oya, Shoma; Michibayashi, Katsuyoshi; Wang, Qian
2016-05-01
Measurements of crystallographic preferred orientations (CPO) and calculations of P- and S-wave velocities (Vp and Vs) and anisotropy were conducted on three quartz-mica schists and one felsic mylonite, which are representative of typical metamorphic rocks deformed in the middle crust beneath the southeastern Tibetan plateau. Results show that the schists have Vp anisotropy (AVp) ranging from 16.4% to 25.5% and maximum Vs anisotropy [AVs(max)] between 21.6% and 37.8%. The mylonite has lower AVp and AVs(max) but slightly higher foliation anisotropy, which are 13.2%, 18.5%, and 3.07%, respectively, due to the lower content and CPO strength of mica. With increasing mica content, the deformed rocks tend to form transverse isotropy (TI) with fast velocities in the foliation plane and slow velocities normal to the foliation. However, the presence of prismatic minerals (e.g., amphibole and sillimanite) forces the overall symmetry to deviate from TI. An increase in feldspar content reduces the bulk anisotropy caused by mica or quartz because the fast-axis of feldspar aligns parallel to the slow-axis of mica and/or quartz. The effect of quartz on seismic properties of mica-bearing rocks is complex, depending on its content and prevailing slip system. The greatest shear-wave splitting and fastest Vp both occur for propagation directions within the foliation plane, consistent with the fast Pms (S-wave converted from P-wave at the Moho) polarization directions in the west Yunnan where mica/amphibole-bearing rocks have developed pervasive subvertical foliation and subhorizontal lineation. The fast Pms directions are perpendicular to the approximately E-W orienting fast SKS (S-wave traversing the core as P-wave) directions, indicating a decoupling at the Moho interface between the crust and mantle beneath the region. The seismic data are inconsistent with the model of crustal channel flow as the latter should produce a subhorizontal foliation where vertically incident shear waves suffer little splitting.
Strings on AdS_3 x S^3 and the Plane-Wave Limit. Issues on PP-Wave/CFT Holography
NASA Astrophysics Data System (ADS)
Zapata, Oswaldo
2005-10-01
In this thesis we give explicit results for bosonic string amplitudes on AdS_3 x S^3 and the corresponding plane-wave limit. We also analyze the consequences of our approach for understanding holography in this set up, as well as its possible generalization to other models.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Electron- and proton-induced ionization of pyrimidine
Champion, Christophe; Quinto, Michele; Weck, Philippe F
2015-03-27
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less
Microwave Heating of Metal Power Clusters
NASA Astrophysics Data System (ADS)
Rybakov, K. I.; Semenov, V. E.; Volkovskaya, I. I.
2018-01-01
The results of simulating the rapid microwave heating of spherical clusters of metal particles to the melting point are reported. In the simulation, the cluster is subjected to a plane electromagnetic wave. The cluster size is comparable to the wavelength; the perturbations of the field inside the cluster are accounted for within an effective medium approximation. It is shown that the time of heating in vacuum to the melting point does not exceed 1 s when the electric field strength in the incident wave is about 2 kV/cm at a frequency of 24 GHz or 5 kV/cm at a frequency of 2.45 GHz. The obtained results demonstrate feasibility of using rapid microwave heating for the spheroidization of metal particles with an objective to produce high-quality powders for additive manufacturing technologies.
NASA Astrophysics Data System (ADS)
Alesemi, Meshari
2018-04-01
The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.
Exploring Near-Field Radiative Heat Transfer for Thermo-photovoltaic Applications
NASA Astrophysics Data System (ADS)
Ganjeh, Yashar; Song, Bai; Sadat, Seid; Thompson, Dakotah; Fiorino, Anthony; Reddy, Pramod; Meyhofer, Edgar
2014-03-01
Understanding near-field radiative heat transfer (NFRHT) is critical for developing efficient thermo-photovoltaic devices. Theoretical predictions suggest that when the spatial separation of two parallel planes at different temperatures is less than their Wien's thermal wavelength, thermal transport via radiation can be greatly enhanced. The radiative heat flow across nanoscale gaps is predicted to be orders-of-magnitude higher than that given by Stefan-Boltzmann law, due to contribution of evanescent waves. In order to test these predictions, a novel experimental platform was designed and built enabling parallelization of two planar surfaces (50 μm by 50 μm) with 500 microradian resolution in their relative orientation. This platform was used to probe NFRHT between two planes and also between a plane and a sphere. It was found that, when a 50 μm diameter silica sphere was approximately 20 nm away from a 50 by 50 μm2 silica plane, a significant increase in radiative heat transfer coefficient was observed. This increase is 3 orders of magnitude higher than the value predicted by the blackbody limit. Other setups, including Au spheres and planes, and the plane-plane geometries are currently being investigated. 1) Army Research office (W911NF-12-1-0612), 2) NSF Thermal Transport Prcesses (CBET 1235691), 3) Center for Solar and Thermal Energy conversion, funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0000957.
Innovative Technologies for Maskless Lithography and Non-Conventional Patterning
2008-08-01
wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
NASA Astrophysics Data System (ADS)
Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.
2018-05-01
We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
NASA Astrophysics Data System (ADS)
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2014-03-01
We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).
Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ
NASA Astrophysics Data System (ADS)
Massidda, S.
1990-07-01
We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.
Electronic and optical properties of Praseodymium trifluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in
2014-10-24
We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity formore » PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.« less
Air-coupled ultrasonic through-transmission thickness measurements of steel plates.
Waag, Grunde; Hoff, Lars; Norli, Petter
2015-02-01
Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.
COLLIMATION AND ASYMMETRY OF THE HOT BLAST WAVE FROM THE RECURRENT NOVA V745 Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, Jeremy J.; Kashyap, Vinay; Delgado, Laura
The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10{sup 7} K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s{sup 1}, an FWHM of 1200 ± 30 km s{sup 1}, and an average net blueshift of 165more » ± 10 km s{sup 1}. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 10{sup 43} erg and confirms an ejected mass of approximately 10{sup 7} M {sub ⊙}. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.« less
NASA Astrophysics Data System (ADS)
Guo, B. S.; Loo, Y. L.; Ong, C. K.
2017-10-01
This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.
Wang, Yan; Chen, Kean
2017-10-01
A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-07-01
The properties of whistler modes excited by single and multiple magnetic loop antennas have been investigated in a large laboratory plasma. A single loop excites a wavepacket, but an array of loops across the ambient magnetic field B0 excites approximate plane whistler modes. The single loop data are measured. The array patterns are obtained by linear superposition of experimental data shifted in space and time, which is valid in a uniform plasma and magnetic field for small amplitude waves. Phasing the array changes the angle of wave propagation. The antennas are excited by an rf tone burst whose propagating envelope and oscillations yield group and phase velocities. A single loop antenna with dipole moment across B0 excites wave packets whose topology resembles m = 1 helicon modes, but without radial boundaries. The phase surfaces are conical with propagation characteristics of Gendrin modes. The cones form near the antenna with comparable parallel and perpendicular phase velocities. A physical model for the wave excitation is given. When a wave burst is applied to a phased antenna array, the wave front propagates both along the array and into the plasma forming a "whistler wing" at the front. These laboratory observations may be relevant for excitation and detection of whistler modes in space plasmas.
NASA Astrophysics Data System (ADS)
Turner, D. L.; Lee, J. H.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Leonard, T.; Wilder, F. D.; Ergun, R. E.; Baker, D. N.; Cohen, I. J.; Mauk, B. H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu. V.; Torbert, R. B.; Allen, R. C.; Burch, J. L.; Santolik, O.
2017-11-01
Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLAT < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT -31°). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.
2010-04-27
Dirichlet boundary data DP̃ (x, y) at the entire plane P̃ . Then one can solve the following boundary value problem in the half space below P̃ ∆w − s2w...which we wanted to be a plane wave when reaching the bottom side of the prism of Figure 1, where measurements were conducted. But actually this 14 was a...initializing wave field is a plane wave. On the other hand, a visual inspection of the output experimental data has revealed to us that actually we had a
NASA Astrophysics Data System (ADS)
Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao
2013-11-01
We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian
2016-01-01
We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films
NASA Astrophysics Data System (ADS)
Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.
2013-06-01
A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions.
Jerke, Jonathan; Poirier, Bill
2018-03-14
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy-i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted-as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
NASA Astrophysics Data System (ADS)
Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong
2017-10-01
Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
Wang, Yu; Jiang, Jingfeng
2018-01-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan
2016-11-01
In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship between the velocity anisotropy index ε and angle θ, which is the difference between the angle of the M plane and the X plane and the angle of the M plane and the Y plane from the theoretical point. The results indicate that 1/ε and cotθ/2 have good negative linear relationship that can be expressed as cotθ/2 = a ∗1/ε + b. According to experimental data, the linear fit of 1/ε and cotθ/2 is found, obtaining cotθ/2 = - 0.04721/ε + 0.03, with a linear fit index of 0.908. From an experimental point of view, the linear relationship between 1/ε and cotθ/2 is verified. Through this research, we propose a new method for quantitatively predicting the main fracture occurrence position by P-wave velocity anisotropy. This work has an important significance for understanding buckling failure of rocks.
Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-03-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
Magneto-exciton transitions in laterally coupled quantum dots
NASA Astrophysics Data System (ADS)
Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.
2008-03-01
We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
The Effect of Orifice Eccentricity on Instability of Liquid Jets
NASA Astrophysics Data System (ADS)
Amini, Ghobad; Dolatabadi, Ali
2011-11-01
The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassburger, E.; Patel, P.; McCauley, J. W.
An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less
NASA Astrophysics Data System (ADS)
FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.
2009-12-01
This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.
Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6
NASA Astrophysics Data System (ADS)
Reshak, A. H.; Azam, Sikander
2014-05-01
The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.
Constant-dose microwave irradiation of insect pupae
NASA Astrophysics Data System (ADS)
Olsen, Richard G.
Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.
The January 2001, El Salvador event: a multi-data analysis
NASA Astrophysics Data System (ADS)
Vallee, M.; Bouchon, M.; Schwartz, S. Y.
2001-12-01
On January 13, 2001, a large normal event (Mw=7.6) occured 100 kilometers away from the Salvadorian coast (Central America) with a centroid depth of about 50km. The size of this event is surprising according to the classical idea that such events have to be much weaker than thrust events in subduction zones. We analysed this earthquake with different types of data: because teleseismic waves are the only data which offer a good azimuthal coverage, we first built a kinematic source model with P and SH waves provided by the IRIS-GEOSCOPE networks. The ambiguity between the 30o plane (plunging toward Pacific Ocean) and the 60o degree plane (plunging toward Central America) leaded us to do a parallel analysis of the two possible planes. We used a simple point-source modelling in order to define the main characteristics of the event and then used an extended source to retrieve the kinematic features of the rupture. For the 2 possible planes, this analysis reveals a downdip and northwest rupture propagation but the difference of fit remains subtle even when using the extended source. In a second part we confronted our models for the two planes with other seismological data, which are (1) regional data, (2) surface wave data through an Empirical Green Function given by a similar but much weaker earthquake which occured in July 1996 and lastly (3) nearfield data provided by Universidad Centroamericana (UCA) and Centro de Investigationes Geotecnicas (CIG). Regional data do not allow to discriminate the 2 planes neither but surface waves and especially near field data confirm that the fault plane is the steepest one plunging toward Central America. Moreover, the slight directivity toward North is confirmed by surface waves.
Boundary states at reflective moving boundaries
NASA Astrophysics Data System (ADS)
Acosta Minoli, Cesar A.; Kopriva, David A.
2012-06-01
We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2014-10-01
Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.
Scattering on plane waves and the double copy
NASA Astrophysics Data System (ADS)
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2018-01-01
Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.
Magnetic Helicity of Alfven Simple Waves
NASA Technical Reports Server (NTRS)
Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.
2010-01-01
The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.
Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.
Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik
2018-01-01
to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.
The shock Hugoniot of liquid hydrazine in the pressure range of 3.1 to 21.4 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, B.O.; Persson, P-A.
1996-10-01
Impedance matching was used; the technique was similar to Richard Dick`s. Shock pressures were produced using a plane wave explosive driver with different explosives and different reference materials against liq. hydrazine. Velocity of shock wave in the liquid and free surface velocity of the reference material were measured using different pin contact techniques. The experimental Hugoniot appears smooth, with no indication of a phase change. The shock Hugoniot of liq. hydrazine was compared against 3 other liquid Hugoniots (liq. NH3, water, CCl4) and is closest to that for water and in between NH3 and CCl4. The hydrazine Hugoniot was alsomore » compared to the ``Universal`` Hugoniot for liquids. This universal Hugoniot is not a good approximation for the liq. hydrazine in this pressure range.« less
NASA Astrophysics Data System (ADS)
Annaby, M. H.; Asharabi, R. M.
2018-01-01
In a remarkable note of Chadan [Il Nuovo Cimento 39, 697-703 (1965)], the author expanded both the regular wave function and the Jost function of the quantum scattering problem using an interpolation theorem of Valiron [Bull. Sci. Math. 49, 181-192 (1925)]. These expansions have a very slow rate of convergence, and applying them to compute the zeros of the Jost function, which lead to the important bound states, gives poor convergence rates. It is our objective in this paper to introduce several efficient interpolation techniques to compute the regular wave solution as well as the Jost function and its zeros approximately. This work continues and improves the results of Chadan and other related studies remarkably. Several worked examples are given with illustrations and comparisons with existing methods.
Ray tracing study of rising tone EMIC-triggered emissions
NASA Astrophysics Data System (ADS)
Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole
2017-04-01
ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.
NASA Astrophysics Data System (ADS)
Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro
2018-03-01
We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.
NASA Astrophysics Data System (ADS)
Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry
2003-08-01
Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2017-06-01
A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.
The Resonance of the Surface Waves. The H/V Ratio in the Metropolitan Area of Bucharest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balan, Stefan F.; Cioflan, Carmen O.; Apostol, Bogdan F.
2008-07-08
The purpose of this work is to evaluate the natural period of oscillation T{sub 0} for soils in Bucharest city area. We will start by examine the elastic waves excited at the surface of an isotropic body by an oscillatory, localized force (Rayleigh waves). We define the 'H/V'-ratio as the ratio of the intensity of the in-plane waves (horizontal waves) to the intensity of the perpendicular-to-the-plane waves (vertical waves). It is shown that this ratio exhibits a resonance at a frequency which is close to the frequency of the transverse waves. It may serve to determine Poison's ratio of themore » body. We consider the ratio H/V of the horizontal to the vertical component of the Fourier spectrum for the seismic events recorded at 34 locations during the period October 2003 to August 2004. The method gives reliable data regarding the fundamental frequencies for soil deposits and the results of this experiment allows us to improve the known distribution of T{sub 0}--regularly calculated with the approximate formula T = 4h/v{sub s}. The earthquakes with M{sub w}>4 that occurred on 21.01.2004, 07.02.2004, 17.03.2004 and 04.04.2004 will be used as input to compute H/V ratios for each site of a URS stations in the area of Bucharest city. The H/V ratio is also calculated from noise recordings in the same areas. Computation of H/V spectral ratios are performed by means of the SeismicHandler and J-SESAME software showing the reliability of the method used for the sites located in Bucharest. The fundamental period obtained for the majority of sites is in accordance with already known results. By obtaining the fundamental period for much more and different spots situated in the Bucharest area we covered the zones where these data did not exist before. This study is significant in seismic risk mitigation for the Bucharest city area, for a safer seismic design and for the improvement of microzonation efforts.« less
NASA Astrophysics Data System (ADS)
Sarkadi, L.
2018-04-01
Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.
NASA Technical Reports Server (NTRS)
Dhawan, R.; Gunther, M. F.; Claus, R. O.
1991-01-01
Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.
Electronic structures of of PuX (X=S, Se, Te)
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi
2013-08-01
We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.
Mott Transition in GdMnO3: an Ab Initio Study
NASA Astrophysics Data System (ADS)
Ferreira, W. S.; Moreira, E.; Frazão, N. F.
2018-04-01
Orthorhombic GdMnO3 is studied using density functional theory considering the pseudo-potential plane-wave method within local-spin-density approximation, LSDA. The electronic band structure and density of states, for several hydrostatic pressures, are studied. The Mott transition was observed at 60 GPa. Calculated lattice parameters are close to the experimental measurements, and some indirect band gaps (S→Γ) were obtained within the LSDA level of calculation, between the occupied O-2 p and unoccupied Gd-4 f states. The variation of the gap reduces with increasing pressure, being well fitted to a quadratic function.
Differentiation of tumor from viable myocardium using cardiac tagging with MR imaging.
Bouton, S; Yang, A; McCrindle, B W; Kidd, L; McVeigh, E R; Zerhouni, E A
1991-01-01
We report the application of myocardial tagging by MR to define tissue planes and differentiate contractile from noncontractile tissue in a neonate with congenital cardiac rhabdomyoma. Using custom-written pulse programming software, six 2 mm thick radiofrequency (RF) slice-selective presaturation pulses (tags) were used to label the chest wall and myocardium in a star pattern in diastole, approximately 60 ms before the R-wave gating trigger. This method successfully delineated the myocardium from noncontractile tumor, providing information that influenced clinical management. This RF tagging technique allowed us to confirm the exact intramyocardial location of a congenital cardiac tumor.
An application of the Braunbeck method to the Maggi-Rubinowicz field representation
NASA Technical Reports Server (NTRS)
Meneghini, R.
1982-01-01
The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.
An application of the Braunbeck method to the Maggi-Rubinowicz field representation
NASA Astrophysics Data System (ADS)
Meneghini, R.
1982-06-01
The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.
Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Nikita, E-mail: acharyaniks30@gmail.com; Fatima, Bushra; Sanyal, Sankar P.
2016-05-06
The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2017-12-01
In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.
Lectures on the scattering of light. [by dielectric sphere
NASA Technical Reports Server (NTRS)
Saxon, D. S.
1974-01-01
The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.
Luber, Sandra
2017-03-14
We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.
Receive Mode Analysis and Design of Microstrip Reflectarrays
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed for a plane wave incident on the reflectarray from the direction of the beam peak. In antenna applications with a single collimated beam, this method is extremely simple since all printed elements see the same angles of incidence. Thus the number of parameters is reduced by two when compared to the transmit mode design. The reflection phase computation as a function of five parameters in the rectangular patch array discussed previously is reduced to a computational problem with three parameters in the receive mode. Furthermore, if the beam peak is in the broadside direction, the receive mode design is polarization independent and the reflection phase computation is a function of two parameters only. For a square patch array, it is a function of the size, one parameter only, thus making it extremely simple.
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less
Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy
Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.
2017-12-05
We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less
NASA Astrophysics Data System (ADS)
Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid
2018-03-01
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
Modern developments in shear flow control with swirl
NASA Technical Reports Server (NTRS)
Farokhi, Saeed; Taghavi, R.
1990-01-01
Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.
NASA Astrophysics Data System (ADS)
Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li
2018-01-01
We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.
An Experimental Study of Droplets Produced by a Plunging Breakers
NASA Astrophysics Data System (ADS)
Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James
2016-11-01
In this study, the production of droplets by a mechanically generated plunging breaking water wave is investigated in a wave tank. The breaker, with an amplitude of 0.070 m, is generated repeatedly with a programmable wave maker by using a dispersively focused wave packet (average frequency 1.15 Hz). The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a cinematic digital in-line holographic system positioned at 30 locations along a horizontal plane that is 1 cm above the maximum wave crest height. This measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the breaking wave is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Third All-Union Symposium on Wave Diffraction.
1982-08-02
the Half - Plane of Waves, Formed on the Surface of Liquid and on the Interface in the Laminar Liquid by the Periodically Functioning Source, by...majority of the cases is of basic practical interest. For this way of integration it is displaced into lower half - plane Im xɘ and are computed deductions...and f(x) exponentially decrease, then u(x, p) is continued as meromorphic function for the variable/alternating p into half - plane Re p>-b,
Reflection and Refraction of Acoustic Waves by a Shock Wave
NASA Technical Reports Server (NTRS)
Brillouin, J.
1957-01-01
The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.
Optimizing snake locomotion on an inclined plane
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Osborne, Matthew T.; Alben, Silas
2014-01-01
We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.
Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Liu, XiQiang
2013-08-01
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.
Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J
2010-11-01
In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.
Coincidence studies of He ionized by C{sup 6+}, Au{sup 24+}, and Au{sup 53+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGovern, M.; Walters, H. R. J.; Assafrao, D.
2010-04-15
A recently developed [Phys. Rev. A 79, 042707 (2009)] impact parameter coupled pseudostate approximation (CP) is applied to calculate triple differential cross sections for single ionization of He by C{sup 6+}, Au{sup 24+}, and Au{sup 53+} projectiles at impact energies of 100 and 2 MeV/amu for C{sup 6+} and 3.6 MeV/amu for Au{sup 24+} and Au{sup 53+}. For C{sup 6+}, satisfactory, but not perfect, agreement is found with experimental measurements in coplanar geometry, but there is substantial disagreement with data taken in a perpendicular plane geometry. The CP calculations firmly contradict a projectile-nucleus interaction model which has been used tomore » support the perpendicular plane measurements. For Au{sup 24+} and Au{sup 53+}, there is a complete lack of accord with the available experiments. However, for Au{sup 24+} the theoretical position appears to be quite firm with clear indications of convergence in the CP approximation and very good agreement between CP and the completely different three-distorted-waves eikonal-initial-state (3DW-EIS) approximation. The situation for Au{sup 53+} is different. At the momentum transfers at which the measurements were made, there are doubts about the convergence of the CP approximation and a factor of 2 difference between the CP and 3DW-EIS predictions. The discord between theory and experiment is even greater with the experiment giving cross sections a factor of 10 larger than the theory. A study of the convergence of the CP approximation shows that it improves rapidly with reducing momentum transfer. As a consequence, lower-order cross sections than the triple are quite well converged and present an opportunity for a more reliable test of the experiment.« less
NASA Astrophysics Data System (ADS)
Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.
2018-03-01
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.
Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites
NASA Astrophysics Data System (ADS)
Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong
2014-03-01
Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balyan, M. K., E-mail: mbalyan@ysu.am
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Nonlinear Waves, Instabilities and Singularities in Plasma and Hydrodynamics
NASA Astrophysics Data System (ADS)
Silantyev, Denis Albertovich
Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation. The first part of this work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma. In Internal Confinement Fusion Experiments (ICF) at National Ignition Facility (NIF), where attempts are made to achieve fusion by compressing a small target by many powerful lasers to extremely high temperatures and pressures, plasma is created in the first moments of the laser reaching the target and undergoes complicated dynamics. Some of the most challenging difficulties arise from various plasma instabilities that occur due to interaction of the laser beam and a plasma surrounding the target. In this work we consider one of such instabilities that describes a decay of nonlinear plasma wave, initially excited due to interaction of the laser beam with the plasma, into many filaments in direction perpendicular to the laser beam, therefore named Langmuir filamentation instability. This instability occurs in the kinetic regime of plasma, klambda D > 0.2, where k is the wavenumber and lambda D is the Debye length. The filamentation of Langmuir waves in turn leads to the saturation of the stimulated Raman scattering (SRS) in laser-plasma interaction experiments which plays an essential role in ICF experiments. The challenging part of this work was that unlike in hydrodynamics we needed to use fully kinetic description of plasma to capture the physics in question properly, meaning that we needed to consider the distribution function of charged particles and its evolution in time not only with respect to spatial coordinates but with respect to velocities as well. To study Langmuir filamentation instability in its simplest form we performed 2D+2V numerical simulations. Taking into account that the distribution function in question was 4-dimensional function, making these simulation quite challenging, we developed an efficient numerical method making these simulations possible on modern desktop computers. Using the developed numerical method we studied how Langmuir wave filamentation instability depends on the parameters of the Langmuir wave such as wave length and amplitude that are relevant to ICF experiments. We considered several types of Langmuir waves, including nonlinear Langmuir waves exited by external electric field as well as an idealized approximation of such Langmuir waves by a particular family of Bernstein-Greene-Kruskal (BGK) modes that bifurcates from the linear Langmuir wave. The results of these simulations were compared to the theoretical predictions in our recent papers. An alternative approach to overcome computational difficulty of this problem was considered by our research group in Ref. It involves reducing the number of transverse direction in the model therefore lowering computational difficulty at a cost of lesser accuracy of the model. The second part of this work concentrates on 2D free surface hydrodynamics and in particular on computing Stokes waves with high-precision using conformal maps and spectral methods. Stokes waves are fully nonlinear periodic gravity waves propagating with the constant velocity on a free surface of two-dimensional potential flow of the ideal incompressible fluid of infinite depth. The increase of the scaled wave height H/lambda, where H is the wave height and lambda is the wavelength, from H/lambda = 0 to the critical value Hmax/lambda marks the transition from almost linear wave to a strongly nonlinear limiting Stokes wave. The Stokes wave of the greatest height H = Hmax has an angle of 120° at the crest. To obtain Stokes wave fully nonlinear Euler equations describing the flow can be reformulated in terms of conformal map of the fluid domain into the complex lower half-plane, with fluid free surface mapped into the real line. This description is convenient for analysis and numerical simulations since the whole problem is then reduced to a single nonlinear equation on the real line. Having computed solutions on the real line we extend them to the rest of the complex plane to analyze the singularities above real line. The distance vc from the closest singularity in the upper half-plane to the real line goes to zero as we approach the limiting Stokes wave with maximum hight Hmax/lambda, which is the reason for the widening of the solution's Fourier spectrum. (Abstract shortened by ProQuest.).
Free energy and phase transition of the matrix model on a plane wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.
2005-03-15
It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less
Penrose limits of Abelian and non-Abelian T-duals of AdS 5 × S 5 and their field theory duals
NASA Astrophysics Data System (ADS)
Itsios, Georgios; Nastase, Horatiu; Núñez, Carlos; Sfetsos, Konstantinos; Zacarías, Salomón
2018-01-01
We consider the backgrounds obtained by Abelian and non-Abelian T-duality applied on AdS 5 × S 5. We study geodesics, calculate Penrose limits and find the associated plane-wave geometries. We quantise the weakly coupled type-IIA string theory on these backgrounds. We study the BMN sector, finding operators that wrap the original quiver CFT. For the non-Abelian plane wave, we find a `flow' in the frequencies. We report some progress to understand this, in terms of deconstruction of a higher dimensional field theory. We explore a relation with the plane-wave limit of the Janus solution, which we also provide.
Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases
NASA Astrophysics Data System (ADS)
Morifuji, Masato
2018-01-01
We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
NASA Astrophysics Data System (ADS)
Harmel, M.; Khachai, H.; Ameri, A.; Baki, N.; Haddou, A.; Khalfa, M.; Abbar, B.; Omran, S. Bin; Uğur, G.; Uğur, Ş.; Khenata, R.
2012-12-01
The structural and electronic properties of the cubic fluoroperoveskite { CsBeF}3 and { CsMgF}3 have been investigated using the full-potential-linearized augmented plane wave method within the density functional theory. The exchange-correlation potential was treated with the local density approximation and the generalized gradient approximation. The calculations of the electronic band structures show that { CsBeF}_{3 } has an indirect bandgap, whereas { CsMgF}3 has a direct bandgap. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for { CsBeF}3 and { CsMgF}3 compounds are investigated for the first time.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-04-01
Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; Lust, Ethan; Flack, Karen
2015-11-01
Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.
The pattern space factor and quality factor of cylindrical source antennas
NASA Astrophysics Data System (ADS)
Jarem, John M.
1982-09-01
For the first time the quality factor of cylindrical source antennas is derived by a plane wave expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave expansion is shown to be different from Collin and Rothschild's [IEEE Trans. Antennas Propagation AP-12, 23 (1964)] quality factor.
Determination of plane stress state using terahertz time-domain spectroscopy
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-01-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112
Determination of plane stress state using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-11-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials.
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
System alignment using the Talbot effect
NASA Astrophysics Data System (ADS)
Chevallier, Raymond; Le Falher, Eric; Heggarty, Kevin
1990-08-01
The Talbot effect is utilized to correct an alignment problem related to a neural network used for image recognition, which required the alignment of a spatial light modulator (SLM) with the input module. A mathematical model which employs the Fresnel diffraction theory is presented to describe the method. The calculation of the diffracted amplitude describes the wavefront sphericity and the original object transmittance function in order to qualify the lateral shift of the Talbot image. Another explanation is set forth in terms of plane-wave illumination in the neural network. Using a Fourier series and by describing planes where all the harmonics are in phase, the reconstruction of Talbot images is explained. The alignment is effective when the lenslet array is aligned on the even Talbot images of the SLM pixels and the incident wave is a plane wave. The alignment is evaluated in terms of source and periodicity errors, tilt of the incident plane waves, and finite object dimensions. The effects of the error sources are concluded to be negligible, the lenslet array is shown to be successfully aligned with the SLM, and other alignment applications are shown to be possible.
Chatterjee, I; Hagmann, M J; Gandhi, O P
1980-01-01
The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.
Properties of internal solitary waves in a symmetric three-layer fluid
NASA Astrophysics Data System (ADS)
Vladykina, E. A.; Polukhina, O. E.; Kurkin, A. A.
2009-04-01
Though all the natural media have smooth density stratifications (with the exception of special cases such as sea surface, inversion layer in the atmosphere), the scales of density variations can be different, and some of them can be considered as very sharp. Therefore for the description of internal wave propagation and interaction in the ocean and atmosphere the n-layer models are often used. In these models density profile is usually approximated by a piecewise-constant function. The advantage of the layered models is the finite number of parameters and relatively simple solutions of linear and weakly nonlinear problems. Layered models are also very popular in the laboratory experiments with stratified fluid. In this study we consider symmetric, continuously stratified, smoothed three-layer fluid bounded by rigid horizontal surface and bottom. Three-layer stratification is proved to be a proper approximation of sea water density profile in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because in the symmetric case it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, that are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. The goal of our study is to determine the properties of localized stationary internal gravity waveforms (solitary waves) in this symmetric three-layer fluid. The investigation is carried out in the framework of improved mathematical model describing the transformation of internal wave fields generated by an initial disturbance. The model is based on the program complex for the numerical simulation of the two-dimensional (vertical plane) fully nonlinear Euler equations for incompressible stratified fluid under the Boussinesq approximation. Initial disturbances of both polarities evolve into stationary, solitary-like waves of corresponding polarity, for which we found the amplitude-width, amplitude-velocity, mass-amplitude, and energy-amplitude relations. Small-amplitude impulses to a good approximation can be described by the modified Korteweg-de Vries equation, but larger waves tend to become wide, and absolute value of their amplitude is bounded by the upper limit. Authors thank prof. K.G. Lamb for the opportunity to use the program code for numerical simulations of Euler equations. The research was supported by RFBR (09-05-00447, 09-05-00204) and by President of RF (MD-3024.2008.5 for young doctors of science).
Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer
Brodeur, Pierre H.; Lafond, Emmanuel F.
2000-01-01
An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.
High-Resolution Large-Field-of-View Ultrasound Breast Imager
2012-06-01
plane waves all having the same wave vector magnitude 0k but propagating in different directions . This observation forms the mathematical basis of the...origin of the object Fourier space and is oriented opposite the propagation direction of the probing plane wave field. Moreover, the 43 radius of...in water. Each element was electrically tuned to match to the 50-Ohm impedance of an RF Amplifier powered by a 4.0 MHz electrical signal from a
Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.
Zhu, Feng; Qian, Zheng-Hua; Wang, Bin
2016-04-01
In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.
A Spherical to Plane Wave Transformation Using a Reflectarray
NASA Technical Reports Server (NTRS)
Zaman, Afroz J.; Lee, Richard Q.
1997-01-01
A reflectarray has generally been used as a replacement for a reflector antenna. Using in this capacity, different configurations (prime focus, offset etc.) and various applications (dual frequency, scanning etc.) have been demonstrated with great success. Another potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space power combining applications such as space-fed lens and power combining amplifier. In these applications, it is required to convert a spherical wave to a plane wave with proper phase correction added to each element of the reflectarray. This paper reports an experiment to investigate the feasibility of using a reflectarray as an alternative to a lens in space power combining. The experiment involves transforming a spherical wave from a orthomode horn to a plane wave at the horn aperture. The reflcctarray consists of square patches terminated in open stubs to provide necessary phase compensation. In this paper, preliminary results will be presented and the feasibility of such compensation scheme will be discussed.
Electric fields and vector potentials of thin cylindrical antennas
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1990-09-01
The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.
Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped
NASA Astrophysics Data System (ADS)
Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag
2018-03-01
Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.
A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems
NASA Astrophysics Data System (ADS)
Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain
2016-08-01
In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V
2013-04-30
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less
Helicon mysteries: fitting a plane wave into a cylinder
NASA Astrophysics Data System (ADS)
Boswell, Rod
2011-10-01
Since the first reports in the 1960s, the dispersion of helicon waves in a plasma cylinder has been difficult to describe theoretically for axial wavelengths that are greater than the plasma radius. About 10 years ago, Breizman and Arefiev showed how radial density gradients make the plasma column similar to a coaxial cable, allowing the helicon waves to propagate below the cut-off frequency. The resulting dispersion relation is similar to that of a plane wave propagating parallel to the magnetic field. A few years later, Degeling et. al. presented experimental evidence demonstrating such a plane wave dispersion for a broad range of axial wave numbers. The reason lies in the decoupling of the Hall and electron inertial terms in the dispersion, the former describing the electromagnetic propagation and the latter the electrostatic propagation. Combining the experimental and theoretical results has recently thrown further light on this phenomenon that is applicable to both space and laboratory situations. Radially Localized Helicon Modes in Nonuniform Plasma, Boris N. Breizman and Alexey V. Arefiev, Phys. Rev. Letts. 84, 3863 (2000). Transitions from electrostatic to electromagnetic whistler wave excitation, A. W. Degeling, G. G. Borg and R. W. Boswell, Phys. Plasmas, 11, 2144, (2004).
NASA Astrophysics Data System (ADS)
Chattaraj, D.
2017-12-01
Lithium zirconate is considered to be potential tritium breeder material for fusion reactors. Here I report a comprehensive study on structural, electronic, elastic, and thermodynamic properties of Li2ZrO3 using plane wave based density functional theory. While the electron-ion interaction term has been described by projected-augmented wave method, the exchange-correlation energy was taken care of through generalized gradient approximation scheme. The optimized lattice and internal parameters of Li2ZrO3 unit cell agree well within ±1-2% from the experimental values. From the electronic structure analysis it is seen that the Fermi energy has significant contribution from the 2s, 2p and 4d orbitals of Li, O and Zr atoms, respectively. Elastic property calculation of Li2ZrO3 showed mechanical stability and anisotropy at ambient pressure. The formation energy (ΔfH) of Li2ZrO3 at 0 K, after zero point energy correction, has been estimated to be -1550 kJ/mol. The temperature dependent thermodynamic functions of Li2ZrO3 have also been calculated from the Debye-Grüneisen quasi-harmonic approximation and reported here.
NASA Astrophysics Data System (ADS)
Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James
2017-11-01
In this study, the production of droplets by two mechanically generated breaking water waves is investigated in a wave tank. A strong plunging breaker and weak spilling breaker are generated repeatedly with a programmable wave maker by using two dispersively focused wave packets with the same wave maker motion profile shape (average frequency 1.15 Hz) and two overall amplitude factors. The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a high speed (650 Hz) cinematic digital in-line holographic system positioned at various locations along a horizontal plane that is 1 cm above the maximum wave crest height. The measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the two breaking waves is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.
Patra, Subir; Ahmed, Hossain; Banerjee, Sourav
2018-01-18
Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.
Electron- and proton-induced ionization of pyrimidine
NASA Astrophysics Data System (ADS)
Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.
2015-05-01
The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
Quantum-shutter approach to tunneling time scales with wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge
2005-07-15
The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches
NASA Astrophysics Data System (ADS)
Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.
1994-04-01
The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.
Correlated scattering states of N-body Coulomb systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berakdar, J.
1997-03-01
For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less
Photonic band structures solved by a plane-wave-based transfer-matrix method.
Li, Zhi-Yuan; Lin, Lan-Lan
2003-04-01
Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkrtichyan, G. S., E-mail: hay-13@mail.ru
2015-07-15
The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectorymore » corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.« less
NASA Astrophysics Data System (ADS)
Karami, Behrouz; Shahsavari, Davood; Li, Li
2018-03-01
A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.
Effects of the horizontal component of the Earth's rotation on wave propagation on an f-plane
NASA Astrophysics Data System (ADS)
Beckmann, Aike; Diebels, Stefan
Scaling arguments are used to show that effects due to the horizontal component of the Coriolis force should be taken into account as a first correction to the traditional hydrostatic theory, before frequency dispersion due to vertical acceleration and nonlinearity are included. It is shown analytically that wave propagation of the f--plane becomes anisotropic and that amphidromic systems do not exist in their usual definition. Another important consequence is the existence of free wave solutions at subinertial frequencies.
NASA Astrophysics Data System (ADS)
Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.
2017-01-01
In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.
Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-04-01
The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.
Type IIB Colliding Plane Waves
NASA Astrophysics Data System (ADS)
Gutperle, M.; Pioline, B.
2003-09-01
Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.;
2016-01-01
We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, J.L.; Kocur, P.M.; Price, J.L.
1985-10-01
L-shell x-ray production cross sections by /sub 1//sup 1/H/sup +/ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd. The first Born theory generally agrees with the datamore » found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.« less
The 13 January 2001 El Salvador earthquake: A multidata analysis
NASA Astrophysics Data System (ADS)
ValléE, Martin; Bouchon, Michel; Schwartz, Susan Y.
2003-04-01
On 13 January 2001, a large normal faulting intermediate depth event (Mw = 7.7) occurred 40 km off the El Salvadorian coast (Central America). We analyze this earthquake using teleseismic, regional, and local data. We first build a kinematic source model by simultaneously inverting P and SH displacement waveforms and source time functions derived from surface waves using an empirical Green's function analysis. In an attempt to discriminate between the two nodal planes (30° trenchward dipping and 60° landward dipping), we perform identical inversions using both possible fault planes. After relocating the hypocentral depth at 54 km, we retrieve the kinematic features of the rupture using a combination of the Neighborhood algorithm of [1999] and the Simplex method allowing for variable rupture velocity and slip. We find updip rupture propagation yielding a centroid depth around 47 km for both assumed fault planes with a larger variance reduction obtained using the 60° landward dipping nodal plane. We test the two possible fault models using regional broadband data and near-field accelerograms provided by [2001]. Near-field data confirm that the steeper landward dipping nodal plane is preferred. Rupture propagated mostly updip and to the northwest, resulting in a main moment release zone of approximately 25 km × 50 km with an average slip of ˜3.5 m. The large slip occurs near the interplate interface at a location where the slab steepens dip significantly. The occurrence of this event is well-explained by bending of the subducting plate.
Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Tatetsu, Yasutomi
2012-12-01
We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.
Parametric optimization of optical signal detectors employing the direct photodetection scheme
NASA Astrophysics Data System (ADS)
Kirakosiants, V. E.; Loginov, V. A.
1984-08-01
The problem of optimization of the optical signal detection scheme parameters is addressed using the concept of a receiver with direct photodetection. An expression is derived which accurately approximates the field of view (FOV) values obtained by a direct computer minimization of the probability of missing a signal; optimum values of the receiver FOV were found for different atmospheric conditions characterized by the number of coherence spots and the intensity fluctuations of a plane wave. It is further pointed out that the criterion presented can be possibly used for parametric optimization of detectors operating in accordance with the Neumann-Pearson criterion.
NASA Astrophysics Data System (ADS)
Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel
2016-05-01
First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Fourier-Legendre spectral methods for incompressible channel flow
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1984-01-01
An iterative collocation technique is described for modeling implicit viscosity in three-dimensional incompressible wall bounded shear flow. The viscosity can vary temporally and in the vertical direction. Channel flow is modeled with a Fourier-Legendre approximation and the mean streamwise advection is treated implicitly. Explicit terms are handled with an Adams-Bashforth method to increase the allowable time-step for calculation of the implicit terms. The algorithm is applied to low amplitude unstable waves in a plane Poiseuille flow at an Re of 7500. Comparisons are made between results using the Legendre method and with Chebyshev polynomials. Comparable accuracy is obtained for the perturbation kinetic energy predicted using both discretizations.
Experimental Study of Exclusive H2(e,e'p)n Reaction Mechanisms at High Q2
NASA Astrophysics Data System (ADS)
Egiyan, K. S.; Asryan, G.; Gevorgyan, N.; Griffioen, K. A.; Laget, J. M.; Kuhn, S. E.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dashyan, N.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fersch, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Marchand, C.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Anefalos Pereira, S.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2007-06-01
The reaction H2(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.75
Platinum atomic wire encapsulated in gold nanotubes: A first principle study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib; Sahoo, Suman K.
2014-04-24
The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.
Track structure: time evolution from physics to chemistry.
Dingfelder, M
2006-01-01
This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.
Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound
NASA Astrophysics Data System (ADS)
Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.
2018-05-01
The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.
Ultra-thin enhanced-absorption long-wave infrared detectors
NASA Astrophysics Data System (ADS)
Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel
2018-02-01
We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2016-08-01
Shear waves propagating through interfaces where there is a change in stiffness cause reflected waves that can lead to artifacts in shear wave speed (SWS) reconstructions. Two-dimensional (2-D) directional filters are commonly used to reduce in-plane reflected waves; however, SWS artifacts arise from both in- and out-of-imaging-plane reflected waves. Herein, we introduce 3-D shear wave reconstruction methods as an extension of the previous 2-D estimation methods and quantify the reduction in image artifacts through the use of volumetric SWS monitoring and 4-D-directional filters. A Gaussian acoustic radiation force impulse excitation was simulated in phantoms with Young's modulus ( E ) of 3 kPa and a 5-mm spherical lesion with E = 6, 12, or 18.75 kPa. The 2-D-, 3-D-, and 4-D-directional filters were applied to the displacement profiles to reduce in-and out-of-plane reflected wave artifacts. Contrast-to-noise ratio and SWS bias within the lesion were calculated for each reconstructed SWS image to evaluate the image quality. For 2-D SWS image reconstructions, the 3-D-directional filters showed greater improvements in image quality than the 2-D filters, and the 4-D-directional filters showed marginal improvement over the 3-D filters. Although 4-D-directional filters can further reduce the impact of large magnitude out-of-plane reflection artifacts in SWS images, computational overhead and transducer costs to acquire 3-D data may outweigh the modest improvements in image quality. The 4-D-directional filters have the largest impact in reducing reflection artifacts in 3-D SWS volumes.
NASA Astrophysics Data System (ADS)
Tryon, Gary V.
2008-04-01
In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.
Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...
2017-10-20
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Edgell, D. H.; Froula, D. H.
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
Mitri, F G
2006-07-01
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.
Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary
NASA Astrophysics Data System (ADS)
Zhou, Jianyang; Zhao, Daomu
2016-08-01
Based on the first-order Born approximation, the scattering of an electromagnetic plane wave from a relatively more realistic random medium, a quasi-homogeneous medium with semisoft boundary, has been investigated. The analytic expressions for the spectral density, the spectral degree of coherence and the spectral degree of polarization have been derived, and the effects of the characteristics of the medium and the polarization of the incident light wave on the far-zone scattered field are determined. The numerical simulations indicate that, with the increasing of the edge softness M of the medium, the spectral density presents a pattern with interference fringes, and the number, position and width of interference fringes can be modified by the parameter. It is also found that there is an obvious value saltation in the coherence profile. Besides, unlike the intensity and the coherence are significantly affected by the properties of the medium, the polarization of the scattered field is irrelevant to them due to the quasi-homogeneity and isotropy of the medium, and it is only connected with the polarization of the incident light.
Visible and shortwave infrared focal planes for remote sensing instruments
NASA Astrophysics Data System (ADS)
Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.
1984-01-01
The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.
NASA Astrophysics Data System (ADS)
Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.; Becker, W.
2008-09-01
The strong-field approximation for ionization of diatomic molecules by a strong laser field [D. B. Milošević, Phys. Rev. A 74, 063404 (2006)] is generalized to include rescattering of the ionized electron wave packet off the molecular centers (the electron’s parent ion or the second atom). There are four rescattering contributions to the ionization rate, which are responsible for the high-energy plateau in the electron spectra and which interfere in a complicated manner. The spectra are even more complicated due to the different symmetry properties of the atomic orbitals of which a particular molecular orbital consists. Nevertheless, a comparatively simple condition emerges for the destructive interference of all these contributions, which yields a curve in the (Epf,θ) plane. Here θ is the electron emission angle and Epf is the electron kinetic energy. The resulting suppression of the rescattering plateau can be strong and affect a large area of the (Epf,θ) plane, depending on the orientation of the molecule. We illustrate this using the examples of the 3σg molecular orbital of N2 and the 1πg molecular orbital of O2 for various orientations of these molecules with respect to the laser polarization axis. For N2 , for perpendicular orientation and the equilibrium internuclear distance R0 , we find that the minima of the ionization rate form the curve Epfcos2θ=π2/(2R02) in the (Epf,θ) plane. For O2 the rescattering plateau is absent for perpendicular orientation.
Japanese space gravitational wave antenna DECIGO and DPF
NASA Astrophysics Data System (ADS)
Musha, Mitsuru
2017-11-01
The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.
Excitation of plane Lamb wave in plate-like structures under applied surface loading
NASA Astrophysics Data System (ADS)
Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun
2018-02-01
Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.
Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi
2016-12-01
Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
El-Ocla, Hosam
2006-08-01
The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.
Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand
Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less
Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming
2009-09-14
The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongfeng; Qu, Shaobo; Wang, Jiafu
2014-06-02
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
2015-10-30
Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can
Noise reduction in digital holography based on a filtering algorithm
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David
2018-02-01
Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.
Thermodynamic properties of OsB under high temperature and high pressure
NASA Astrophysics Data System (ADS)
Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang
2011-09-01
The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.
Approximate treatment of semicore states in GW calculations with application to Au clusters.
Xian, Jiawei; Baroni, Stefano; Umari, P
2014-03-28
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.
NASA Astrophysics Data System (ADS)
Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.
2012-12-01
Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.
Approximate treatment of semicore states in GW calculations with application to Au clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Jiawei; Baroni, Stefano; CNR-IOM Democritos, Theory-Elettra group, Trieste
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore statesmore » are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.« less
Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2013-05-01
We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.
Ionic wave propagation and collision in an excitable circuit model of microtubules
NASA Astrophysics Data System (ADS)
Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.
2018-02-01
In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.
Ionic wave propagation and collision in an excitable circuit model of microtubules.
Guemkam Ghomsi, P; Tameh Berinyoh, J T; Moukam Kakmeni, F M
2018-02-01
In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.
Soliton formation in the FFLO phase
NASA Astrophysics Data System (ADS)
Croitoru, M. D.; Buzdin, A. I.
2016-12-01
There is increasing body of experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in quasi-low-dimensional organic and heavy-fermion superconductors. The emergence of the FFLO phase has been demonstrated mainly based on a thermodynamic quantity or microscopically with spin polarization distribution that exhibit anomalies within the superconducting state in the presence of the in-plane magnetic field. However, the direct observation of superconducting order parameter modulation is so far (still) missing. Within the quasiclassical approach and Ginzburg-Landau formalism we study how the orbital effect of the in-plane field influences the FFLO instability in quasi-one-dimensional superconductors with a sufficiently weak interlayer coupling locking the magnetic flux to Josephson-type vortices. By making use of the continuum limit approximation of the Frenkel-Kontorova model for competing periodicities, we find and characterize the locking behavior of the modulation wave vector, when it remains equal to the magnetic length through some range of values of the external field.
On Stability of Plane and Cylindrical Poiseuille Flows of Nanofluids
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Bord, E. G.
2017-11-01
Stability of plane and cylindrical Poiseuille flows of nanofluids to comparatively small perturbations is studied. Ethylene glycol-based nanofluids with silicon dioxide particles are considered. The volume fraction of nanoparticles is varied from 0 to 10%, and the particle size is varied from 10 to 210 nm. Neutral stability curves are constructed, and the most unstable modes of disturbances are found. It is demonstrated that nanofluids are less stable than base fluids; the presence of particles leads to additional destabilization of the flow. The greater the volume fraction of nanoparticles and the smaller the particle size, the greater the degree of this additional destabilization. In this case, the critical Reynolds number significantly decreases, and the spectrum of unstable disturbances becomes different; in particular, even for the volume fraction of particles equal to 5%, the wave length of the most unstable disturbances of the nanofluid with particles approximately 20 nm in size decreases almost by a factor of 4.
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
2018-01-29
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
Viscous compressible flow direct and inverse computation and illustrations
NASA Technical Reports Server (NTRS)
Yang, T. T.; Ntone, F.
1986-01-01
An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
Ultrasonic modeling of an embedded elliptic crack
NASA Astrophysics Data System (ADS)
Fradkin, Larissa Ju.; Zalipaev, Victor
2000-05-01
Experiments indicate that the radiating near zone of a compressional circular transducer directly coupled to a homogeneous and isotropic solid has the following structure: there are geometrical zones where one can distinguish a plane compressional wave and toroidal waves, both compressional and shear, radiated by the transducer rim. As has been shown previously the modern diffraction theory allows to describe these explicitly. It also gives explicit asymptotic description of waves present in the transition zones. In case of a normal incidence of a plane compressional wave the explicit expressions have been obtained by Achenbach and co-authors for the fields diffracted by a penny-shaped crack. We build on the above work by applying the uniform GTD to model an oblique incidence of a plane compressional wave on an elliptical crack. We compare our asymptotic results with numerical results based on the boundary integral code as developed by Glushkovs, Krasnodar University, Russia. The asymptotic formulas form a basis of a code for high-frequency simulation of ultrasonic scattering by elliptical cracks situated in the vicinity of a compressional circular transducer, currently under development at our Center.
Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars
NASA Astrophysics Data System (ADS)
Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood
2004-12-01
Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.
Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves
NASA Technical Reports Server (NTRS)
Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.
2015-01-01
Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
NASA Astrophysics Data System (ADS)
Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada
2007-01-01
Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.
Lagrangian flows within reflecting internal waves at a horizontal free-slip surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.
In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less
A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III
2014-01-01
We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng
2018-04-01
The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.
Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.
2012-03-01
It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with
Comment on "Collision of plane gravitational waves without singularities"
NASA Astrophysics Data System (ADS)
Nutku, Y.
1981-08-01
An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby "the new exact solution" of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.
Comment on ''Collision of plane gravitational waves without singularities''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.
1981-08-15
An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby ''the new exact solution'' of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.
NASA Technical Reports Server (NTRS)
Mcdaniel, Oliver Herbert
1975-01-01
The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.
Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study
NASA Astrophysics Data System (ADS)
Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.
2009-02-01
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
NASA Astrophysics Data System (ADS)
Saha, Rony Kumer; Aswakul, Chaodit
2017-01-01
In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.
Scattering of antiplane shear waves by a circular cylinder in a traction-free plate
Wang; Ying; Li
2000-09-01
Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.
NASA Astrophysics Data System (ADS)
Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin
2014-11-01
Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
Earthquake focal mechanisms and the intraplate setting of the Bermuda Rise
NASA Astrophysics Data System (ADS)
Nishenko, S. P.; Kafka, A. L.
1982-05-01
A number of intraplate earthquakes occurring in the western North Atlantic Ocean are located near the perimeter of the Bermuda rise. Focal mechanisms and depths of two earthquakes, November 24, 1976 (mb 5.1; M0 = 2.96 × 1023 dyne cm) and March 24, 1978 (mb 6.1; M0 = 3.58 × 1025 dyne cm), were determined using Rayleigh wave amplitude data in the period range 20-50 s. The 1978 earthquake occurred approximately 380 km southwest of Bermuda, near magnetic anomaly M4 (≈118 m.y. B.P.). The focal mechanism for the 1978 event is of thrust type and has nodal planes striking 340°. The depth of this event is 6 km below the seafloor, near the local depth to Mono. The strike of the fault planes does not parallel the trends of either fracture zones (300°) or magnetic lineations (035°) in the area. The fault planes do, however, parallel the strike of a magnetic gradient in the epicentral area. The 1976 earthquake occurred approximately 300 km northeast of Bermuda, near Muir seamount. The depth of this event is 10 km below the seafloor. The available data are suggestive of one nodal plane striking between 320° and 340° and nearly parallel to the trend of Muir seamount and other volcanic features in the region. In contrast to the 1978 event, the 1976 earthquake appears to exhibit a significant component of strike slip motion. P axes of both mechanisms are subparallel to the direction of absolute plate motion for North America. We suggest, however, that strain release in the Bermuda rise area is not occurring along major fracture zones or topography parallel to seafloor spreading anomalies but rather on smaller-scale structures. The stresses induced by variations of crustal thickness may be responsible for triggering intraplate seismicity in this region.
The 3D modeling of high numerical aperture imaging in thin films
NASA Technical Reports Server (NTRS)
Flagello, D. G.; Milster, Tom
1992-01-01
A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.
Reflection of Lamb waves obliquely incident on the free edge of a plate.
Santhanam, Sridhar; Demirli, Ramazan
2013-01-01
The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.
Invertible propagator for plane wave illumination of forward-scattering structures.
Samelsohn, Gregory
2017-05-10
Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.
NASA Astrophysics Data System (ADS)
Richardson, Christina E.; Andrews, Larry C.
1991-07-01
New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.
NASA Astrophysics Data System (ADS)
Geng, Lin; Zhang, Xiao-Zheng; Bi, Chuan-Xing
2015-05-01
Time domain plane wave superposition method is extended to reconstruct the transient pressure field radiated by an impacted plate and the normal acceleration of the plate. In the extended method, the pressure measured on the hologram plane is expressed as a superposition of time convolutions between the time-wavenumber normal acceleration spectrum on a virtual source plane and the time domain propagation kernel relating the pressure on the hologram plane to the normal acceleration spectrum on the virtual source plane. By performing an inverse operation, the normal acceleration spectrum on the virtual source plane can be obtained by an iterative solving process, and then taken as the input to reconstruct the whole pressure field and the normal acceleration of the plate. An experiment of a clamped rectangular steel plate impacted by a steel ball is presented. The experimental results demonstrate that the extended method is effective in visualizing the transient vibration and sound radiation of an impacted plate in both time and space domains, thus providing the important information for overall understanding the vibration and sound radiation of the plate.
Two different kinds of rogue waves in weakly crossing sea states
NASA Astrophysics Data System (ADS)
Ruban, V. P.
2009-06-01
Formation of giant waves in sea states with two spectral maxima centered at close wave vectors k0±Δk/2 in the Fourier plane is numerically simulated using the fully nonlinear model for long-crested water waves [V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005)]. Depending on an angle θ between the vectors k0 and Δk , which determines a typical orientation of interference stripes in the physical plane, rogue waves arise having different spatial structure. If θ≲arctan(1/2) , then typical giant waves are relatively long fragments of essentially two-dimensional (2D) ridges, separated by wide valleys and consisting of alternating oblique crests and troughs. At nearly perpendicular k0 and Δk , the interference minima develop to coherent structures similar to the dark solitons of the nonlinear Schrodinger equation, and a 2D freak wave looks much as a piece of a one-dimensional freak wave bounded in the transversal direction by two such dark solitons.