Fraunhofer diffraction of the plane wave by a multilevel (quantized) spiral phase plate.
Kotlyar, Victor V; Kovalev, Alexey A
2008-01-15
We obtain an analytical expression in the form of a finite sum of plane waves that describes the paraxial scalar Fraunhofer diffraction of a limited plane wave by a multilevel (quantized) spiral phase plate (SPP) bounded by a polygonal aperture. For several topological charges of the SPP we numerically obtain the minimal number of SPP sectors for which the RMS between the Fraunhofer diffraction patterns for multilevel and continuous SPP does not exceed 2%.
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
NASA Astrophysics Data System (ADS)
Balyan, M. K.
2016-12-01
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Diffraction of a plane, finite-radius wave by a spiral phase plate.
Kotlyar, V V; Khonina, S N; Kovalev, A A; Soifer, V A; Elfstrom, H; Turunen, J
2006-06-01
We derive analytical expressions containing a hypergeometric function to describe the Fresnel and Fraunhofer diffraction of a plane wave of circular and ringlike cross section by a spiral phase plate (SPP) of an arbitrary integer order. Experimental diffraction patterns generated by an SPP fabricated in resist through direct e-beam writing are in good agreement with the theoretical intensity distribution.
Plane-wave Fresnel diffraction by elliptic apertures: a Fourier-based approach.
Borghi, Riccardo
2014-10-01
A simple theoretical approach to evaluate the scalar wavefield, produced, within paraxial approximation, by the diffraction of monochromatic plane waves impinging on elliptic apertures or obstacles is presented. We find that the diffracted field can be mathematically described in terms of a Fourier series with respect to an angular variable suitably related to the elliptic parametrization of the observation plane. The convergence features of such Fourier series are analyzed, and a priori truncation criterion is also proposed. Two-dimensional maps of the optical intensity diffraction patterns are then numerically generated and compared, at a visual level, with several experimental pictures produced in the past. The last part of this work is devoted to carrying out an analytical investigation of the diffracted field along the ellipse axis. A uniform approximation is derived on applying a method originally developed by Schwarzschild, and an asymptotic estimate, valid in the limit of small eccentricities, is also obtained via the Maggi-Rubinowicz boundary wave theory.
Scattering and diffraction of plane SH-waves by periodically distributed canyons
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2016-06-01
A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.
Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C
2009-04-01
A detailed analysis of the plane-wave diffraction by a finite-radius circular spiral phase plate (SPP) with integer and fractional topological charge and with variable transmission coefficients inside and outside of the plate edge is presented. We characterize the effect of varying the transmission coefficients and the parameters of the SPP on the propagated field. The vortex structure for integer and fractional phase step of the SPPs with and without phase apodization at the plate edge is also analyzed. The consideration of the interference between the light crossing the SPP and the light that undergoes no phase alteration at the aperture plane reveals new and interesting phenomena associated to this classical problem.
A diffraction-based optical method for the detection of in-plane motion of lamb waves.
Yang, Che-Hua; Tsai, Yua-Ching
2005-08-01
This paper describes a laser optical technique that allows the detection of in-plane motion of Lamb waves. This interference-based laser optical technique includes a tiny square indentation with a width of about 30 micron on the sample surface and a relatively simple optical arrangement. The current technique is applied for the detection of in-plane motions of Lamb waves propagating in a 70-micron thick brass plate. Measurement of So mode dominated by in-plane motion in the low fd (frequency times thickness) regime is successfully demonstrated with the current technique. With the indentation replaced by a microreflector in a microelectromechanical (MEMS) structure, this technique is applicable for the detection of in-plane motion in MEMS structures.
Kotlyar, Victor V; Kovalev, Alexey A; Skidanov, Roman V; Moiseev, Oleg Yu; Soifer, Victor A
2007-07-01
We derive what we believe to be new analytical relations to describe the Fraunhofer diffraction of the finite-radius plane wave by a helical axicon (HA) and a spiral phase plate (SPP). The solutions are deduced in the form of a series of the Bessel functions for the HA and a finite sum of the Bessel functions for the SPP. The solution for the HA changes to that for the SPP if the axicon parameter is set equal to zero. We also derive what we believe to be new analytical relations to describe the Fresnel and Fraunhofer diffraction of the Gaussian beam by a HA are derived. The solutions are deduced in the form of a series of the hypergeometric functions. We have fabricated by photolithography a binary diffractive optical element (a HA with number n=10) able to produce in the focal plane of a spherical lens an optical vortex, which was then used to perform rotation of several polystyrene beads of diameter 5 microm.
Fingerprinting ordered diffractions in multiply diffracted waves
NASA Astrophysics Data System (ADS)
Meles, Giovanni Angelo; Curtis, Andrew
2014-09-01
We show how to `fingerprint' individual diffractors inside an acoustic medium using interrogative wave energy from arrays of sources and receivers. For any recorded multiply diffracted wave observed between any source and any receiver, the set of such fingerprints is sufficient information to identify all diffractors involved in the corresponding diffraction path, and the sequential order in which diffractors are encountered. The method herein thus decomposes complex, multiply diffracted wavefields into constituent, single-diffraction interactions.
Tang, Huiqin; Wang, Taofen; Zhu, Kaicheng
2008-08-15
We introduce a multilevel spiral phase plate (SPP) limited by a pseudoring polygonal aperture (PRPA). Such an SPP has the advantages of easier fabrication and greater suppression of the sidelobes of the diffraction field over that generated with a polygonal aperture (PA). The Fraunhofer diffraction fields generated by an SPP with a PRPA or with a PA have the same topological charge features and a similar diffraction pattern. Numerical evaluations show that the maximum bright annular-intensity difference between the diffraction patterns for the SPP with a PRPA and that of a PA does not exceed 3% under optimal design parameters.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle
Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.
2014-11-03
Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.
Plasmonic Airy beam generated by in-plane diffraction.
Li, L; Li, T; Wang, S M; Zhang, C; Zhu, S N
2011-09-16
We report an experimental realization of a plasmonic Airy beam, which is generated thoroughly on a silver surface. With a carefully designed nanoarray structure, such Airy beams come into being from an in-plane propagating surface plasmon polariton wave, exhibiting nonspreading, self-bending, and self-healing properties. Besides, a new phase-tuning method based on nonperfectly matched diffraction processes is proposed to generate and modulate the beam almost at will. This unique plasmonic Airy beam as well as the generation method would significantly promote the evolutions in in-plane surface plasmon polariton manipulations and indicate potential applications in lab-on-chip photonic integrations.
Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.
Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B
2015-12-01
The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times.
Electron diffraction by plasmon waves
NASA Astrophysics Data System (ADS)
García de Abajo, F. J.; Barwick, B.; Carbone, F.
2016-07-01
An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.
Singularities from colliding plane gravitational waves
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1980-12-01
A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.
NASA Astrophysics Data System (ADS)
Soler, José M.; Williams, Arthur R.
1990-11-01
Results are presented that demonstrate the effectiveness of a calculational method of electronic-structure theory. The method combines the power (tractable basis-set size) and flexibility (transition and first-row elements) of the augmented-plane-wave method with the computational efficiency of the Car-Parrinello method of molecular dynamics and total-energy minimization. Equilibrium geometry and vibrational frequencies in agreement with experiment are presented for Si, to demonstrate agreement with existing methods and for Cu, N2, and H2O to demonstrate the broader applicability of the approach.
Complex space monofilar approximation of diffraction currents on a conducting half plane
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.
Interior impedance wedge diffraction with surface waves
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Griesser, Timothy
1988-01-01
The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.
Imaging scatterer planes by photoelectron diffraction
NASA Astrophysics Data System (ADS)
Seelmann-Eggebert, M.
1997-04-01
A novel direct crystallographic method CHRISDA (combined holographic real-space imaging by superimposed dimer function algorithm) is proposed which permits an assessment of the near-surface structure of a solid sample by analysis of a single core-level photoemission or Auger emission diffraction pattern (XPD or AED) recorded over the hemisphere of electron escape angles. Combining the elements of holography and real-space triangulation, the approach achieves a high spatial resolution (≈0.1 Å) and requires a knowledge of only a few non-structural parameters. To demonstrate the experimental efficacy of CHRISDA, a Sn film deposited on a CdTe(111) substrate is analyzed and yields the diamond structure characteristic of α-Sn.
Aberrations of diffracted wave fields. II. Diffraction gratings.
Mahajan, V N
2000-12-01
The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.
Causal inheritence in plane wave quotients
Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.
2003-11-24
We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality.
NASA Technical Reports Server (NTRS)
Rojas, Roberto G.
1985-01-01
A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.
Double plane wave reverse time migration with plane wave Green's function
NASA Astrophysics Data System (ADS)
Zhao, Z.; Sen, M. K.; Stoffa, P. L.
2015-12-01
Reverse time migration (RTM) is effective in obtaining complex subsurface structures from seismic data. By solving the two-way wave equation, RTM can use entire wavefield for imaging. Although powerful computer are becoming available, the conventional pre-stack shot gather RTM is still computationally expensive. Solving forward and backward wavefield propagation for each source location and shot gather is extremely time consuming, especially for large seismic datasets. We present an efficient, accurate and flexible plane wave RTM in the frequency domain where we utilize a compressed plane wave dataset, known as the double plane wave (DPW) dataset. Provided with densely sampled seismic dataset, shot gathers can be decomposed into source and receiver plane wave components with minimal artifacts. The DPW RTM is derived under the Born approximation and utilizes frequency domain plane wave Green's function for imaging. Time dips in the shot profiles can help to estimate the range of plane wave components present in shot gathers. Therefore, a limited number of plane wave Green's functions are needed for imaging. Plane wave Green's functions can be used for imaging both source and receiver plane waves. Source and receiver reciprocity can be used for imaging plane wave components at no cost and save half of the computation time. As a result, the computational burden for migration is substantially reduced. Plane wave components can be migrated independently to recover specific targets with given dips, and ray parameter common image gathers (CIGs) can be generated after migration directly. The ray parameter CIGs can be used to justify the correctness of velocity models. Subsurface anisotropy effects can also be included in our imaging condition, provided with plane wave Green's functions in the anisotropic media.
Aberrations of diffracted wave fields: distortion.
Harvey, James E; Bogunovic, Dijana; Krywonos, Andrey
2003-03-01
Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.
Simple Harmonic Motion in Harmonic Plane Waves.
ERIC Educational Resources Information Center
Benumof, Reuben
1980-01-01
Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)
Rayleigh–Bloch waves along elastic diffraction gratings
Colquitt, D. J.; Craster, R. V.; Antonakakis, T.; Guenneau, S.
2015-01-01
Rayleigh–Bloch (RB) waves in elasticity, in contrast to those in scalar wave systems, appear to have had little attention. Despite the importance of RB waves in applications, their connections to trapped modes and the ubiquitous nature of diffraction gratings, there has been no investigation of whether such waves occur within elastic diffraction gratings for the in-plane vector elastic system. We identify boundary conditions that support such waves and numerical simulations confirm their presence. An asymptotic technique is also developed to generate effective medium homogenized equations for the grating that allows us to replace the detailed microstructure by a continuum representation. Further numerical simulations confirm that the asymptotic scheme captures the essential features of these waves. PMID:25568616
Coded excitation plane wave imaging for shear wave motion detection.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2015-07-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave SNR compared with conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2 to 4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (body mass index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue.
NASA Technical Reports Server (NTRS)
Kearns, James A.
1989-01-01
Phenomena associated with long range propagation of sound over irregular topography motivated this work, which was to analyze the diffraction effects which would occur near the tops of hills and ridges. The diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance was also studied. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. The ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of a theory which was derived by Pierce using the method of Matched Asymptotic Expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions indicated that the theory gives an excellent description of the field anywhere near a curved surface. Further, with a simple modification, the theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.
Spherical-wave effects in photoelectron diffraction
NASA Astrophysics Data System (ADS)
Sagurton, M.; Bullock, E. L.; Saiki, R.; Kaduwela, A.; Brundle, C. R.; Fadley, C. S.; Rehr, J. J.
1986-02-01
The influence of spherical-wave (SW) effects on the analysis of photoelectron diffraction (PD) data is considered by comparing full SW single-scattering calculations with similar calculations based upon the plane-wave (PW) approximation and a new approximation for including SW effects (SW(1)) due to Rehr, Albers, Natoli, and Stern, as well as with experimental data involving both scanned-energy and scanned-angle measurements. In general, SW effects are found to be much more important in forward scattering and to explain prior empirical adjustments of PW x-ray PD scattering amplitudes at higher energies of >~500 eV. The more easily used SW(1) approximation is also seen to allow very well for SW effects. Not all PD data are expected to be equally sensitive to SW corrections. For example, scanned-energy data for S/Ni(001) emphasizing backscattering events are about equally well described by the PW and SW models, whereas higher-energy azimuthal-scan data for O/Ni(001) in which forward scattering is dominant require SW corrections to describe some, but not all, directions of emission quantitatively.
Toward loop quantization of plane gravitational waves
NASA Astrophysics Data System (ADS)
Hinterleitner, Franz; Major, Seth
2012-03-01
The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Nonlinear Fresnel diffraction of weak shock waves.
Coulouvrat, François; Marchiano, Régis
2003-10-01
Fresnel diffraction at a straight edge is revisited for nonlinear acoustics. Considering the penumbra region as a diffraction boundary layer governed by the KZ equation and its associated jump relations for shocks, similarity laws are established for the diffraction of a step shock, an "N" wave, or a periodic sawtooth wave. Compared to the linear case described by the well-known Fresnel functions, it is shown that weak shock waves penetrate more deeply into the shadow zone than linear waves. The thickness of the penumbra increases as a power of the propagation distance, power 1 for a step shock, or 3/4 for an N wave, as opposed to power 1/2 for a periodic sawtooth wave or a linear wave. This is explained considering the frequency spectrum of the waveform and its nonlinear evolution along the propagation, and is confirmed by direct numerical simulations of the KZ equation. New formulas for the Rayleigh/Fresnel distance in the case of nonlinear diffraction of weak shock waves by a large, finite aperture are deduced from the present study.
Antenna arrays for producing plane whistler waves
NASA Astrophysics Data System (ADS)
Stenzel, Reiner; Urrutia, J. Manuel
2014-10-01
Linear whistler modes with ω ~= 0 . 3ωce <<ωpe are excited in a large laboratory plasma with magnetic loop antennas. A single antenna always produces a spatially bounded wave packet whose propagation cannot be directly compared to plane wave theories. By superimposing the fields from spatially separated antennas, the wavenumber along the antenna array can be nearly eliminated. 2D arrays nearly produce plane waves. The angle θ of wave propagation has been varied by a phase shift along the array. The refractive index surface n (θ) has been measured. The parallel phase and group velocities for Gendrin modes has been demonstrated. The interference between two oblique plane whistlers creates a whistler ``waveguide'' mode, i.e. standing waves for k ⊥B0 and propagation for k | |B0 . It also describes the reflection of oblique whistlers from a sharp discontinuity in the refractive index or conductivity. Radial reflections are also a dominant factor in small plasma columns of helicon devices. These results are of interest to space and laboratory plasmas. Work supported by NSF/DOE.
Design of diffractive microlens array integration with focal plane arrays
NASA Astrophysics Data System (ADS)
Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin
2000-10-01
The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.
Plane wave reflection at flow intakes
NASA Astrophysics Data System (ADS)
Davies, P. O. A. L.
1987-06-01
A treatment is presented for prediction of the acoustic field associated with an open duct termination whose inflow is at a mean Mach number, and requires a quantitative description of both the acoustic and flow conditions in the vicinity of the open end. This problem is presently simplified by restricting the acoustic field within the duct to plane wave motion, with component wave amplitudes p(+) and p(-), where p(+) is incident at the termination. A 'vena contracta' develops in the pipe just downstream of the intake, leading to a significant mean pressure loss.
Symmetrically converging plane thermonuclear burn waves
NASA Astrophysics Data System (ADS)
Charakhch'yan, A. A.; Khishchenko, K. V.
2013-10-01
Five variants of a one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density, where the solution includes two thermonuclear burn waves propagating to meet one another at the symmetry plane, are simulated. A laser pulse with total absorption of energy at the critical density (in two variants) and a proton bunch that provides for a nearly isochoric heating (in three variants) are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burn wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0, where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ≈ 1 g cm-2 and about 0.7 at Hρ0 ≈ 5 g cm-2. The expansion stage of the flow (after reflecting the burn or detonation wave from the symmetry plane) gives the main contribution in forming the final values of the burn-up factor and the gain at Hρ0 ≈ 1 g cm-2 and increases them approximately two times at Hρ0 ≈ 5 g cm-2. In the case of the proton driver, the final value of the gain is about 200 at Hρ0 ≈ 1 g cm-2 and about 2000 at Hρ0 ≈ 5 g cm-2. In the case of the laser driver, the above values are four times less in conformity with the difference between the driver energies.
Diffraction manipulation by four-wave mixing.
Katzir, Itay; Ron, Amiram; Firstenberg, Ofer
2015-03-09
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 μm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
Inhomogeneous plane waves and cylindrical waves in anisotropic anelastic media
NASA Astrophysics Data System (ADS)
Krebes, E. S.; Le, Lawrence H. T.
1994-12-01
In isotropic anelastic media, the phase velocity of an inhomogeneous plane body wave, which is a function of Q and the degree of inhomogeneity gamma, is significantly less than the corresponding homogeneous wave phase velocity typically only if gamma is very large (unless Q is unusually low). Here we investigate inhomogeneous waves in anisotropic anelastic media, where phase velocities are also functions of the direction of phase propagation theta, and find that (1) the low phase velocities can occur at values of gamma which are substantially less than the isotropic values and that they occur over a limited range of oblique directions theta, and (2) for large positive values of gamma, there are ranges of oblique directions theta in which the inhomogeneous waves cannot propagate at all because there is no physically acceptable solution to the dispersion relation. We show examples of how the waves of case 1 can occur in practice and cause a number of anomalous wave propagation effects. The waves of case 2, though, do not arise in practice (they do not correspond to any points on the horizontal slowness plate). We also show that in the decomposition of a cylindrical wave into plane waves, inhomogeneous plane waves occur whose amplitudes grow in the direction of phase propagation and that this direction is away from the receiver to which they are contributing. The energy in these waves does, however, travel toward the receiver, and their amplitudes decay in the direction of energy propagation. We also show that if the commonly used definition for the quality factor in an isotropic medium, Q = -Re(mu)/Im(mu) where mu is a complex modulus, is applied to an anisotropic anelastic medium in order to study absorption anisotropy, a generally unreliable measure of the anelasticity of inhomogeneous wave propagation in a given arbitrary direction is obtained. The more fundamental definition based on energy loss (i.e., 2pi/Q = Delta E/E) should be used in general, and we present
Fresnel diffraction in the case of an inclined image plane.
Modregger, Peter; Lübbert, Daniel; Schäfer, Peter; Köhler, Rolf; Weitkamp, Timm; Hanke, Michael; Baumbach, Tilo
2008-03-31
An extension of the theoretical formalism of Fresnel diffraction to the case of an inclined image plane is proposed. The resulting numerical algorithm speeds up computation times by typically three orders of magnitude, thus opening the possibility of utilizing previously inapplicable image analysis algorithms for this special type of a non shift-invariant imaging system. This is exemplified by adapting an iterative phase retrieval algorithm developed for electron microscopy to the case of hard x-ray imaging with asymmetric Bragg reflection (the so-called "Bragg Magnifier"). Numerical simulations demonstrate the convergence and feasibility of the iterative phase retrieval algorithm for the case of x-ray imaging with the Bragg Magnifier.
Blackfolds, plane waves and minimal surfaces
NASA Astrophysics Data System (ADS)
Armas, Jay; Blau, Matthias
2015-07-01
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Effect of distorted illumination waves on coherent diffraction microscopy
Kohmura, Yoshiki; Nishino, Yoshinori; Ishikawa, Tetsuya; Miao Jianwei
2005-12-15
Coherent diffraction microscopy requires a well-defined illumination wave such as a plane wave on a specimen. Experimentally, a small pinhole or a focused beam is often used to reduce the illumination area but they unavoidably distort the waves. The distortion of the illumination wave causes artifacts in the phase retrieval of oversampled diffraction patterns. Using computer simulations, we searched for the conditions where strong artifacts arise by changing the Fresnel number, pinhole size, alignment error and photon statistics. The experimental setup with Fresnel number of around 1 and smaller than 1 realized a small reconstruction error when the pinhole radius is larger than a few times the specimen size. These conditions are suitable for the rotation of specimens for the three-dimensional (3D) observations. Such investigation will have an impact in the design of coherent diffraction microscopes for the 3D characterization of nanoscale materials and biological systems using the third generation synchrotron radiation and future x-ray free-electron lasers.
Stolt's f-k migration for plane wave ultrasound imaging.
Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy
2013-09-01
Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided.
NASA Astrophysics Data System (ADS)
Migukin, Artem; Katkovnik, Vladimir; Astola, Jaakko
2010-04-01
The phase retrieval is formulated as an inverse problem, where the forward propagation is defined by Discrete Diffraction Transform (DDT) [1], [2]. This propagation model is precise and aliasing free for pixelwise invariant (pixelated) wave field distributions in the sensor and object planes. Because of finite size of sensors DDT can be ill-conditioned and the regularization is an important component of the inverse. The proposed algorithm is designed for multiple plane observations and can be treated as a generalization of the Gerchberg-Saxton iterative algorithm. The proposed algorithm is studied by numerical experiments produced for phase and amplitude modulated object distributions. Comparison versus the conventional forward propagation models such as the angular spectrum decomposition and the convolutional model used in the algorithm of the same structure shows a clear advantage of DDT enabling better accuracy and better imaging.
Calculating the Fresnel diffraction of light from a shifted and tilted plane.
Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori; Oi, Ryutaro; Kurita, Taiichiro
2012-06-04
We propose a technique for calculating the diffraction of light in the Fresnel region from a plane that is the light source (source plane) to a plane at which the diffracted light is to be calculated (destination plane). When the wavefield of the source plane is described by a group of points on a grid, this technique can be used to calculate the wavefield of the group of points on a grid on the destination plane. The positions of both planes may be shifted, and the plane normal vectors of both planes may have different directions. Since a scaled Fourier transform is used for the calculation, it can be calculated faster than calculating the diffraction by a Fresnel transform at each point. This technique can be used to calculate and generate planar holograms from computer graphics data.
Counterpropagating Rossby waves in confined plane wakes
Biancofiore, L.; Gallaire, F.
2012-01-01
In the present work, we revisit the temporal and the spatio-temporal stability of confined plane wakes under the perspective of the counterpropagating Rossby waves (CRWs). Within the context of broken line velocity profiles, each vorticity discontinuity can be associated to a counterpropagating Rossby wave. In the case of a wake modeled by a broken line profile, the interaction of two CRWs is shown to originate in a shear instability. Following this description, we first recover the stability results obtained by Juniper [J. Fluid Mech. 590, 163–185 (2007)]10.1017/S0022112007007975 and Biancofiore and Gallaire [Phys. Fluids 23, 034103 (2011)]10.1063/1.3554764 by means of the classical normal mode analysis. In this manner, we propose an explanation of the stabilizing influence of the confinement on the temporal stability properties. The CRW description further allows us to propose a new interpretation of the counterintuitive spatio-temporal destabilization in wake flows at moderate confinement noticed by Juniper [J. Fluid Mech. 565, 171–195 (2006)]10.1017/S0022112006001558: it is well predicted by the mean group velocity of the uncoupled CRWs. PMID:22865998
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
Fresnel diffraction mirror for an atomic wave.
Oberst, Hilmar; Kouznetsov, Dimitrii; Shimizu, Kazuko; Fujita, Jun-Ichi; Shimizu, Fujio
2005-01-14
We have experimentally demonstrated a material-independent mirror for atomic waves that uses the Fresnel diffraction at an array of parallel ridges. He* (2 (3)S(1)) and Ne* (1s(3)) atomic waves were reflected coherently on a silicon plate with a microfabricated grating structure, consisting of narrow wall-like ridges. We measured the reflectivity at grazing incidence as a function of the incident velocity and angle. Our data show that the reflectivity on this type of mirror depends only on the distance between the ridges, the wavelength, and the incident angle, but is insensitive to the material of the grating structure. The reflectivity is observed to increase by 2 orders of magnitude, compared to that of a flat polished silicon surface, where the reflection is caused by the attractive surface potential. For He* atoms, the measured reflectivity exceeds 10% for normal incident velocities below about 25 cm/s.
The plain truth about forming a plane wave of neutrons
NASA Astrophysics Data System (ADS)
Wagh, Apoorva G.; Abbas, Sohrab; Treimer, Wolfgang
2011-04-01
We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {1 1 1} Bragg prism for 5.26 Å neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q˜10-6 Å-1 range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 μm in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 μm period. The transverse coherence length of 175 μm (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for Å wavelength neutrons.
Physical optics theory for the diffraction of waves by impedance surfaces.
Umul, Yusuf Ziya
2011-02-01
The solution of the scattering problem of waves by a half-screen with equal face impedances, which was introduced by Malyughinetz, is transformed into a physical optics integral by using the inverse edge point method. The obtained integral is applied to the diffraction problem of plane waves by an impedance truncated circular cylinder and the scattered waves are derived asymptotically. The results are examined numerically.
Automatic decomposition of a complex hologram based on the virtual diffraction plane framework
NASA Astrophysics Data System (ADS)
Jiao, A. S. M.; Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Lee, C.-C.; Lam, Y. K.
2014-07-01
Holography is a technique for capturing the hologram of a three-dimensional scene. In many applications, it is often pertinent to retain specific items of interest in the hologram, rather than retaining the full information, which may cause distraction in the analytical process that follows. For a real optical image that is captured with a camera or scanner, this process can be realized by applying image segmentation algorithms to decompose an image into its constituent entities. However, because it is different from an optical image, classic image segmentation methods cannot be applied directly to a hologram, as each pixel in the hologram carries holistic, rather than local, information of the object scene. In this paper, we propose a method to perform automatic decomposition of a complex hologram based on a recently proposed technique called the virtual diffraction plane (VDP) framework. Briefly, a complex hologram is back-propagated to a hypothetical plane known as the VDP. Next, the image on the VDP is automatically decomposed, through the use of the segmentation on the magnitude of the VDP image, into multiple sub-VDP images, each representing the diffracted waves of an isolated entity in the scene. Finally, each sub-VDP image is reverted back to a hologram. As such, a complex hologram can be decomposed into a plurality of subholograms, each representing a discrete object in the scene. We have demonstrated the successful performance of our proposed method by decomposing a complex hologram that is captured through the optical scanning holography (OSH) technique.
Acoustic Propagation and Barrier Diffraction Over an Impedance Plane.
1982-10-13
propagation solution into a barrier model so that ground reflections in addition to edge diffraction could be accounted for. Only the first term in the...model so that ground reflections in addition to edge N diffraction could be accounted for. Only the first term in the asymptotic ground propagation... contemporary research needs-particularly those of underwater acoustics as weil as community and aircraft noise control-a re-evaluation of previous results has
Colliding plane waves in F(R)=RN gravity
NASA Astrophysics Data System (ADS)
Tahamtan, T.; Halilsoy, M.; Habib Mazharimousavi, S.
2016-10-01
We identify a region of a specific F( R)= R N gravity solution without external sources which is isometric to the spacetime of colliding plane waves (CPW). The analogy renders construction and collision of plane waves in F( R)= R N gravity possible. The geometry of the interaction region is equivalent to the Reissner-Nordström (RN) one, however there is no Einstein-Maxwell (EM) source --this is made possible by using the model of RN gravity and the parameter N>1 creates the source. For N=1, we naturally recover the plane waves (and their collision) in Einstein's theory.
Spin Wave Diffraction and Perfect Imaging of a Grating
NASA Astrophysics Data System (ADS)
Mansfeld, S.; Topp, J.; Martens, K.; Toedt, J. N.; Hansen, W.; Heitmann, D.; Mendach, S.
2012-01-01
We study the diffraction of Damon-Eshbach-type spin waves incident on a one-dimensional grating realized by microslits in a thin Permalloy film. By means of time-resolved scanning Kerr microscopy, we observe unique diffraction patterns behind the grating which exhibit replications of the spin wave field at the slits. We show that these spin wave images, with details finer than the wavelength of the incident Damon-Eshbach spin wavelength, arise from the strongly anisotropic spin wave dispersion.
Plane Waves in a Transparent Isotropic Chiral Medium
NASA Astrophysics Data System (ADS)
Fisanov, V. V.
2015-04-01
A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.
Distorted Plane Waves on Manifolds of Nonpositive Curvature
NASA Astrophysics Data System (ADS)
Ingremeau, Maxime
2017-03-01
We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445-479, 2014) in the case of convex co-compact manifolds. In particular, we will show {L_{loc}^∞} bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.
Zeno dynamics in wave-packet diffraction spreading
Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel; Sanz, Angel S.
2011-11-15
We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Exact Steady Azimuthal Internal Waves in the f-Plane
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chu
2017-03-01
We present an explicit exact solution of the nonlinear governing equations with Coriolis and centripetal terms in the f-plane approximation for internal geophysical trapped waves with a uniform current near the equator. This solution describes in the Lagrangian framework azimuthal equatorial internal waves propagating westward in a stratified rotational fluid.
Plane wave (curl; Ω) conforming finite elements for Maxwell's equations
NASA Astrophysics Data System (ADS)
Ledger, P. D.; Morgan, K.; Hassan, O.; Weatherill, N. P.
This paper proposes a discretisation of Maxwell's equations which combines the popular edge elements of Nédélec with expansions of plane waves. The method is applied to simple two dimensional electromagnetic wave propagation and scattering simulations and issues of accuracy and matrix conditioning are investigated.
Exact Nonlinear Internal Equatorial Waves in the f-plane
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Diffraction of three-colour radiation on an acoustic wave
Kotov, V M
2015-07-31
We study acousto-optic Bragg diffraction of three-colour radiation having wavelengths of 488, 514 and 633 nm on a single acoustic wave propagating in a TeO{sub 2} crystal. A technique is developed that allows one to find diffraction regimes with a proportional change in the intensity of all radiations by varying the acoustic power. According to the technique, radiation with a maximum wavelength has to be in strict Bragg synchronism with the acoustic wave, while other radiations diffract during the synchronism detuning. The results obtained using this technique are experimentally confirmed. (diffraction of light)
Fan, Quanping; Liu, Yuwei; Yang, Zuhua; Wei, Lai; Zhang, Qiangqiang; Chen, Yong; Hu, Feng; Wang, Chuanke; Gu, Yuqiu; Zhou, Weimin; Jiang, Gang; Cao, Leifeng
2015-06-15
By combining the single-order dispersion properties of quasi-sinusoidal single-order diffraction transmission gratings (QSTG) and the single-foci focusing properties of annulus-sector-shaped-element binary Gabor zone plate (ASZP), we propose a novel focusing single-order diffraction transmission grating (FSDTG). Different from the diffraction patterns of a normal transmission grating (TG), it has a focusing plane perpendicular to the grating surface. Numerical simulations are carried out to verify its diffraction patterns in the framework of Fresnel-Kirchhoff diffraction. Higher-order diffraction components of higher harmonics can be effectively suppressed by the FSDTG we designed. And we find that the focal depth and resolving power are only determined by the structure parameters of our FSDTG by theoretical estimations.
Simple plane wave implementation for photonic crystal calculations.
Guo, Shangping; Albin, Sacharia
2003-01-27
A simple implementation of plane wave method is presented for modeling photonic crystals with arbitrary shaped 'atoms'. The Fourier transform for a single 'atom' is first calculated either by analytical Fourier transform or numerical FFT, then the shift property is used to obtain the Fourier transform for any arbitrary supercell consisting of a finite number of 'atoms'. To ensure accurate results, generally, two iterating processes including the plane wave iteration and grid resolution iteration must converge. Analysis shows that using analytical Fourier transform when available can improve accuracy and avoid the grid resolution iteration. It converges to the accurate results quickly using a small number of plane waves. Coordinate conversion is used to treat non-orthogonal unit cell with non-regular 'atom' and then is treated by standard numerical FFT. MATLAB source code for the implementation requires about less than 150 statements, and is freely available at http://www.lions.odu.edu/~sguox002.
High-frequency wave diffraction by an impedance segment at oblique incidence
NASA Astrophysics Data System (ADS)
Korol'kov, A. I.; Shanin, A. V.
2016-11-01
The plane problem of high-frequency acoustic wave diffraction by a segment with impedance boundary conditions is considered. The angle of incidence of waves is assumed to be small (oblique). The paper generalizes the method previously developed by the authors for an ideal segment (with Dirichlet or Neumann boundary conditions). An expression for the directional pattern of the scattered field is derived. The optical theorem is proved for the case of the parabolic equation. The surface wave amplitude is calculated, and the results are numerically verified by the integral equation method.
Metaphysics of colliding self-gravitating plane waves
Matzner, R.A.; Tipler, F.J.
1984-04-15
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
Metaphysics of colliding self-gravitating plane waves
NASA Astrophysics Data System (ADS)
Matzner, Richard A.; Tipler, Frank J.
1984-04-01
We discuss certain global features of colliding plane-wave solutions to Einstein's equations. In particular, we show that the apparently local curvature singularities both in the Khan-Penrose solution and in the Bell-Szekeres solution are actually global. These global singularities are associated with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.
D-branes in Type IIB plane wave background
Lee, Bum-Hoon
2007-01-12
We classify and summarize the intersecting supersymmetric D-branes in the type IIB plane wave background, based on the Green-Schwarz superstring formulation. Many new configurations appears if we turn on the electric or magnetic background fields or boost the D-branes. Applications to the phenomelogical models are left for further study.
Machikhin, A S; Pozhar, V E
2015-02-28
We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)
Radiation of Electron in the Field of Plane Light Wave
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.; /SLAC
2006-02-24
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.
Measuring method of diffraction efficiency for plane grating based on Fourier spectral technology.
Ma, Zhenyu; Qi, Xiangdong; Li, Xiaotian; Zhang, Shanwen; Bayanheshig; Yu, Hongzhu; Yu, Haili; Jiao, Qingbin
2016-01-20
A traditional double monochromatic measurement instrument of diffraction efficiency for a plane grating involves two major problems: one is the differences of output spectrum bandwidths during measurement of a standard reflection mirror and the tested grating; the other is overlapping of diffracted spectra, which influence testing accuracy of diffraction efficiency. In this paper, a new measuring method of diffraction efficiency based on Fourier spectral technology is presented. The mathematical model of diffraction efficiency is first deduced and then verified by ray tracing and Fourier optics simulation. The influences of the moving cube corner's tilt error, lateral shift error, and maximal moving distance error on the measurement accuracy are analyzed in detail. The analyses provide theoretical references for designing diffraction efficiency instruments. Compared with the traditional diffraction efficiency measurement instrument with double monochromator structure, our method not only improves the measurement accuracy of diffraction efficiency but also has the advantage of high luminous flux, high spectral resolution, multiwavelength measurement in mean time, and high wavenumber accuracy.
Diffraction of dust acoustic waves by a circular cylinder
Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.
2008-09-15
The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the 'obstacle' encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Ultrafast vascular strain compounding using plane wave transmission.
Hansen, H H G; Saris, A E C M; Vaka, N R; Nillesen, M M; de Korte, C L
2014-03-03
Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as applied intravascularly in coronary arteries. Next, recent methods for noninvasive vascular strain estimation in a transverse imaging plane are discussed. Finally, a compounding technique that our group recently developed is explained. This technique combines motion estimates of subsequently acquired focused ultrasound images obtained at various insonification angles. However, because the artery moves and deforms during the multi-angle acquisition, errors are introduced when compounding. Recent advances in computational power have enabled plane wave ultrasound acquisition, which allows 100 times faster image acquisition and thus might resolve the motion artifacts. In this paper the performance of strain imaging using plane wave compounding is investigated using simulations of an artery with a vulnerable plaque and experimental data of a two-layered vessel phantom. The results show that plane wave compounding outperforms 0° focused strain imaging. For the simulations, the root mean squared error reduced by 66% and 50% for radial and circumferential strain, respectively. For the experiments, the elastographic signal-to-noise and contrast-to-noise ratio (SNR(e) and CNR(e)) increased with 2.1 dB and 3.7 dB radially, and 5.6 dB and 16.2dB circumferentially. Because of the high frame rate, the plane wave compounding technique can even be further optimized and extended to 3D in future.
Gravitational scattering of zero-rest-mass plane waves
NASA Technical Reports Server (NTRS)
De Logi, W. K.; Kovacs, S. J., Jr.
1977-01-01
The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.
Scattering of Plane Guided Waves Obliquely Incident on Straight Features
NASA Astrophysics Data System (ADS)
Wilcox, P. D.; Velichko, A.; Drinkwater, B. W.; Croxford, A. J.; Todd, M. D.
2011-06-01
A semi-analytical finite element model is developed to study the scattering of plane guided waves obliquely incident on a straight geometric feature. The model is first used to investigate the reflection of the S0 mode from a free edge and the results are compared to those of bulk waves reflecting from a free boundary. The model is then used to predict the transmission of the S0 mode past an adhesively-bonded stiffener. The results obtained are in excellent agreement with experimental measurements.
Scattering of plane guided waves obliquely incident on straight features
Wilcox, P. D.; Velichko, A.; Drinkwater, B. W.; Croxford, A. J.; Todd, M. D.
2011-06-23
A semi-analytical finite element model is developed to study the scattering of plane guided waves obliquely incident on a straight geometric feature. The model is first used to investigate the reflection of the S0 mode from a free edge and the results are compared to those of bulk waves reflecting from a free boundary. The model is then used to predict the transmission of the S0 mode past an adhesively-bonded stiffener. The results obtained are in excellent agreement with experimental measurements.
Optimization of double patterning split by analyzing diffractive orders in the pupil plane
NASA Astrophysics Data System (ADS)
Zeggaoui, N.; Farys, V.; Trouiller, Y.; Yesilada, E.; Robert, F.; Besacier, M.
2010-09-01
In double patterning technology (DPT), two adjacent features must be assigned opposite colors, corresponding to different exposures if their pitch is less than a predefined minimum coloring pitch. However, certain design orientations for which pattern features separated by more than the minimum coloring pitch cannot be imaged with either of the two exposures. In such cases, there are no aerial images formed because in these directions there are no constructive interferences between diffractive orders in the pupil plane. The 22nm and 16nm nodes require the use of pixelized sources that will be generated using SMO (source mask co-optimization). Such pixelized sources while helpful in improving the contrast for selected configurations can lead to degraded contrast for configurations which have not been set during the SMO process. Therefore, we analyze the diffractive orders interactions in the pupil plane in order to detect limited orientations in the design and thus propose a decomposition to overcome the problem.
Holography and entropy bounds in the plane wave matrix model
Bousso, Raphael; Mints, Aleksey L.
2006-06-15
As a quantum theory of gravity, matrix theory should provide a realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. We present evidence that Bekenstein's entropy bound, which is related to area differences, is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N{sup 2} in units of the mass scale.
Scattering of a CW plane wave by a pulse
NASA Astrophysics Data System (ADS)
Trivett, D. H.; Rogers, P. H.
1982-05-01
A procedure similar to the CW crossed-beam calculation of Ingard and Pridmore-Brown (1956) is used to calculate the far field scattered sound pressure of a pulse interacting with a plane wave. The scattered sound is found to be at neither the sum nor the difference frequency. It is suggested that this type of interaction is ideal for investigating the scattering of sound by sound, and a numerical solution is used to discuss the general features of the nearfield waveform.
Wave diffraction around three-dimensional bodies in a current
Cheung, K.F.; Isaacson, M.; Lee, J.W.
1996-11-01
The effects of a collinear current on the diffraction of regular waves around three-dimensional surface-piercing bodies are examined. With the current speed assumed to be small, the boundary-value problem is separated into a steady current problem with a rigid wall condition applied at the still water level and a linear wave propagation problem in the resulting current field. The boundary conditions of the wave propagation problem are satisfied by a time-stepping procedure and the field solution is obtained by an integral equation method. Free surface profiles, runup, and wave forces are described for a vertical circular cylinder in combined waves and a current. The current is shown to affect significantly the steady drift force and runup predictions. Comparisons of the computed wave forces are made with a previous numerical solution involving a semi-immersed sphere in deep water, and indicate good agreement.
Diffracted and head waves associated with waves on nonseparable surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory is presented for computing waves radiated from waves on a smooth surface. With the assumption that attention of the surface wave is due only to radiation and not to dissipation in the surface material, the radiation coefficient is derived in terms of the attenuation factor. The excitation coefficient is determined by the reciprocity condition. Formulas for the shape and the spreading of the radiated wave are derived, and some sample calculations are presented. An investigation of resonant phase matching for nonseparable surfaces is presented with a sample calculation. A discussion of how such calculations might be related to resonant frequencies of nonseparable thin shell structures is included. A description is given of nonseparable surfaces that can be modeled in the vector that facilitates use of the appropriate formulas of differential geometry.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Part A: Nonprincipal-plane scattering from flat plates: Second-order and corner diffractions
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.
1989-01-01
Two models of a flat plate for nonprincipal-plane scattering are explored. The first is a revised version of the Physical Optics/Physical Theory of Diffraction (PO/PTD) model with second-order PTD equivalent currents included to account for second-order interactions among the plate edges. The second model uses a heurisitcally derived corner diffraction coefficient to account for the corner scattering mechanism. The patterns obtained using the newer models were compared to the data of previously reported models, the Moment Method (MM), and experimental results. Near normal incidence, all the models agreed; however, near grazing incidence a need for higher-order and corner diffraction mechanisms was noted. In many instances the second-order and corner-scattered fields which were formulated improved the results.
Diffraction of Gaussian wave packets by a single slit
NASA Astrophysics Data System (ADS)
Zecca, A.
2011-02-01
A two-dimensional formulation of particle diffraction by a single slit is proposed within Schrödinger QM. The study is done in terms of Gaussian wave packets. A "confinement" assumption is considered together with a previous "truncation" assumption when the wave packet passes the slit. In the limiting situation of entering Gaussian wave packet peaked in the transverse-momentum probability distribution, the diffraction pattern results in an unaltered central maximum with lateral maxima narrower and higher than in the absence of the confinement assumption. For entering wave packets peaked in the transverse position probability distribution, the diffraction pattern consists of a central Gaussian spot with lateral diffraction maxima, not present in the absence of the "confinement" assumption, whose visibility depends on the configuration of the parameters. With a different analysis, a similar effect was obtained also in G. Kalbermann (J. Phys. A: Math. Gen. 35, 4599 (2002)). Its experimental verification seems of interest to discriminate between Schrödinger QM and stochastic electrodynamics with spin.
2006-07-01
model M2D . Future technical notes in this series will describe the interface and report additional validation and enhancements of WABED...circulation model M2D (Militello et al. 2004) is operated with WABED for calculation of the wave-induced current. A background flood current was supplied as...input to the wave model. To calculate the wave-induced current, M2D was forced by radiation stresses (Longuet-Higgins and Stewart 1964) computed by
Diffraction correction for precision surface acoustic wave velocity measurements
NASA Astrophysics Data System (ADS)
Ruiz M., Alberto; Nagy, Peter B.
2002-09-01
Surface wave dispersion measurements can be used to nondestructively characterize shot-peened, laser shock-peened, burnished, and otherwise surface-treated specimens. In recent years, there have been numerous efforts to separate the contribution of surface roughness from those of near-surface material variations, such as residual stress, texture, and increased dislocation density. As the accuracy of the dispersion measurements was gradually increased using state-of-the-art laser-ultrasonic scanning and sophisticated digital signal processing methods, it was recognized that a perceivable dispersive effect, similar to the one found on rough shot-peened specimens, is exhibited by untreated smooth surfaces as well. This dispersion effect is on the order of 0.1%, that is significantly higher than the experimental error associated with the measurements and comparable to the expected velocity change produced by near-surface compressive residual stresses in metals below their yield point. This paper demonstrates that the cause of this apparent dispersion is the diffraction of the surface acoustic wave (SAW) as it travels over the surface of the specimen. The results suggest that a diffraction correction may be introduced to increase the accuracy of surface wave dispersion measurements. A simple diffraction correction model was developed for surface waves and this correction was subsequently validated by laser-interferometric velocity measurements on aluminum specimens. copyright 2002 Acoustical Society of America.
Millimeter-wave Bragg diffraction of microfabricated crystal structures
NASA Astrophysics Data System (ADS)
Yuan, C. P.; Lin, S. Y.; Chang, T. H.; Shew, B. Y.
2011-06-01
A compact diffraction apparatus is developed with millimeter-wave propagation between two parallel plates. Two types of microfabricated model crystals are individually mounted on a rotatable structure. In contrast to previous work, the experimental results agree well with Bragg's predictions because multiple scattering is minimized in this configuration. Factors that affect the resolution and signal strength, such as the number of scatterers, cylinder radius, and the distance between the detector and the model crystal, are analyzed. The apparatus offers a visually accessible way to teach students about crystal structure as well as scattering and diffraction.
Decoding the matrix: Coincident membranes on the plane wave
Bousso, Raphael; Mints, Aleksey L.
2006-03-15
At the core of nonperturbative theories of quantum gravity lies the holographic encoding of bulk data in large matrices. At present this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view, one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation.
Augmented-plane-wave calculations on small molecules
Serena, P.A.; Baratoff, A. ); Soler, J.M. )
1993-07-15
We have performed [ital ab] [ital initio] calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated.
Plane shock wave structure in a dilute granular gas
NASA Astrophysics Data System (ADS)
Reddy, M. H. Lakshminarayana; Alam, Meheboob
2016-11-01
We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.
Chae, Byung Gyu
2014-05-20
We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.
Third All-Union Symposium on Wave Diffraction.
1982-08-02
following. In the cylindrical coordinate system (r, #, z) we examine the case of wave motion when sound pressure harmonically (e’) depends on time and...stresses/voltages, p - mean pressure m - the parameter of plasticity, depending on the unknown functions. Expressions for , 0, are obtained from (1...42 All Analyticity of Dependence on the Parameter and Different Formulations of the Tasks of Diffraction for the Helmholtz
The implementation of holography in the plane wave matrix model
NASA Astrophysics Data System (ADS)
Mints, Aleksey Leonidovich
It is expected that at the core of nonperturbative theories of quantum gravity, such as M-theory, lies the realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. Present understanding of such theories requires the holographic encoding of bulk data in large matrices. Currently this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation. Beyond the decoding and partial identification of selected states in large matrices, one would like to get a better understanding of the holographic state counting of these degrees of freedom, i.e., entropy. Contrary to the naive expectation of holography realized in terms of the covariant entropy bound, we present evidence that it is the Bekenstein entropy bound, which is related to area differences, that is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N2 in units of the mass scale.
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Space-time analogy for partially coherent plane-wave-type pulses.
Lancis, Jesús; Torres-Company, Víctor; Silvestre, Enrique; Andrés, Pedro
2005-11-15
In this Letter we extend the well-known space-time duality to partially coherent wave fields and, as a limit case, to incoherent sources. We show that there is a general analogy between the paraxial diffraction of quasi-monochromatic beams of limited spatial coherence and the temporal distortion of partially coherent plane-wave pulses in parabolic dispersive media. Next, coherence-dependent effects in the propagation of Gaussian Schell-model pulses are retrieved from that of their spatial counterpart, the Gaussian Schell-model beam. Finally, the last result allows us to present a source linewidth analysis in an optical fiber communication system operating around the 1.55 microm wavelength window.
Improving double patterning flow by analyzing the diffractive orders in the pupil plane
NASA Astrophysics Data System (ADS)
Zeggaoui, N.; Farys, V.; Besacier, M.; Li, Q.; Yesilada, E.; Trouiller, Y.
2011-04-01
To print sub 22nm node features, current lithography technology faces some tool limitations. One possible solution to overcome these problems is to use the double patterning technique (DPT). The principle of the double patterning technique is pitch splitting where two adjacent features must be assigned opposite masks (colors) corresponding to different exposures if their pitch is less than a predefined minimum coloring pitch. However, certain design orientations for which pattern features separated by more than the minimum coloring pitch cannot be imaged with either of the two exposures. In these directions, the contrast and the process window are degraded because constructive interferences between diffractive orders in the pupil plane are not sufficient. The 22nm and 16nm nodes require the use of very coherent sources that will be generated using SMO (source mask cooptimization). Such pixelized sources while helpful in improving the contrast for selected configurations, can lead to degrade it for configurations which have not been counted for during the SMO process. Therefore, we analyze the diffractive orders interactions in the pupil plane in order to detect these limited orientations in the design and thus propose a new double patterning decomposition algorithm to enlarge the process window and the contrast of each mask.
Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech
2016-09-05
We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
Quantitative damage imaging using Lamb wave diffraction tomography
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong
2016-12-01
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).
NASA Astrophysics Data System (ADS)
Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun
2016-12-01
In finite difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modeling. Various optimized FD schemes for scalar wave modeling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modeling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modeling are obtained, which are represented by three equations corresponding to P-, S- and converted wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modeling compared to Taylor-series expansion and optimized space domain FD schemes.
NASA Astrophysics Data System (ADS)
Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun
2017-02-01
In finite-difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modelling. Various optimized FD schemes for scalar wave modelling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modelling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modelling are obtained, which are represented by three equations corresponding to P-, S- and converted-wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modelling compared to Taylor-series expansion and optimized space domain FD schemes.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides
Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.
2012-05-15
We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential
Numerical investigation of diffraction of acoustic waves by phononic crystals
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent
2012-05-01
Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.
NASA Astrophysics Data System (ADS)
Rakhmanov, Malik
2014-04-01
Fermi-normal (FN) coordinates provide a standardized way to describe the effects of gravitation from the point of view of an inertial observer. These coordinates have always been introduced via perturbation expansions and were usually limited to distances much less than the characteristic length scale set by the curvature of spacetime. For a plane gravitational wave this scale is given by its wavelength which defines the domain of validity for these coordinates known as the long-wavelength regime. The symmetry of this spacetime, however, allows us to extend FN coordinates far beyond the long-wavelength regime. Here we present an explicit construction for this long-range FN coordinate system based on the unique solution of the boundary-value problem for spacelike geodesics. The resulting formulae amount to summation of the infinite series for FN coordinates previously obtained with perturbation expansions. We also consider two closely related normal-coordinate systems: optical coordinates which are built from null geodesics and wave-synchronous coordinates which are built from spacelike geodesics locked in phase with the propagating gravitational wave. The wave-synchronous coordinates yield the exact solution of Peres and Ehlers-Kundt which is globally defined. In this case, the limitation of the long-wavelength regime is completely overcome, and the system of wave-synchronous coordinates becomes valid for arbitrarily large distances. Comparison of the different coordinate systems is done by considering the motion of an inertial test mass in the field of a plane gravitational wave.
Skigin, Diana C; Depine, Ricardo A
2008-05-01
We show that the problem of scattering of an obliquely incident plane wave by a general-shaped groove engraved on a perfectly conducting plane, which was recently studied by Basha et al. [J. Opt. Soc. Am. A24, 1647 (2007)], was solved 11 years ago using the same formulation. This method was further extended to deal with a finite number of grooves and also with complex apertures including several nonlossy and lossy dielectrics, as well as real metals.
Generating Damon-Eshbach Spin Waves in Py using a Conducting Diffraction Grating
NASA Astrophysics Data System (ADS)
Sklenar, J.; Bhat, V. S.; Delong, L.; Ketterson, J. B.
2012-02-01
We have patterned silver hole arrays directly on top of uniform permalloy (Py) films. Typical Py and Ag film thicknesses are 25nm and 40 nm respectively; the holes in the Ag have a 500nm diameter and are patterned on a 1 micron lattice constant. We have measured resonant modes arising from a quasi-uniform microwave excitation field, applied in the plane of the sample, as a function of the in-plane external field and the in-plane field orientation relative to the principal axes of the array. Measurements were done using our broadband meanderline-based ferromagnetic resonance (FMR) spectrometer.ootnotetextC. C. Tsai, J. Choi, S. Cho, B. K. Sarma, C. Thompson, O. Chernyashevskyy, I. Nevirkovets, and J. B Ketterson, Rev. of Sci. Instr. 80, 023904 (2009). In addition to a uniform FMR mode we observe satellite modes that correspond to the Damon-Eshbach spin wavesootnotetextR. W. Damon and J. R. Eshbach J. Phys. Chem. Solids 19, 308 (1961). with wave vectors having Fourier components of the reciprocal lattice of the silver array. Hence, in an otherwise uniform magnetic film the silver array acts as a diffraction grating which excites spin waves with k 0 from the dynamic k 0 microwave magnetic field. The observed spin wave angular dispersion is in excellent agreement with a magnon dispersion relation for spin waves in a uniform film given by Kriesel et al.ootnotetextA. Kreisel, F. Sauli, L. Bartosch, and P. Kopietz, Eur. Phys. J. B 71, 59 (2009).
Carretero, Luis; Acebal, Pablo; Blaya, Salvador
2013-04-01
We present a complete electromagnetic study, which includes electric, magnetic, and Poynting vector fields of diffracted convergent spherical waves under all possible polarization states compatible with Maxwell's equations. Exit pupil boundary conditions for these polarizations were obtained by means of Hertz potentials. Using these boundary conditions, two-dimensional Luneburg diffraction integrals for the three components of electric and magnetic fields were formulated, and after some approximations, we showed that the complete electromagnetic description of the inhomogeneous polarization states of spherical waves is reduced to the knowledge of seven one-dimensional integrals. The consistency of the method was tested by comparison with other previously reported methods for linearly polarized (LP), TE, and TM polarizations, while the versatility of the method was showed with the study of nonstandard polarization states, for example, that resulting from the superposition of TE and TM dephased spherical waves, which shows a helicoidal behavior of the Poynting vector at the focalization region, or the inhomogeneous LP state that exhibits a ring structure for the Poynting vector at the focal plane.
NMR Shielding in Metals Using the Augmented Plane Wave Method
2015-01-01
We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148
Generation of limited-diffraction wave by approximating theoretical X-wave with simple driving
NASA Astrophysics Data System (ADS)
Li, Yaqin; Ding, MingYue; Hua, Shaoyan; Ming, Yuchi
2012-03-01
X-wave is a particular case of limited diffracting waves which has great potential applications in the enlargement of the field depth in acoustic imaging systems. In practice, the generation of real time X-wave ultrasonic fields is a complex technology which involves precise and specific voltage for the excitations for each distinct array element. In order to simplify the X-wave generating process, L. Castellanos proposed an approach to approximate the X-wave excitations with rectangular pulses. The results suggested the possibility of achieving limited-diffraction waves with relatively simple driving waveforms, which could be implemented with a moderate cost in analogical electronics. In this work, we attempt to improve L. Castellanos's method by calculating the approximation driving pulse not only from rectangular but also triangular driving pulse. The differences between theoretical X-wave signals and driving pulses, related to their excitation effects, are minimized by L2 curve criterion. The driving pulses with the minimal optimization result we chosen. A tradeoff is obtained between the cost of implementation of classical 0-order X-wave and the precision of approximation with the simple pulsed electrical driving. The good agreement of the driving pulse and the result resulting field distributions, with those obtained from the classical X-wave excitations can be justified by the filtering effects induced by the transducer elements in frequency domain. From the simulation results, we can see that the new approach improve the precise of the approximation, the difference between theoretical X-wave and the new approach is lower 10 percent than the difference between theoretical X-wave and rectangular as the driving pulse in simulation.
Wave-growth associated with turbulent spot in plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Henningson, D. S.; Landahl, M. T.; Kim, J.
1987-01-01
A kinematic wave theory is used to investigate the cause of the rapid growth of waves observed at the wingtip of turbulent spot in plane Poiseuille flow. It is found that the qualitative behavior of the wave motions is well described by Landahl's breakdown criterion as the wave selection procedure. The predicted wave number, wave angle, and phase velocity are in agreement with those values obtained in a direct simulation.
Rayleigh-Bloch Wave Expansions for Diffraction Gratings I.
1980-03-01
AD-AO6S 939 UTAH WIIV SALT LAKE CITY DEPT OF MATHEMATICS F /B 20/14 RAYLEIGH-BLOCH WAVE EXPANSIONS FOR DIFFRACTION GRATINGS I. (U) MAR 80 C H WILCOX...a Fr~chet space with family of semi-norms (1.22) P(u) [ f I jD a1D u(X) l2 dX/ KK’ G al+at2<M and L2 (A,G) is a Frechet space with family of semi...or 0D then the classical Plancherel theory can be used to derive an eigenfunction expansion and spectral decomposition for I 14 (1.35) A0 f 0 dO (P
Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves.
Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Joseph, Joby
2012-04-20
As three-plane waves are the minimum number required for the formation of vortex-embedded lattice structures by plane wave interference, we present our experimental investigation on the formation of complex 3D photonic vortex lattice structures by a designed superposition of multiples of phase-engineered three-plane waves. The unfolding of the generated complex photonic lattice structures with higher order helical phase is realized by perturbing the superposition of a relatively phase-encoded, axially equidistant multiple of three noncoplanar plane waves. Through a programmable spatial light modulator assisted single step fabrication approach, the unfolded 3D vortex lattice structures are experimentally realized, well matched to our computer simulations. The formation of higher order intertwined helices embedded in these 3D spiraling vortex lattice structures by the superposition of the multiples of phase-engineered three-plane waves interference is also studied.
NASA Astrophysics Data System (ADS)
Hooseria, S. J.; Skews, B. W.
2017-01-01
A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.
An Investigation of Wave Impact Duration in High-Speed Planing Craft in Rough Water
2014-04-01
Engineering Department Technical Report AN INVESTIGATION OF WAVE IMPACT DURATION IN HIGH-SPEED PLANING CRAFT IN ROUGH WATER by Michael R. Riley, The...DATES COVERED - 4. TITLE AND SUBTITLE AN INVESTIGATION OF WAVE IMPACT DURATION IN HIGH-SPEED PLANING CRAFT IN ROUGH WATER 5a. CONTRACT NUMBER 5b...The original document contains color images. 14. ABSTRACT This report summarizes the investigation of wave impact duration. Example data plots are
Multi-frame visualization for detonation wave diffraction
NASA Astrophysics Data System (ADS)
Nagura, Y.; Kasahara, J.; Matsuo, A.
2016-09-01
When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30°, the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60°, the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60°, the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48°.
Generating wave vector specific Damon-Eshbach spin waves in Py using a diffraction grating
NASA Astrophysics Data System (ADS)
Sklenar, J.; Bhat, V. S.; Tsai, C. C.; DeLong, L. E.; Ketterson, J. B.
2012-07-01
A patterned square silver antidot lattice on a thin uniform permalloy film facilitates direct coupling of a quasi-uniform microwave field to short wavelength magnetic modes. The resulting modes are studied as a function of both the magnitude and orientation (relative to the symmetry axes of the array) of an in-plane, external DC magnetic field. The observed modes are identified as surface spin waves with wavelengths matching the Fourier components of the silver array.
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, J.E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.
1989-01-01
Several high-frequency models for nonprincipal-plane scattering from a rectangular, perfectly conducting plate are examined. Two methods, the Method of Equivalent Currents and corner diffraction coefficients, are considered. Formulations for second-order Physical Theory of Diffraction equivalent currents and for corner diffracted fields are presented. Comparisons are made among plate models. Results away from grazing are accurate using only first-order terms. Near grazing, second-order and corner diffraction terms improve the results for many cases. The pattern control of horn antennas using lossy materials to coat the inner walls of the horn is also investigated. Integral Equation and Moment Method techniques are used to formulate the problem. It is clearly demonstrated that side lobe level reduction can be achieved using impedance surfaces on the inner walls of the horn.
NASA Astrophysics Data System (ADS)
Li, C. Y.; Lesselier, D.; Zhong, Y.
2015-07-01
The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.
Verification of the Uncertainty Principle by Using Diffraction of Light Waves
ERIC Educational Resources Information Center
Nikolic, D.; Nesic, Lj
2011-01-01
We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…
Uniform line integral representation of edge-diffracted fields.
Umul, Yusuf Z
2008-01-01
A uniform line integral representation is derived for edge-diffracted fields by using the modified theory of physical optics and uniform asymptotic evaluation methods. The method is applied to the problem of diffraction of plane waves by a semi-infinite edge, which creates tip-diffracted fields with edge-diffracted waves. The uniform diffracted fields are plotted and examined numerically.
Fraunhofer diffraction of coherent and incoherent nuclear matter waves by complementary screens
NASA Astrophysics Data System (ADS)
da Silveira, R.; Leclercq-Willain, Ch.
2013-06-01
The analogy between Fraunhofer diffraction effects observed in nuclear and subnuclear collisions and those observed with light diffracted by complementary screens is revisited. Emphasis will be put on the collision mechanisms playing a role analogous to that of an aperture in light diffraction. These analogies are illustrated with examples involving coherent and incoherent nuclear matter waves.
Analysis of a photonic nanojet assuming a focused incident beam instead of a plane wave
NASA Astrophysics Data System (ADS)
Dong, Aotuo; Su, Chin
2014-12-01
The analysis of a photonic nanojet formed by dielectric spheres almost always assumes that the incident field is a plane wave. In this work, using vector spherical harmonics representations, we analyze the case of a more realistic incident field consisting of a focused beam formed by a microscope objective. Also included is the situation in which the sphere is not at the focal plane of the focus beam. We find that the dimension of the nanojet beam waist is less sensitive with respect to the azimuthal angle when compared with the plane wave case. Also, by shifting the particle away from the focal plane, the nanojet beam waist can be positioned outside the particle which otherwise would be inside or at the particle surface. Inherently, no such adjustment is possible with an incident plane wave assumption.
Nonlinear diffraction of waves by a submerged shelf in shallow water
Ertekin, R.C.; Becker, J.M.
1996-12-31
The diffraction of water waves by submerged obstacles in shallow water generally requires the use of a nonlinear theory since both dispersive and nonlinear effects are important. In this work, wave diffraction is studied in a numerical wave-tank using the Green-Naghdi (G-N) equations. Cnoidal waves are generated numerically by a wave maker situated at one end of a 2-dimensional numerical wave tank. At the downwave end of the tank, an open-boundary condition is implemented to simulate a wave-absorbing beach and thus to reduce reflections. The G-N equations are solved in the time-domain by employing a finite-difference method. The numerical method is applied to diffraction of cnoidal waves by a submerged shelf, or a sand bar, of considerable height relative to water depth. The predicted results are compared with the available experimental data which indicate the importance of nonlinearity for the shallow-water conditions.
Matrix basis for plane and modal waves in a Timoshenko beam
NASA Astrophysics Data System (ADS)
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Matrix basis for plane and modal waves in a Timoshenko beam
Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-01-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
On some features of plane waves of thermonuclear burn
NASA Astrophysics Data System (ADS)
Khishchenko, K. V.; Charakhch'yan, A. A.
2015-01-01
The behavior of a slow burn wave propagating over a precompressed thermonuclear fuel heated by several shock waves generated by a laser pulse is studied. It is shown that such a burn wave can rapidly increase the fuel density ahead of the wave front and transform to a pair of detonation waves moving in the opposite directions. Hydrodynamic equations with a linear velocity profile are solved. It is found that the proton beam intensity necessary for ignition increases with the initial fuel density in accordance with the known formula generalizing results of two-dimensional simulations. A possibility of using results of one-dimensional simulations for determining the energy of ignition of a cylindrical target is discussed.
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Nonlinear Cylindrical Waves on a Plane Plasma Surface
NASA Astrophysics Data System (ADS)
Gradov, O. M.
2004-01-01
By means of the cold electron plasma equations, it is shown that surface soliton solutions can exist in the azimuthally symmetric case at the boundary of semi-infinite plasmas for both standing and running waves.
Response of a Doppler canceling system to plane gravitational waves
NASA Technical Reports Server (NTRS)
Caporali, A.
1982-01-01
This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.
Feasibility of detecting near-surface feature with Rayleigh-wave diffraction
Xia, J.; Nyquist, J.E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.
2007-01-01
Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.
An Exact Solution for Geophysical Edge Waves in the {β}-Plane Approximation
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2015-12-01
By taking into account the {β}-plane effects, we provide an exact nonlinear solution to the geophysical edge-wave problem within the Lagrangian framework. This solution describes trapped waves propagating eastward or westward along a sloping beach with the shoreline parallel to the Equator.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Travelling wave modes of a plane layered anelastic earth
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2016-08-01
Incorporation of attenuation into the normal mode sum representations of seismic signals is commonly effected by applying perturbation theory. This is fine for weak attenuation, but problematic for stronger attenuation. In this work, modes of the anelastic medium are represented as complex superpositions of elastic eigenfunctions. For the P-SV system, a generalized eigenvalue equation for the complex eigenwavenumbers and complex coefficients used to construct the anelastic eigenfunctions is derived. The generalized eigenvalue problem for the P-SV problem is exactly linear in the eigenwavenumber at the expense of doubling the dimension. The SH problem is exactly linear in the square of the eigenwavenumber. This is in contrast to a similar standing wave problem for the earth free oscillations. Attenuation is commonly incorporated into synthetic seismogram calculations by introduction of complex frequency-dependent elastic moduli. The moduli depend nonlinearly on the frequency. The independent variable in the standing wave free oscillation problem is the frequency, which makes the eigenvalue problem nonlinear. The choice of the wavenumber as the independent variable for the travelling wave problem leads to a linear problem. The Earth model may be transversely isotropic. Compressional waves and both polarizations of shear waves (SV, SH) are treated.
Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.
Chen, A-Li; Yan, Dong-Jia; Wang, Yue-Sheng; Zhang, Chuanzeng
2016-02-01
In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed.
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
Diffraction analysis for DMD-based scene projectors in the long-wave infrared.
Han, Qing; Zhang, Jianzhong; Wang, Jian; Sun, Qiang
2016-10-01
Diffraction effects play a significant role in the digital micromirror device (DMD)-based scene projectors in the long-wave infrared (IR) band (8-12 μm). The contrast provided by these projector systems can become noticeably worse because of the diffraction characteristics of the DMD. We apply a diffraction grating model of the DMD based on the scalar diffraction theory and the Fourier transform to address this issue. In addition, a simulation calculation is conducted with MATLAB. Finally, the simulation result is verified with an experiment. The simulation and experimental results indicate that, when the incident azimuth angle is 0° and the zenith angle is between 42°and 46°, the scene projectors will have a good imaging contrast in the long-wave IR. The diffraction grating model proposed in this study provides a method to improve the contrast of DMD-based scene projectors in the long-wave IR.
NASA Astrophysics Data System (ADS)
Matula, Thomas John
Electromagnetic acoustic wave transducers (EMATs) are described for generating low-frequency tone bursts on metalized membranes in air and elastic plates in water. Bursts on the membrane have phase velocities much less than the speed of sound in the surrounding air and are accompanied by plane evanescent waves. The frequency and time-domain responses of the EMAT and the dependence on gap spacing between the coupling coil and the membrane were studied. Wave -number selective optical and capacitive probes were used to measure the wave properties. Versions of these transducers are insensitive to long wavelength motion of the membrane. Diffraction of the burst by a sharp edge in air was observed as a function of the gap between the membrane and a razor edge. The scattered pressure decreases exponentially with increasing gap as expected from an approximate analysis of edge diffraction of evanescent waves. In related work an EMAT is used to generate 28 kHz tone bursts of bending waves on an aluminum plate. The bursts propagate down into water where the surrounding wavefield is probed. Observations described indicate that there occurs a branching of energy as the wave crosses the air-water interface. Radiation from subsonic flexural plate waves due to the discontinuity in fluid -loading is observed. It is partially analogous to the transition radiation of fast charged particles crossing a dielectric interface. The angular radiation pattern resembles that of a line quadrupole. Near the interface there exists an interference between the two energy branches in water that produces a series of pressure nulls. The pressure nulls are associated with a pi phase change in the wavefield and are indicators of wavefront dislocations. A computation of the wavefield in an unbounded fluid due to a line-moment excitation of a plate is comparable with the null pattern observed but differs in certain details.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Imbert-Gérard, Lise-Marie
2015-12-15
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Polarization factors in the symmetrical case of three-wave diffraction.
Sheludko, Sergey
2004-05-01
Particular results of an unconventional approach to the geometry of multiple diffraction are presented. The scalar relations between polarization components of three waves in the symmetrical case, i.e. when the triplet of diffraction vectors forms an isosceles triangle, are considered. The polarization factors are given in simple trigonometric form as functions of the Bragg angle of principal reflection and of a crystallographic parameter, which unambiguously describes such a three-wave configuration.
Santarossa, Gianluca; Vargas, Angelo; Iannuzzi, Marcella; Pignedoli, Carlo A; Passerone, Daniele; Baiker, Alfons
2008-12-21
We present a study on structural and electronic properties of bulk platinum and the two surfaces (111) and (100) comparing the Gaussian and plane wave method to standard plane wave schemes, normally employed for density functional theory calculations on metallic systems. The aim of this investigation is the assessment of methods based on the expansion of the Kohn-Sham orbitals into localized basis sets and on the supercell approach, in the description of the metallicity of Pt. Electronic structure calculations performed at Gamma-point only on supercells of different sizes, from 108 up to 864 atoms, are compared to the results obtained for the unit cell of four Pt atoms where the k-point expansion of the wave function over Monkhorst-Pack grids up to (10x10x10) has been employed. The evaluation of the two approaches with respect to bulk properties is done through the calculation of the equilibrium lattice constant, the bulk modulus, and the total and the d-projected density of states. For the Pt(111) and Pt(100) surfaces, we consider the relaxation of the first layers, the surface energies, the work function, the total density of states, as well as the center and filling of the d bands. Our results confirm that the accuracy of two approaches in the description of electronic and structural properties of Pt is equivalent, providing that consistent supercells and k-point meshes are used. Moreover, we estimate the supercell size that can be safely adopted in the Gaussian and plane wave method in order to obtain the same reliability of previous theoretical studies based on well converged plane wave calculations available in literature. The latter studies, in turn, set the level of agreement with experimental data. In particular, we obtain excellent agreement in the evaluation of the density of states for either bulk and surface systems, and our data are also in good agreement with previous works on Pt reported in literature. We conclude that Gaussian and plane wave
NASA Astrophysics Data System (ADS)
Miles, Drew; McEntaffer, Randall; McCoy, Jake; Tutt, James; DeRoo, Casey
2017-01-01
Future soft X-ray spectroscopy missions have science requirements that demand higher instrument throughput and higher resolution than currently available technology. A key element in such spectrometers are dispersive elements such as diffraction gratings. Our group at Penn State University develops and fabricates off-plane reflection gratings in an effort to achieve the level of performance required by future missions. We present here efficiency measurements made in the 0.3 - 1.5 keV energy band at the Advanced Light Source (ALS) synchrotron at Lawrence Berkley National Laboratory for one such grating, which was replicated using UV-nanoimprint techniques from a grating master fabricated using electron-beam lithography, plasma etching, and potassium hydroxide etching. These results represent the first successful demonstration of off-plane grating replicas produced via these fabrication techniques and provide baseline efficiency measurements for flight-like replicated gratings.
Transverse spin and transverse momentum in scattering of plane waves.
Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2016-10-01
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.
Omote, Kazuhiko
2010-12-01
We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.
Source extension of chorus waves in the equatorial plane
NASA Astrophysics Data System (ADS)
Hayosh, M.; Santolik, O.; Parrot, M.
2009-04-01
We use measurements of the Cluster spacecraft and a ray tracing simulation to estimate the location and size of the global source of whistler-mode chorus emissions. In this study we use the data provided simultaneously by the STAFF-SA instruments on the four Cluster spacecraft on 19 August, 2003. To determine the direction of propagation of chorus we calculate Poynting vector whereas a ray-tracing method is used to estimate the chorus source extension. For the first time this analysis has been made along whole particular Cluster orbit in both hemispheres. Our study shows that minimum size of the global chorus source region in the equatorial plane is between 1-3 Earth's radii. The resulting location of the chorus source region is at radial distances between 3 and 8 Earth radii. This result is in agreement with previous analysis of Cluster data by Parrot et al., 2003, 2004 and with the study of Santolik et al., 2005 who analyzed data from the Double Star TC-1 spacecraft.
Three-wave diffraction in damaged epitaxial layers with a wurtzite structure
NASA Astrophysics Data System (ADS)
Kyutt, R. N.
2011-05-01
Three-wave diffraction of X-rays is measured using the Renninger scheme for a series of GaN epitaxial layers of various thicknesses and degrees of structural perfection. In each 30°-angular interval of azimuthal rotation, all ten three-wave peaks determined by the geometry of diffraction with the 0001 first forbidden reflection and Cu K α radiation are observed. The φ- and θ-scanned diffraction curves are measured for each three-wave combination. The angular FWHM of the diffraction peaks formed in experiments and its relation with the parameters of the two-wave diffraction pattern and the dislocation structure of the layers are analyzed. It is shown that the φ-scan peaks are less sensitive to the degree of structural perfection than the γ-mode peaks. The strongest dependence on the dislocation density for the latter peaks is observed for the (1bar 100)/(bar 1101) and (3bar 2bar 10)/(bar 3211) three-wave combinations with a pure Laue component of secondary radiation, while the (01bar 13)/(0bar 11bar 2) combination with a large Bragg component exhibits the weakest dependence. Splitting of three-wave Renninger peaks associated with the coarse-block structure of some of the layers with rotations of the blocks about the normal to the surface is detected. The total integrated intensity of all three-wave combinations is determined and their ratios are in qualitative agreement with the theory.
Plane-wave decomposition by spherical-convolution microphone array
NASA Astrophysics Data System (ADS)
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Solid explosive plane-wave lenses pressed-to-shape with dies
Olinger, B.
2007-11-01
Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.
Probing the smearing effect by a pointlike graviton in the plane-wave matrix model
Lee, Bum-Hoon; Nam, Siyoung; Shin, Hyeonjoon
2010-08-15
We investigate the interaction between a flat membrane and pointlike graviton in the plane-wave matrix model. The one-loop effective potential in the large-distance limit is computed and is shown to be of r{sup -3} type where r is the distance between two objects. This type of interaction has been interpreted as the one incorporating the smearing effect due to the configuration of a flat membrane in a plane-wave background. Our results support this interpretation and provide more evidence about it.
Statistics of nodal points of in-plane random waves in elastic media.
Maksimov, Dmitrii N; Sadreev, Almas F
2008-05-01
We consider the nodal points (NPs) u=0 and v=0 of the in-plane vectorial displacements u=(u,v) which obey the Navier-Cauchy equation. Similar to the Berry conjecture of quantum chaos, we present the in-plane eigenstates of chaotic billiards as the real part of the superposition of longitudinal and transverse plane waves with random phases. By an average over random phases we derive the mean density and correlation function of NPs. Consequently we consider the distribution of the nearest distances between NPs.
ERIC Educational Resources Information Center
Maurines, Laurence
2010-01-01
This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…
Vectorial approach to Huygens's principle for plane waves: circular aperture and zone plates.
Romero, Julio A; Hernández, Luis
2006-05-01
A vectorial equation that describes the Huygens principle was reported, and an expression for the secondary-spherical-wave energy density was found. With a vectorial formulation, we performed an exact calculation for the relative axial intensity of the wave diffracted by an illuminated circular aperture. The off-axis intensity in Fresnel's and Fraunhofer's approximations was calculated. The zone plate was also studied by vectorial formulation. We showed that with increasing number of rings, the intensity maxima magnify as (2n + 2)(2), their full widths decrease, their positions remain unchanged, and secondary maxima appear, in a behavior similar to that for diffraction gratings.
A time domain energy theorem for scattering of plane electromagnetic waves
NASA Astrophysics Data System (ADS)
de Hoop, A. T.
1984-10-01
A time domain analysis of the scattering problem reveals the more general conditions under which the relevant theorems in the theory of the scattering of electromagnetic waves by an obstacle of bounded extent may also hold in the time domain. The present investigation is concerned with the energy theorem for plane wave scattering. Three different kinds of time behavior are considered, taking into account transient fields, time-periodic fields, and perpetuating fields. The derived energy theorem relates the energy which is both absorbed and scattered by the object to the spherical-wave amplitude of the scattered field in the far-field region, when observed in the direction of propagation of the incident plane wave.
Active control of fan-generated plane wave noise
NASA Astrophysics Data System (ADS)
Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.
1993-08-01
Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.
Active control of fan-generated plane wave noise
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.
1993-01-01
Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-04-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.
Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1
Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei
2017-01-01
X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976
NASA Astrophysics Data System (ADS)
Castellanos, L.; Calás, H.; Ramos, A.
2010-01-01
In this paper, an approach for simplifying the experimental arrangement, needed to generate limited diffracting waves through annular ultrasonic arrays, is analyzed in terms mainly of the subsequent acoustic field. The main idea is to approximate the theoretical X-wave electrical excitations to rectangular driving signals in each array annulus, by means of the L2 curve criterion. The differences between theoretical X-wave signals and these approximate signals, related to real excitation effects, were minimized by using the transition times and amplitudes of the rectangular signals as fitting parameters. Acoustic field simulations, based on the impulse response technique, are applied for evaluating the agreement degree between both emitted ultrasonic fields, whit the calculated classical X wave and with the new approximation method proposed here for low-cost limited-diffraction wave generation. In addition, source vibration and ultrasonic field simulated signals were compared with those of the classic x wave under an exact driving, with the purpose of validating the method. The good agreement between the two vibration signals and resulting field distributions, obtained from the classical X wave excitations and those provided by the drastic simplification presented here, can be justified by the filtering effects induced by the transducer elements bands in frequency domain. These results suggest the possibility of achieving limited diffraction waves with relatively simple driving waveforms, which can be implemented with a moderate cost in analogical electronics.
NASA Astrophysics Data System (ADS)
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
From plane waves to local Gaussians for the simulation of correlated periodic systems
NASA Astrophysics Data System (ADS)
Booth, George H.; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas
2016-08-01
We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory.
Transient analysis of wave propagation problems by half-plane BEM
NASA Astrophysics Data System (ADS)
Panji, M.; Kamalian, M.; Marnani, J. Asgari; Jafari, M. K.
2013-09-01
In this paper, a half-plane time-domain boundary element method (BEM) was presented for analysing the 2-D scalar wave problems in a homogenous isotropic linear elastic medium. Using the existing transient full-plane fundamental solution and asking for the assistance of method of source image to satisfy the stress-free boundary conditions, first, a half-plane time-domain fundamental solution was obtained for displacement and traction fields. Then, the condensed closed-form of half-plane time-convoluted kernels were extracted analytically by applying the time-convolution integral on the determined half-plane fundamental solutions. After implementing the half-plane time-domain BEM in computer codes, its applicability and efficiency were verified and compared with those of the published works by analysing several practical examples. The studies showed that the proposed method had good agreement with the existing solutions. Compared to the full-plane time-domain BEM, half-plane time-domain BEM had more capability and better accuracy as well as much shorter run time. It is obvious that this method can be practically used to analyse the site response in substituting the old-style time-domain BEM formulation as well.
Guided torsional wave generation of a linear in-plane shear piezoelectric array in metallic pipes.
Zhou, Wensong; Yuan, Fuh-Gwo; Shi, Tonglu
2016-02-01
Cylindrical guided waves based techniques are effective and promising tools for damage detection in long pipes. The essential operations are generation and reception of guided waves in the structures utilizing transducers. A novel in-plane shear (d36 type) PMNT wafer is proposed to generate and receive the guided wave, especially the torsional waves, in metallic pipes. In contrast to the traditional wafer, this wafer will directly introduce in-plane shear deformation when electrical field is conveniently applied through its thickness direction. A single square d36 PMNT wafer is bonded on the surface of the pipe positioned collinearly with its axis, when actuated can predominantly generate torsional (T) waves along the axial direction, circumferential shear horizontal (C-SH) waves along circumferential direction, and other complex cylindrical Lamb-like wave modes along other helical directions simultaneously. While a linear array of finite square size d36 PMNT wafers was equally spaced circumferentially, when actuated simultaneously can nearly uniform axisymmetric torsional waves generate in pipes and non-symmetric wave modes can be suppressed greatly if the number of the d36 PMNT wafer is sufficiently large. This paper first presents the working mechanism of the linear d36 PMNT array from finite element analysis (FEA) by examining the constructive and destructive displacement wavefield phenomena in metallic pipes. Furthermore, since the amplitude of the received fundamental torsional wave signal strongly depends on frequency, a series of experiments are conducted to determine the frequency tuning curve for the torsional wave mode. All results indicate the linear d36 PMNT array has potential for efficiently generating uniform torsional wavefield of the fundamental torsional wave mode, which is more effective in monitoring structural health in metallic pipes.
Calculation of atomic forces using the linearized-augmented-plane-wave method
NASA Astrophysics Data System (ADS)
Krimmel, H. G.; Ehmann, J.; Elsässer, C.; Fähnle, M.; Soler, J. M.
1994-09-01
The force formula of Soler and Williams is implemented in the full-potential linearized-augmented-plane-wave program wien93. The feasibility and accuracy of the method is demonstrated by calculations for the H-point phonon in Mo and Li and for the Γ-point phonon in Si and diamond.
Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding.
Matrone, Giulia; Savoia, Alessandro S; Caliano, Giosue; Magenes, Giovanni
2016-08-01
Improving the frame rate is an important aspect in medical ultrasound imaging, particularly in 3D/4D cardiac applications. However, an accurate trade-off between the higher frame rate and image contrast and resolution should be performed. Plane-Wave Imaging (PWI) can potentially achieve frame rates in the order of 10 kHz, as it uses a single unfocused plane wave (and thus a single transmit event) to acquire the image of the entire region of interest. The lack of transmit focusing however causes a significant drop of image quality, which can be restored by coherently compounding several tilted plane-wave frames, at the expense of the frame rate. PWI together with the use of a beamforming algorithm able to achieve a higher image contrast resolution, such as the Delay Multiply And Sum (DMAS), could thus allow to improve image quality achieving a high frame rate at the same time. This paper presents the first simulation results obtained by employing DMAS beamforming and PWI with different transmission angles and coherent compounding. The simulated Point Spread Function (PSF) and cyst-phantom images show that DMAS makes it possible to achieve a high image quality with a reduced number of compounded frames compared to standard Delay And Sum (DAS), and hence it can be used to improve the contrast and resolution of plane-wave images still achieving a very high frame rate.
CMS-Wave Model: Part 5. Full-plane Wave Transformation and Grid Nesting
2012-04-01
13th 14th 15th iprp icur ibk irs kout ibnd iwet ibf iark iarkr akap bf ark arkr iwvbk 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th nonln igrav...backward reflection) 1 (with backward reflection) akap = 0 to 4 (diffraction intensity, 0 for zero diffraction, 4 for strong diffraction, default) bf
NASA Astrophysics Data System (ADS)
Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami
2008-07-01
We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively.
Collision between variably polarized plane gravitational wave and a shell of null matter
NASA Astrophysics Data System (ADS)
Feinstein, Alexander; Senovilla, Josém. M.
1989-06-01
We construct a solution to the Einstein field equations which describes the collision between a variably polarized gravitational wave and a shell of null dust. Depending on the choice of the parameters the variably polarized wave can have an arbitrarily smooth wavefront. The shell of null dust is followed by a constantly polarized plane gravitational wave. Also Grupo de Física Teórica, Departamento de Física, Ingeniería y Radiología Médica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain.
The motion of charged particles in strong plane waves including radiation reaction
NASA Astrophysics Data System (ADS)
Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.
The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.
Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
Mansour, Omar; Poepping, Tamie L; Lacefield, James C
2016-07-21
Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.
Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg
2016-04-01
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.
Schwab, Hans-Martin; Beckmann, Martin F.; Schmitz, Georg
2016-01-01
Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669
Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory.
Li, Yajun
2005-01-01
Starting with the vector formulation of the Kirchhoff diffraction theory, expressions for the total energy density distribution along the axis are presented without using any of the usual assumptions except the assumption made by Kirchhoff for the boundary conditions of a black screen. To make the Kirchhoff integral compatible with Maxwell's equations, a line integral around the edge of the aperture is added in the analysis. The consequence of ignoring the contribution of this line integral to the axial field distribution is examined numerically. The focal shift effect is investigated for both aplanatic systems and parabolic mirrors having an arbitrary numerical aperture (NA) and finite value of the Fresnel number. The combined effects of the Fresnel number and NA on the focal shift are evaluated, and the validity of the results is carefully checked by comparing the wavelength with the system dimensions.
Sum, K S; Pan, J
2007-07-01
Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.
Theory of steady-state plane tunneling-assisted impact ionization waves
Kyuregyan, A. S.
2013-07-15
The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p{sup +}-n-n{sup +} structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E{sub M} at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E{sub M}. A comparison of the dependences u(E{sub M}) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined.
Finite Frequency Measurements of Conventional and Core-diffracted P-waves (P and Pdiff)
NASA Astrophysics Data System (ADS)
Hosseini, K.; Sigloch, K.; Stähler, S. C.
2014-12-01
Core-diffracted waves are body waves that dive deep enough to sense the core, and by interaction with this wave guide become dispersive. They sample the core-mantle boundary and the lower third of the mantle extensively. In ray theoretical modeling, the deepest part of the ray starts to graze the core at around 97 degrees distance, but ray theory is a very poor approximation to propagation of core-diffracted waves. In reality, finite-frequency waves with their spatially extend sensitivity regions start to sense the core at significantly smaller distances already. The actual, non-ray-like sensitivities have been difficult to model, as have been the associated synthetic seismograms. Core-diffracted waves have therefore not been used in tomography, despite abundant observations of these phases on modern broadband seismograms. Hence current global body-wave tomographies illuminate the lower third of the mantle much less well than the upper and especially the middle third. This study aims for broadband, global waveform tomography that seamlessly incorporates core-diffracted phases alongside conventional, teleseismic waves as well as regional body-waves. Here, we investigate the properties of P-diffracted waves in terms of waveform characteristics and travel-time measurements as compared to teleseismic P-wave measured by the same methods. Travel time anomalies, the primary data for tomography, are measured by waveform cross-correlation of data with synthetics, where the synthetics are calculated from fully numerical wave propagation in a spherically symmetric background model. These same numerical tools will be used to calculate the associated sensitivity kernels for tomography (figure, top). Demonstrating the extent to which waveform modeling can fit real data, we assemble and discuss a global data set of 851,905 Pdiff and 2,368,452 P-wave multi-frequency cross-correlation travel times. Findings are summarized in the Pdiff travel time map (figure, bottom) in which most
Experimental demonstration of broadband reflectionless diffraction-free electromagnetic wave routing
NASA Astrophysics Data System (ADS)
Zhang, Youming; Gao, Zhen; Gao, Fei; Shi, Xihang; Xu, Hongyi; Luo, Yu; Zhang, Baile
2016-12-01
Wave diffraction is fundamentally difficult to overcome in the routing and interconnection of photonic signals. Although the phenomenon of reflectionless transport through sharp corners in a routing path has been realized in many previous demonstrations, wave diffraction does not allow them to transport deep-subwavelength information or sub-diffraction-limited images. Recent advances in ɛ -near-zero and anisotropic ɛ -near-infinity metamaterials have provided unique possibilities of achieving reflectionless diffraction-free electromagnetic wave routing, but their designs are fundamentally limited to narrow bandwidths, and they have not been demonstrated in reality. Here we experimentally demonstrate broadband reflectionless diffraction-free routing of electromagnetic waves through two right-angled sharp corners in a bent microwave rectangular waveguide. An image with deep-subwavelength information is transported through the bent waveguide in a broad bandwidth. This Rapid Communication supplements and extends the current studies of metamaterials with extreme permittivities and can be useful for routing and interconnection of subwavelength photonic information.
Plane wave transport method for low symmetry lattices and its application
Srivastava, Manoj K; Wang, Yan; Zhang, Xiaoguang; Nicholson, Don M; Cheng, Hai-Ping
2012-01-01
The existing first-principles plane wave transport method implementation \\cite{,choi-1,qe} has the limitation that it only allows transport directions along lattice vectors perpendicular to the basal plane formed by two other lattice vectors. We generalize the algorithm to low symmetry, nonorthogonal lattices thus allowing solution to problems in which the transport direction is not along any lattice vectors. As an application, we calculate the transmission and reflection coefficients, and determine interface resistance of various grain boundaries in crystalline copper.
In-plane spin wave modes in permalloy antidot arrays observation and analysis
NASA Astrophysics Data System (ADS)
Yu, Chengtao; Mankey, Gary
2005-03-01
Previously, we have reported demagnetization field induced localized modes[1] in-plane at 35 GHz ferromagnetic resonance, and dipolar-exchange governed lateral standing spin waves out-of-plane at 9.7 GHz in permalloy antidots. Here we present in-plane investigations at 9.7 GHz on various hole arrays (hole diameter 1.5μm; hole lattice 3μm x 3, 4, 5, and 7μm). In addition to the two main localized modes, which arise from regions confined by holes along the long axis and short axis (region A and B, respectively), spin wave manifolds pertinent to each peak are identified. Owing to the confinement imposed by the holes as well as the demagnetization field, region A and B exhibit distinct resonance geometry. For instance, for field along short axis, region A and B are in Damon-Esbach and magnetostatic backward volume mode geometry respectively, with the spin wave vectors determined by hole separations along long and short axis. This is reversed with field along long axis. The dispersion of the observed spin waves is analyzed accordingly. Supported by US DOE FG02-86ER45281 (MU) and NSF DMR-0213985 (UA). ^1Chengtao Yu, Michael J. Pechan, G. J. Mankey, Appl. Phys. Lett. 83, 3948 (2003).
Domain overlap matrices from plane-wave-based methods of electronic structure calculation
NASA Astrophysics Data System (ADS)
Golub, Pavlo; Baranov, Alexey I.
2016-10-01
Plane waves are one of the most popular and efficient basis sets for electronic structure calculations of solids; however, their delocalized nature makes it difficult to employ for them classical orbital-based methods of chemical bonding analysis. The quantum chemical topology approach, introducing chemical concepts via partitioning of real space into chemically meaningful domains, has no difficulties with plane-wave-based basis sets. Many popular tools employed within this approach, for instance delocalization indices, need overlap integrals over these domains—the elements of the so called domain overlap matrices. This article reports an efficient algorithm for evaluation of domain overlap matrix elements for plane-wave-based calculations as well as evaluation of its implementation for one of the most popular projector augmented wave (PAW) methods on the small set of simple and complex solids. The stability of the obtained results with respect to PAW calculation parameters has been investigated, and the comparison of the results with the results from other calculation methods has also been made.
Traveling Internal Plane-wave Synthesis (TIPS) for uniform B1 in high field MRI.
Anderson, Adam W
2017-02-01
A new target-field approach to generating uniform radio frequency (RF) fields within the human body for high field MRI is described. The method involves producing a set of external fields which, after interaction with a dielectric object, superimpose to produce a traveling plane wave, exposing all spins to the same RF amplitude (B1) over a cycle of the harmonic field. Conceptually this is similar to conventional RF shimming, but uses a different RF source design, input data, and objective function. The method requires a detailed knowledge of the coupling between exterior field modes, produced by an array of RF sources, and field modes within the body. Given an estimate of the coupling matrix, the linear superposition of external modes that produces a desired internal target field can be determined. The new method is termed Traveling Internal Plane-wave Synthesis (TIPS). A simple design of a coil array is described that can, in principle, generate the required field modes. Simulations demonstrate that radio frequency magnetic fields of nearly uniform (<1% variation) magnitude can be produced within dielectric objects larger than a wavelength in size. If the dielectric medium has non-zero conductivity, traveling waves are attenuated as they traverse the object, but field uniformity within planar slices is preserved. For general 3D imaging, a superposition of plane waves can provide field focusing to balance conductive losses, thereby achieving nearly uniform-magnitude B1+ magnetic fields over a volume of interest.
Three-dimensional shock wave diffraction off a discontinuous edge
NASA Astrophysics Data System (ADS)
Cooppan, S.; Skews, B.
2017-03-01
The interaction of three-dimensional vortex flows was investigated through vortex shedding off a discontinuous edge. Two wedges of 14.5° wedge angle (up and downstream edges) were separated by an offset. The size of the offset (5, 10, and 20 mm) and the Mach number (Mach 1.32, 1.42, and 1.6) were the key parameters investigated. Experimental images were taken and computational simulations were run; a close relation was found between the two. This enabled the three-dimensional effects of the flow to be studied and analysed. It was found, as the offset increased in size, the vortices shed off the up and downstream edges took a longer time to merge and the strength of the interaction was weaker. The vortex topology changed with a larger offset; the downstream vortex was thinner (in terms of cross-sectional diameter) adjacent to the offset, which is an indication of a change in density, than the rest of the vortex along the downstream diffraction edge. This particular feature was more prevalent at lower Mach numbers. The effect of a higher Mach number was to increase the rate of dissipation of the vortices, lengthen the shear layer due to the higher upstream velocity, and make the vortex profile elliptical.
Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels
NASA Astrophysics Data System (ADS)
Bergamasco, Filippo; Benetazzo, Alvise; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro
2016-10-01
In the last few years we faced an increased popularity of stereo imaging as an effective tool to investigate wind sea waves at short and medium scales. Given the advances of computer vision techniques, the recovery of a scattered point-cloud from a sea surface area is nowadays a well consolidated technique producing excellent results both in terms of wave data resolution and accuracy. Nevertheless, almost all the subsequent analyses tasks, from the recovery of directional wave spectra to the estimation of significant wave height, are bound to two limiting conditions. First, wave data are required to be aligned to the mean sea plane. Second, a uniform distribution of 3D point samples is assumed. Since the stereo-camera rig is placed tilted with respect to the sea surface, perspective distortion do not allow these conditions to be met. Errors due to this problem are even more challenging if the optical instrumentation is mounted on a moving vessel, so that the mean sea plane cannot be simply obtained by averaging data from multiple subsequent frames. We address the first problem with two main contributions. First, we propose a novel horizon estimation technique to recover the attitude of a moving stereo rig with respect to the sea plane. Second, an effective weighting scheme is described to account for the non-uniform sampling of the scattered data in the estimation of the sea-plane distance. The interplay of the two allows us to provide a precise point cloud alignment without any external positioning sensor or rig viewpoint pre-calibration. The advantages of the proposed technique are evaluated throughout an experimental section spanning both synthetic and real-world scenarios.
Korobkin, Dmitriy; Neuner, Burton; Fietz, Chris; Jegenyes, Nikoletta; Ferro, Gabriel; Shvets, Gennady
2010-10-25
An indefinite permittivity medium (IPM) has been fabricated and optically characterized in mid-infrared spectral range (10.7 µm-11.3 µm). Phase and amplitude transmission measurements reveal two remarkable properties of IPMs: (i) transmission of sub-diffraction waves (as short as λ/4) can exceed those of diffraction-limited ones, and (ii) sub-diffraction waves can propagate with negative refractive index. We describe a novel double-detector optical technique relying on the interference between sub-diffraction and diffraction-limited waves for accurate measurement of the transmission amplitude and phase of the former.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; Ma, Yi-Ping
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices
Chong, C.; Kevrekidis, P. G.; Ablowitz, M. J.; ...
2016-01-25
We explore linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. Formore » weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. Lastly, the transition between these two types of propagation is explored.« less
Ring-plane traveling-wave tube slow-wave circuit design simulations at V-Band frequencies
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.
NASA Astrophysics Data System (ADS)
Yoshida, Shuhei; Mori, Jun; Yamamoto, Manabu
2015-05-01
Many kinds of recording techniques have been proposed for holographic data storages (HDS). Multiplexing recording technique is a primary contributor to determining the recording density in HDS. The method that utilizes spherical reference waves is characterized by the ability to enable multiplexing recording only by displacing (shifting or rotating) the recording medium. In this study, we propose a theoretical diffraction model of peristrophic multiplexing with spherical reference wave for HDS.
NASA Astrophysics Data System (ADS)
Woods, D. C.; Bolton, J. S.; Rhoads, J. F.
2016-09-01
A number of applications, for instance ultrasonic imaging and nondestructive testing, involve the transmission of acoustic energy across fluid-solid interfaces into dissipative solids. However, such transmission is generally hindered by the large impedance mismatch at the interface. In order to address this problem, inhomogeneous plane waves were investigated in this work for the purpose of improving the acoustic energy transmission. To this end, under the assumption of linear hysteretic damping, models for fluid-structure interaction were developed that allow for both homogeneous and inhomogeneous incident waves. For low-loss solids, the results reveal that, at the Rayleigh angle, a unique value of the wave inhomogeneity can be found which minimizes the reflection coefficient, and consequently maximizes the transmission. The results also reveal that with sufficient dissipation levels in the solid material, homogeneous incident waves yield lower reflection values than inhomogeneous waves, due to the large degrees of inhomogeneity inherent in the transmitted waves. Analytical conditions have also been derived which predict the dependence of the optimal incident wave type on the dissipation level and wave speeds in the solid medium. Finally, implications related to the use of acoustic beams of limited spatial extent are discussed.
Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.
Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen
2016-01-15
We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.
Evidence of Doppler-shifted Bragg scattering in the vertical plane by ocean surface waves.
Lynch, Stephen D; D'Spain, Gerald L
2012-03-01
A set of narrowband tones (280, 370, 535, and 695 Hz) were transmitted by an acoustic source mounted on the ocean floor in 10 m deep water and received by a 64-element hydrophone line array lying on the ocean bottom 1.25 km away. Beamformer output in the vertical plane for the received acoustic tones shows evidence of Doppler-shifted Bragg scattering of the transmitted acoustic signals by the ocean surface waves. The received, scattered signals show dependence on the ocean surface wave frequencies and wavenumber vectors, as well as on acoustic frequencies and acoustic mode wavenumbers. Sidebands in the beamformer output are offset in frequency by amounts corresponding to ocean surface wave frequencies. Deviations in vertical arrival angle from specular reflection agree with those predicted by the Bragg condition through first-order perturbation theory using measured directional surface wave spectra and acoustic modes measured by the horizontal hydrophone array.
Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow
NASA Astrophysics Data System (ADS)
Rawat, Subhandu; Cossu, Carlo; Rincon, François
2016-06-01
Travelling-wave solutions are shown to bifurcate from relative periodic orbits in plane Poiseuille flow at Re = 2000 in a saddle-node infinite-period bifurcation. These solutions consist in self-sustaining sinuous quasi-streamwise streaks and quasi-streamwise vortices located in the bulk of the flow. The lower branch travelling-wave solutions evolve into spanwise localized states when the spanwise size Lz of the domain in which they are computed is increased. On the contrary, the upper branch of travelling-wave solutions develops multiple streaks when Lz is increased. Upper-branch travelling-wave solutions can be continued into coherent solutions to the filtered equations used in large-eddy simulations where they represent turbulent coherent large-scale motions.
S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series
NASA Technical Reports Server (NTRS)
Bessis, D.; Temkin, A.
1999-01-01
We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.
Plane Tidal Waves Generated by an Array of Simultaneous Underwater Explosions.
1981-03-01
shallow water theory verify the formation of a plane tidal wave. The wave energy resulting from the underwater explosion was approximated with an initial...thle fol lowing ajiproxi mt ion- and calculations. The energy reu ’rd to ior thle hemi spheri cal bubble i s approxiniat ed by the energy requ ired to...form an eql voIlme spherical bubble with coinciding cent roids. Approximately half of the explosion’s energy is absorbed by thle ocean floor (Ref 5
NASA Astrophysics Data System (ADS)
Abramov, Arnold; Kostikov, Alexander
2017-03-01
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.
In situ technique for measuring the orthogonality of a plane wave to a substrate.
Châteauneuf, Marc; Ayliffe, Michael H; Kirk, Andrew G
2003-05-01
A new compact in situ method of measuring the perpendicularity of a plane wave to a substrate is proposed. Off-axis cylindrical Fresnel lenses are used to focus a portion of the incident plane wave onto target lines. The displacement of the focal line from the targets is determined by the degree of angular misalignment. The proposed design has been incorporated into a 10-mm-thick fused-silica module, which enables us to obtain an alignment precision of better than 0.0083 degrees. This method is designed for use in optical assembly procedures that require an incident collimated beam that is normal to the alignment features. Experimental results are presented.
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes
NASA Astrophysics Data System (ADS)
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm3) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
A solution for TM-mode plane waves incident on a two-dimensional inhomogeneity
Lee, K. H.; Morrison, H. F.
1985-07-01
A solution for the electromagnetic fields scattered from a two-dimensional inhomogeneity in a conducting half space has been obtained for an incident TM mode plane wave; the magnetic field is polarized parallel to the strike of the inhomogeneity. The approach has been to determine the scattering currents within the inhomogeneity using an integral equation for the electric fields. This solution is similar in concept to earlier studies of TE mode scattering from two-dimensional inhomogeneities, and it completes the analysis of the scattering of arbitrary plane waves using the integral equation approach. For simple bodies in the earth integral equation solution offers significant computational advantages over alternate finite element or finite difference methods of solution.
Acoustic plane waves incident on an oblique clamped panel in a rectangular duct
NASA Technical Reports Server (NTRS)
Unz, H.; Roskam, J.
1980-01-01
The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
Density functional calculations of Pd nanoparticles using a plane-wave method.
Viñes, Francesc; Illas, Francesc; Neyman, Konstantin M
2008-09-25
We deal with usage of plane-wave density functional calculations of crystallites formed of 100-200 transition metal atoms to mimic larger experimentally treated particles. A series of model Pd clusters containing up to 225 atoms is chosen as an example. We focused on the description of size-dependent geometric parameters and binding energies of these clusters as compared with previous benchmark calculations; evolution of the particle electronic structure with increasing size has also been addressed. The high performance of the plane-wave calculations for transition-metal nanoparticles has been documented. Implications of this work on broadening opportunities to design and study realistic models of catalytic systems are outlined.
Lectures on the plane-wave string/gauge theory duality
NASA Astrophysics Data System (ADS)
Plefka, J. C.
2004-02-01
These lectures give an introduction to the novel duality relating type IIB string theory in a maximally supersymmetric plane-wave background to = 4, d = 4, U(N) super Yang-Mills theory in a particular large N and large R-charge limit due to Berenstein, Maldacena and Nastase. In the first part of these lectures the duality is derived from the AdS/CFT correspondence by taking a Penrose limit of the AdS5 × S5 geometry and studying the corresponding double-scaling limit on the gauge theory side. The resulting free plane-wave superstring is then quantized in light-cone gauge. On the gauge theory side of the correspondence the composite super Yang-Mills operators dual to string excitations are identified, and it is shown how the string spectrum can be mapped to the planar scaling dimensions of these operators. In the second part of these lectures we study the correspondence at the interacting respectively non-planar level. On the gauge theory side it is demonstrated that the large N large R-charge limit in question preserves contributions from Feynman graphs of all genera through the emergence of a new genus counting parameter - in agreement with the string genus expansion for non-zero gs. Effective quantum mechanical tools to compute higher genus contributions to the scaling dimensions of composite operators are developed and explicitly applied in a genus one computation. We then turn to the interacting string theory side and give an elementary introduction into light-cone superstring field theory in a plane-wave background and point out how the genus one prediction from gauge theory can be reproduced. Finally, we summarize the present status of the plane-wave string/gauge theory duality.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
NASA Astrophysics Data System (ADS)
Pickard, Chris J.; Winkler, Björn; Chen, Roger K.; Payne, M. C.; Lee, M. H.; Lin, J. S.; White, J. A.; Milman, V.; Vanderbilt, David
2000-12-01
We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, α-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.
Pickard; Winkler; Chen; Payne; Lee; Lin; White; Milman; Vanderbilt
2000-12-11
We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, alpha-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.
3D resolution tests of two-plane wave approach using synthetic seismograms
NASA Astrophysics Data System (ADS)
Ceylan, S.; Larmat, C. S.; Sandvol, E. A.
2012-12-01
Two-plane wave tomography (TPWT) is becoming a standard approach to obtain fundamental mode Rayleigh wave phase velocities for a variety of tectonic settings. A recent study by Ceylan et al. (2012) has applied this method to eastern Tibet, using data from INDEPTH-IV and Namche-Barwa seismic experiments. The TPWT assumes that distortion of wavefronts at each station can be expressed as the sum of two plane waves. However, there is currently no robust or complete resolution test for TPWT, to address its limitations such as wavefront healing. In this study, we test the capabilities of TPWT and resolution of INDEPTH-IV seismic experiment, by performing 3D resolution tests using synthetic seismograms. Utilizing SPECFEM3D software, we compute synthetic data sets resolving periods down to ~30 s. We implement a checkerboard upper mantle (for depths between 50 and 650 km) with variable cell sizes, superimposed to PREM as the background model. We then calculate fundamental mode surface wave phase velocities using TPWT for periods between 33-143 seconds, using synthetic seismograms computed from our three dimensional hypothetical model. Assuming a constant Poisson's ratio, we use partial derivatives from Saito (1988) to invert for shear wave velocities. We show that the combination of TPWT and Saito (1988) methods is capable of retrieving anomalies down to depths of ~200 km for Rayleigh waves. Below these depths, we observe evidence of both lateral and vertical smearing. We also find that the traditional method for estimating the resolution of TPWT consistently overestimates phase velocity resolutions. Love waves exhibit adequate resolution down to depths of ~100 km. At depths greater than 100 km, smearing is more evident in SH wave results than those of SV waves. Increased smearing of SH waves is most probably due to propagation characteristics and shallower sensitivity of Love waves. Our results imply that TPWT can be applied to Love waves, making future investigations of
NASA Astrophysics Data System (ADS)
Hayner, Mark; Hynynen, Kullervo
2001-12-01
Ultrasonic transmission and absorption of oblique plane waves through the human skull are analyzed numerically for frequencies ranging from 1/2 to 1 MHz. These frequencies are optimum for noninvasive ultrasound therapy of brain disorders where numerical predictions of skull transmission are used to set the phase and amplitude of source elements in the phased array focusing system. The idealized model of the skull is a three-layer solid with ivory outer and inner layers and a middle marrow layer. Each layer is modeled as a flat, homogeneous, isotropic, linear solid with effective complex wave speeds to account for focused energy losses due to material damping and scattering. The model is used to predict the amplitude and phase of the transmitted wave and volumetric absorption. Results are reported for three different skull thicknesses: 3 mm, 6 mm, and 9 mm. Thickness resonances are observed in the transmitted wave for 3 mm skulls at all frequencies and for the 6 mm skulls below 0.75 MHz. Otherwise, the transmission is dominated by the direct wave. Skull phase errors due to shear waves are shown to minimally degrade the power at the focus for angles of incidence up to 20° from normal even for low material damping. The location of the peak volumetric absorption occurs either in the outer ivory or middle marrow layer and shown to vary due to wave interference.
NASA Astrophysics Data System (ADS)
Bogdanov, O. V.; Kazinski, P. O.
2015-02-01
The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low (optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic electrons scattered are found using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of electrons traversed the electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momentum. The momentum component parallel to the electric field vector of the electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications.
On the convergence of the coupled-wave approach for lamellar diffraction gratings
NASA Technical Reports Server (NTRS)
Li, Lifeng; Haggans, Charles W.
1992-01-01
Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves by diffraction gratings, the coupled-wave approach stands out because of its versatility and simplicity. It can be applied to volume gratings and surface relief gratings, and its numerical implementation is much simpler than others. In addition, its predictions were experimentally validated in several cases. These facts explain the popularity of the coupled-wave approach among many optical engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence of the model predictions has never been presented, although several authors have recently reported convergence difficulties with the model when it is used for metallic gratings in TM polarization. Herein, three points are made: (1) in the TM case, the coupled-wave approach converges much slower than the modal approach of Botten et al; (2) the slow convergence is caused by the use of Fourier expansions for the permittivity and the fields in the grating region; and (3) is manifested by the slow convergence of the eigenvalues and the associated modal fields. The reader is assumed to be familiar with the mathematical formulations of the coupled-wave approach and the modal approach.
Kwiek, Piotr
2015-03-01
The phenomenon of collinear correlated photon pairs diffraction by an ultrasonic wave is investigated within Raman-Nath and intermediate region. The numbers of single photons and photon pairs counts in discrete diffraction orders were measured as functions of the Raman-Nath parameter. Similarly, the number of coincidence photon counts in separate diffraction orders was also investigated. It was shown experimentally that the phenomenon of photon pairs diffraction by an ultrasonic wave happens at angles identical to those corresponding to single photons diffraction. It was also demonstrated that in case of Raman-Nath diffraction the number of photon pairs in a selected, n(th), diffraction order varies with the Raman-Nath parameter changes as an n(th) order Bessel function of the first kind, raised to the fourth power. Whilst in the so-called intermediate diffraction zone, the number of diffracted photon pairs varies as squared intensity of a diffracted light beam consisting of single photons. Moreover, it was revealed that correlations between photons in selected diffraction orders change with the Raman-Nath parameter variation as products of relevant intensities of light in the considered diffraction orders. Finally, it should be emphasized that the presented formulae describing diffraction of collinear correlated proton pairs by an ultrasonic wave are in a very good agreement with corresponding experimental data, for both Raman-Nath and intermediate diffraction.
Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation
NASA Astrophysics Data System (ADS)
Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo
2017-02-01
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.
Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation
Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo
2017-01-01
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589
Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation.
Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo
2017-02-13
We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.
NASA Astrophysics Data System (ADS)
Serenelli, Roberto
2004-12-01
This paper analyzes simple imaging configurations to scan a human body, suitable as passive or active millimetre-wave imaging systems for concealed weapon detection (CWD). The first cylindrical configuration allows a 360 degrees scan: N unphased diffraction-limited antennas each of size L are placed on a circular support surrounding the subject (allowing scanning in the horizontal plane with N non-overlapping independent beams), and this circle is mechanically displaced over the whole body height. An analytical formula gives the maximum obtainable spatial resolution for different dimensions of the circular scanning device and operating frequencies, and the number of receivers achieving this optimal resolution. Constraints to be taken into account are diffraction, the usable total length of the circle, and the full coverage by the N beams over the subject, which is modelled as a cylinder with variable radius, coaxial with the scanning circle. Numerical calculations of system resolution are shown for different operating microwave (MW) and millimetre-wave (MMW) frequencies; in order to study off-axis performances, situations where the subject is not coaxial with the scanning device are also considered. For the case of a parallelepiped to be imaged instead of a cylinder, a linear array configuration is analyzed similarly to the circular one. A theoretical study is carried out to design other curved arrays, filled with unphased diffraction-limited antennas, for the imaging of linear subjects with finer resolution. Finally, the application of such configurations is considered for the design of active imaging systems, and different system architectures are discussed.
Monochromatic plane-fronted waves in conformal gravity are pure gauge
NASA Astrophysics Data System (ADS)
Fabbri, Luca; Paranjape, M. B.
2011-05-01
We consider plane-fronted, monochromatic gravitational waves on a Minkowski background, in a conformally invariant theory of general relativity. By this we mean waves of the form: gμν=ημν+γμνF(k·x), where γμν is a constant polarization tensor, and kμ is a lightlike vector. We also assume the coordinate gauge condition |g|-1/4∂τ(|g|1/4gστ)=0 which is the conformal analog of the harmonic gauge condition gμνΓμνσ=-|g|-1/2∂τ(|g|1/2gστ)=0, where det[gμν]≡g. Requiring additionally the conformal gauge condition g=-1 surprisingly implies that the waves are both transverse and traceless. Although the ansatz for the metric is eminently reasonable when considering perturbative gravitational waves, we show that the metric is reducible to the metric of Minkowski space-time via a sequence of coordinate transformations which respect the gauge conditions, without any perturbative approximation that γμν be small. This implies that we have, in fact, exact plane-wave solutions; however, they are simply coordinate/conformal artifacts. As a consequence, they carry no energy. Our result does not imply that conformal gravity does not have gravitational wave phenomena. A different, more generalized ansatz for the deviation, taking into account the fourth-order nature of the field equation, which has the form gμν=ημν+Bμν(n·x)G(k·x), indeed yields waves which carry energy and momentum [P. D. Mannheim, Gen. Relativ. Gravit.GRGVA80001-7701 43, 703 (2010)10.1007/s10714-010-1088-z]. It is just surprising that transverse, traceless, plane-fronted gravitational waves, those that would be used in any standard, perturbative, quantum analysis of the theory, simply do not exist.
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave.
Chen, Gang; Wu, Zhi-Xiang; Yu, An-Ping; Zhang, Zhi-Hai; Wen, Zhong-Quan; Zhang, Kun; Dai, Lu-Ru; Jiang, Sen-Lin; Li, Yu-Yan; Chen, Li; Wang, Chang-Tao; Luo, Xian-Gang
2016-11-23
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity.
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave
NASA Astrophysics Data System (ADS)
Chen, Gang; Wu, Zhi-Xiang; Yu, An-Ping; Zhang, Zhi-Hai; Wen, Zhong-Quan; Zhang, Kun; Dai, Lu-Ru; Jiang, Sen-Lin; Li, Yu-Yan; Chen, Li; Wang, Chang-Tao; Luo, Xian-Gang
2016-11-01
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity.
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave
Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang
2016-01-01
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Rossby wave radiation by an eddy on a beta-plane: Experiments with laboratory altimetry
Zhang, Y.; Afanasyev, Y. D.
2015-07-15
Results from the laboratory experiments on the evolution of vortices (eddies) generated in a rotating tank with topographic β-effect are presented. The focus of the experiments is on the far-field flow which contains Rossby waves emitted by travelling vortices. The surface elevation and velocity fields are measured by the altimetric imaging velocimetry. The experiments are supplemented by shallow water numerical simulations as well as a linear theory which describes the Rossby wave radiation by travelling vortices. The cyclonic vortices observed in the experiments travel to the northwest and continuously radiate Rossby waves. Measurements show that initially axisymmetric vortices develop a dipolar component which enables them to perform translational motion. A pattern of alternating zonal jets to the west of the vortex is created by Rossby waves with approximately zonal crests. Energy spectra of the flows in the wavenumber space indicate that a wavenumber similar to that introduced by Rhines for turbulent flows on the β-plane can be introduced here. The wavenumber is based on the translational speed of a vortex rather than on the root-mean-square velocity of a turbulent flow. The comparison between the experiments and numerical simulations demonstrates that evolving vortices also emit inertial waves. While these essentially three-dimensional non-hydrostatic waves can be observed in the altimetric data, they are not accounted for in the shallow water simulations.
Transient axial solution for plane and axisymmetric waves focused by a paraboloidal reflector.
Tsai, Yi-Te; Zhu, Jinying; Haberman, Michael R
2013-04-01
A time domain analytical solution is presented to calculate the pressure response along the axis of a paraboloidal reflector for a normally incident plane wave. This work is inspired by Hamilton's axial solution for an ellipsoidal mirror and the same methodology is employed in this paper. Behavior of the reflected waves along reflector axis is studied, and special interest is placed on focusing gain obtained at the focal point. This analytical solution indicates that the focusing gain is affected by reflector geometry and the time derivative of the input signal. In addition, focused pressure response in the focal zone given by various reflector geometries and input frequencies are also investigated. This information is useful for selecting appropriate reflector geometry in a specific working environment to achieve the best signal enhancement. Numerical simulation employing the finite element method is used to validate the analytical solution, and visualize the wave field to provide a better understanding of the propagation of reflected waves. This analytical solution can be modified to apply to non-planar incident waves with axisymmetric wavefront and non-uniform pressure distribution. An example of incident waves with conical-shaped wavefront is presented.
Projection operators for the Rossby and Poincare waves in a beta-plane approximation
NASA Astrophysics Data System (ADS)
Lebedkina, Anastasia; Ivan, Karpov; Sergej, Leble
2013-04-01
. The idea to use the polarization relations for the classification of waves originated in radio physics in the works of A. A. Novikov. In the theory of the electromagnetic field polarization relations is traditionally included in the analysis of wave phenomena. In the theory of acoustic-gravity waves, projection operators were introduced in a works of S. B. Leble. The object of study is a four-dimentional vector (components of the velocity, pressure and temperature). Based on these assumptions, we can construct the projection operators for superposition state on the linear basis, corresponding to the well-known type of waves. In this paper we consider procedure for construction of a projection operators for planetary Rossby and Poincare waves in the Earth's atmosphere in the approximation of the "beta-plane". In a result of work we constructed projection operators in this approximation for Poincare and Rossby waves. The tests for operators shown, that separation of the contribution of corresponding waves from source of the wave field is possible. Estimation accuracy of the operators and results of applying operators to the data TEC presented.
On plane-wave relativistic electrodynamics in plasmas and in vacuum
NASA Astrophysics Data System (ADS)
Fiore, Gaetano
2014-06-01
We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. In response to this penetration, the electrons are pulled back by the electric force exerted by the ions and the other displaced electrons and may leave the plasma with high energy in the direction opposite to that of propagation of the pulse ‘slingshot effect’ (Fiore G et al 2013 arXiv:1309.1400).
Numerical simulation of THz-wave-assisted electron diffraction for ultrafast molecular imaging
NASA Astrophysics Data System (ADS)
Kanya, Reika; Yamanouchi, Kaoru
2017-03-01
A scheme for achieving high temporal resolution in gas electron diffraction is proposed, in which time-dependent electron diffraction patterns can be obtained from energy-resolved angular distributions of electrons scattered by molecules in dynamical processes under the presence of a single-cycle THz-wave pulse. Derived formulae of the differential cross section and numerical simulations of electron signals scattered by Ar atoms and C l2 molecules show that the temporal resolution of the proposed method can be <10 fs in the pump-probe measurement without scanning the time delay.
Formation of circular fringes by interference of two boundary diffraction waves using holography.
Kumar, Raj; Chhachhia, D P
2013-08-01
The theory of boundary diffraction waves (BDWs) is gaining importance due to its simplicity and physically appealing nature. The present work reports formation of circular fringes far away from the geometrically illuminated region by interference of two BDWs. One BDW is reconstructed from the hologram while the second is coming directly from the knife-edge. The uniqueness of the fringes is that their position can be controlled on the screen at will and fringes can be produced with bright as well as dark central fringe. These results could play an important role in understanding the nature of diffraction of light.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim
2014-10-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).
Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine
1996-01-01
A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim
2014-01-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979
Scattering of S waves diffracted at the core-mantle boundary: forward modelling
NASA Astrophysics Data System (ADS)
Emery, Valérie; Maupin, Valérie; Nataf, Henri-Claude
1999-11-01
The lowermost 200-300 km of the Earth's mantle, known as the D'' layer, is an extremely complex and heterogeneous region where transfer processes between the core and the mantle take place. Diffracted S waves propagate over large distances and are very sensitive to the velocity structure of this region. Strong variations of ampli-tudes and waveforms are observed on recordings from networks of broad-band seismic stations. We perform forward modelling of diffracted S waves in laterally heterogeneous structures in order to analyse whether or not these observations can be related to lateral inhomogeneities in D''. We combine the diffraction due to the core and the scattering due to small-scale volumetric heterogeneities (10-100 km) by coupling single scattering (Born approximation) with the Langer approximation, which describes Sdiff wave propagation. The influence on the direct as well as on the scattered wavefields of the CMB as well as of possible tunnelling in the core or in D'' is fully accounted for. The SH and the SV components of the diffracted waves are analysed, as well as their coupling. The modelling is applied in heterogeneous models with different geometries: isolated heterogeneities, vertical cylinders, horizontal inhomogeneities and random media. Amplitudes of scattered waves are weak and only velocity perturbations of the order of 10 per cent over a volume of 240 x 240 x 300 km3 produce visible effects on seismograms. The two polarizations of Sdiff have different radial sensitivities, the SH components being more sensitive to heterogeneities closer to the CMB. However, we do not observe significant time-shifts between the two components similar to those produced by anisotropy. The long-period Sdiff have a poor lateral resolution and average the velocity perturbations in their Fresnel zone. Random small-scale heterogeneities with +/- 10 per cent velocity contrast in the layer therefore have little effect on Sdiff, in contrast to their effect on PKIKP.
NASA Technical Reports Server (NTRS)
Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret
1988-01-01
Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.
Trail-Needs pseudopotentials in quantum Monte Carlo calculations with plane-wave/blip basis sets
NASA Astrophysics Data System (ADS)
Drummond, N. D.; Trail, J. R.; Needs, R. J.
2016-10-01
We report a systematic analysis of the performance of a widely used set of Dirac-Fock pseudopotentials for quantum Monte Carlo (QMC) calculations. We study each atom in the periodic table from hydrogen (Z =1 ) to mercury (Z =80 ), with the exception of the 4 f elements (57 ≤Z ≤70 ). We demonstrate that ghost states are a potentially serious problem when plane-wave basis sets are used in density functional theory (DFT) orbital-generation calculations, but that this problem can be almost entirely eliminated by choosing the s channel to be local in the DFT calculation; the d channel can then be chosen to be local in subsequent QMC calculations, which generally leads to more accurate results. We investigate the achievable energy variance per electron with different levels of trial wave function and we determine appropriate plane-wave cutoff energies for DFT calculations for each pseudopotential. We demonstrate that the so-called "T-move" scheme in diffusion Monte Carlo is essential for many elements. We investigate the optimal choice of spherical integration rule for pseudopotential projectors in QMC calculations. The information reported here will prove crucial in the planning and execution of QMC projects involving beyond-first-row elements.
Simulation of guided wave interaction with in-plane fiber waviness
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Juarez, Peter D.
2017-02-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Hydrodynamic Simulation of Frontal Collision of Two Identical Plane Thermonuclear Burning Waves
NASA Astrophysics Data System (ADS)
Khishchenko, Konstantin V.; Charakhch'yan, Alexander A.
2013-10-01
A one-dimensional problem on synchronous bilateral action of two identical drivers on opposite surfaces of a plane layer of DT fuel with the normal or five times greater initial density is simulated numerically. The solution of the problem includes two thermonuclear burn waves propagating to collide with each other at the symmetry plane. A laser pulse with total absorption of energy at the critical density and a proton bunch that provides for a nearly isochoric heating are considered as drivers. A wide-range equation of state for the fuel, electron and ion heat conduction, self-radiation of plasma and plasma heating by α-particles are taken into account. In spite of different ways of ignition, various models of α-particle heat, whether the burning wave remains slow or transforms into the detonation wave, and regardless of way of such a transformation, the final value of the burn-up factor depends essentially on the only parameter Hρ0 , where H is the half-thickness of the layer and ρ0 is the initial fuel density. This factor is about 0.35 at Hρ0 ~ 1 g/cm2 and about 0.7 at Hρ0 ~ 5 g/cm2.
The Effects Of Finite Electron Temperature And Diffraction On Lowere Hybrid Wave Propagation
White, J. C.; Bertelli, M.
2014-02-24
In this paper we show that the commonly used cold plasma dispersion relation for plasma waves in the lower hybrid range of frequencies (LHRF) produces a wave trajectory that is notably different than when thermal corrections to the Hermitian part of the dielectric tensor are retained. This is in contrast to the common implementation in LH simulation codes in which thermal effects are retained only for the anti-Hermitian part of the dielectric tensor used for damping calculations. We show which term is the critical one to retain in the dielectric tensor and discuss implications for modeling of LHRF waves in present day and future devices. We conclude with some observations on the effects of diffraction that may be isolated once thermal effects are retained in both ray tracing and full-wave approaches.
Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane
NASA Astrophysics Data System (ADS)
Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.
2016-06-01
This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
Lamb waves in phononic crystal slabs: truncated plane parallels to the axis of periodicity.
Chen, Jiujiu; Xia, Yunjia; Han, Xu; Zhang, Hongbo
2012-09-01
A theoretical study is presented on the propagation properties of Lamb wave modes in phononic crystal slabs consisting of a row or more of parallel square cylinders placed periodically in the host material. The surfaces of the slabs are parallel to the axis of periodicity. The dispersion curves of Lamb wave modes are calculated based on the supercell method. The finite element method is employed to calculate the band structures and the transmission power spectra, which are in good agreement with the results by the supercell method. We also have found that the dispersion curves of Lamb waves are strongly dependent on the crystal termination, which is the position of the cut plane through the square cylinders. There exist complete or incomplete (truncated) layers of square cylinders with the change of the crystal termination. The influence of the crystal termination on the band gaps of Lamb wave modes is analyzed by numerical simulations. The variation of the crystal termination leads to obvious changes in the dispersion curves of the Lamb waves and the widths of the band gaps.
Stamnes, J J; Sithambaranathan, G S
2001-12-01
Exact solutions are obtained for the reflected and transmitted fields resulting when an arbitrary electromagnetic field is incident on a plane interface separating an isotropic medium and a biaxially anisotropic medium in which one of the principal axes is along the interface normal. From our exact solutions for the reflected fields resulting when a plane TE or TM wave is incident on the plane interface, it can be inferred that the reflected field contains both a TE and a TM component. This gives a change in polarization that can be utilized to determine the properties of the biaxial medium. The time-harmonic solution for the reflected field is in the form of two quadruple integrals, one of which is a superposition of plane waves polarized perpendicular to the plane of incidence and the other a superposition of plane waves polarized parallel to the plane of incidence. The time-harmonic solution for the transmitted field is also in the form of two quadruple integrals. Each of these is a superposition of extraordinary plane waves with displacement vectors that are perpendicular to the direction of phase propagation.
Observation of diffraction multifocal radiation focusing
Letfullin, R R; Zayakin, O A
2001-04-30
It is shown experimentally that by placing a flat screen with an axial hole in a diffraction field formed by the first open Fresnel zone upon diffraction of a plane electromagnetic wave from a parallel screen with a hole of a larger diameter, one can observe diffraction multifocal focusing of radiation in the near-field zone of the first screen. The diffraction pattern in the near-field zone of the first screen in focal planes represents circular nonlocalised Fresnel bands with a bright narrow peak at the centre, whose intensity is 6 - 10 greater than that of the incident wave. (nonlinear optical phenomena)
NASA Astrophysics Data System (ADS)
Li, Yanli; Dabo, Ismaila
2011-10-01
Plane-wave electronic-structure predictions based upon orbital-dependent density-functional theory (OD-DFT) approximations, such as hybrid density-functional methods and self-interaction density-functional corrections, are severely affected by computational inaccuracies in evaluating electron interactions in the plane-wave representation. These errors arise from divergence singularities in the plane-wave summation of electrostatic and exchange interaction contributions. Auxiliary-function corrections are reciprocal-space countercharge corrections that cancel plane-wave singularities through the addition of an auxiliary function to the point-charge electrostatic kernel that enters into the expression of interaction terms. At variance with real-space countercharge corrections that are employed in the context of density-functional theory (DFT), reciprocal-space corrections are computationally inexpensive, making them suited to more demanding OD-DFT calculations. Nevertheless, there exists much freedom in the choice of auxiliary functions and various definitions result in different levels of performance in eliminating plane-wave inaccuracies. In this work we derive exact point-charge auxiliary functions for the description of molecular structures of arbitrary translational symmetry, including the yet unaddressed one-dimensional case. In addition, we provide a critical assessment of different reciprocal-space countercharge corrections and demonstrate the improved accuracy of point-charge auxiliary functions in predicting the electronic levels and electrical response of conjugated polymers from plane-wave OD-DFT calculations.
Three-wave X-ray diffraction in distorted epitaxial structures.
Kyutt, Reginald; Scheglov, Mikhail
2013-08-01
Three-wave diffraction has been measured for a set of GaN, AlN, AlGaN and ZnO epitaxial layers grown on c-sapphire. A Renninger scan for the primary forbidden 0001 reflection was used. For each of the three-wave combinations, θ-scan curves were measured. The intensity and angular width of both ϕ- and θ-scan three-wave peaks were analyzed. The experimental data were used to determine properties of the multiple diffraction pattern in highly distorted layers. It is shown that the FWHM of θ scans is highly sensitive to the structural perfection and strongly depends on the type of three-wave combination. The narrowest peaks are observed for multiple combinations with the largest l index of the secondary hkl reflection. An influence of the type of the dislocation structure on the θ-scan broadening was revealed. These experimental facts are interpreted by considering the scanning geometry in the reciprocal space and taking into account the disc-shaped reciprocal-lattice points. The total integrated intensities of all the three-wave combinations were determined and their ratios were found to be in only a qualitative agreement with the theory. For AlGaN layers, the presence of the nonzero 0001 reflection was revealed, in contrast to AlN and GaN films.
NASA Astrophysics Data System (ADS)
Gao, Yuanmei; Wen, Zengrun; Zheng, Liren; Zhao, Lina
2017-04-01
A method has been proposed to generate complex periodic discrete non-diffracting beams (PDNBs) via superposition of two identical simple PDNBs at a particular angle. As for special cases, we studied the superposition of the two identical squares (;4+4;) and two hexagonal (;6+6;) periodic wave fields at specific angles, respectively, and obtained a series of interesting complex PDNBs. New PDNBs were also obtained by modulating the initial phase difference between adjacent interfering beams. In the experiment, a 4 f Fourier filter system and a phase-only spatial light modulator imprinting synthesis phase patterns of these PDNBs were used to produce desired wave fields.
MnO spin-wave dispersion curves from neutron powder diffraction
Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.
2007-02-15
We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.
A numerical study of shock wave diffraction by a circular cylinder
NASA Technical Reports Server (NTRS)
Yang, J.-Y.; Liu, Y.; Lomax, H.
1986-01-01
The nonstationary shock wave diffraction patterns generated by a blast wave impinging on a circular cylinder are numerically simulated using a second-order hybrid upwind method for solving the two-dimensional inviscid compressible Euler equations of gasdynamics. The complete diffraction patterns, including the transition from regular to Mach reflection, trajectory of the Mach triple point and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the cylinder are reported in detail. Pressure-time history and various contour plots are also included. Comparison between the work of Bryson and Gross (1961) which included both experimental schlieren pictures and theoretical calculations using Whitham's ray-shock theory and results of the present finite difference computation indicate good agreement in every aspect except for some nonideal gas and viscous effects which are not accounted for by the Euler equations.
Electromagnetic plane-wave pulse transmission into a Lorentz half-space.
Cartwright, Natalie A
2011-12-01
The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.
String interactions in a plane-fronted parallel-wave spacetime.
Gopakumar, Rajesh
2002-10-21
We argue that string interactions in a plane-fronted parallel-wave spacetime are governed by an effective coupling g(eff)=g(s)(micro p(+)alpha('))f(micro p(+)alpha(')) where f(microp(+)alpha(')) is proportional to the light-cone energy of the string states involved in the interaction. This simply follows from generalities of a matrix string description of this background. g(eff) nicely interpolates between the expected result (g(s)) for flat space (small micro p(+)alpha(')) and a recently conjectured expression from the perturbative gauge theory side (large micro p(+)alpha(')).
Dynamic soil-tunnel interaction in layered half-space for incident plane SH waves
NASA Astrophysics Data System (ADS)
Fu, Jia; Liang, Jianwen; Qin, Lin
2016-12-01
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.
Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates.
Li, Lu; Malomed, Boris A; Mihalache, Dumitru; Liu, W M
2006-06-01
By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates
Li Lu; Malomed, Boris A.; Mihalache, Dumitru; Liu, W. M.
2006-06-15
By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
Yang, Chao
2009-07-17
We present a practical approach to calculate the complex band structure of an electrode for quantum transport calculations. This method is designed for plane wave based Hamiltonian with nonlocal pseudopotentials and the auxiliary periodic boundary condition transport calculation approach. Currently there is no direct method to calculate all the evanescent states for a given energy for systems with nonlocal pseudopotentials. On the other hand, in the auxiliary periodic boundary condition transport calculation, there is no need for all the evanescent states at a given energy. The current method fills this niche. The method has been used to study copper and gold nanowires and bulk electrodes.
Energy dispersive x-ray diffraction of charge density waves via chemical filtering
Feng Yejun; Somayazulu, M. S.; Jaramillo, R.; Rosenbaum, T.F.; Isaacs, E.D.; Hu Jingzhu; Mao Hokwang
2005-06-15
Pressure tuning of phase transitions is a powerful tool in condensed matter physics, permitting high-resolution studies while preserving fundamental symmetries. At the highest pressures, energy dispersive x-ray diffraction (EDXD) has been a critical method for geometrically confined diamond anvil cell experiments. We develop a chemical filter technique complementary to EDXD that permits the study of satellite peaks as weak as 10{sup -4} of the crystal Bragg diffraction. In particular, we map out the temperature dependence of the incommensurate charge density wave diffraction from single-crystal, elemental chromium. This technique provides the potential for future GPa pressure studies of many-body effects in a broad range of solid state systems.
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
On the scattering of an acoustic plane wave by a soft prolate spheroid
NASA Astrophysics Data System (ADS)
Borromeo, Joseph Michael
This thesis solves the scattering problem in which an acoustic plane wave of propagation number K1 is scattered by a soft prolate spheroid. The interior field of the scatterer is characterized by a propagation number K2, while the field radiated by the scatterer is characterized by the propagation number K3. The three fields and their normal derivatives satisfy boundary conditions at the surface of the scatterer. These boundary conditions involve six complex parameters depending on the propagation numbers. The scattered wave also satisfies the Sommerfeld radiation condition at infinity. Through analytical methods, series representations are constructed for the interior field and scattered field for an arbitrary sphere and a prolate spheroid. In addition, results for the reciprocity relations and Energy theorem are derived. Application to detection of whales and submarines are discussed, as well as classification of fish, squid and zoo plankton. In general Ref[ ] is used for reference and the work is done in three dimensions.
The scattering of obliquely incident plane waves from a corrugated conducting surface
NASA Technical Reports Server (NTRS)
Le Vine, D. M.
1976-01-01
A physical optics solution is presented for the scattering of plane waves from a perfectly conducting corrugated surface in the case of waves incident from an arbitrary direction and for an observer far from the surface. This solution is used to compute the radar cross section of the surface in the case of backscatter from irregular (i.e., stochastic) corrugations. An interesting feature of the solution is the occurrence of singularities in the scattered fields. These singularities appear to be a manifestation of focusing by the surface at its 'stationary' points. Whether or not the singularities occur in the solution depends on the manner in which one restricts the analysis to the far-field.
An efficient algorithm for time propagation as applied to linearized augmented plane wave method
NASA Astrophysics Data System (ADS)
Dewhurst, J. K.; Krieger, K.; Sharma, S.; Gross, E. K. U.
2016-12-01
An algorithm for time propagation of the time-dependent Kohn-Sham equations is presented. The algorithm is based on dividing the Hamiltonian into small time steps and assuming that it is constant over these steps. This allows for the time-propagating Kohn-Sham wave function to be expanded in the instantaneous eigenstates of the Hamiltonian. The method is particularly efficient for basis sets which allow for a full diagonalization of the Hamiltonian matrix. One such basis is the linearized augmented plane waves. In this case we find it is sufficient to perform the evolution as a second-variational step alone, so long as sufficient number of first variational states are used. The algorithm is tested not just for non-magnetic but also for fully non-collinear magnetic systems. We show that even for delicate properties, like the magnetization density, fairly large time-step sizes can be used demonstrating the stability and efficiency of the algorithm.
Aircraft noise propagation. [sound diffraction by wings
NASA Technical Reports Server (NTRS)
Hadden, W. J.; Pierce, A. D.
1978-01-01
Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.
Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics
NASA Astrophysics Data System (ADS)
Godin, O. A.
2015-12-01
A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Kouyoumjian, R. G.
1974-01-01
The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.
Behavior of plane waves propagating through a temperature-inhomogeneous region
NASA Astrophysics Data System (ADS)
Bednarik, M.; Cervenka, M.; Lotton, P.; Penelet, G.
2016-02-01
Description and analysis of acoustic waves in ducts with a region containing temperature-inhomogeneous fluid represent a significant problem of scientific and practical interest. This interest is induced by the need of understanding how temperature fields affect acoustic processes which would lead to a more efficient design and control of systems involving thermoacoustic interactions. Most of the works addressing these problems limit themselves to the assumption of weak temperature profile gradients or to temperature profiles which do not connect neighboring temperature-homogeneous regions smoothly. In our work we investigate the behavior of plane acoustic waves that enter a region with an arbitrary temperature gradient. A polynomial character of the used temperature profile ensures smooth connection with constant-temperature regions. The one-dimensional wave equation for ducts with an axial mean temperature gradient is solved analytically. The derived solutions based on Heun functions extend the class of published exact analytical solutions of model wave equations taking into account the medium temperature gradient. Due to the property that our proposed polynomial temperature function has derivatives equal to zero at points which are connected with the surrounding temperature-homogeneous regions we can form more complex smooth temperature profiles for which it is possible to use the transfer matrix method.
Iterative diagonalization in augmented plane wave based methods in electronic structure calculations
Blaha, P.; Laskowski, R.; Schwarz, K.
2010-01-20
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.
Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population
NASA Astrophysics Data System (ADS)
Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.
2010-11-01
In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.
Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.
Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire
2016-01-01
This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI.
NASA Astrophysics Data System (ADS)
Stotts, S. A.; Knobles, D. P.; Koch, R. A.; Grant, D. E.; Focke, K. C.; Cook, A. J.
2004-03-01
A new, efficient, versatile ray-based model is presented that performs geoacoustic inversions in range-dependent ocean waveguides faster than alternative forward models for which the computation time becomes extremely long, especially for broadband inversions. The water propagation is approximately separated from the seabed interaction using predetermined bathymetry and a possibly range-dependent water sound speed profile. The geometrical optics approximation is used to calculate eigenrays between sources and receivers, including bottom reflecting paths. Modeled broadband pressure fields are obtained by computing the plane wave reflection coefficient at specific angles and frequencies and by then linking this result with the bottom reflected eigenrays. Each perturbation of the seabed requires a recalculation of the plane wave reflection coefficient, but not a recalculation of the eigenrays, resulting in a highly efficient method. Range-independent problems are treated as a limiting case of the approach. The method is first described and then demonstrated with a few simple range-independent theoretical models. The versatility of addressing range-dependence in the bottom seabed is demonstrated with a simulated data set. Finally, the new model is applied to inversion from a measured data set, taken with impulsive sources, for both range-independent and range-dependent continental shelf environments.
Fast solution of elliptic partial differential equations using linear combinations of plane waves
NASA Astrophysics Data System (ADS)
Pérez-Jordá, José M.
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Scaled plane-wave Born cross sections for atoms and molecules
NASA Astrophysics Data System (ADS)
Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.
2016-04-01
Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.
Implementation of linear-scaling plane wave density functional theory on parallel computers
NASA Astrophysics Data System (ADS)
Skylaris, Chris-Kriton; Haynes, Peter D.; Mostofi, Arash A.; Payne, Mike C.
We describe the algorithms we have developed for linear-scaling plane wave density functional calculations on parallel computers as implemented in the onetep program. We outline how onetep achieves plane wave accuracy with a computational cost which increases only linearly with the number of atoms by optimising directly the single-particle density matrix expressed in a psinc basis set. We describe in detail the novel algorithms we have developed for computing with the psinc basis set the quantities needed in the evaluation and optimisation of the total energy within our approach. For our parallel computations we use the general Message Passing Interface (MPI) library of subroutines to exchange data between processors. Accordingly, we have developed efficient schemes for distributing data and computational load to processors in a balanced manner. We describe these schemes in detail and in relation to our algorithms for computations with a psinc basis. Results of tests on different materials show that onetep is an efficient parallel code that should be able to take advantage of a wide range of parallel computer architectures.
Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.
Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N
2016-11-01
While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.
Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude
2012-10-01
A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.
Development of a standing-wave fluorescence microscope with high nodal plane flatness.
Freimann, R; Pentz, S; Hörler, H
1997-09-01
This article reports about the development and application of a standing-wave fluorescence microscope (SWFM) with high nodal plane flatness. As opposed to the uniform excitation field in conventional fluorescence microscopes as SWFM uses a standing-wave pattern of laser light. This pattern consists of alternating planar nodes and antinodes. By shifting it along the axis of the microscope a set of different fluorescent structures can be distinguished. Their axial separation may just be a fraction of a wavelength so that an SWFM allows distinction of structures which would appear axially unresolved in a conventional or confocal fluorescence microscope. An SWFM is most powerful when the axial extension of the specimen is comparable to the wavelength of light. Otherwise several planes are illuminated simultaneously and their separation is hardly feasible. The objective of this work was to develop a new SWFM instrument which allows standing-wave fluorescence microscopy with controlled high nodal plane flatness. Earlier SWFMs did not allow such a controlled flatness, which impeded image interpretation and processing. Another design goal was to build a compact, easy-to-use instrument to foster a more widespread use of this new technique. The instrument developed uses a green-emitting helium-neon laser as the light source, a piezoelectric movable beamsplitter to generate two mutually coherent laser beams of variable relative phase and two single-mode fibres to transmit these beams to the microscope. Each beam is passed on to the specimen by a planoconvex lens and an objective lens. The only reflective surface whose residual curvature could cause wavefront deformations is a dichroic beamsplitter. Nodal plane flatness is controlled via interference fringes by a procedure which is similar to the interferometric test of optical surfaces. The performance of the instrument was tested using dried and fluorescently labelled cardiac muscle cells of rats. The SWFM enabled the
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2017-01-01
The frequency-dependent seismic anomalies related to hydrocarbon reservoirs have lately attracted wide interest. The diffusive-viscous model was proposed to explain these anomalies. When an incident diffusive-viscous wave strikes a boundary between two different media, it is reflected and transmitted. The equation for the reflection coefficient is quite complex and laborious, so it does not provide an intuitive understanding of how different amplitude relates to the parameters of the media and how variation of a particular parameter affects the reflection coefficient. In this paper, we firstly derive a two-term (intercept-gradient) and three-term (intercept-gradient-curvature) approximation to the reflection coefficient of the plane diffusive-viscous wave without any assumptions. Then, we study the limitations of the obtained approximations by comparing the approximate value of the reflection coefficient with its exact value. Our results show that the two approximations match well with the exact solutions within the incident angle of 35°. Finally, we analyze the effects of diffusive and viscous attenuation parameters, velocity and density in the diffusive-viscous wave equation on the intercept, gradient and curvature terms in the approximations. The results show that the diffusive attenuation parameter has a big impact on them, while the viscous attenuation parameter is insensitive to them; the velocity and density have a significant influence on the normal reflections and they distinctly affect the intercept, gradient and curvature term at lower acoustic impedance.
Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.
1979-01-01
Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.
Nonlinear Wave Radiation and Diffraction by a Near-Surface Body
NASA Astrophysics Data System (ADS)
Ananthakrishnan, P.
1997-11-01
Physics of surface-wave and rigid-body interactions is of importance in naval architecture, in that a good understanding of wave-body interactions is necessary for the design of hulls with minimum ship-motion and resistance characteristics. Particular topics of contemporary research such as generation of spray and breaking waves by a surface ship and control of ship motion in high seas are however highly nonlinear, rendering analysis a challenging task. Using a robust numerical algorithm developed for analyzing fully nonlinear free-surface flow in a viscous fluid (see P. Ananthakrishnan, Three-dimensional wave-body interactions in a viscous fluid, Proc. of ISOPE'97 Conference, Hawaii), we have investigated diffraction and radiation of waves by floating and submerged rigid bodies. In the numerical model, the Navier-Stokes equations subject to exact free-surface and body boundary conditions are solved in primitive variables using a fractional-step finite-difference method which is implemented using curvilinear coordinates. Approximate conditions are however used to model the open boundary and the movement of the contact line. Results presented shed light to a better understanding of generation and ensuing spatial-temporal evolution of vortices under the influence of a free surface, vortical and potential components of hydrodynamics forces, symmetry-breaking in the case of large-amplitude oscillations, generation and damping of super-harmonic waves, and parameter ranges in which effect of viscosity is significant.
Role of long waves in the stability of the plane wake
NASA Astrophysics Data System (ADS)
Scarsoglio, Stefania; Tordella, Daniela; Criminale, William O.
2010-03-01
This work is directed toward investigating the fate of three-dimensional long perturbation waves in a plane incompressible wake. The analysis is posed as an initial-value problem in space. More specifically, input is made at an initial location in the downstream direction and then tracing the resulting behavior further downstream subject to the restriction of finite kinetic energy. This presentation follows the outline given by Criminale and Drazin [W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 (1990)] that describes the system in terms of perturbation vorticity and velocity. The analysis is based on large scale waves and expansions using multiscales and multitimes for the partial differential equations. The multiscaling is based on an approach where the small parameter is linked to the perturbation property independently from the flow control parameter. Solutions of the perturbative equations are determined numerically after the introduction of a regular perturbation scheme analytically deduced up to the second order. Numerically, the complete linear system is also integrated. Since the results relevant to the complete problem are in very good agreement with the results of the first-order analysis, the numerical solution at the second order was deemed not necessary. The use for an arbitrary initial-value problem will be shown to contain a wealth of information for the different transient behaviors associated to the symmetry, angle of obliquity, and spatial decay of the long waves. The amplification factor of transversal perturbations never presents the trend—a growth followed by a long damping—usually seen in waves with wave number of order one or less. Asymptotical instability is always observed.
The strain in the array is mainly in the plane (waves below ~1 Hz)
Gomberg, J.; Pavlis, G.; Bodin, P.
1999-01-01
We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering
NASA Astrophysics Data System (ADS)
Ravikiran, Y. T.; Vijaya Kumari, S. C.
2013-06-01
To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.
NASA Astrophysics Data System (ADS)
Majhi, S.; Pal, P. C.; Kumar, S.
2017-01-01
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.
Dietrich, F S
2006-09-25
This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).
NASA Technical Reports Server (NTRS)
Heedy, D. J.; Burnside, W. D.
1984-01-01
The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.
Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan
2015-09-15
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.
Zero-order filter for diffractive focusing of de Broglie matter waves
NASA Astrophysics Data System (ADS)
Eder, S. D.; Ravn, A. K.; Samelin, B.; Bracco, G.; Palau, A. Salvador; Reisinger, T.; Knudsen, E. B.; Lefmann, K.; Holst, B.
2017-02-01
The manipulation of neutral atoms and molecules via their de Broglie wave properties, also referred to as de Broglie matter wave optics, is relevant for several fields ranging from fundamental quantum mechanics tests and quantum metrology to measurements of interaction potentials and new imaging techniques. However, there are several challenges. For example, for diffractive focusing elements, the zero-order beam provides a challenge because it decreases the signal contrast. Here we present the experimental realization of a zero-order filter, also referred to as an order-sorting aperture for de Broglie matter wave diffractive focusing elements. The zero-order filter makes it possible to measure even at low beam intensities. We present measurements of zero-order filtered, focused, neutral helium beams generated at source stagnation pressures between 11 and 81 bars. We show that for certain conditions the atom focusing at lower source stagnation pressures (broader velocity distributions) is better than what has previously been predicted. We present simulations with the software ray-tracing simulation package mcstas using a realistic helium source configuration, which gives very good agreement with our measurements.
Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari
2013-08-20
We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Mitri, F. G.
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture
NASA Astrophysics Data System (ADS)
Khishchenko, K. V.; Charakhch'yan, A. A.
2015-03-01
The paper deals with a one-dimensional problem on symmetric irradiation of a plane DT fuel layer with a thickness 2 H and density ρ0 ⩽ 100ρ s (where ρ s is the density of the DT fuel in the solid state at atmospheric pressure and a temperature of 4 K) by two identical monoenergetic proton beams with a kinetic energy of 1 MeV, an intensity of 1019 W/cm2, and a duration of 50 ps. The problem is solved in the framework of one-fluid two-temperature hydrodynamic model that takes into account the equation of state for hydrogen, electron and ion heat conductivities, kinetics of the DT reaction, plasma self-radiation, and plasma heating by α-particles. The irradiation of the fuel results in the appearance of two counterpropagating detonation waves to the fronts of which rarefaction waves are adjacent. The efficiency of the DT reaction after the collision (reflection from the plane of symmetry) of the detonation waves depends on the spatial homogeneity of thermodynamic functions between the fronts of the reflected detonation waves. At Hρ0 ≈ 1 g/cm2, the gain factor is G ≈ 200, whereas at Hρ0 ≈ 5 g/cm2, it is G > 2000. As applied to a cylindrical target that is ignited from ends and in which the cylinder with the fuel is surrounded by a heavy magnetized shell, the obtained values of the burn-up and gain factors are maximum possible. To estimate the ignition energy E ig of a cylindrical target by using solutions to the one-dimensional problem, a quasi-one-dimensional model is developed. The model assumes that the main mechanism of target ignition is fuel heating by α-particles. The trajectories of α-particles are limited by a cylindrical surface with a given radius, which is a parameter of the model and is identified with the fuel radius in the target and the radii of the irradiating proton beams. This model reproduces the well-known theoretical dependence E ig ˜ ρ{0/-2} and yields E ig = 160 kJ as a lower estimate of the ignition energy for ρ0 = 100ρ s
NASA Astrophysics Data System (ADS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-11-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Vastano, John A.; Lomax, Harvard
1992-01-01
Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
NASA Astrophysics Data System (ADS)
Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg
2017-03-01
We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.
LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2016-04-30
The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
TM Plane Wave Reflection and Transmission from a One-Dimensional Random Slab
NASA Astrophysics Data System (ADS)
Tamura, Yasuhiko
This paper deals with a TM plane wave reflection and transmission from a one-dimensional random slab with stratified fluctuation by means of the stochastic functional approach. Based on a previous manner [IEICE Trans. Electron. E88-C, 4, pp. 713-720, 2005], an explicit form of the random wavefield is obtained in terms of a Wiener-Hermite expansion with approximate expansion coefficients (Wiener kernels) under small fluctuation. The optical theorem and coherent reflection coefficient are illustrated in figures for several physical parameters. It is then found that the optical theorem by use of the first two or three order Wiener kernels holds with good accuracy and a shift of Brewster's angle appears in the coherent reflection.
On the Propagation of Plane Acoustic Waves in a Duct With Flexible and Impedance Walls
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Vu, Bruce
2003-01-01
This Technical Memorandum (TM) discusses the harmonic and random plane acoustic waves propagating from inside a duct to its surroundings. Various duct surfaces are considered, such as rigid, flexible, and impedance. In addition, the effects of a mean flow are studied when the duct alone is considered. Results show a significant reduction in overall sound pressure levels downstream of the impedance wall for both mean flow and no mean flow cases and for a narrow duct. When a wider duct is used, the overall sound pressure level (OSPL) reduction downstream of the impedance wall is much smaller. In the far field, the directivity is such that the overall sound pressure level is reduced by about 5 decibels (dB) on the side of the impedance wall. When a flexible surface is used, the far field directivity becomes asymmetric with an increase in the OSPL on the side of the flexible surface of about 7 dB.
Cheng, Qiang; Cui, Tie Jun
2006-12-01
We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.
Evidence of iridescence in TiO2 nanostructures: An approximation in plane wave expansion method
NASA Astrophysics Data System (ADS)
Quiroz, Heiddy P.; Barrera-Patiño, C. P.; Rey-González, R. R.; Dussan, A.
2016-11-01
Titanium dioxide nanotubes, TiO2 NTs, can be obtained by electrochemical anodization of Titanium sheets. After nanotubes are removed by mechanical stress, residual structures or traces on the surface of titanium sheets can be observed. These traces show iridescent effects. In this paper we carry out both experimental and theoretical study of those interesting and novel optical properties. For the experimental analysis we use angle resolved UV-vis spectroscopy while in the theoretical study is evaluated the photonic spectra using numerical simulations into the frequency-domain and the framework of the wave plane approximation. The iridescent effect is a strong property and independent of the sample. This behavior can be important to design new materials or compounds for several applications such as, cosmetic industry, optoelectronic devices, photocatalysis, sensors, among others.
Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave
NASA Astrophysics Data System (ADS)
Khachatryan, A. Kh.; Khachatryan, Kh. A.
2016-11-01
We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space L 1[-r, r] for all finite r < +∞. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
Huang, Yuanshen; Li, Ting; Xu, Banglian; Hong, Ruijin; Tao, Chunxian; Ling, Jinzhong; Li, Baicheng; Zhang, Dawei; Ni, Zhengji; Zhuang, Songlin
2013-02-10
Fraunhofer diffraction formula cannot be applied to calculate the diffraction wave energy distribution of concave gratings like plane gratings because their grooves are distributed on a concave spherical surface. In this paper, a method based on the Kirchhoff diffraction theory is proposed to calculate the diffraction efficiency on concave gratings by considering the curvature of the whole concave spherical surface. According to this approach, each groove surface is divided into several limited small planes, on which the Kirchhoff diffraction field distribution is calculated, and then the diffraction field of whole concave grating can be obtained by superimposition. Formulas to calculate the diffraction efficiency of Rowland-type and flat-field concave gratings are deduced from practical applications. Experimental results showed strong agreement with theoretical computations. With the proposed method, light energy can be optimized to the expected diffraction wave range while implementing aberration-corrected design of concave gratings, particularly for the concave blazed gratings.
A unique solvable higher order BEM for wave diffraction and radiation
Teng, B.; Li, Y.C.
1995-12-31
For the discretization of higher order elements, the paper presents a modifying integral domain method to remove the irregular frequencies inherited in the integral equation of wave diffraction and radiation from a surface-piercing body. The set of over-determined linear equations obtained from the method is modified into a normal set of linear equations by superposing a set of linear equations with zero solutions. Numerical experiments have also been carried out to find the optimum choice of the size of the auxiliary domain and the discretization on it.
Fully converged plane-wave-based self-consistent G W calculations of periodic solids
NASA Astrophysics Data System (ADS)
Cao, Huawei; Yu, Zhongyuan; Lu, Pengfei; Wang, Lin-Wang
2017-01-01
The G W approximation is a well-known method to obtain the quasiparticle and spectral properties of systems ranging from molecules to solids. In practice, G W calculations are often employed with many different approximations and truncations. In this work, we describe the implementation of a fully self-consistent G W approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and technical details of the self-consistent G W approach are presented. The fully self-consistent G W calculations are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations and truncations apart from the truncation on the plane wave basis set are made in our implementation of the G W calculation. After adopting a special potential technique, a ˜100 Ry energy cutoff can be used without the loss of accuracy. We found that the self-consistent G W (sc-G W ) significantly overestimates the bulk band gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the sc-G W accurately predicts the d -state positions, most likely because the d -state screening does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent G W calculation, because the initial density-functional theory has a better dielectric constant compared to experiments.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P.O.
2013-12-15
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.
NASA Astrophysics Data System (ADS)
Grinspan, G. A.; Aguiar, S.; Benech, N.
2016-04-01
Soft biological tissue elasticity is a parameter whose reliable measure is relevant to many applications in fields as diverse as medicine and the agrifood industry. The ultrasonic elastography methods are often unviable to be applied to provide such solutions. In this way, the surface wave elastography (SWE) appears as a viable alternative, due its low cost, easy to use, non-invasive-destructive character as well as its ability to provide in vivo estimates. Previous studies have described a good correlation between the overall behavior of ultrasonic elastography and SWE, although the latter overestimates the elasticity values compared to the first. It has been suggested that this is due to the influence of certain physical effects related to the exclusive use of low frequency waves, as well as by characteristics of the experimental setup and/or medium. In this work we confirm the influence of such effects and discuss different strategies to make independent the estimations thereof. This allows achieving a good agreement between the ultrasonic reference method and SWE. Thus, SWE becomes a reliable method to estimate soft biological tissue elasticity.
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
Jiménez, N.; Picó, R.; Romero-García, V.; Garcia-Raffi, L. M.
2015-11-16
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings.
Caputo, Roberto; De Sio, Luciano; Veltri, Alessandro; Umeton, Cesare; Sukhov, Andrey V
2005-07-15
We report on the experimental observation of two-wave mixing that occurs inside a sample between the beams used for the fabrication of polymer-liquid-crystal-polymer slices (POLICRYPS) diffraction gratings. The effect depends on the phase shift between the curing interference pattern and the grating being cured. This shift can be mechanically induced by accidental vibrations of the experimental setup; thus a high setup stability is needed. We devised a mechanism that enables us to control setup vibrations in situ and used it to monitor the experiment. When the mechanically induced shift was significantly small, wave mixing was observed only if the initial intensities of the two curing beams were different from each other.
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
NASA Astrophysics Data System (ADS)
Jiménez, N.; Romero-García, V.; Picó, R.; Garcia-Raffi, L. M.; Staliunas, K.
2015-11-01
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10-4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1996-01-01
A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.
Axisymmetric diffraction of a cylindrical transverse wave by a viscoelastic spherical inclusion
NASA Astrophysics Data System (ADS)
Schwartz, Benjamin L.; Liu, Yifei; Royston, Thomas J.; Magin, Richard L.
2016-03-01
In this paper, the scattering and diffraction of a cylindrical transverse shear wave in a viscoelastic isotropic medium by a spherical heterogeneity is analytically solved. The waves are generated by the harmonic longitudinal oscillations of the cylinder walls. The spherical inclusion is located at the radial center of the cylinder and differs from the cylindrical material only in its complex shear modulus. Small amplitude motion is assumed, such that linear system theory is valid. By employing multi-pole expansions, the incident and scattered wave fields are each defined in both cylindrical and spherical coordinates allowing for the satisfaction of the boundary conditions at the surfaces of these multiply connected bodies. The solution involves an infinite sum of improper integrals, which are evaluated numerically. The wave field is determined for a hydrogel (alginate) bead suspended in a different hydrogel (agarose) that fills a glass test tube. Numerical examples showing the effect on displacement fields of varying the stiffness of the inclusion are presented. This solution is further validated with a finite element simulation showing excellent agreement with the analytic results.
Microscopic theory of spin-wave instabilities in parallel-pumped easy-plane ferromagnets
NASA Astrophysics Data System (ADS)
Lim, S. P.; Huber, D. L.
1988-04-01
Spin-wave instabilities in parallel-pumped easy-plane ferromagnets are investigated using the S-theory formalism of Zakharov et al. The parameters in the theory are related to the interaction constants in a microscopic Hamiltonian with exchange anisotropy. A numerical study of two- and five-mode systems shows that the nonequilibrium stationary states are ones where all of the spin-wave pair correlation functions have the same phase. It is also found that the phases lock to a common value before the stationary state is reached. From the form of the equations it is argued that a similar result holds for a macroscopic number of modes. Results are presented for the stationary magnon population. The approach to a stationary state in the phase-locked regime is governed by two coupled first-order differential equations. When the equations are linearized about the fixed points, it is found that the approach to the stationary state involves purely exponential decay just above threshold and damped oscillatory decay at higher power levels. Possible experimental tests of the theory are discussed.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Formulation of the Augmented Plane-Wave and Muffin-Tin Orbital Method
NASA Astrophysics Data System (ADS)
Kotani, Takao; Kino, Hiori; Akai, Hisazumu
2015-03-01
The augmented plane waves and the muffin-tin orbitals method (the PMT method) was proposed by Kotani and van Schilfgaarde in http://dx.doi.org/10.1103/PhysRevB.81.125117, Phys. Rev. B 81, 125117 (2010). It is a mixed basis all-electron full-potential method, which uses two types of augmented waves simultaneously, in addition to the local orbitals. In this paper, this mixed basis method is reformulated on the basis of a new formalism named as the 3-component formalism, which is a mathematically transparent version of the additive augmentation originally proposed by Soler and Williams in http://dx.doi.org/10.1103/PhysRevB.47.6784, Phys. Rev. B 47, 6784 (1993). Atomic forces are easily derived systematically. We discuss some problems in the mixed basis method and ways to manage them. In addition, we compare the method with the PAW method on the same footing. This PMT method is the basis for our new development of the quasiparticle self-consistent GW method in http://dx.doi.org/10.7566/JPSJ.83.094711, J. Phys. Soc. Jpn. 83, 094711 (2014), available as the ecalj package at github.
NASA Astrophysics Data System (ADS)
Rahman, Arifur; Duerr, Erik K.; de Lange, Gert; Hu, Qing
1997-06-01
We have combined silicon micromachining technology with planar circuits to fabricated room-temperature niobium microbolometers for millimeter-wave detection. In this type of detector, a thin niobium film, with a dimension much smaller than the wavelength, is fabricated on a 1-micrometers thick Si3N4 membrane of square and cross geometries. The Nb film acts both as a radiation absorber and temperature sensor. Incident radiation is coupled into the microbolometer by a 0.37 (lambda) dipole antenna with a center frequency of 95 GHz and a 3-db bandwidth of 15%, which is impedance matched with the Nb film. The dipole antennas is placed inside a micromachined pyramidal cavity formed by anisotropically etched Si wafers. To increase the Gaussian beam coupling efficiency, a machined square or circular horn is placed in front of the micromachined section. Circular horns interface more easily with die-based manufacturing processes; therefore, we have developed simulation tools that allow us to model circular machined horns. We have fabricated both single element receivers and 3 X 3 focal-plane arrays using uncooled Nb microbolometers. An electrical NEP level of 8.3 X 10-11 W/(root)Hz has been achieved for a single- element receiver. This NEP level is better than that of the commercial room-temperature pyroelectric millimeter-wave detectors. The frequency response of the microbolometer has a ln(1/f) dependence with frequency, and the roll-off frequency is approximately 35 kHz.
Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging
Wang, Congzhi; Xiao, Yang; Xia, Jingjing; Qiu, Weibao; Zheng, Hairong
2016-01-01
Plane-wave ultrasound imaging (PWUS) has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT); the other one was a traditional elevation-focalized transducer (EFT). An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS. PMID:27845751
ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers
NASA Astrophysics Data System (ADS)
Torrent, Marc
2014-03-01
For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization
The impedance problem of wave diffraction by a strip with higher order boundary conditions
NASA Astrophysics Data System (ADS)
Castro, L. P.; Simões, A. M.
2013-10-01
This work is devoted to analyse an impedance boundary-transmission problem for the Helmholtz equation originated by a problem of wave diffraction by an infinite strip with higher order imperfect boundary conditions. A constructive approach of operator relations is built, which allows a transparent interpretation of the problem in an operator theory framework. In particular, different types of operator relations are exhibited for different types of operators acting between Lebesgue and Sobolev spaces on a finite interval and the positive half-line. All this has consequences in the understanding of the structure of this type of problems. In particular, a Fredholm characterization of the problem is obtained in terms of the initial space order parameters. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained an error in the title of the article. The original title appeared as: "The Impedance Problem of Wave Diffraction by a trip with Higher Order Boundary Conditions." This article has been replaced and the title now appears correctly online. The corrected article was published on 8 November 2013.
The impedance problem of wave diffraction by a strip with higher order boundary conditions
Castro, L. P.; Simões, A. M.
2013-10-17
This work is devoted to analyse an impedance boundary-transmission problem for the Helmholtz equation originated by a problem of wave diffraction by an infinite strip with higher order imperfect boundary conditions. A constructive approach of operator relations is built, which allows a transparent interpretation of the problem in an operator theory framework. In particular, different types of operator relations are exhibited for different types of operators acting between Lebesgue and Sobolev spaces on a finite interval and the positive half-line. All this has consequences in the understanding of the structure of this type of problems. In particular, a Fredholm characterization of the problem is obtained in terms of the initial space order parameters. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained an error in the title of the article. The original title appeared as: 'The Impedance Problem of Wave Diffraction by a trip with Higher Order Boundary Conditions.' This article has been replaced and the title now appears correctly online. The corrected article was published on 8 November 2013.
Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods.
Soulairol, R; Fu, Chu-Chun; Barreteau, C
2010-07-28
Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data.
NASA Astrophysics Data System (ADS)
Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.
2016-07-01
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares
2014-08-01
The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.).
Guzatov, D V; Gaida, L S; Afanas'ev, Anatolii A
2008-12-31
The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves. (light pressure)
NASA Astrophysics Data System (ADS)
Filippov, A. I.; Akhmetova, O. V.; Koval‧skii, A. A.
2016-11-01
The filtration-wave process in the central layer of a three-layer anisotropic medium is described as an equivalent plane wave with a modified asymptotic method accurate in the mean. The initial problem is parametrized and broken down into simpler problems for the coefficients of expansion in an asymptotic parameter. The zero expansion coefficient describes the sought plane wave, whereas the first coefficient ensures refinement of the wave-front geometry. The exact solution of the parametrized problem is obtained on the basis of the Fourier sine transformation. The correctness of the developed method is confirmed by comparing the obtained asymptotic solutions and the coefficients of Maclaurin-series expansion of the exact solution of the parametrized problem in a formal parameter.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
Dunnington, Benjamin D.; Schmidt, J. R.
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.
Kawashima, Yukio; Hirao, Kimihiko
2017-03-09
We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Grüneis, Andreas; Booth, George H.; Kresse, Georg; Alavi, Ali
2012-07-01
Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Møller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.
NASA Astrophysics Data System (ADS)
Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.
2016-09-01
In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.
Mkrtichyan, G. S.
2015-07-15
The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.
NASA Astrophysics Data System (ADS)
King, B.; Hu, H.
2016-12-01
We consider a scalar particle in a background formed by two counterpropagating plane waves. Two cases are studied: (i) dynamics at a magnetic node and (ii) zero initial transverse canonical momentum. The Lorentz and Klein-Gordon equations are solved for these cases and approximations analyzed. For the magnetic-node solution (homogeneous, time-dependent electric field), the modified Volkov wave function which arises from a high-energy approximation is found to be inaccurate for all energies and the solution itself unstable when the photon emission (nonlinear Compton scattering) is included. For the zero initial transverse canonical momentum case, in both quantum and classical cases, forbidden parameter regimes, absent in the plane-wave model, are identified.
Mitri, F G; Fellah, Z E A
2008-08-01
Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.
Including the relativistic kinetic energy in a spline-augmented plane-wave band calculation
Fehrenbach, G.M.; Schmidt, G.
1997-03-01
The first-order relativistic correction to the kinetic energy of an electron, the mass-velocity term, is not bounded from below. It can, therefore, not be used within a variational framework. To overcome this deficiency we developed a method to include the entire relativistic kinetic energy {radical}(p{sup 2}c{sup 2}+m{sub 0}{sup 2}c{sup 4}){minus}m{sub 0}c{sup 2} in a spline-augmented plane-wave band calculation. The first results for silver are quite promising, especially for d and p states: The analysis of the energies of the core states as well as of the valence band structure suggests that the energies of d bands are reproduced within 1 mRy. However, the combination of the relativistic kinetic energy with the Darwin term leads to energies which are too low for s-like valence states by 10 mRy. Therefore, the s and d valence band complex is spread out and the Fermi level is lowered by the same amount as the s states. We expect to overcome these deficiencies in future investigations by using a alternative form of the relativistic potential correction along the lines proposed by Douglas and Kroll. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Kurz, Ph.; Förster, F.; Nordström, L.; Bihlmayer, G.; Blügel, S.
2004-01-01
The massively parallelized full-potential linearized augmented plane-wave bulk and film program FLEUR for first-principles calculations in the context of density functional theory was adapted to allow calculations of materials with complex magnetic structures—i.e., with noncollinear spin arrangements and incommensurate spin spirals. The method developed makes no shape approximation to the charge density and works with the continuous vector magnetization density in the interstitial and vacuum region and a collinear magnetization density in the spheres. We give an account of the implementation. Important technical aspects, such as the formulation of a constrained local moment method in a full-potential method that works with a vector magnetization density to deal with specific preselected nonstationary-state spin configurations, the inclusion of the generalized gradient approximation in a noncollinear framework, and the spin-relaxation method are discussed. The significance and validity of different approximations are investigated. We present examples to the various strategies to explore the magnetic ground state, metastable states, and magnetic phase diagrams by relaxation of spin arrangements or by performing calculations for constraint spin configurations to invest the functional dependence of the total energy and magnetic moment with respect to external parameters.
Mukhopadhyay, Partha
2009-12-15
In a previous work (arXiv:0902.3750 [hep-th]) we studied the world-sheet conformal invariance for superstrings in the type IIB R-R plane-wave in semi-light-cone gauge. Here we give further justification to the results found in that work through alternative arguments using dynamical supersymmetries. We show that by using the supersymmetry algebra the same quantum definition of the energy-momentum (EM) tensor can be derived. Furthermore, using certain Jacobi identities we indirectly compute the Virasoro anomaly terms by calculating the second-order supersymmetry variation of the EM tensor. Certain integrated forms of all such terms are shown to vanish. In order to deal with various divergences that appear in such computations we take a point-split definition of the same EM tensor. The final results are shown not to suffer from the ordering ambiguity as noticed in the previous work provided the coincidence limit is taken before sending the regularization parameter to zero at the end of the computation.
Stress formulation in the all-electron full-potential linearized augmented plane wave method
NASA Astrophysics Data System (ADS)
Nagasako, Naoyuki; Oguchi, Tamio
2012-02-01
Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).
NASA Astrophysics Data System (ADS)
Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro
2016-05-01
A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.
Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT
NASA Astrophysics Data System (ADS)
Gunceler, Deniz; Arias, T. A.
2017-01-01
Implicit electron-density solvation models offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models in the plane-wave context to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents a simple approach to quickly find approximations to the non-electrostatic contributions to the solvation energy, allowing for development of new iso-density models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. Finally, to illustrate the capabilities of the resulting theory, we also calculate the surface solvation energies of crystalline LiF in various different non-aqueous solvents, and discuss the observed trends and their relevance to lithium battery technology.
The generalized scattering coefficient method for plane wave scattering in layered structures
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song
2017-02-01
The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.
Performance bounds for passive sensor arrays operating in a turbulent medium: Plane-wave analysis
NASA Astrophysics Data System (ADS)
Collier, S. L.; Wilson, D. K.
2003-05-01
The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another.
Three-dimensional plane-wave full-band quantum transport using empirical pseudopotentials
NASA Astrophysics Data System (ADS)
Fang, Jingtian; Vandenberghe, William; Fischetti, Massimo
2015-03-01
We study theoretically the ballistic performance of future sub-5 nm Field-Effect Transistors (FETs) using an atomistic quantum transport formalism based on empirical pseudopotentials, with armchair Graphene NanoRibbons (aGNRs), Silicon NanoWires (SiNWs) and zigzag Carbon NanoTubes (zCNTs) as channel structures. Due to the heavy computational burden from the plane-wave basis set, we restrict our study to ultrasmall devices, characterized by 5 nm channel lengths and 0.7 nm × 0.7 nm cross-sectional areas. Band structure calculations show that aGNRs have an oscillating chirality-dependent band gap. AGNRs with dimer lines N=3p+1 have large band gaps and aGNRFETs show promising device performance in terms of high Ion/Ioff, small drain-induced barrier lowering and limited short channel effects due to their very thin body and associated excellent electrostatics control. N=3p+2 aGNRs have small band gaps and band-to-band tunneling generates a large current at high bias. We also discuss spurious solutions introduced by the envelope function approximation. Device characteristics of SiNWFETs and zCNTFETs are compared to aGNRFETs as well. We acknowledge the support of Nanoelectronics Research Initiatives's (NRI's) Southwest Academy of Nanoelectronics (SWAN).
Discontinuous Galerkin methods with plane waves for time-harmonic problems
Gabard, Gwenael . E-mail: gabard@soton.ac.uk
2007-08-10
A general framework for discontinuous Galerkin methods in the frequency domain with numerical flux is presented. The main feature of the method is the use of plane waves instead of polynomials to approximate the solution in each element. The method is formulated for a general system of linear hyperbolic equations and is applied to problems of aeroacoustic propagation by solving the two-dimensional linearized Euler equations. It is found that the method requires only a small number of elements per wavelength to obtain accurate solutions and that it is more efficient than high-order DRP schemes. In addition, the conditioning of the method is found to be high but not critical in practice. It is shown that the Ultra-Weak Variational Formulation is in fact a subset of the present discontinuous Galerkin method. A special extension of the method is devised in order to deal with singular solutions generated by point sources like monopoles or dipoles. Aeroacoustic problems with non-uniform flows are also considered and results are presented for the sound radiated from a two-dimensional jet.
Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2017-01-01
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
NASA Astrophysics Data System (ADS)
Lee, Young Ok; Chen, Fu; Lee, Kee Keun
2016-06-01
We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.
Simulation of Shock Wave Diffraction over 90° Sharp Corner in Gases of Arbitrary Statistics
NASA Astrophysics Data System (ADS)
Yang, Jaw-Yen; Muljadi, Bagus Putra
2011-12-01
The unsteady shock wave diffraction over a 90° sharp corner in gases of arbitrary particle statistics is simulated using an accurate and direct algorithm for solving the semiclassical Boltzmann equation with relaxation time approximation in phase space. The numerical method is based on the usage of discrete ordinate method for discretizing the velocity space of the distribution function; whereas a second order accurate TVD scheme (Harten in J. Comput. Phys. 49(3):357-393, 1983) with Van Leer's limiter (J. Comput. Phys. 32(1):101-136, 1979) is used for evolving the solution in physical space and time. The specular reflection surface boundary condition is assumed. The complete diffraction patterns are recorded using various flow property contours. Different range of relaxation times approximately corresponding to continuum, slip and transitional regimes are considered and the equilibrium Euler limit solution is also computed for comparison. The effects of gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics are examined and depicted.
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M. G.; Wolter, B.; Le, A. -T.; Baudisch, M.; Sclafani, M.; Pires, H.; Schröter, C. D.; Ullrich, J.; Moshammer, R.; Pfeifer, T.; Lin, C. D.; Biegert, J.
2016-01-01
The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as πg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms. PMID:27329236
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M. G.; Wolter, B.; Le, A. -T.; ...
2016-06-22
The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M. G.; Wolter, B.; Le, A. -T.; Baudisch, M.; Sclafani, M.; Pires, H.; Schroter, C. D.; Ullrich, J.; Moshammer, R.; Pfeifer, T.; Lin, C. D.; Biegert, J.
2016-06-22
The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O_{2} and C_{2}H_{2} molecules, with π_{g} and π_{u} symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.
Fishkin, J.B.; Gratton, E. )
1993-01-01
Light propagation in strongly scattering media can be described by the diffusion approximation to the Boltzmann transport equation. The authors have derived analytical expressions based on the diffusion approximation that describe the photon density in a uniform, infinite, strongly scattering medium that contains a sinusoidally intensity-modulated point source of light. These expressions predit that the photon density will propagate outward from the light source as a spherical wave of constant phase velocity with an amplitude that attenuates with distance r from the source as exp([minus]r)/r. The properties of the photon-density wave are given in terms of the spectral properties of the scattering medium. The authors have used the Green's function obtained from the diffusion approximation to the Boltzmann transport equation with a sinusoidally modulated point source to derive analytic expressions describing the diffraction and the reflection of photon-density waves from an absorbing and/or reflecting semi-infinite plane bounded by a straight edge immersed in a strongly scattering medium. The analytic expressions given are in agreement with the results of frequency-domain experiments performed in skim-milk media and with Monte Carlo simulations. These studies provide a basis for the understanding of photon diffusion in strongly scattering media in the presence of absorbing and reflecting objects and allow for a determination of the conditions for obtaining maximum resolution and penetration for applications to optical tomography. 20 refs., 21 figs., 1 tab.
Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory
NASA Astrophysics Data System (ADS)
Poppeliers, Christian; Pavlis, Gary L.
2003-02-01
We present the theoretical foundations for a prestack migration technique to image teleseismic P-to-S converted phases. The method builds on teleseismic P wave deconvolution, pseudostation stacking [, 1999] and on the idea of using a plane wave decomposition for imaging as introduced by [1982]. Deconvolution operators are constructed by pseudostation stacking of the array aligned to the incident P wave arrival times to produce a space-variable deconvolution operator. The resulting data are then muted to remove the deconvolved direct P wave pulse and pseudostation stacked over a grid of feasible slowness vectors. The pseudostation stack interpolates the wave field onto a regular grid along Earth's surface producing a series (one per slowness vector) of uniformly sampled three-dimensional data cubes (two space variables and time). The plane wave components can be propagated downward using a form of approximate ray tracing with a three-dimensional Earth model. This yields a series of distorted cubes topologically equivalent to the original uniformly sampled data cubes. These data volumes are summed as a weighted stack with the weights derived from an integration formula for inverse scattering based on the generalized Radon transform. This allows an image of the subsurface to be constructed on an event by event basis beneath the array. We apply this technique to data from the Lodore array that was deployed in northwestern Colorado. The results suggest the presence of a major lithospheric-scale discontinuity defined by a south dipping boundary.
Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng
2016-03-01
Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues.
Torello, David; Thiele, Sebastian; Matlack, Kathryn H; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J
2015-02-01
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β11 is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β11(7075)/β11(2024) measure of 1.363 agrees well with previous literature and earlier work. The proposed work is also applied to a set of 2205 duplex stainless steel specimens that underwent various degrees of heat-treatment over 24h, and the results improve upon conclusions drawn from previous analysis.
NASA Astrophysics Data System (ADS)
Chefranov, Sergey; Chefranov, Alexander
2016-04-01
Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A
Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.
2015-01-01
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements. PMID:26648114
E. M. Forgan; Huecker, M.; Blackburn, E.; ...
2015-12-09
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicularmore » to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.« less
Mase, A.; Jeong, J.H.; Itakura, A.; Ishii, K.; Miyoshi, S. )
1990-04-01
The Fraunhofer diffraction measurements from a tandem mirror plasma are reported. The successful use of a new multichannel detector array permits a detailed study of {bold k}{minus}{omega} spectra of long-wavelength waves with a few plasma shots. The observed dispersion relations are in good agreement with those of drift wave including a Doppler shift due to {bold E}{times}{bold B} rotation velocity.
A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Kalscheuer, Thomas; Greenhalgh, Stewart; Maurer, Hansruedi
2013-08-01
We have developed a novel goal-oriented adaptive mesh refinement approach for finite-element methods to model plane wave electromagnetic (EM) fields in 3-D earth models based on the electric field differential equation. To handle complicated models of arbitrary conductivity, magnetic permeability and dielectric permittivity involving curved boundaries and surface topography, we employ an unstructured grid approach. The electric field is approximated by linear curl-conforming shape functions which guarantee the divergence-free condition of the electric field within each tetrahedron and continuity of the tangential component of the electric field across the interior boundaries. Based on the non-zero residuals of the approximated electric field and the yet to be satisfied boundary conditions of continuity of both the normal component of the total current density and the tangential component of the magnetic field strength across the interior interfaces, three a-posterior error estimators are proposed as a means to drive the goal-oriented adaptive refinement procedure. The first a-posterior error estimator relies on a combination of the residual of the electric field, the discontinuity of the normal component of the total current density and the discontinuity of the tangential component of the magnetic field strength across the interior faces shared by tetrahedra. The second a-posterior error estimator is expressed in terms of the discontinuity of the normal component of the total current density (conduction plus displacement current). The discontinuity of the tangential component of the magnetic field forms the third a-posterior error estimator. Analytical solutions for magnetotelluric (MT) and radiomagnetotelluric (RMT) fields impinging on a homogeneous half-space model are used to test the performances of the newly developed goal-oriented algorithms using the above three a-posterior error estimators. A trapezoidal topographical model, using normally incident EM waves
Least-Squares Multi-Angle Doppler Estimators for Plane Wave Vector Flow Imaging.
Yiu, Billy Y S; Yu, Alfred C H
2016-06-20
Designing robust Doppler vector estimation strategies for use in plane wave imaging schemes based on unfocused transmissions is a topic that has yet to be studied in depth. One potential solution is to use a multi-angle Doppler estimation approach that computes flow vectors via least-squares fitting, but its performance has not been established. Here, we investigated the efficacy of multi-angle Doppler vector estimators by: (i) comparing its performance with respect to the classical dual-angle (cross-beam) Doppler vector estimator; (ii) examining the working effects of multi-angle Doppler vector estimators on flow visualization quality in the context of dynamic flow path rendering. Implementing Doppler vector estimators that use different combinations of transmit (Tx) and receive (Rx) steering angles, our analysis has compared the classical dual-angle Doppler method, a 5-Tx version of dual-angle Doppler, and various multi-angle Doppler configurations based on 3 Tx and 5 Tx. Two angle spans (10°, 20°) were examined in forming the steering angles. In imaging scenarios with known flow profiles (rotating disc and straight-tube parabolic flow), the 3-Tx, 3-Rx and 5-Tx, 5-Rx multi-angle configurations produced vector estimates with smaller variability comparing to the dual-angle method, and the estimation results were more consistent with the use of a 20° angle span. Flow vectors derived from multi-angle Doppler estimators were also found to be effective in rendering the expected flow paths in both rotating disc and straight-tube imaging scenarios, while the ones derived from the dual-angle estimator yielded flow paths that deviated from the expected course. These results serve to attest that, using multi-angle least-squares Doppler vector estimators, flow visualization can be consistently achieved.
Least-Squares Multi-Angle Doppler Estimators for Plane-Wave Vector Flow Imaging.
Yiu, Billy Y S; Yu, Alfred C H
2016-11-01
Designing robust Doppler vector estimation strategies for use in plane-wave imaging schemes based on unfocused transmissions is a topic that has yet to be studied in depth. One potential solution is to use a multi-angle Doppler estimation approach that computes flow vectors via least-squares fitting, but its performance has not been established. Here, we investigated the efficacy of multi-angle Doppler vector estimators by: 1) comparing its performance with respect to the classical dual-angle (cross-beam) Doppler vector estimator and 2) examining the working effects of multi-angle Doppler vector estimators on flow visualization quality in the context of dynamic flow path rendering. Implementing Doppler vector estimators that use different combinations of transmit (Tx) and receive (Rx) steering angles, our analysis has compared the classical dual-angle Doppler method, a 5-Tx version of dual-angle Doppler, and various multi-angle Doppler configurations based on 3 Tx and 5 Tx. Two angle spans (10°, 20°) were examined in forming the steering angles. In imaging scenarios with known flow profiles (rotating disk and straight-tube parabolic flow), the 3-Tx, 3-Rx and 5-Tx, 5-Rx multi-angle configurations produced vector estimates with smaller variability compared with the dual-angle method, and the estimation results were more consistent with the use of a 20° angle span. Flow vectors derived from multi-angle Doppler estimators were also found to be effective in rendering the expected flow paths in both rotating disk and straight-tube imaging scenarios, while the ones derived from the dual-angle estimator yielded flow paths that deviated from the expected course. These results serve to attest that using multi-angle least-squares Doppler vector estimators, flow visualization can be consistently achieved.
Fast color flow mode imaging using plane wave excitation and temporal encoding
NASA Astrophysics Data System (ADS)
Udesen, Jesper; Gran, Fredrik; Jensen, Jorgen A.
2005-04-01
In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.
Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.
Fadnes, Solveig; Ekroll, Ingvild Kinn; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2015-10-01
Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods.
Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.; Thompson, Charles A.; Avicola, Kenneth; Wilhelmsen, Julia
2000-01-01
A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.
2009-12-01
The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.
Diffractive efficiency improvement of diffractive cylinder lenses by Gaussian-beam illumination.
Fuerer, F; Schmidt, M; Bryngdahl, O
1997-10-13
To maximize the diffraction efficiency of cylinder lenses with high numerical apertures (such as F/0.5 lenses) we use an iterative algorithm to determine the optimum field distribution in the lens plane. The algorithm simulates the free-space propagation between the lens and the focal plane applying the angular spectrum of plane waves. We show that the optimum field distribution in the lens plane is the phase distribution of a converging cylindrical wave-front and an amplitude distribution with Gaussian-profile. The computed results are verified by rigorous calculations, simulating a F/0.5 lens with subwavelength structures.
NASA Astrophysics Data System (ADS)
Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang
2016-04-01
This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.
NASA Astrophysics Data System (ADS)
Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin
2017-04-01
A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.
Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets.
Miceli, Giacomo; Hutter, Jürg; Pasquarello, Alfredo
2016-08-09
We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.
Effect of finite dimensions of diffraction grating to Talbot imaging
NASA Astrophysics Data System (ADS)
Pokorný, Petr; Mikš, Antonín.; Novák, Jiří; Novák, Pavel; Rinner, Stefan
2016-11-01
This work presents detailed theoretical analysis of the effect of finite dimensions of an amplitude diffraction grating to the edge response function of the Talbot imaging. A diffraction of a plane wave is studied as well as a diffraction of a spherical one. The derived formulas can be used to refine the description of field propagation behind the amplitude diffraction grating; therefore, an analysis and an improvement of current applications, where the Talbot effect is used, can be realised.
NASA Technical Reports Server (NTRS)
Barakat, Richard; Beletic, James W.
1990-01-01
This paper is devoted to the development of a two-dimensional computer-simulation model that is based on the rigid constraints of optical diffraction theory with careful attention paid to the generation of sample realizations of Gaussian-distributed, spatially random, isotropic wave fronts that have zero-mean and prescribed-covariance functions. Given a sample realization of the wave front, the corresponding centered point-spread function and optical-transfer function are evaluated. A detailed study is made of the statistics of random wave-front tilt, point-spread function, modulus squared of transfer function, and phase of transfer function.
NASA Astrophysics Data System (ADS)
Chatterjee, Monish R.; Mohamed, Fathi H. A.
2016-05-01
In a parallel approach to recently-used transfer function formalism, a study involving diffraction of modulated electromagnetic (EM) waves through uniform and phase-turbulent atmospheres is reported in this paper. Specifically, the input wave is treated as a modulated optical carrier, represented by use of a sinusoidal phasor with a slowly timevarying envelope. Using phasors and (spatial) Fourier transforms, the complex phasor wave is transmitted across a uniform or turbulent medium using the Kirchhoff-Fresnel integral and the random phase screen. Some preliminary results are presented comparing non-chaotic and chaotic information transmission through turbulence, outlining possible improvement in performance utilizing the robust features of chaos.
Song, Jong-Won; Giorgi, Giacomo; Yamashita, Koichi; Hirao, Kimihiko
2013-06-28
Integrable singularity in the exact exchange calculations in hybrid functionals is an old and well-known problem in plane-wave basis. Recently, we developed a hybrid functional named Gaussian-attenuating Perdew-Burke-Ernzerhof (Gau-PBE), which uses a Gaussian function as a modified Coulomb potential for the exact exchange. We found that the modified Coulomb potential of Gaussian function enables the exact exchange calculation in plane-wave basis to be singularity-free and, as a result, the Gau-PBE functional shows faster energy convergence on k and q grids for the exact exchange calculations. Also, a tight comparison (same k and q meshes) between Gau-PBE and two other hybrid functionals, i.e., PBE0 and HSE06, indicates Gau-PBE functional as the least computational time consuming. The Gau-PBE functional employed in conjunction with a plane wave basis provides bandgaps with higher accuracy than the PBE0 and HSE06 in agreement with bandgaps previously calculated using Gaussian-type-orbitals.
Marsman, M; Grüneis, A; Paier, J; Kresse, G
2009-05-14
We present an implementation of the canonical formulation of second-order Møller-Plesset (MP2) perturbation theory within the projector-augmented-wave method under periodic boundary conditions using a plane wave basis set. To demonstrate the accuracy of our approach we show that our result for the atomization energy of a LiH molecule at the Hartree-Fock+MP2 level is in excellent agreement with well converged Gaussian-type-orbital calculations. To establish the feasibility of employing MP2 perturbation theory in its canonical form to systems that are periodic in three dimensions we calculated the cohesive energy of bulk LiH.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Elnabtity, Ali Mohamed Ali; Tawfeek, Mohamed M.; Keera, Amr Ali; Badran, Yasser Ali
2015-01-01
Background: Various sedative and analgesic techniques have been used during shock wave lithotripsy (SWL). Aim: This study aimed at evaluating the efficacy of ultrasound-guided unilateral transversus abdominis plane (TAP) block as an analgesic technique alternative during ureteric SWL. Settings and Design: Prospective randomized comparative study. Materials and Methods: Fifty patients scheduled for ureteric SWL were randomly allocated into two equal groups: Group (F) received 1.5 mcg/kg fentanyl intravenous and group (T) received unilateral TAP block with injection of 25 ml of bupivacaine 0.25% (62.5 mg). Statistical Analysis: Statistical analysis was performed using SPSS program version 19 and EP16 program. Results: The visual analog scale was significantly less in group (T) than in group (F) both intra-operatively (at 10, 20, 30, and 40 min) and postoperatively (at 10 min intervals in the postanesthesia care unit [PACU]) (P < 0.001). Rescue analgesia with pethidine during the procedure and in the PACU was less (P < 0.001) in the group (T) than group (F) with a median of 20 mg versus 55 mg, respectively. The higher sedation scores observed in group (F) at 15, 25, and 35 min during the procedure, and at 20 min during the PACU time were statistically highly significant (P < 0.001), but only significant at 10 min (P = 0.03) and 30 min (P = 0.007) during the PACU time. There was also highly significant decrease (P < 0.001) in the time of PACU stay in group (T) (38.2 ± 6.6 min) compared with group (F) (89.2 ± 13.39 min). We recorded 6 patients in group (F) (24%) who have developed respiratory depression (respiratory rate < 10 breaths/min) compared to 0% in group (T) (P = 0.022). In addition, in group (F) nausea was noted in 8 patients (32%) and vomiting in 6 patients (24%), which was statistically significant when compared to group (T) (0%) (P = 0.01 and 0.022, respectively). Conclusion: Ultrasound-guided unilateral TAP block is an effective alternative analgesic
Zhao, Dan
2011-03-01
Perforated liners with a narrow frequency range are widely used as acoustic dampers to stabilize combustion systems. When the frequency of unstable modes present in the combustion system is within the effective frequency range, the liners can efficiently dissipate acoustic waves. The fraction of the incident waves being absorbed (known as power absorption coefficient) is generally used to characterize the liners damping. To estimate it, plane waves either side of the liners need to be decomposed and characterized. For this, a real-time algorithm is developed. Emphasis is being placed on its ability to online decompose plane waves at multiple mode frequencies. The performance of the algorithm is evaluated first in a numerical model with two unstable modes. It is then experimentally implemented in an acoustically driven pipe system with a lined section attached. The acoustic damping of perforated liners is continuously characterized in real-time. Comparison is then made between the results from the algorithm and those from the short-time fast Fourier transform (FFT)-based techniques, which are typically used in industry. It was found that the real-time algorithm allows faster tracking of the liners damping, even when the forcing frequency was suddenly changed.
NASA Astrophysics Data System (ADS)
Olano, C. A.
2009-11-01
Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced
NASA Astrophysics Data System (ADS)
Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang
2015-05-01
Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars. Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).
NASA Astrophysics Data System (ADS)
Zhang, Xinyu; Li, Hui; Liu, Kan; Luo, Jun; Xie, Changsheng; Ji, An; Zhang, Tianxu
2010-10-01
A diffractive microlens with a cascade focal plane along the main optical axis of the device is fabricated using a low-cost technique mainly including single mask ultraviolet (UV) photolithography and dual-step KOH:H2O etching. Based on the evolutionary behavior of converse pyramid-shaped microholes (CPSMs) preshaped over a {1 0 0}-oriented silicon wafer in KOH etchant, the first-step KOH etching is performed to transfer initial square micro-openings in a SiO2 film grown by plasma enhanced chemical vapor deposition (PECVD) and patterned by single mask UV-photolithography, into CPSMs with needed dimension. After completely removing a thinned SiO2 mask, basic annular phase steps with a relatively steep sidewall and scheduled height can be shaped in the overlapped etching region between the neighboring silicon concave-arc microstructures evolved from CPSMs through the second-step KOH etching. Morphological measurements demonstrate a desirable surface of the silicon microlens with a roughness in nanometer scale and the feature height of the phase steps formed in the submicrometer range. Conventional optics measurements of the plastic diffractive microlens obtained by further hot embossing the fine microrelief phase map over the nickel mask made through a common electrochemical method indicate a highly efficient cascaded focusing performance.
NASA Astrophysics Data System (ADS)
Takenaka, H.; Okamoto, T.; Nakamura, T.
2009-12-01
We propose a novel approach for calculating response of three-dimensionally (3D) heterogeneous structure model to an oblique incidence of seismic plane wave with the finite-difference method in the time-domain (FDTD). Computation of seismic response to a plane-wave incidence has many applications of practical interest such as synthesis of teleseismic body waves for source inversion or receiver function analysis, and evaluation of basin effects or local site effects of strong ground motion. However, in most cases of those applications horizontally layered media have been locally employed except recent works based on 2.5D FDTD of Takenaka and Okamoto (1997) which can calculate the 3D response of a 2D heterogeneous model. It has been difficult to calculate the response of a 3D heterogeneous model mainly because of a technical issue. In modeling of seismic wavefields with domain methods such as the FDTD, special manipulation called non-reflecting boundary or absorbing boundary condition is necessary for suppressing the spurious reflections from the boundaries of the computational domain. In 3D modeling some methods are effective for source excitation problems, while for oblique plane-wave incidence problems, as far as we know, almost no method is effective at the side boundaries. Strong artificial reflections from the plane wave at the side boundaries contaminate the computed wavefields. In 2D modeling we could use large computational domain so that the artificial waves arrive at the study area after the all target phases completely pass there. However, in 3D modeling adopting such simple approach is difficult because of its huge requirements of computer memory and CPU time. Here we present a breakthrough to overcome this technical issue. It is a field splitting approach to the discretization of the Floquet transformed elastodynamic equations. This approach was originally introduced by Roden et al. (1998, IEEE TMTT) for implementing periodic boundary conditions into
NASA Technical Reports Server (NTRS)
Noh, H. M.; Pathak, P. H.
1986-01-01
An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
Long-Wave Runup on a Plane Beach: An Experimental and Numerical Investigation
NASA Astrophysics Data System (ADS)
Vater, Stefan; Drähne, Ulrike; Goseberg, Nils; Beisiegel, Nicole; Behrens, Jörn
2016-04-01
In this study the runup generated by leading depression single sinusoidal waves as a very basic representation of a tsunami is investigated through physical and numerical experiments. The results are compared against existing analytical expressions for the long-wave runup of periodic sinusoidal waves. It can be shown that shallow water theory is applicable for the investigated type of waves. Furthermore, we demonstrate how such a comparative, inter-methodological work contributes to the understanding of shoreline motion of long waves. The produced data set may serve as a novel benchmark for leading depression sinusoidal waves. The experimental study was conducted using an innovative pump-driven wave generator that is capable of generating arbitrarily long waves which might even exceed the length of the wave flume. Due to the complex control problem for the chosen type of wave generator, spurious over-riding small-scale waves were unavoidable in some of the experiments. The numerical simulations were carried out with a one-dimensional Runge-Kutta discontinuous Galerkin (RKDG) non-linear shallow water model. It incorporates a high fidelity wetting and drying scheme. The sinusoidal waves are generated in a constant depth section attached to a linearly sloping beach, have periods between 20 and 100 seconds and surf similarity parameters between 4.4 and 15.6. In a first qualitative analysis the evolution of the runup elevation and velocity is compared. In order to quantify analytical, numerical and experimental data, the wave similarity measured by the Brier score, maximum run-up and run-down height, as well as run-up/run-down velocities are utilized as metrics. As a starting point, periodic and non-periodic clean sinusoidal waves are compared numerically to rule out differences due to the single sinusoidal wave generation in the wave flume. On further analysis, significant differences in experimental and analytically expected values are observed. However, with the
NASA Astrophysics Data System (ADS)
Barbosa, Filipe J.; Skews, Beric W.
1997-05-01
Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was
NASA Astrophysics Data System (ADS)
Dineva, Petia; Rangelov, Tsviatko
2016-12-01
Elastic wave scattering by cracks at macro- and nano-scale in anisotropic plane under conditions of plane strain is studied in this work. Furthermore, time-harmonic loads due to incident plane longitudinal P- or shear SV- wave are assumed to hold. In a subsequent step, the elastodynamic fundamental solution for general anisotropic continua derived in closed-form via the Radon transform is implemented in a numerical scheme based on the traction boundary integral equation method (BIEM). The surface elasticity effect in the case of nano-crack is taken into consideration via non-classical boundary condition along the crack surface proposed by Gurtin and Murdoch [1]. The numerical results obtained herein reveal substantial differences between anisotropic materials containing a macro- and a nano-crack in terms of their dynamic stress response, where the latter case demonstrates clearly the strong influence of the size-effects. Finally, these types of examples serve to illustrate the present approach and to show its potential for evaluating the stress concentration fields (SCF) inside cracked nanocomposites. The obtained results concern the reliability and safety of the advancing nanomaterials.
Phase-shifting point diffraction interferometer
Medecki, Hector
1998-01-01
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.
Phase-shifting point diffraction interferometer
Medecki, H.
1998-11-10
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.
Glenn, Jason; Chattopadhyay, Goutam; Edgington, Samantha F; Lange, Andrew E; Bock, James J; Mauskopf, Philip D; Lee, Adrian T
2002-01-01
Far-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy. The optimization of integrating cavity designs is required for achieving the highest possible sensitivity for these arrays. We report numerical simulations of the electromagnetic fields in integrating cavities with an infinite plane-parallel geometry formed by a solid reflecting backshort and the back surface of a feedhorn array block. Performance of this architecture for the bolometer array camera (Bolocam) for cosmology at a frequency of 214 GHz is investigated. We explore the sensitivity of absorption efficiency to absorber impedance and backshort location and the magnitude of leakage from cavities. The simulations are compared with experimental data from a room-temperature scale model and with the performance of Bolocam at a temperature of 300 mK. The main results of the simulations for Bolocam-type cavities are that (1) monochromatic absorptions as high as 95% are achievable with <1% cross talk between neighboring cavities, (2) the optimum absorber impedances are 400 ohms/sq, but with a broad maximum from approximately 150 to approximately 700 ohms/sq, and (3) maximum absorption is achieved with absorber diameters > or = 1.5 lambda. Good general agreement between the simulations and the experiments was found.
NASA Astrophysics Data System (ADS)
Khurana, Aarti; Tomar, S. K.
2008-04-01
Reflection and transmission phenomena of a plane longitudinal displacement wave impinging obliquely at a plane interface between a micropolar elastic solid half-space and a chiral elastic solid half-space are investigated. The incident wave is assumed to be striking at the plane interface after propagating through the micropolar elastic solid half-space. The reflection and transmission coefficients are obtained by utilizing two possible sets of boundary conditions, for a specific model and there values corresponding to two boundary conditions are also compared graphically. The effect of chirality parameter on various reflection and transmission coefficients have been noticed and shown graphically. Results of Lakhtakia et al. [Reflection of elastic plane waves at a planar achiral-chiral interface, Journal of the Acoustical Society of America 87 (1990) 2314-2318] and Miklowitz [The Theory of Elastic Waves and Waveguides, North-Holland, New York, 1978] have also been reduced as special cases from the present formulation.
NASA Astrophysics Data System (ADS)
Narayan Vaidya, Arvind; Barbosa da Silva Filho, Pedro
1999-09-01
The Green function for a charged spin- 1/2 particle with anomalous magnetic moment in the presence of a plane-wave external electromagnetic field is calculated and shown to be simply related to the free-particle one.
Seismic velocities at the core-mantle boundary inferred from P waves diffracted around the core
NASA Astrophysics Data System (ADS)
Sylvander, Matthieu; Ponce, Bruno; Souriau, Annie
1997-05-01
The very base of the mantle is investigated with core-diffracted P-wave (P diff) travel times published by the International Seismological Centre (ISC) for the period 1964-1987. Apparent slownesses are computed for two-station profiles using a difference method. As the short-period P diff mostly sample a very thin layer above the core-mantle boundary (CMB), a good approximation of the true velocity structure at the CMB can be derived from the apparent slownesses. More than 27000 profiles are built, and this provides an unprecedented P diff sampling of the CMB. The overall slowness distribution has an average value of 4.62 s/deg, which corresponds to a velocity more than 4% lower than that of most mean radial models. An analysis of the residuals of absolute ISC P and P diff travel times is independently carried out and confirms this result. It also shows that the degree of heterogeneities is significantly higher at the CMB than in the lower mantle. A search for lateral velocity variations is then undertaken; a first large-scale investigation reveals the presence of coherent slowness anomalies of very large dimensions of the order of 3000 km at the CMB. A tomographic inversion is then performed, which confirms the existence of pronounced (±8-10%) lateral velocity variations and provides a reliable map of the heterogeneities in the northern hemisphere. The influence of heterogeneity in the overlying mantle, of noise in the data and of CMB topography is evaluated; it seemingly proves minor compared with the contribution of heterogeneities at the CMB. Our results support the rising idea of a thin, low-velocity laterally varying boundary layer at the base of the D″ layer. The two principal candidate interpretations are the occurrence of partial melting, or the presence of a chemically distinct layer, featuring infiltrated core material.
NASA Astrophysics Data System (ADS)
Kilcrease, D. P.; Brookes, S.
2013-12-01
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less
Strong reduction of the coercivity by a surface acoustic wave in an out-of-plane magnetized epilayer
NASA Astrophysics Data System (ADS)
Thevenard, L.; Camara, I. S.; Prieur, J.-Y.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.
2016-04-01
Inverse magnetostriction is the effect by which magnetization can be changed upon application of stress/strain. A strain modulation may be created electrically by exciting interdigitated transducers to generate surface acoustic waves (SAWs). Hence SAWs appear as a possible route towards induction-free undulatory magnetic data manipulation. Here we demonstrate experimentally on an out-of-plane magnetostrictive layer a reduction of the coercive field of up to 60 % by a SAW, over millimetric distances. A simple model shows that this spectacular effect can be partly explained by the periodic lowering of the strain-dependent domain nucleation energy by the SAW. This proof of concept was done on (Ga,Mn)(As,P), a magnetic semiconductor in which the out-of-plane magnetic anisotropy can be made very weak by epitaxial growth; it should guide material engineering for all-acoustic magnetization switching.
Pressure-induced quenching of the charge-density-wave state observed by x-ray diffraction
Sacchetti, A.
2010-05-03
We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe{sub 3} and CeTe{sub 3} compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced quenching of the CDW phase. We observe subtle differences between the chemical and mechanical compression of the lattice. We account for these with a scenario where the effective dimensionality in these CDW systems is dependent on the type of lattice compression and has a direct impact on the degree of Fermi surface nesting and on the strength of fluctuation effects.
NASA Astrophysics Data System (ADS)
De Santi, Francesca; Fraternale, Federico; Tordella, Daniela
2016-03-01
In this study we analyze the phase and group velocity of three-dimensional linear traveling waves in two sheared flows: the plane channel and the wake flows. This was carried out by varying the wave number over a large interval of values at a given Reynolds number inside the ranges 20-100, 1000-8000, for the wake and channel flow, respectively. Evidence is given about the possible presence of both dispersive and nondispersive effects which are associated with the long and short ranges of wavelength. We solved the Orr-Sommerfeld and Squire eigenvalue problem and observed the least stable mode. It is evident that, at low wave numbers, the least stable eigenmodes in the left branch of the spectrum behave in a dispersive manner. By contrast, if the wave number is above a specific threshold, a sharp dispersive-to-nondispersive transition can be observed. Beyond this transition, the dominant mode belongs to the right branch of the spectrum. The transient behavior of the phase velocity of small three-dimensional traveling waves was also considered. Having chosen the initial conditions, we then show that the shape of the transient highly depends on the transition wavelength threshold value. We show that the phase velocity can oscillate with a frequency which is equal to the frequency width of the eigenvalue spectrum. Furthermore, evidence of intermediate self-similarity is given for the perturbation field.
Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.
Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper
2014-07-28
We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.
Spin-wave resonance in (Ga,Mn)As thin films: Probing in-plane surface magnetic anisotropy
NASA Astrophysics Data System (ADS)
Puszkarski, H.; Tomczak, P.
2015-05-01
We show that recent spin-wave resonance studies of (Ga,Mn)As thin films performed by Liu et al. [Phys. Rev. B 75, 195220 (2007), 10.1103/PhysRevB.75.195220] reveal a substantial increase in the in-plane uniaxial anisotropy at the film surface with respect to the bulk value (surface uniaxial anisotropy field H2∥ surf=305 Oe against the bulk value H2∥ bulk=77 Oe). At the same time, the cubic anisotropy at the film surface proves substantially lower than in the bulk (H4∥ surf=39 Oe against H4∥ bulk=197 Oe).
Zhang, Vanessa Li; Di, Kai; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Yu, Jiawei; Yoon, Jungbum; Qiu, Xuepeng; Yang, Hyunsoo
2015-07-13
The nonreciprocal propagation of spin waves in an ultrathin Pt/Co/Ni film has been measured by Brillouin light scattering. The frequency nonreciprocity, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), has a sinusoidal dependence on the in-plane angle between the magnon wavevector and the applied magnetic field. The results, which are in good agreement with analytical predictions reported earlier, yield a value of the DMI constant which is the same as that obtained previously from a study of the magnon dispersion relations. We have demonstrated that our magnon-dynamics based method can experimentally ascertain the DMI constant of multilayer thin films.
Lamb waves propagation in elastic plane layers with a joint strip.
Predoi, Mihai Valentin; Rousseau, Martine
2005-06-01
The Lamb waves are used for the ultrasonic characterization of welds because of their relative long-range propagation. In this paper, a simplified model of a weld-strip between two identical semi-infinite elastic layers is investigated. The reflected and transmitted ultrasonic fields are expressed by modal series whose coefficients are obtained by application of orthogonality relation. Comparisons with solutions obtained by finite elements wave propagation simulations are made. The energy balance between the incident and the scattered waves is also used to verify the accuracy of the obtained modal amplitudes.
2014-04-01
Chicago , San Francisco, 1996 6. Savitsky, Daniel and Brown, P.W., “Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water...20593-7356 Attn: David Shepard United States Coast Guard RDT&E Division 2100 Second Street, SW STOP 7111 Washington, DC 20593-7111 Attn: Frank
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
Zhao, B.B.; Ertekin, R.C.; Duan, W.Y.
2015-02-15
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.
Comparison of designs of off-axis Gregorian telescopes for millimeter-wave large focal-plane arrays.
Hanany, Shaul; Marrone, Daniel P
2002-08-01
We compare the diffraction-limited field of view (FOV) provided by four types of off-axis Gregorian telescopes: the classical Gregorian, the aplanatic Gregorian, and the designs that cancel astigmatism and both astigmatism and coma. The analysis is carried out with telescope parameters that are appropriate for satellite and balloonborne millimeter- and submillimeter-wave astrophysics. We find that the design that cancels both coma and astigmatism provides the largest flat FOV, approximately 21 square deg. We also find that the FOV can be increased by approximately 15% by means of optimizing the shape and location of the focal surface.
Colavita, E.; Hacyan, S.
2014-03-15
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.
Optical scattering analysis of the diffraction distortion of a two-dimensional reflection grating.
Teng, Shuyun; Zhang, Junchao; Cheng, Chuanfu
2009-08-10
Theoretical and experimental studies of the diffraction of a two-dimensional reflection grating are performed in this paper. Based on the theory of optical scattering, the light field in the Fraunhofer diffraction region is deduced, and the general expression of the diffraction field is given in the form of the wave vectors of the diffracted wave and the incident wave. Then the coordinate of the diffraction order is obtained. The calculation results show that the diffraction distortion of the grating appears when the grating is illuminated by the oblique incident light wave and the distortion is restricted on the diffraction of the grids varying along the direction perpendicular to the plane of incidence. The orbit equation satisfied by the distortion diffraction orders is presented. The experimental results verify adequately this diffraction distortion rule of the grating, and they agree very well with the theoretical results.
NASA Astrophysics Data System (ADS)
Shi, Yu-Lei; Zhou, Qing-Li; Zhang, Cun-Lin
2009-12-01
The spatiotemporal and spectral characteristics of ultrawide-band terahertz pulses after passing through a Fresnel lens are studied by using the scalar diffraction theory. The simulation shows that the transmitted terahertz waveforms compress with increasing propagation distance, and the multi-frequency focusing phenomenon at different focal points is observed. Additionally, the distribution of terahertz fields in a plane perpendicular to the axis is also discussed, and it is found that the diffraction not only induces focusing on-axis but also inhibits focusing at off-axis positions. Therefore, the Fresnel lens may be a useful alternative approach to being a terahertz filter. Moreover, the terahertz pulses travelling as a basic mode of a Gaussian beam are discussed in detail.
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Wang, Yirui; Liang, Jianwen
2016-06-01
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
Submillimeter wave survey of the galactic plane. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Cheung, L. H.
1980-01-01
The survey measured, over virtually the entire galactic plane, the distribution and basic physical conditions of the coolest dust component of the interstellar medium. The instrument designed for observations of extended, low surface brightness continuum emission consisted of a balloon borne, gyro stablized, 1.2 m Cassegrain telescope and a liquid cooled photometer. The design, integration, tests, and flight operation of the survey are presented.
Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo
2013-04-01
Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
Pérez-Jordá, José M
2011-11-28
A series of improvements for the solution of the three-dimensional Schrödinger equation over a method introduced by Gygi [F. Gygi, Europhys. Lett. 19, 617 (1992); F. Gygi, Phys. Rev. B 48, 11692 (1993)] are presented. As in the original Gygi's method, the solution (orbital) is expressed by means of plane waves in adaptive coordinates u, where u is mapped from Cartesian coordinates, u=f(r). The improvements implemented are threefold. First, maps are introduced that allow the application of the method to atoms and molecules without the assistance of the supercell approximation. Second, the electron-nucleus singularities are exactly removed, so that pseudo-potentials are no longer required. Third, the sampling error during integral evaluation is made negligible, which results in a true variational, second-order energy error procedure. The method is tested on the hydrogen atom (ground and excited states) and the H(2)(+) molecule, resulting in milli-Hartree accuracy with a moderate number of plane waves.
Two true surface acoustic waves and other acoustic modes in (110) plane of Li2B4O7 substrate
NASA Astrophysics Data System (ADS)
Zhang, Victor Y.; Lefebvre, J. E.; Gryba, T.
1999-09-01
The surface acoustic waves (SAWs) and other acoustic modes propagating in the (110) plane of Li2B4O7 are investigated by means of the effective surface permittivity (ESP). It is demonstrated that the velocity of all piezoactive SAWs, both true and pseudo, as well as surface skimming bulk waves (SSBWs) can be numerically determined by computing the ESP as a function of acoustic trace slowness. A physical phenomenon not reported has been found for certain propagation directions, namely, simultaneous existence of two true SAWs, both being of the generalized Rayleigh type, together with a pseudo SAW of similar polarization. Propagation velocity, electromechanical coupling coefficient, and decay factor have been verified and confirmed by using two different sets of material constants and two numerical methods. The obtained values and accuracy of SAWs parameters are compared, and the validity conditions discussed. The generalized slowness diagram, plotted for the sagittal plane, enables to determine the total number of SSBW and to interpret the depth penetration properties of SAW. The Nyquist diagram of the ESP is shown to be a more helpful form for identifying a pseudo SAW and for distinguishing it from a SSBW.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; Cheng, Hai-Ping
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.
On the evolution of a rogue wave along the orthogonal direction of the (t, x)-plane
NASA Astrophysics Data System (ADS)
Yuan, Feng; Qiu, Deqin; Liu, Wei; Porsezian, K.; He, Jingsong
2017-03-01
The localization characters of the first-order rogue wave (RW) solution u of the Kundu-Eckhaus equation is studied in this paper. We discover a full process of the evolution for the contour line with height c2 + d along the orthogonal direction of the (t, x)-plane for a first-order RW |u|2: A point at height 9c2 generates a convex curve for 3c2 ≤ d < 8c2, whereas it becomes a concave curve for 0 < d < 3c2, next it reduces to a hyperbola on asymptotic plane (i.e. equivalently d = 0), and the two branches of the hyperbola become two separate convex curves when -c2 < d < 0 , and finally they reduce to two separate points at d = -c2 . Using the contour line method, the length, width, and area of the RW at height c2 + d(0 < d < 8c2) , i.e. above the asymptotic plane, are defined. We study the evolutions of three above-mentioned localization characters on d through analytical and visual methods. The phase difference between the Kundu-Eckhaus and the nonlinear Schrodinger equation is also given by an explicit formula.
Wave propagation and phase retrieval in Fresnel diffraction by a distorted-object approach
Xiao Xianghui; Shen Qun
2005-07-15
An extension of the far-field x-ray diffraction theory is presented by the introduction of a distorted object for calculation of coherent diffraction patterns in the near-field Fresnel regime. It embeds a Fresnel-zone construction on an original object to form a phase-chirped distorted object, which is then Fourier transformed to form a diffraction image. This approach extends the applicability of Fourier-based iterative phasing algorithms into the near-field holographic regime where phase retrieval had been difficult. Simulated numerical examples of this near-field phase retrieval approach indicate its potential applications in high-resolution structural investigations of noncrystalline materials.
AdS/QCD holographic wave function for the ρ meson and diffractive ρ meson electroproduction.
Forshaw, J R; Sandapen, R
2012-08-24
We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.
Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard
2013-11-05
Quantum-chemical computations of solids benefit enormously from numerically efficient plane-wave (PW) basis sets, and together with the projector augmented-wave (PAW) method, the latter have risen to one of the predominant standards in computational solid-state sciences. Despite their advantages, plane waves lack local information, which makes the interpretation of local densities-of-states (DOS) difficult and precludes the direct use of atom-resolved chemical bonding indicators such as the crystal orbital overlap population (COOP) and the crystal orbital Hamilton population (COHP) techniques. Recently, a number of methods have been proposed to overcome this fundamental issue, built around the concept of basis-set projection onto a local auxiliary basis. In this work, we propose a novel computational technique toward this goal by transferring the PW/PAW wavefunctions to a properly chosen local basis using analytically derived expressions. In particular, we describe a general approach to project both PW and PAW eigenstates onto given custom orbitals, which we then exemplify at the hand of contracted multiple-ζ Slater-type orbitals. The validity of the method presented here is illustrated by applications to chemical textbook examples-diamond, gallium arsenide, the transition-metal titanium-as well as nanoscale allotropes of carbon: a nanotube and the C60 fullerene. Remarkably, the analytical approach not only recovers the total and projected electronic DOS with a high degree of confidence, but it also yields a realistic chemical-bonding picture in the framework of the projected COHP method.
Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors
NASA Astrophysics Data System (ADS)
Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir
2014-03-01
Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.
NASA Astrophysics Data System (ADS)
Beketaeva, A. O.; Moisseyeva, Ye. S.; Naimanova, A. Zh.
2016-03-01
A supersonic air flow in a plane channel with a transverse turbulent jet of hydrogen injected through a slot on the bottom wall is simulated. The algorithm for solving the Favre-averaged Navier-Stokes equations for the flow of a perfect multispecies gas on the basis of the WENO scheme is proposed. The main attention is paid to the interaction of the shock-wave structure with the boundary layers on the upper and lower duct walls under the conditions of an internal turbulent flow. Namely, a detailed study of the structure of the flow is done, and separation and mixing depending on the jet slot width are investigated. It is found that in addition to well-known shock-wave structures produced by the interaction of the free stream with the transverse jet and the bow shock interaction with the boundary layers near the walls, an additional system of shock waves and the flow separation arise on the bottom wall downstream at some distance from the jet. The comparison with the experimental data is performed.
Buzalewicz, Igor; Wieliczko, Alina; Podbielska, Halina
2011-10-24
The novel optical system based on converging spherical wave illumination for analysis of bacteria colonies diffraction patterns, is proposed. The complex physical model of light transformation on bacteria colonies in this system, is presented. Fresnel diffraction patterns of bacteria colonies Escherichia coli, Salmonella enteritidis, Staphylococcus aureus grown in various conditions, were examined. It was demonstrated that the proposed system enables the characterization of morphological changes of colony structures basing on the changes of theirs Fresnel diffraction patterns.
Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu
2015-05-01
The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.
NASA Astrophysics Data System (ADS)
Jang, Juhi; Kim, Eun Heui
2016-01-01
We consider a configuration where a planar shock reflects and diffracts as it hits a semi-infinite rigid screen. The diffracted reflected shock meets the diffracted expansion wave, created by the incident shock that does not hit the screen, and changes continuously from a shock into an expansion. The governing equation changes its type and becomes degenerate as the wave changes continuously from a shock to an expansion. Furthermore the governing equation has multiple free boundaries (transonic shocks) and an additional degenerate sonic boundary (the expansion wave). We develop an analysis to understand the solution structure near which the shock strength approaches zero and the shock turns continuously into an expansion wavefront, and show the existence of the global solution to this configuration for the nonlinear wave system. Moreover we provide an asymptotic analysis to estimate the position of the change of the wave, and present intriguing numerical results.
NASA Astrophysics Data System (ADS)
Jezzine, K.; Lhémery, A.
2006-03-01
The Semi-Analytic Finite Element method (SAFE) has been used to model the propagation of ultrasonic waves guided (GW) by a structure and radiated at the guiding surface, a classical configuration for nondestructive testing (NDT) of large structures. Here, the SAFE method is derived to deal with configurations where ultrasonic source / receiver are mounted on the guide section. It allows to predict very efficiently amplitudes and waveforms of propagating, inhomogeneous and evanescent modes in such configurations. The model is used to study transducer diffraction effects and their implications to GW-NDT.
NASA Astrophysics Data System (ADS)
Hendaoui, Nordine; Mani, Aladin; Liu, Ning; Tofail, Syed M.; Silien, Christophe; Peremans, André
2017-01-01
A method is proposed to overcome the diffraction limit of spatial resolution in infrared microscopy. To achieve this, standing waves in an attenuated total reflection configuration were generated to spatially modulate the absorbance of adsorbate vibrational transitions. A numerical simulation was undertaken. It showed that chemical imaging with a spatial resolution of approximately 100 nm is achievable in the case of self-assembled patterns (ofoctdecyltrichlorosilane [CH3-(CH2)17-SiCl3]), when probing the methyl modes located near 3.5 micrometres.
Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow
NASA Astrophysics Data System (ADS)
Barkley, Dwight
1990-06-01
A continuous range of intermediate boundary conditions is defined and studied using bifurcation theory. Based only on previous numerical solutions to the Navier-Stokes equations at constant mean flux and constant mean pressure gradient, it is shown that the finite-amplitude steady waves must have a double-zero eigenvalue at some intermediate boundary condition. From this a unifying picture emerges for the dynamics near the limit point in Reynolds number, and specific predictions are made for finite-amplitude solutions to the Navier-Stokes equations. These predictions include the existence of a homicide orbit and a degenerate Hopf bifurcation.
A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
NASA Technical Reports Server (NTRS)
Kouyoumjian, R. G.; Pathak, P. H.
1974-01-01
A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficient remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. Our method is based on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray-fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries.
NASA Astrophysics Data System (ADS)
Agueny, Hicham
2015-07-01
We present results for single and double electron captures in intermediate energies H+ and 2H+ projectiles colliding with a helium target. The processes under investigations are treated using a nonperturbative semiclassical approach in combination with Eikonal approximation to calculate the scattering differential cross sections. The latter reveals pronounced minima and maxima in the scattering angles, in excellent agreement with the recent experimental data. It turns out that the present structure depends strongly on the projectile energy and shows only slight variations with different capture channels. The observed structure demonstrates the analogy of atomic de Broglie's matter-wave scattering with λd B=1.3 -3.2 ×10-3 a.u. and Fraunhofer-type diffraction of light waves.
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Kim, Jong-Ki; Cho, Jin-Ho; Lim, Jae-Hong
2016-09-01
With the advent of coherent X-ray sources, X-ray refraction has begun to be utilized for X-ray imaging of unprecedented sensitivity. The aim of this study was to develop a wave propagation simulator that provides a map of X-ray refraction after passing through an object. We applied the Fresnel diffraction integral for calculating the propagated wave and then obtained the refraction map by differentiating the phase in the refraction-analyzing direction. The simulation was validated by comparing the computed tomography (CT) reconstruction of a virtual phantom with its map of refractive index: the deviations were below 0.7% for soft tissues under our test condition. The simulator can be used for testing and developing highly-sensitive X-ray imaging techniques based on X-ray refraction analysis prior to experimentation.
NASA Astrophysics Data System (ADS)
Fujimori, A.; Minami, F.; Tsuda, N.
1980-10-01
Electronic energy bands have been calculated for CeH2 and CeH3 using the augmented-plane-wave method and have been fitted by the linear-combination-of-atomic-orbitals interpolation scheme. The partial densities of states and the numbers of electrons on atomic orbitals indicate that hydrogen in CeH2 is almost anionlike. When going from CeH2 to CeH3, shallow bonding levels are found to form between the third hydrogen state and conduction electrons of CeH2, other features of CeH2 being little affected by it. Thus the rare-earth dihydrides are regarded as ionic compounds similar to the saline-element dihydrides except for the presence of d-like conduction electrons.
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
NASA Astrophysics Data System (ADS)
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
Curved-space trace, chiral, and Einstein anomalies from path integrals, using flat-space plane waves
NASA Astrophysics Data System (ADS)
Ceresole, A.; Pizzochero, P.; van Nieuwenhuizen, P.
1989-03-01
We show that the gravitational trace and chiral anomalies can be computed from the measure by using the same general flat-space methods as used for nongravitational anomalies. No heat-kernel methods, zeta-function regularization, point-splitting techniques, etc., are needed, although they may be used and then simplify the algebra. In particular, we claim that it is not necessary to insert factors of g1/4 which are often added on grounds of covariance, since one-loop anomalies are local objects, while the trace of the Jacobian of the measure is a purely mathematical object which can be evaluated whether or not one has even heard about general relativity. We also show that the trace operation is cyclic by performing two different computations of the Einstein anomaly: once with the regulator in front of the Jacobian and once in the back. In both cases we obtain total derivatives on a plane-wave basis.
NASA Astrophysics Data System (ADS)
Marx, Egon
2007-12-01
The behavior of the field components near the edge has been shown to be that of the static fields, which is derived here without rigor for an infinite wedge. Fields scattered by a finite dielectric wedge illuminated by an arbitrary plane monochromatic wave are computed using either singular or hypersingular integral equations (SIEs or HIEs), derived by the single integral equation method. Field components are then computed near the edge of a finite wedge. Longitudinal components of the fields behave like constants, other components of the electric field behave like those in the transverse magnetic mode, and other components of the magnetic field behave like those in the transverse electric mode. Exceptions occur when approaching the wedge along the bisector. Boundary functions and transverse field components computed with SIEs rise more sharply than predicted approaching the edge after a range in which the agreement with those computed with HIEs is good.
Spectral Solution of the Helmholtz and Paraxial Wave Equations and Classical Diffraction Formulae
2004-03-01
Young’s ideas about interference. The Huygens-Fresnel principle was placed on a firm mathematical basis in the work of Gustav Kirchoff (7). Kirchoff’s...663. 8. Sommerfeld, A. “Mathematische Theorie der Diffraction,” Math. Ann. 1896, 47, 317. 9. Wolf, E.; Marchand, E. W. “Comparison of the Kirchhoff
Solving conical diffraction grating problems with integral equations.
Goray, Leonid I; Schmidt, Gunther
2010-03-01
Off-plane scattering of time-harmonic plane waves by a plane diffraction grating with arbitrary conductivity and general surface profile is considered in a rigorous electromagnetic formulation. Integral equations for conical diffraction are obtained involving, besides the boundary integrals of the single and double layer potentials, singular integrals, the tangential derivative of single-layer potentials. We derive an explicit formula for the calculation of the absorption in conical diffraction. Some rules that are expedient for the numerical implementation of the theory are presented. The efficiencies and polarization angles compared with those obtained by Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is found to be accurate and efficient for solving off-plane diffraction problems including high-conductive gratings, surfaces with edges, real profiles, and gratings working at short wavelengths.
Second-order diffraction forces on an array of vertical cylinders in bichromatic bidirectional waves
Vazquez, J.H.; Williams, A.N.
1995-02-01
A complete second-order solution is presented for the hydrodynamic forces due to the action of bichromatic, bidirectional waves on an array of bottom-mounted, surface-piercing cylinders of arbitrary cross section in water of uniform finite depth. Based on the constant structural cross section, the first-order problem is solved utilizing a two-dimensional Green function approach, while an assisting radiation potential approach is used to obtain the hydrodynamic loads due to the second-order potential. Results are presented which illustrate the influence of wave directionality on the second-order sum and difference frequency hydrodynamic forces on a two-cylinder array. It is found that wave directionality may have a significant influence on the second-order hydrodynamic forces on these arrays and that the assumption of unidirectional waves does not always lead to conservative estimates of the second-order loading.
Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.
Gómez-Díaz, J S; Esquius-Morote, M; Perruisseau-Carrier, J
2013-10-21
An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-01-01
This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg-1 when the incident power density is at the reference level of ICNIRP guideline for general public environment.
NASA Technical Reports Server (NTRS)
Barnes, A.
1979-01-01
An exact solution of the kinetic and electromagnetic equations for a large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma is presented. The solution gives simple relations among the magnetic-field strength, density, stress tensor, and plasma velocity, all of which are measurable in the interplanetary plasma. These relations are independent of the electron and ion velocity distributions, subject to certain restrictions on 'high-velocity tails.' The magnetic field of the wave is linearly polarized. The wave steepens to form a shock much as the analogous waves of MHD theory do.
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
NASA Astrophysics Data System (ADS)
Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony
2016-07-01
Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.
320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging
NASA Technical Reports Server (NTRS)
Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.
2012-01-01
A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.
NASA Astrophysics Data System (ADS)
Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco
2014-05-01
The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no
NASA Astrophysics Data System (ADS)
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
NASA Astrophysics Data System (ADS)
Hovem, Jens M.; Knobles, D. P.
2002-11-01
The paper describes a range-dependent propagation model based on a combination of range-dependent ray tracing and plane-wave bottom responses. The ray-tracing module of the model determines all the eigenrays between any source/receiver pairs and stores the ray histories. The received wave field is then synthesized by adding the contributions of all the eigenrays, taking into account the reflections from the bottom and the surface. The model can treat arbitrarily varying bottom topography and a layered elastic bottom as long as the layers are parallel. In the current version, the bottom is modeled with a sedimentary layer over an elastic half space, but more complicated structures are easily implemented. The new model has been tested against other models on several benchmark problems and also applied in the analysis and modeling of up-slope and down-slope propagation data recorded on a 52-element center-tapered array that was deployed at two locations about 70 miles east of Jacksonville, FL. The paper presents the results of these tests with an assessment of the potential use in connection with geo-acoustic inversion of range-dependent and elastic scenarios. [Work supported by Applied Research Laboratories, The University of Texas.
Diffraction of Harmonic Flexural Waves in a Cracked Elastic Plate Carrying Electrical Current
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Hasanyan, Davresh; Librescu, iviu; Qin, Zhanming
2005-01-01
The scattering effect of harmonic flexural waves at a through crack in an elastic plate carrying electrical current is investigated. In this context, the Kirchhoffean bending plate theory is extended as to include magnetoelastic interactions. An incident wave giving rise to bending moments symmetric about the longitudinal z-axis of the crack is applied. Fourier transform technique reduces the problem to dual integral equations, which are then cast to a system of two singular integral equations. Efficient numerical computation is implemented to get the bending moment intensity factor for arbitrary frequency of the incident wave and of arbitrary electrical current intensity. The asymptotic behaviour of the bending moment intensity factor is analysed and parametric studies are conducted.
An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces
Antonakakis, T.; Craster, R. V.; Guenneau, S.; Skelton, E. A.
2014-01-01
An effective surface equation, that encapsulates the detail of a microstructure, is developed to model microstructured surfaces. The equations deduced accurately reproduce a key feature of surface wave phenomena, created by periodic geometry, that are commonly called Rayleigh–Bloch waves, but which also go under other names, for example, spoof surface plasmon polaritons in photonics. Several illustrative examples are considered and it is shown that the theory extends to similar waves that propagate along gratings. Line source excitation is considered, and an implicit long-scale wavelength is identified and compared with full numerical simulations. We also investigate non-periodic situations where a long-scale geometrical variation in the structure is introduced and show that localized defect states emerge which the asymptotic theory explains. PMID:24399920
Experimental investigation of shock wave diffraction over a single- or double-sphere model
NASA Astrophysics Data System (ADS)
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
NASA Technical Reports Server (NTRS)
Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.
1983-01-01
An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.
A new standing-wave-type linear ultrasonic motor based on in-plane modes.
Shi, Yunlai; Zhao, Chunsheng
2011-05-01
This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization.
Fraunhofer diffraction of atomic matter waves: electron transfer studies with a laser cooled target.
van der Poel, M; Nielsen, C V; Gearba, M A; Andersen, N
2001-09-17
We have constructed an apparatus combining the experimental techniques of cold target recoil ion momentum spectroscopy and a laser cooled target. We measure angle differential cross sections in Li(+)+Na-->Li+Na(+) electron transfer collisions in the keV energy regime with a momentum resolution of 0.12 a.u. yielding an order of magnitude better angular resolution than previous measurements. We resolve Fraunhofer-type diffraction patterns in the differential cross sections. Good agreement with predictions of the semiclassical impact parameter method is obtained.
NASA Astrophysics Data System (ADS)
Guzatov, D. V.; Gaida, L. S.; Afanas'ev, Anatolii A.
2008-12-01
The light pressure force acting on a spherical dielectric particle in the interference field of two plane monochromatic electromagnetic waves is studied in detail for different particle radii and angles of incidence of waves.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Yin, Xiao
2016-06-01
A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.
Geometrical-numerical approach to diffraction phenomena.
Bosch, S; Ferré-Borrull, J
2001-02-15
The calculation of diffracted fields is considered by means of a geometrical analysis of the incoming wave into semiperiodic zones in the aperture plane, followed by a numerical process for addition of the contributions corresponding to the semiperiodic zones. This general approach constitutes a novel interpretation of diffraction phenomena that permits exact evaluation of the mathematical expressions of diffraction theory and overcomes the limitations of any approximation. The method is illustrated by analysis of two important configuration in optics: the pinhole camera, for which we deduce the optimum radius for imaging, and the diffraction of a spherical converging wave through a circular aperture, from which we determine the limit of the validity of the Fraunhofer approximation (i.e., of the Airy pattern) and the influence of the obliquity factor.
NASA Astrophysics Data System (ADS)
Voss, D. E.; Koslover, R. A.; Cremer, C. D.; Silvestro, J.; Miner, L. M.
1990-05-01
The High Power Microwaves (HPM) susceptibility testing often requires irradiating test objects at the highest fluences possible. For aperture antennas, the highest fluences are generally found in the radiating near field region. For valid effects testing, the energy coupled to the object interior must accurately replicate that which would occur in a true weapon environment (plane wave illumination). Some believe that valid testing requires object placement at distances from the aperture exceeding 2 D squared/lambda (D=antenna effective diameter). Many also believe testing at farther away than 2 D squared/lambda guarantees plane wave-like coupling conditions. Neither view is correct. Testing in the reactive field region (less than lambda from the aperture) is generally invalid due to dominance of reactive coupling. For testing in the radiating near field, determination of validity is less trivial. An investigation was performed quantifying deviations from plane wave coupling. The measurements, using an instrumented Maverick missile in an anechoic chamber, and supported by theory, indicate conditions for which testing the Maverick missile accurately simulates plane wave coupling.
NASA Astrophysics Data System (ADS)
Baboly, Mohammadhosein Ghasemi; Soliman, Yasser; Su, Mehmet F.; Reinke, Charles M.; Leseman, Zayd C.; El-Kady, Ihab
2014-11-01
Plane wave expansion analyses that use the inverse rule to obtain the Fourier coefficients of the elastic tensor instead of the more conventional Laurent's rule, exhibit faster convergence rates for solid-solid phononic crystals. In this work, the band structure convergence of calculations using the inverse rule is investigated and applied to the case of high acoustic impedance contrast solid-solid phononic crystals, previously known for convergence difficulties. Results are contrasted to those obtained with the conventional plane wave expansion method. The inverse rule is found to converge at a much rate for all ranges of impedance contrast, and the ratio between the computational times needed to obtain a convergent band structure for a high-contrast solid-solid phononic crystal with the conventional plane wave expansion method using 1369 reciprocal lattice vectors is as large as 6800:1. This ratio decreases for material sets with lower impedance contrast; however, the inverse rule is still faster for a given error threshold for even the lowest impedance contrast phononic crystals reported in the literature. This convergence enhancement is a major factor in reconsidering the plane wave expansion method as an important tool in obtaining propagating elastic modes in phononic crystals.
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Er, Ali Oguz; Tang, Jau E-mail: prentzepis@ece.tamu.edu; Chen, Jie; Rentzepis, Peter M. E-mail: prentzepis@ece.tamu.edu
2014-09-07
Phonon propagation across the interface of a Cu/Ag(111) bilayer and transient lattice disorder, induced by a femtosecond 267 nm pulse, in Ag(111) crystal have been measured by means of time resolved X-ray diffraction. A “blast” force due to thermal stress induced by suddenly heated electrons is formed within two picoseconds after excitation and its “blast wave” propagation through the interface and Ag (111) crystal was monitored by the shift and broadening of the rocking curve, I vs. ω, as a function of time after excitation. Lattice disorder, contraction and expansion as well as thermal strain formation and wave propagation have also been measured. The experimental data and mechanism proposed are supported by theoretical simulations.
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-01-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions. PMID:27748413
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-10-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.
1986-02-01
the wave function (11.3) in the time dependent Schrodinger equation and operate from the left with 8 2Tr IT Jd6b ! de sine Y(,o.This leads to 0 0 c...8217 orientation, and agress well with recent close coupling calculations. A connection is also made with the recent semiclassical trajectory work of DD I FORMN...orientation, and agress well with recent close coupling calculations. A connection is also made with the recent semiclassical trajectory work of DePristo. The
Diffraction analysis of blazed transmission gratings with a modified extended scalar theory.
Wang, Huaijun; Kuang, Dengfeng; Fang, Zhiliang
2008-06-01
An alternative interpretation of the diffraction of blazed transmission gratings with moderate structure period is proposed according to a modified extended scalar theory (MEST). The diffraction field on the bottom facet of the grating is considered to be the interference of four subfields investigated in the problem of diffraction of a plane wave by an infinite half-plane. It is observed that MEST gives the total field that agrees with rigorous coupled-wave analysis (RCWA), and the result is more reliable than that of extended scalar theory (EST). The MEST is still a ray-optical-based approximation approach, and the region of validity is compared with EST and RCWA.
Elnabtity, Ali Mohamed Ali; Shabana, Waleed Mansour
2016-01-01
Background: Ultrasound-guided transversus abdominis plane (TAP) block has been used for intra- and post-operative analgesia during abdominal operations and for ureteric shock wave lithotripsy (SWL) as well. Aim: This study aimed at comparing ultrasound-guided unilateral versus bilateral TAP blocks as analgesic techniques for unilateral ureteric SWL. Settings and Design: Prospective randomized comparative study. Patients and Methods: Sixty patients scheduled for unilateral ureteric SWL were randomly allocated into two groups: Group (U) received unilateral TAP block in the form of 25 ml of bupivacaine 0.25% (i.e., 62.5 mg), and Group (B) received bilateral TAP blocks in the form of 25 ml of bupivacaine 0.25% (i.e., 62.5 mg) on each side. Statistical Analysis: This was performed using SPSS program version 19 ((IBM Corp., Armonk, NY, USA) and EP 16 program. Results: The mean values of intra- and post-procedural visual analog scale at different time intervals were around (30), which was statistically insignificant between groups (P > 0.05). There were no significant differences between groups regarding cardiopulmonary stability, postanesthesia care unit time, the total amount of rescue fentanyl and patient satisfaction scores (P > 0.05). There were no significant side effects in both groups. Conclusion: Ultrasound-guided unilateral TAP block is as safe and effective analgesic technique as bilateral TAP blocks during unilateral ureteric SWL. It can be used as the sole analgesic technique during ureteric SWL. PMID:27453645
Inertia–gravity wave radiation from the elliptical vortex in the f-plane shallow water system
NASA Astrophysics Data System (ADS)
Sugimoto, Norihiko
2017-04-01
Inertia–gravity wave (IGW) radiation from the elliptical vortex is investigated in the f-plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone–anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f. A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone–anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature.
Mellow, Tim; Kärkkäinen, Leo
2014-03-01
An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.
Rao, Ruizhong
2008-01-10
Numerical experiments are carried out for a plane wave propagating in the atmospheric turbulence for a weak to strong fluctuation condition, i.e., the Rytov index being in a large range of 2x10(-3) to 20. Mainly two categories of propagation events are explored for the same range of Rytov index. In one category the propagation distance and also the Fresnel length are kept fixed with the turbulence strength changing. In the other the turbulence strength is kept fixed with the distance changing. The statistical characteristics of the scintillation index, the maximum and minimum of the intensity, the fractal dimension of the intensity image, and the number density of the phase singularity are analyzed. The behaviors of the fractal dimension and the density of the phase singularity present obvious differences for the two categories of propagation. The fractal dimension depends both on the Rytov index and the Fresnel length. In both weak and strong fluctuation conditions the dimension generally increases with the Rytov index, but is at minimum at the onset region. The phase singularity density is coincident with the theoretical results under a weak fluctuation condition, and has a slowly increasing manner with the Rytov index in the strong fluctuation condition. The dependence on the Fresnel size is confident and there is no saturation for the phase singularity.
Bakker, J F; Paulides, M M; Christ, A; Kuster, N; van Rhoon, G C
2010-06-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR(wb)) and the peak 10 g spatial-averaged SAR (SAR(10g)). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR(wb)) and 58% (SAR(10g)) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR(wb) is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR(10g) values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
NASA Astrophysics Data System (ADS)
Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.
2009-02-01
The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).
Pérez-Jordá, José M
2010-01-14
A new method for solving the Schrödinger equation is proposed, based on the following details. First, a map u=u(r) from Cartesian coordinates r to a new coordinate system u is chosen. Second, the solution (orbital) psi(r) is written in terms of a function U depending on u so that psi(r)=/J(u)/(-1/2)U(u), where /J(u)/ is the Jacobian determinant of the map. Third, U is expressed as a linear combination of plane waves in the u coordinate, U(u)= sum (k)c(k)e(ik x u). Finally, the coefficients c(k) are variationally optimized to obtain the best energy, using a generalization of an algorithm originally developed for the Coulomb potential [J. M. Perez-Jorda, Phys. Rev. B 58, 1230 (1998)]. The method is tested for the radial Schrödinger equation in the hydrogen atom, resulting in micro-Hartree accuracy or better for the energy of ns and np orbitals (with n up to 5) using expansions of moderate length.
NASA Astrophysics Data System (ADS)
Bakker, J. F.; Paulides, M. M.; Christ, A.; Kuster, N.; van Rhoon, G. C.
2010-06-01
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SARwb) and the peak 10 g spatial-averaged SAR (SAR10g). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SARwb) and 58% (SAR10g) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SARwb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.
Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A
2015-02-01
This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.
Numerical integration of diffraction integrals for a circular aperture
NASA Astrophysics Data System (ADS)
Cooper, I. J.; Sheppard, C. J. R.; Sharma, M.
It is possible to obtain an accurate irradiance distribution for the diffracted wave field from an aperture by the numerical evaluation of the two-dimensional diffraction integrals using a product-integration method in which Simpson's 1/3 rule is applied twice. The calculations can be done quickly using a standard PC by utilizing matrix operations on complex numbers with Matlab. The diffracted wave field can be calculated from the plane of the aperture to the far field without introducing many of the standard approximations that are used to give Fresnel or Fraunhofer diffraction. The numerical method is used to compare the diffracted irradiance distribution from a circular aperture as predicted by Kirchhoff, Rayleigh-Sommerfeld 1 and Rayleigh-Sommerfeld 2 diffraction integrals.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
The dyadic diffraction coefficient for a curved edge
NASA Technical Reports Server (NTRS)
Kouyoumjian, R. G.; Pathak, P. H.
1974-01-01
A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficent remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. The method is on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved edge.
NASA Astrophysics Data System (ADS)
Tono, Yoko; Yomogida, Kiyoshi
1997-10-01
Seismograms of the June 9, 1994, Bolivian deep earthquake recorded at epicentral distances from 100° to 122° show a train of signals with predominant frequencies between 1 and 2 Hz after the arrivals of short-period diffracted P-waves (P diff). We investigate the origin of these signals following P diff by analyzing a total of 20 records from the IRIS broad-band network and the short-period network of New Zealand. The arrivals of late signals continue for over 100 s, that is two times longer than the estimated source duration of this event. Subsequent aftershocks, which cause the following signals, are not expected from the long-period records. These results indicate that the long continuation of short-period signals is not due to the source complexities. The signals following P diff have small incident angles, and their spectra show peaks at about the same frequencies. These characteristics of the following signals exclude the possibility that their origin is shallow structure such as the heterogeneities beneath the stations or upper mantle. P diff propagates a long distance within the heterogeneous region near the core-mantle boundary. We conclude that the short-period signals following the main P diff are scattered waves caused by small-scale heterogeneities near the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Abdelrazek, Yasser Abdelaziz
In this dissertation, a rigorous theoretical analysis of the optical guided-wave (OGW), surface acoustic wave (SAW), and AO Bragg interaction between the OGW and SAW in the ZnO/GaAs/AlGaAs composite waveguide is presented. High performance guided-wave AO Bragg cells operating at acoustic center frequencies of 800 MHz, 950 MHz, and most recently 1.1 GHz have been realized for the first time in ZnO/GaAs/AlGaAs composite waveguides. The emphasis of this dissertation is placed on the 1.1 GHz AO Bragg cells. The design and fabrication processes of the Bragg cells including the growth of GaAs/AlGaAs optical waveguides by liquid phase epitaxy and deposition of ZnO layers by rf sputtering technique are presented. The characterization of the AO Bragg cells consists of two parts. The first part concerns the characterization of the SAW, and includes the measurement of the SAW phase velocity, insertion loss, transducer conversion efficiency, -3 dB bandwidth, and propagation loss. The second part concerns the AO Bragg diffraction and includes the measurement of the AO -3 dB bandwidth, Bragg diffraction efficiency as a function of the rf power level, and incident light polarization. In addition, the design, fabrication, and measurement of integrated optic rf spectrum analyzers (IOSA) in ZnO/GaAs/AlGaAs composite waveguide are presented. The IOSA represents the first module that incorporates AO Bragg cell and a waveguide lens pair on a common GaAs substrate. The module consists of an input coupling waveguide lens, an AO Bragg cell, and a waveguide Fourier transform lens all integrated on a sample size of 23 mm x 7 mm. Both narrow and wide band IOSAs were realized using the double-electrode tilted -chirp transducers. Therefore, this wide band IOSA module provided 36 resolvable light spots or frequency channels. The results of this first IOSA on GaAs are respectable even when compared with the best IOSA fabricated on LiNbO _3. (Abstract shortened with permission of author.).
E. M. Forgan; Huecker, M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; von Zimmermann, M.; Hayden, S. M.
2015-12-09
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa_{2}Cu_{3}O_{6.54} at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO_{2} bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO_{2} planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO_{2} planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.
Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M
2013-04-30
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)
NASA Astrophysics Data System (ADS)
Aranda, Alfredo; Amigo, Nicolás; Ihle, Christian; Tamburrino, Aldo
2016-06-01
A method based on digital image correlation (DIC) is implemented for measuring the height of the roll waves developed in a non-Newtonian fluid flowing on an inclined channel. A projector and a high-resolution digital camera, placed vertically above the fluid surface, are used to project and record a random speckle pattern located on the free liquid surface, where the pattern is deformed due to the developed roll waves. According to the experimental geometry, the height of the roll waves associated to the out-of-plane deformation of the dots is obtained through a quantitative relationship between the experimental parameters and the in-plane displacement field in the flow direction. In terms of this, the out-of-plane deformation is found using a DIC criterion based on the speckle comparison between a reference image without the deformed pattern and an image with a deformed pattern. The maximum height of the roll waves computed with this technique is compared with the height measured using a lateral camera, with both results differing by <10% over the set of experimental instances.
Field implementation of geophysical diffraction tomography
Witten, A.J.; Stevens, S.S.
1984-01-01
Geophysical diffraction tomography is a new technique that shows promise as a tool for quantitative subsurface (below-ground) imaging. The approach being used is based upon the filtered backpropagation algorithm, which is a mathematical extension of the reconstruction software used in conventional X-ray CAT scanners. The difference between this method and existing methods is that the new algorithm rigorously accounts for diffraction effects through an exact inversion of the wave equation. This refinement is necessary in that it admits the use of acoustic and long-wavelength electromagnetic waves, allowing tomography to be taken from the laboratory to the field. ORNL's effort in geophysical diffraction tomography involves reducing the filtered backpropagation algorithm to practice. This requires the design and construction of field instrumentation as well as the development of an improved algorithm. The original algorithm requires the imaged region to be illuminated by plane waves. This requirement simplifies the algorithm but complicates its field implementation in that plane waves are difficult to generate. Consequently, ORNL has been working to generalize the filtered backpropagation algorithm to allow a broader range of incoming wave fields which can more easily be realized in the field. The instrumentation aspects involve the selection of appropriate sonic sources and receivers along with the development of a state-of-art, portable, computer-controlled, multichannel data acquisition system. 5 references, 6 figures.
Tinniswood, A D; Furse, C M; Gandhi, O P
1998-08-01
At certain frequencies, when the human head becomes a resonant structure, the power absorbed by the head and neck, when the body is exposed to a vertically polarized plane wave propagating from front to back, becomes significantly larger than would ordinarily be expected from its shadow cross section. This has possible implications in the study of the biological effects of electromagnetic fields. Additionally the frequencies at which these resonances occur are not readily predicted by simple approximations of the head in isolation. In order to determine these resonant conditions an anatomically based model of the whole human body has been used, with the finite-difference time-domain (FDTD) algorithm to accurately determine field propagation, specific absorption rate (SAR) distributions and power absorption in both the whole body and the head region (head and neck). This paper shows that resonant frequencies can be determined using two methods. The first is by use of the accurate anatomically based model (with heterogeneous tissue properties) and secondly using a model built from parallelepiped sections (for the torso and legs), an ellipsoid for the head and a cylinder for the neck. This approximation to the human body is built from homogeneous tissue the equivalent of two-thirds the conductivity and dielectric constant of that of muscle. An IBM SP-2 supercomputer together with a parallel FDTD code has been used to accommodate the large problem size. We find resonant frequencies for the head and neck at 207 MHz and 193 MHz for the isolated and grounded conditions, with absorption cross sections that are respectively 3.27 and 2.62 times the shadow cross section.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Theoretical study of the properties of X-ray diffraction moiré fringes. I
Yoshimura, Jun-ichi
2015-05-14
A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory, where the effect of the Pendellösung intensity oscillation on the moiré pattern is explained in detail. A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general.
A Comprehensive Set of Code Validation Data for Planing Boat Forces in Calm Water and Regular Waves
2007-10-01
been made in Log 0 k resistance prediction techniques for planing craft. Figure 22: Model 5658 non-dimensional resistance One method, developed by...boat hulls. The data obtained using the matrix method is well suited to analysis using the Almeter method of planing boat resistance prediction . REFERENCES...Almeter, John M., " Resistance Prediction of Planing Craft from Similar Craft using the Almeter Method," International Conference on High Speed
1983-01-01
r 2) it is not expected that these issues will pose serious problems. It appears that the %7 grid is of fundamental importance in the Hankel... invesion of pressue field data to obtain the parameters of the bottom. In this contwt it is of interest to geophysiciut and others who wih to...RECEIVER HEIGHT COMPENSATION A(k,) Figure V.1.1 The invesion procedure to estimate the plane wave reflection coefficient from the mul field Senerated
NASA Astrophysics Data System (ADS)
Min, Byeong June; Jeong, Hae Kyung; Lee, ChangWoo
2015-08-01
We studied via plane wave pseudopotential total-energy calculations within the local spin density approximation (LSDA) the electronic and the structural properties of amino acids (alanine, glycine, and histidine) attached to graphene oxide (GO) by peptide bonding. The HOMO-LUMO gap, the Hirshfeld charges, and the equilibrium geometrical structures exhibit distinctive variations that depend on the species of the attached amino acid. The GO-amino acid system appears to be a good candidate for a biosensor.
Mkrtchyan, A. R. Kocharyan, V. R.; Levonyan, L. V.; Khachaturyan, G. K.
2006-12-15
Fresnel X-ray diffraction from a concave crystal surface in the presence of a surface acoustic wave (SAW) has been considered for grazing angles of incidence in noncoplanar symmetric Laue geometry. It is shown that the main peak and diffraction satellites are focused at different distances from a crystal. The effect of deviation from the Bragg angle, the spectral line width, and the SAW amplitude on the X-ray diffraction pattern has been analyzed. It is established that the contrast of an X-ray diffraction pattern of an SAW in Bragg-Laue grazing geometry is related to the character of irregularities of the crystal surface, and the pattern details depend on the measurement mode. The sensitivity of the method is about a nanometer. The focal image of the SAW serves as a scale landmark for determining the crystal surface characteristics.
NASA Astrophysics Data System (ADS)
Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing
2009-07-01
Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55
Integrated Wide-Band Millimeter Wave Imaging System
2007-11-02
the propagation of EM waves. Its efficiency lies in the ability to propagate EM waves from one plane to another using Fast Fourier Transforms (FFTs...efficiencies, 7 we use 2D FDTD in near field calculations for each diffractive lenses and use 2D Fast Fourier Transform (FFT) to propagate each field...in Figure 8, we mathematically reconstructed a series of near field distribution slices based on Fourier optics theory, e.g., the plane wave angular
NASA Astrophysics Data System (ADS)
Farrell, Robert Michael
Many applications exist for InGaN/GaN laser diodes (LDs), including high-density optical data storage, laser-based projection displays, high-resolution laser printing, solid-state lighting, medical diagnostics, and chemical sensing. Although device performance continues to improve, current commercially-available InGaN/GaN LDs are still grown on the (0001) c-plane of the wurtzite crystal structure and their performance is nonetheless affected by the presence of polarization-related electric fields. As an alternative to conventional c-plane technologies, growth of InGaN/GaN LDs on nonpolar or semipolar orientations presents a viable approach to reducing or eliminating the issues associated with polarization-related electric fields. Despite these potential advantages, though, the lowest reported threshold current densities for nonpolar and semipolar LDs are still about 2 to 3 times higher than those reported for c-plane LDs. In this thesis, we discuss the growth, fabrication, and characterization of continuous-wave AlGaN-cladding-free (ACF) m-plane LDs with performance that is comparable to the best state-of-the-art c-plane LDs. In the first part of this thesis, the characterization of low-defect-density m-plane thin films and devices grown by metalorganic chemical vapor deposition is presented. The physical origin of the four-sided pyramidal hillocks commonly observed on m-plane thin films is identified and an understanding of these mechanisms is used to explain the impact of carrier gas and substrate misorientation on the morphological, structural, and optical properties of m-plane thin films and devices. In the second part of this thesis, several aspects of the development of a quick, self-aligned LD fabrication process are discussed. These include the implementation of relatively conventional fabrication technologies for routine device processing as well as the development of innovative approaches for improving the accuracy and reproducibility of facet cleaving
Circular common-path point diffraction interferometer.
Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan
2012-10-01
A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.
Issues in Optical Diffraction Theory.
Mielenz, Klaus D
2009-01-01
This paper focuses on unresolved or poorly documented issues pertaining to Fresnel's scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced
A vectorial ray-based diffraction integral for optical systems
NASA Astrophysics Data System (ADS)
Andreas, Birk
2015-09-01
The propagation of coherent laser light in optical systems is simulated by the vectorial ray-based diffraction integral (VRBDI) method which utilizes vectorial diffraction theory, ray aiming, differential ray tracing and matrix optics. On a global scale the method is not restricted to the paraxial approximation, whereas it is properly used for a local representation of the wavefront close to an aimed detection location. First, the field of a monochromatic continuous wave on an input plane is decomposed into spherical or plane wave components. Then, these components are represented by aimed ray tubes and traced through an optical system. Finally, the contributions are added coherently on an output plane whose position has to be chosen according to ray-aiming requirements. Provided that the apertures in the optical system are large with respect to the wavelength the results are fairly accurate.
NASA Astrophysics Data System (ADS)
Hodge, John
2009-11-01
In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.
Lu, Jian-Yu; Cheng, Jiqi; Wang, Jing
2006-10-01
A general-purpose high frame rate (HFR) medical imaging system has been developed. This system has 128 independent linear transmitters, each of which is capable of producing an arbitrary broadband (about 0.05-10 MHz) waveform of up to +/- 144 V peak voltage on a 75-ohm resistive load using a 12-bit/40-MHz digital-to-analog converter. The system also has 128 independent, broadband (about 0.25-10 MHz), and time-variable-gain receiver channels, each of which has a 12-bit/40-MHz analog-to-digital converter and up to 512 MB of memory. The system is controlled by a personal computer (PC), and radio frequency echo data of each channel are transferred to the same PC via a standard USB 2.0 port for image reconstructions. Using the HFR imaging system, we have developed a new limited-diffraction array beam imaging method with square-wave aperture voltage weightings. With this method, in principle, only one or two transmitters are required to excite a fully populated two-dimensional (2-D) array transducer to achieve an equivalent dynamic focusing in both transmission and reception to reconstruct a high-quality three-dimensional image without the need of the time delays of traditional beam focusing and steering, potentially simplifying the transmitter subsystem of an imager. To validate the method, for simplicity, 2-D imaging experiments were performed using the system. In the in vitro experiment, a custom-made, 128-element, 0.32-mm pitch, 3.5-MHz center frequency linear array transducer with about 50% fractional bandwidth was used to reconstruct images of an ATS 539 tissue-mimicking phantom at an axial distance of 130 mm with a field of view of more than 90 degrees. In the in vivo experiment of a human heart, images with a field of view of more than 90 degrees at 120-mm axial distance were obtained with a 128-element, 2.5-MHz center frequency, 0.15-mm pitch Acuson V2 phased array. To ensure that the system was operated under the limits set by the U.S. Food and Drug
NASA Astrophysics Data System (ADS)
Camara, I. S.; Croset, B.; Largeau, L.; Rovillain, P.; Thevenard, L.; Duquesne, J.-Y.
2017-01-01
Surface acoustic waves are used in magnetism to initiate magnetization switching, in microfluidics to control fluids and particles in lab-on-a-chip devices, and in quantum systems like two-dimensional electron gases, quantum dots, photonic cavities, and single carrier transport systems. For all these applications, an easy tool is highly needed to measure precisely the acoustic wave amplitude in order to understand the underlying physics and/or to optimize the device used to generate the acoustic waves. We present here a method to determine experimentally the amplitude of surface acoustic waves propagating on Gallium Arsenide generated by an interdigitated transducer. It relies on Vector Network Analyzer measurements of S parameters and modeling using the Coupling-Of-Modes theory. The displacements obtained are in excellent agreement with those measured by a very different method based on X-ray diffraction measurements.
Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2015-02-09
Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing
2016-06-01
Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.
NASA Astrophysics Data System (ADS)
Li, Jia; Chen, Feinan
2016-11-01
Based on the first-order Born approximation, formulas are derived for the correlation between intensity fluctuations (CIF) of light generated by a Young’s diffractive electromagnetic wave scattered by a spatially quasi-homogeneous (QH), anisotropic medium. It is shown that the CIF of the scattered field can be written as the summation of the Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potentials. The differences between our results and those obtained in the previous literature are discussed. Our results might be important in investigating the high-order intensity correlation of an electromagnetic wave scattered from a 3D anisotropic object.
Wu, H.-H.; Lee, Y.-R.; Chang, Y.-Y.; Chu, C.-H.; Tsai, Y.-W.; Liu, Y.-J.; Chang, S.-L.; Hsieh, C.-H.; Chou, L.-J.
2008-09-01
A method for direct determination of resonance phase shifts in a (001) CdTe/InSb thin-film system is developed using soft x-ray three-wave resonance diffraction. At the (002) Bragg peaks of CdTe and InSb, two inversion-symmetry related three-wave diffractions are systematically identified according to crystal symmetry and the resonance phase shifts versus photon energies are measured without turning the thin film upside down. The momentum-transfer selectivity at (002) reflections facilitates the quantitative determination of the phase shifts near the Cd L{sub 3}, Te L{sub 3}, and Sb L{sub 2} edges.
NASA Astrophysics Data System (ADS)
Yan, Jiaxue
Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the
Nonparaxial diffraction analysis of Airy and SAiry beams.
Carretero, Luis; Acebal, Pablo; Blaya, Salvador; García, Celia; Fimia, Antonio; Madrigal, Roque; Murciano, Angel
2009-12-07
We theoretically analyze Airy beams by solving the exact vectorial Helmholtz equation using boundary conditions at a diffraction aperture. As result, the diffracted beams are obtained in the whole space; thus, we demonstrate that the parabolic trajectories are larger than those previously reported, showing that the Airy beams start to form before the Fourier plane. We also demonstrate the possibility of using a new type of Airy beams (SAiry beams) with finite energy that can be generated at the focal plane of the lens due to diffraction by a circular aperture of a spherical wave modified by a cubic phase. The finite energy ensured by the principle of conservation of energy of a diffracted beam.
NASA Astrophysics Data System (ADS)
Roberts, O. W.; Li, X.; Jeska, L.
2014-08-01
Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame) and those described as being structure-like (advected by the plasma bulk velocity). Typically with single spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed temporal and spatial changes to be resolved, with techniques such as the k-filtering technique. While this technique does not assume Taylor's hypothesis as is necessary with single spacecraft missions, it does require weak stationarity of the time series, and that the fluctuations can be described by a superposition of plane waves with random phase. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
NASA Astrophysics Data System (ADS)
Roberts, O. W.; Li, X.; Jeska, L.
2014-12-01
Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame) and those described as being structure-like (advected by the plasma bulk velocity). Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
NASA Astrophysics Data System (ADS)
Kim, Moonseok; Hong, Sukjoon; Shim, Seongbo; Soh, Kwangsup; Shin, Sanghoon; Son, Jung-Young; Lee, Jaesung; Kim, Jaisoon
2010-05-01
The digital holographic microscope (DHM) has emerged as a useful tool for verifying the three-dimensional structure of an object. A dual-type inline DHM that can be used with both transmission and reflection imaging in a single device is developed. The proper modes (between transmission and reflection imaging) can be easily changed according to the characteristics of the object in this system. The optimum condition for retrieving the correct phase information is illuminating a plane wave to an object. In contrast to the transmission imaging, it is difficult to illuminate an object using a plane wave without deformations in the reflection imaging. We developed an adequate relay lens module for illumination that can be adapted to any type of microscope objective without significant aberrations in the reflection imaging. The relationship between the illuminating condition and the measured phase based on the wave optics is analyzed. A specially designed and manufactured phase mask is observed in this system, and an alternative method for overcoming the limitation of phase unwrapping is introduced for the inspection of that object.