Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.
Transport Theory for Propagation and Reverberation
2016-07-20
mentioned that our transport theory method is essentially 2-D (range and depth), so that out-of- plane forward scattering (a 3-D effect) is not treated...roughness spectrum, it is useful to consider scattering based on perturbation theory in some detail with a plane wave incident on the rough surface. The...the wave vector for the water wave. Let an incident acoustic plane wave have wave vector ki = kiH + kiz, where kiH denotes the horizontal component
Scattering on plane waves and the double copy
NASA Astrophysics Data System (ADS)
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2018-01-01
Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.
Introduction to Radar Polarimetry
1991-04-23
Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission
Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Liu, XiQiang
2013-08-01
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.
Comparison of finite source and plane wave scattering from corrugated surfaces
NASA Technical Reports Server (NTRS)
Levine, D. M.
1977-01-01
The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study
NASA Astrophysics Data System (ADS)
Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.
2009-02-01
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
Innovative Technologies for Maskless Lithography and Non-Conventional Patterning
2008-08-01
wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases
Quantum scattering beyond the plane-wave approximation
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry
2017-12-01
While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi
2018-01-01
We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have significantly different directions of incident waves to the scatterers. Furthermore, weak but coherent P-to-P scattered waves as well as S-to-P waves are observed for a few of the scatterers. These observations indicate that the locally plane scatterers also possess substantial topography.
NASA Astrophysics Data System (ADS)
Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao
2013-11-01
We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.
Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane
2014-07-01
Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane Peijun Li 1 and Aihua W. Wood 2 1 Department of...of the electromagnetic wave scattering by multiple open cavities, which are embedded in an infinite two-dimensional ground plane . By introducing a...equation, variational formulation. I. INTRODUCTION A cavity is referred to as a local perturbation of the infinite ground plane . Given the cavity
A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial
NASA Technical Reports Server (NTRS)
Lock, James A.; Mishchenko, Michael I.
2015-01-01
The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.
Invertible propagator for plane wave illumination of forward-scattering structures.
Samelsohn, Gregory
2017-05-10
Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.
Scattering of plane transverse waves by spherical inclusions in a poroelastic medium
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing
2009-03-01
The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
Sapozhnikov, Oleg A.; Bailey, Michael R.
2013-01-01
A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086
Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches
NASA Astrophysics Data System (ADS)
Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.
1994-04-01
The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.
Scattering of sound waves by a compressible vortex
NASA Technical Reports Server (NTRS)
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
A fully polarimetric scattering model for a coniferous forest
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.
1991-01-01
For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy
2018-06-01
The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.
Acoustic scattering reduction using layers of elastic materials
NASA Astrophysics Data System (ADS)
Dutrion, Cécile; Simon, Frank
2017-02-01
Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.
Scattering of Airy elastic sheets by a cylindrical cavity in a solid.
Mitri, F G
2017-11-01
The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.
Pérez-Arancibia, Carlos; Bruno, Oscar P
2014-08-01
This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.
NASA Astrophysics Data System (ADS)
Perestoronin, A. V.
2017-03-01
An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
NASA Astrophysics Data System (ADS)
Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.
2017-03-01
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.
Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.
2017-03-15
The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less
Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.
Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth
2018-01-01
H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
The scatter of obliquely incident plane waves from a corrugated conducting surface
NASA Technical Reports Server (NTRS)
Levine, D. N.
1975-01-01
A physical optics solution is presented for the scattering of plane waves from a perfectly conducting corrugated surface in the case of waves incident from an arbitrary direction and for an observer far from the surface. This solution was used to compute the radar cross section of the surface in the case of backscatter from irregular (i.e., stochastic) corrugations and to point out a correction to the literature on this problem. A feature of the solution is the occurrence of singularities in the scattered fields which appear to be a manifestation of focussing by the surface at its stationary points. Whether or not the singularities occur in the solution depends on the manner in which one restricts the analysis to the far field.
Declercq, Nico F; Leroy, Oswald
2011-08-01
Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Extended optical theorem in isotropic solids and its application to the elastic radiation force
NASA Astrophysics Data System (ADS)
Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.
2017-04-01
In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Cross-wind profiling based on the scattered wave scintillation in a telescope focus.
Banakh, V A; Marakasov, D A; Vorontsov, M A
2007-11-20
The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.
Small scatterers in the lower mantle observed at German broadband arrays
Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.
1999-01-01
Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.
Wang, Yu; Jiang, Jingfeng
2018-01-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
Scattering and Polarization Measurements Using the PL/OPA Low Altitude Lidar
1990-12-20
66 A.3.2 Application to Lidar Data .. .. .. .. .. ... ... ... .. 70 References 72 iv List of Figures 1 The Poincare ... the vcctor in the I __ plane is the degree of linear polarization (defined as [Q2 + U2 II/2 /1). The component of the vector along the K axis is the ...scattering refers to the scattering of a monochromatic electromagr1tic plane wave by a spherically shaped, homogeneous, isotropic dielectric and conducting
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Computation of tightly-focused laser beams in the FDTD method
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2013-01-01
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software (“Angora”). PMID:23388899
Computation of tightly-focused laser beams in the FDTD method.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2013-01-14
We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").
S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series
NASA Technical Reports Server (NTRS)
Bessis, D.; Temkin, A.
1999-01-01
We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.
X-ray EM simulation tool for ptychography dataset construction
NASA Astrophysics Data System (ADS)
Stoevelaar, L. Pjotr; Gerini, Giampiero
2018-03-01
In this paper, we present an electromagnetic full-wave modeling framework, as a support EM tool providing data sets for X-ray ptychographic imaging. Modeling the entire scattering problem with Finite Element Method (FEM) tools is, in fact, a prohibitive task, because of the large area illuminated by the beam (due to the poor focusing power at these wavelengths) and the very small features to be imaged. To overcome this problem, the spectrum of the illumination beam is decomposed into a discrete set of plane waves. This allows reducing the electromagnetic modeling volume to the one enclosing the area to be imaged. The total scattered field is reconstructed by superimposing the solutions for each plane wave illumination.
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Liu, Lei
2015-02-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
Scattering of Gaussian Beams by Disordered Particulate Media
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.
2016-01-01
A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.
Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
Scattering of In-Plane Waves by Elastic Wedges
NASA Astrophysics Data System (ADS)
Mohammadi, K.; Asimaki, D.; Fradkin, L.
2014-12-01
The scattering of seismic waves by elastic wedges has been a topic of interest in seismology and geophysics for many decades. Analytical, semi-analytical, experimental and numerical studies on idealized wedges have provided insight into the seismic behavior of continental margins, mountain roots and crustal discontinuities. Published results, however, have almost exclusively focused on incident Rayleigh waves and out-of-plane body (SH) waves. Complementing the existing body of work, we here present results from our study on the response of elastic wedges to incident P or SV waves, an idealized problem that can provide valuable insight to the understanding and parameterization of topographic amplification of seismic ground motion. We first show our earlier work on explicit finite difference simulations of SV-wave scattering by elastic wedges over a wide range of internal angles. We next present a semi-analytical solution that we developed using the approach proposed by Gautesen, to describe the scattered wavefield in the immediate vicinity of the wedge's tip (near-field). We use the semi-analytical solution to validate the numerical analyses, and improve resolution of the amplification factor at the wedge vertex that spikes when the internal wedge angle approaches the critical angle of incidence.
Cao, Le; Wei, Bing
2014-08-25
Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.
NASA Astrophysics Data System (ADS)
Kim, Jung-Soon; Kim, Moo-Joon; Kim, Jung-Ho; Ha, Kang-Lyeol
2005-06-01
In this study, ultrasonic array transducers with 32 vibrators arranged on the internal surface of a part of a cylinder were fabricated. The vibrators were operated by the piezoelectric transverse effect. By controlling the phase of the input signal for every vibrator, a quasi plane wave was synthesized. Using the fabricated array, inverse scattering ultrasonic computed tomography (UCT) was carried out with a phantom specimen after checking the plane wave generation. It was confirmed that the plane wave was synthesized successfully and a sound velocity image of the phantom was obtained by the plane wave. Consequently, it was noted that the array could be employed as a transmitter and receiver for data acquisition in UCT.
Amplitudes on plane waves from ambitwistor strings
NASA Astrophysics Data System (ADS)
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2017-11-01
In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.
NASA Astrophysics Data System (ADS)
Entekhabi, Mozhgan Nora; Isakov, Victor
2018-05-01
In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.
NASA Astrophysics Data System (ADS)
Montiel, F.; Squire, V. A.
2013-12-01
A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive techniques are then used to solve the problem for the full MIZ. Wave attenuation data are obtained using ensemble averaging and preliminary comparisons with field experiment data will be given in the presentation. The model also offers important insights in regards to the spreading of the directional wave spectrum as it penetrates deeper into the MIZ. Cincotti, G., Gori, F., Santarsiero, M., Frezza, F., Furno, F., and Schettini, G. (1993). Plane wave expansion of cylindrical functions. Opt. Commun., 95(4):192-198. Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W. (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16:358-376.
Scatter of elastic waves by a thin flat elliptical inhomogeneity
NASA Technical Reports Server (NTRS)
Fu, L. S.
1983-01-01
Elastodynamic fields of a single, flat, elliptical inhomogeneity embedded in an infinite elastic medium subjected to plane time harmonic waves are studied. Scattered displacement amplitudes and stress intensities are obtained in series form for an incident wave in an arbitrary direction. The cases of a penny shaped crack and an elliptical crack are given as examples. The analysis is valid for alpha a up to about two, where alpha is longitudinal wave number and a is a typical geometric parameter.
Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.
NASA Astrophysics Data System (ADS)
Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang
2010-04-01
In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.
Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges
NASA Astrophysics Data System (ADS)
Vinogradova, Elena D.
2017-11-01
The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.
Designing scattering-free isotropic index profiles using phase-amplitude equations
NASA Astrophysics Data System (ADS)
King, C. G.; Horsley, S. A. R.; Philbin, T. G.
2018-05-01
The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.
Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing
NASA Astrophysics Data System (ADS)
Dang, Vinh Quang
Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-11
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
NASA Astrophysics Data System (ADS)
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Plane wave scattering by bow-tie posts
NASA Astrophysics Data System (ADS)
Lech, Rafal; Mazur, Jerzy
2004-04-01
The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Li, Li
2012-07-01
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.
Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J
2014-03-20
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.
Technique to separate lidar signal and sunlight.
Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R
2016-06-13
Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.
Scattering of elastic waves by a spheroidal inclusion
NASA Astrophysics Data System (ADS)
Johnson, Lane R.
2018-03-01
An analytical solution is presented for scattering of elastic waves by prolate and oblate spheroidal inclusions. The problem is solved in the frequency domain where separation of variables leads to a solution involving spheroidal wave functions of the angular and radial kind. Unlike the spherical problem, the boundary equations remain coupled with respect to one of the separation indices. Expanding the angular spheroidal wave functions in terms of associated Legendre functions and using their orthogonality properties leads to a set of linear equations that can be solved to simultaneously obtain solutions for all coupled modes of both scattered and interior fields. To illustrate some of the properties of the spheroidal solution, total scattering cross-sections for P, SV and SH plane waves incident at an oblique angle on a prolate spheroid, an oblate spheroid and a sphere are compared. The waveforms of the scattered field exterior to the inclusion are calculated for these same incident waves. The waveforms scattered by a spheroid are strongly dependent upon the angle of incidence, are different for incident SV and SH waves and are asymmetrical about the centre of the spheroid with the asymmetry different for prolate and oblate spheroids.
NASA Astrophysics Data System (ADS)
Martin, N. L. S.; Weaver, C. M.; Kim, B. N.; deHarak, B. A.; Zatsarinny, O.; Bartschat, K.
2018-05-01
Out-of-scattering-plane (e ,2 e ) measurements and calculations are reported for the three singlet helium 2 ℓ 2 ℓ' autoionizing levels, with 80, 100, 120, 150, and 488 eV incident-electron energies, and scattering angles 60∘, 50 .8∘ , 45∘, 39 .2∘ , and 20 .5∘ , respectively. The kinematics are the same in all cases: the momentum transfer is K =2.1 a.u., and ejected electrons are detected in a plane that contains the momentum-transfer direction and is perpendicular to the scattering plane. The results are presented as (e ,2 e ) angular distributions energy integrated over each level. They are compared with fully nonperturbative B -spline R -matrix and hybrid second-order distorted-wave + R -matrix calculations.
NASA Technical Reports Server (NTRS)
Noh, H. M.; Pathak, P. H.
1986-01-01
An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2003-04-01
The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].
Recognition of isotropic plane target from RCS diagram
NASA Astrophysics Data System (ADS)
Saillard, J.; Chassay, G.
1981-06-01
The use of electromagnetic waves for the recognition of a structure represented by point scatterers is seen as posing a fundamental problem. It is noted that much research has been done on this subject and that the study of aircraft observed in the yaw plane gives interesting results. To apply these methods, however, it is necessary to use many sophisticated acquisition systems. A method is proposed which can be applied to plane structures composed of isotropic scatterers. The method is considered to be of interest because it uses only power measurements and requires only a classical tracking radar.
Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects
NASA Technical Reports Server (NTRS)
Fung, A. K.
1983-01-01
The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.
A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers
NASA Astrophysics Data System (ADS)
Belafhal, A.; Ez-zariy, L.; Hricha, Z.
2016-11-01
By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.
Anomalous time delays and quantum weak measurements in optical micro-resonators
Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.
2016-01-01
Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269
The generalized scattering coefficient method for plane wave scattering in layered structures
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song
2017-02-01
The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.
Scaled plane-wave Born cross sections for atoms and molecules
NASA Astrophysics Data System (ADS)
Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.
2016-04-01
Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.
Transverse spin and transverse momentum in scattering of plane waves.
Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2016-10-01
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.
Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial
NASA Astrophysics Data System (ADS)
Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2018-04-01
In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.
Gain measurements in stimulated rotational Raman scattering in para hydrogen
NASA Astrophysics Data System (ADS)
Corat, E. J.; Airoldi, V. J. T.; Scolari, S. L.; Ghizoni, C. C.
1986-06-01
The dependence on CO2-laser pump energy of the output Stokes radiation obtained through stimulated rotational Raman scattering in parahydrogen is studied experimentally. The effective plane-wave gain for this process was determined as a function of the scattered wavelength by using a theoretical expression for the scattered pulse energy. Experimental values for the gain follow an inverse-wavelength law and are in close agreement with theory.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.
Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua
2017-07-01
Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.
Stationary and non-stationary nonlinear optical spectroscopy on surface polaritons
NASA Technical Reports Server (NTRS)
Ponath, H. E.
1984-01-01
A phenomenological theory is given for non-stationary electromagnetic surface waves propagating along the boundary plane between two homogeneous isotropic media. The description of nonlinear optical effects using shortened wave equations is demonstrated for spontaneous and simulated Raman scattering processes on surface polaritons.
Electromagnetic scattering from two-dimensional thick material junctions
NASA Technical Reports Server (NTRS)
Ricoy, M. A.; Volakis, John L.
1990-01-01
The problem of the plane wave diffraction is examined by an arbitrary symmetric two dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Generalized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs. GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate the GIBCs/GSTCs. The plane wave diffraction by a multilayer material slab recessed in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering Matrix Formulation (GDMF) in conjunction with the dual integral equation approach. Various scattering patterns are computed and validated with exact results where possible. The diffraction by a material discontinuity in a thick dielectric/ferrite slab is considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of unknown constants is obtained, and these constants are evaluated for the recessed slab geometry by comparison with the solution obtained therein. Several other simplified cases are also presented and discussed. An eigenfunction expansion method is introduced to determine the unknown solution constants in the general case. This procedure is applied to the non-unique solution in terms of unknown constants; and scattering patterns are presented for various slab junctions and compared with alternative results where possible.
The scattering of electromagnetic pulses by a slit in a conducting screen
NASA Technical Reports Server (NTRS)
Ackerknecht, W. E., III; Chen, C.-L.
1975-01-01
A direct method for calculating the impulse response of a slit in a conducting screen is presented which is derived specifically for the analysis of transient scattering by two-dimensional objects illuminated by a plane incident wave. The impulse response is obtained by assuming that the total response is composed of two sequences of diffracted waves. The solution is determined for the first two waves in one sequence by using Green's functions and the equivalence principle, for additional waves in the sequence by iteration, and for the other sequence by a transformation of coordinates. The cases of E-polarization and H-polarization are considered.
Scattering of antiplane shear waves by a circular cylinder in a traction-free plate
Wang; Ying; Li
2000-09-01
Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.
Bruce, Neil C
2008-08-01
This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.
NASA Technical Reports Server (NTRS)
Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.
1993-01-01
The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.
NASA Technical Reports Server (NTRS)
Magliozzi, B.; Hanson, D. B.
1991-01-01
An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Weil, H.
1977-01-01
Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.
Measuring the light scattering and orientation of a spheroidal particle using in-line holography.
Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon
2014-07-01
The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.
Generation of an incident focused light pulse in FDTD.
Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim
2008-11-10
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.
Generation of an incident focused light pulse in FDTD
Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim
2009-01-01
A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas. PMID:19582013
Coherent backscattering of light by complex random media of spherical scatterers: numerical solution
NASA Astrophysics Data System (ADS)
Muinonen, Karri
2004-07-01
Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Yin, Xiao
2016-06-01
A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.
Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-04-01
Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
NASA Astrophysics Data System (ADS)
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination
NASA Astrophysics Data System (ADS)
Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.
2017-11-01
Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.
Lectures on the scattering of light. [by dielectric sphere
NASA Technical Reports Server (NTRS)
Saxon, D. S.
1974-01-01
The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.
On the Scattering of Sound by a Rectilinear Vortex
NASA Astrophysics Data System (ADS)
HOWE, M. S.
1999-11-01
A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.
Photonic band structures solved by a plane-wave-based transfer-matrix method.
Li, Zhi-Yuan; Lin, Lan-Lan
2003-04-01
Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elementsmore » require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.« less
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Tomita, Shota; Yanagitani, Takahiko; Takayanagi, Shinji; Ichihashi, Hayato; Shibagaki, Yoshiaki; Hayashi, Hiromichi; Matsukawa, Mami
2017-06-01
Longitudinal wave velocity dispersion in ZnO single crystals, owing to the acoustoelectric effect, has been investigated by Brillouin scattering. The resistivity dependence of the longitudinal wave velocity in a c-plane ZnO single crystal was theoretically estimated and experimentally investigated. Velocity dispersion owing to the acoustoelectric effect was observed in the range 0.007-10 Ωm. The observed velocity dispersion shows a similar tendency to the theoretical estimation and gives the piezoelectric stiffened and unstiffened wave velocities. However, the measured dispersion curve shows a characteristic shift from the theoretical curve. One possible reason is the carrier mobility in the sample, which could be lower than the reported value. The measurement data gave the piezoelectric stiffened and unstiffened longitudinal wave velocities, from which the electromechanical coupling coefficient k33 was determined. The value of k33 is in good agreement with reported values. This method is promising for noncontact evaluation of electromechanical coupling. In particular, it could be for evaluation of the unknown piezoelectricity in the thickness direction of semiconductive materials and film resonators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbiotti, G.; Tacchi, S.; Montoncello, F.
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained bymore » dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.« less
Scattering from thin dielectric straps surrounding a perfectly conducting structure
NASA Technical Reports Server (NTRS)
Al-Hekail, Zeyad; Gupta, Inder J.
1989-01-01
A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.
Seabed Scattering from Low Frequency Reverberation Measurements
2015-09-30
in bottom reflection loss can be compensated for by increasing (decreasing) the angu - lar index of bottom scattering.5 That is, there is an uncer...Mackenzie-Lambert40 were extended to more general angu - lar dependence as follows.6–8 When a plane wave with an in- tensity of IiðhÞ is incident upon unit
NASA Astrophysics Data System (ADS)
Li, Yaqin; Jian, Guoshu; Wu, Shifa
2006-11-01
The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.
Observation of organ-pipe acoustic excitations in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Sooryakumar, R.; Every, A. G.; Manghnani, M. H.
2001-08-01
Brillouin light scattering from supported silicon oxynitride films reveal an extended series of acoustic excitations occurring at regular frequency intervals when the mode wave vector is perpendicular to the film surface. These periodic peaks are identified as distinct standing wave excitations that, similar to harmonics of an open-ended organ pipe, occur due to the boundary conditions imposed by the free surface and substrate-film interface. The surface ripple and volume elasto-optic scattering mechanisms contribute to the scattering cross sections and lead to dramatic interference effects at low frequencies where the surface corrugations play a dominant role. The transformation of these standing wave excitations to modes with finite in-plane wave vectors is also investigated. The results are discussed in the framework of a Green's-function formalism that reproduces the experimental features and illustrate the importance of the standing modes in evaluating the longitudinal elastic properties of the films.
NASA Astrophysics Data System (ADS)
García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.
2018-03-01
We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.
A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering
NASA Astrophysics Data System (ADS)
Griesmaier, Roland; Schmiedecke, Christian
2017-03-01
We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.
Inverse medium scattering from periodic structures with fixed-direction incoming waves
NASA Astrophysics Data System (ADS)
Gibson, Peter; Hu, Guanghui; Zhao, Yue
2018-07-01
This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.
Huygens-Fresnel picture for electron-molecule elastic scattering★
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2017-11-01
The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Scattering of waves by impurities in precompressed granular chains.
Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2016-05-01
We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.
NASA Astrophysics Data System (ADS)
Loran, Farhang; Mostafazadeh, Ali
2017-12-01
We provide an exact solution of the scattering problem for the potentials of the form v (x ,y ) =χa(x ) [v0(x ) +v1(x ) ei α y] , where χa(x ) :=1 for x ∈[0 ,a ] , χa(x ) :=0 for x ∉[0 ,a ] , vj(x ) are real or complex-valued functions, χa(x ) v0(x ) is an exactly solvable scattering potential in one dimension, and α is a positive real parameter. If α exceeds the wave number k of the incident wave, the scattered wave does not depend on the choice of v1(x ) . In particular, v (x ,y ) is invisible if v0(x ) =0 and k <α . For k >α and v1(x ) ≠0 , the scattered wave consists of a finite number of coherent plane-wave pairs ψn± with wave vector: kn=(±√{k2-[nα ] 2 },n α ) , where n =0 ,1 ,2 ,...
NASA Astrophysics Data System (ADS)
Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood
2005-12-01
Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.
Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu
2006-07-10
The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.
Fast Multiscale Algorithms for Wave Propagation in Heterogeneous Environments
2016-01-07
methods for waves’’, Nonlinear solvers for high- intensity focused ultrasound with application to cancer treatment, AIMS, Palo Alto, 2012. ``Hermite...formulation but different parametrizations. . . . . . . . . . . . 6 4 Density µ(t) at mode 0 for scattering of a plane Gaussian pulse from a sphere. On the...spatiotemporal scales. Two crucial components of the highly-efficient, general-purpose wave simulator we envision are • Reliable, low -cost methods for truncating
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Constant-intensity waves and their modulation instability in non-Hermitian potentials
NASA Astrophysics Data System (ADS)
Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2015-07-01
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
NASA Astrophysics Data System (ADS)
Swearingen, Michelle E.
2004-04-01
An analytic model, developed in cylindrical coordinates, is described for the scattering of a spherical wave off a semi-infinite reight cylinder placed normal to a ground surface. The motivation for the research is to have a model with which one can simulate scattering from a single tree and which can be used as a fundamental element in a model for estimating the attenuation in a forest comprised of multiple tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model for the contemplated range of model parameters. Agreement is regarded as excellent for these benchmark cases. Model sensitivity to five parameters is also explored. An experiment was performed to study the scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method to yield frequency and impulse responses, and calculations based on the analytic model are compared to the experimental data. Thesis advisor: David C. Swanson Copies of this thesis written in English can be obtained from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less
Topics in electromagnetic, acoustic, and potential scattering theory
NASA Astrophysics Data System (ADS)
Nuntaplook, Umaporn
With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
NASA Astrophysics Data System (ADS)
Qi, Hui; Zhang, Xi-meng
2017-10-01
With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.
NASA Astrophysics Data System (ADS)
Duan, Xueyang
The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
Scattering matrices of Lamb waves at irregular surface and void defects.
Feng, Feilong; Shen, Jianzhong; Lin, Shuyu
2012-08-01
Time-harmonic solution of Lamb wave scattering in a plane-strain waveguide with irregular thickness is investigated based on stair-step discretization and stepwise mode matching. The transfer relations of the transmission matrices and reflection matrices are derived in both directions of the waveguide. With these, an explicit expression of the scattering matrix is derived. When the scattering region of an inner irregular defect is geometrically divided into several parts composed of sub-waveguides with variable thicknesses and void regions with vertical free edges corresponding to the plate surfaces, the scattering matrix of the whole region could then be derived by modal matching along the artificial boundaries, as explicit functions of all the scattering matrices of the sub-waveguides and reflection matrices of the free edges. The effectiveness of the formulation is examined by numerical examples; the calculated scattering coefficients are in good accordance with those obtained from numerical simulation models. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubilko, A. I., E-mail: trubilko.andrey@gmail.com
Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less
Modelling wave-induced sea ice break-up in the marginal ice zone
NASA Astrophysics Data System (ADS)
Montiel, F.; Squire, V. A.
2017-10-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.
Modelling wave-induced sea ice break-up in the marginal ice zone
Squire, V. A.
2017-01-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659
Modelling wave-induced sea ice break-up in the marginal ice zone.
Montiel, F; Squire, V A
2017-10-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
NASA Astrophysics Data System (ADS)
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
Ultrasonic modeling of an embedded elliptic crack
NASA Astrophysics Data System (ADS)
Fradkin, Larissa Ju.; Zalipaev, Victor
2000-05-01
Experiments indicate that the radiating near zone of a compressional circular transducer directly coupled to a homogeneous and isotropic solid has the following structure: there are geometrical zones where one can distinguish a plane compressional wave and toroidal waves, both compressional and shear, radiated by the transducer rim. As has been shown previously the modern diffraction theory allows to describe these explicitly. It also gives explicit asymptotic description of waves present in the transition zones. In case of a normal incidence of a plane compressional wave the explicit expressions have been obtained by Achenbach and co-authors for the fields diffracted by a penny-shaped crack. We build on the above work by applying the uniform GTD to model an oblique incidence of a plane compressional wave on an elliptical crack. We compare our asymptotic results with numerical results based on the boundary integral code as developed by Glushkovs, Krasnodar University, Russia. The asymptotic formulas form a basis of a code for high-frequency simulation of ultrasonic scattering by elliptical cracks situated in the vicinity of a compressional circular transducer, currently under development at our Center.
Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars
NASA Astrophysics Data System (ADS)
Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood
2004-12-01
Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.
Faranosov, Georgy A; Bychkov, Oleg P
2017-01-01
The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.
NASA Astrophysics Data System (ADS)
Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw
2011-04-01
Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.
Plasmonic nanoparticle scattering for color holograms
Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David
2014-01-01
This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field. PMID:25122675
Plasmonic nanoparticle scattering for color holograms.
Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David
2014-09-02
This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.
Magnetic Interaction in the Geometrically Frustrated Triangular LatticeAntiferromagnet CuFeO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Fernandez-Baca, Jaime A; Fishman, Randy Scott
2007-01-01
The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J2=J1 0:44 and J3=J1 0:57), as well as out-of-plane coupling (Jz, with Jz=J1 0:29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy deeps in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.
2014-03-03
We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less
NASA Astrophysics Data System (ADS)
Esker, A.; Pavlis, G. L.
2017-12-01
We assembled all available seismic tomography models distributed through the IRIS DMC and other sources. We combined these images with our own results using 3D plane wave migration of P to S conversion data derived from the USArray data set and other broadband seismic stations in the lower 48 states. All the tomography models were converted into SEGY format and interpolated onto a regular grid in a UTM reference frame. That innovation makes joint interpretation feasible using a seismic interpretation software (Petrel) because we treat both the tomography models and scattered wave image results as if they were 3D seismic reflection data. The careful designed interface of a modern exploration package makes exploring a range of interpretation packages much faster and allowed us to produce a more comprehensive interpretation of all available data. The tomography models are nearly an order of magnitude smoother than the scattered wave images, so we use the tomography models as a cross-validation in interpretation unless the scattered wave images are ambiguous. The focus of this study is testing a conjecture in an earlier paper (Pavlis, 2011) for the presence of a single continuous horizon interpreted as the top of the Farallon Slab. As in the previous paper we constrained the western edge of this surface with the location of Cascadia trench as well as a virtual edge from a back projection of the Mendocino triple junction using Pacific-North America motion over the past 30 Ma. We also simulated crustal multiple effects on the plane wave migration results using crustal geometry estimates produced by the Earthscope Automated Receiver Survey (EARS). This confirmed the scattered wave images were not reliable in the upper mantle at depths shallower than 200 km due to contamination by crustal multiples. Most tomography models show a steep dip in the slab immediately east of the volcanic arc and our surface follows the average geometry defined by a visual comparison of all the models. In eastern Oregon and northern Nevada the tomography models consistently show a general flattening of the slab over the 410 km discontinuity. A consistent horizon is observed in the most recent plane wave imaging and at we use that horizon to define the top of slab there. Our interpretations also confirmed a sharp increase in dip of the slab in eastern Wyoming and Montana.
Measurements of the scattering of sound by a line vortex
NASA Technical Reports Server (NTRS)
Horne, W. C.
1983-01-01
This paper presents measurements of the phase and magnitude of the scattered field arising from the incidence of a monochromatic plane sound field as a steady vortex. The amplitude of the scattered field was found to vary linearly with the vortex strength, and with the incident wave amplitude and frequency as predicted by solutions based on the Born approximation. The scattered field was observed to be nonsingular in the incidence direction, and this was similar to predictions by the Parabolic Equation Method (PEM) rather than the Born approximation, which predicts singular behavior in the incidence direction.
Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong
2017-07-01
Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.
An efficient algorithm for the generalized Foldy-Lax formulation
NASA Astrophysics Data System (ADS)
Huang, Kai; Li, Peijun; Zhao, Hongkai
2013-02-01
Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.
Acoustic scattering on spheroidal shapes near boundaries
NASA Astrophysics Data System (ADS)
Miloh, Touvia
2016-11-01
A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.
NASA Astrophysics Data System (ADS)
Arslanagic, S.; Hansen, T. V.; Mortensen, N. A.; Gregersen, A. H.; Sigmund, O.; Ziolkowski, R. W.; Breinbjerg, O.
2013-04-01
The scattering parameter extraction method of metamaterial homogenization is reviewed to show that the only ambiguity is the one related to the choice of the branch of the complex logarithmic function (or the complex inverse cosine function), whereas it has no ambiguity for the sign of the wave number and intrinsic impedance. While the method indeed yields two signs of the intrinsic impedance, and thus the wave number, the signs are dependent, and moreover, both sign combinations lead to the same permittivity and permeability, and are thus permissible. This observation is in distinct contrast to a number of statements in the literature where the correct sign of the intrinsic impedance and wave number, resulting from the scattering parameter method, is chosen by imposing additional physical requirements such as passivity. The scattering parameter method is reviewed through an investigation of a uniform plane wave normally incident on a planar slab in free-space, and the severity of the branch ambiguity is illustrated through simulations of a known metamaterial realization. Several approaches for proper branch selection are reviewed and their suitability to metamaterial samples is discussed.
Double-slit experiment in momentum space
NASA Astrophysics Data System (ADS)
Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.
2016-08-01
Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
Studies in Wave-Material Interaction and Design of Composite Materials
1990-08-10
to Coating Design In two- and four- flux models of radiative transfer theory, the scattering coefficients or efficiencies of non -emitting media are...0, (5b) rangement of problem 1 acts somewhat like a beam splitter ; with CL and C? being the transmission coefficients. an incident LCP (RCP) plane...This contract supports theoretical research in "Wave Material Interaction and Design of Composite Materials: and is complemented by ongoing
Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2017-01-01
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
Glushko, O; Meisels, R; Kuchar, F
2010-03-29
The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.
Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary
NASA Astrophysics Data System (ADS)
Zhou, Jianyang; Zhao, Daomu
2016-08-01
Based on the first-order Born approximation, the scattering of an electromagnetic plane wave from a relatively more realistic random medium, a quasi-homogeneous medium with semisoft boundary, has been investigated. The analytic expressions for the spectral density, the spectral degree of coherence and the spectral degree of polarization have been derived, and the effects of the characteristics of the medium and the polarization of the incident light wave on the far-zone scattered field are determined. The numerical simulations indicate that, with the increasing of the edge softness M of the medium, the spectral density presents a pattern with interference fringes, and the number, position and width of interference fringes can be modified by the parameter. It is also found that there is an obvious value saltation in the coherence profile. Besides, unlike the intensity and the coherence are significantly affected by the properties of the medium, the polarization of the scattered field is irrelevant to them due to the quasi-homogeneity and isotropy of the medium, and it is only connected with the polarization of the incident light.
Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C
2017-08-01
The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.
NASA Astrophysics Data System (ADS)
Ali, Esam; Madison, Don; Ren, X.; Dorn, A.; Ning, Chuangang
2014-10-01
Experimental and theoretical Triple Differential Cross Sections (TDCS) are presented for electron impact ionization-excitation of the 2 sσg state of H2 in the perpendicular plane. The excited 2 sσg state immediately dissociates and the alignment of the molecule is determined by detecting one of the fragments. Results are presented for three different alignments in the xy-plane (scattering plane is xz)-alignment along y-axis, x-axis, and 45° between the x- and y-axes for incident electron energies of 4, 10, and 25 eV and different scattered electron angles of 20° and 30° in the perpendicular plane. Theoretical M4DW (molecular 4-body distorted wave) results are compared to experimental data, and overall we found reasonably good agreement between experiment and theory. The Results show that (e,2e) cross sections for excitation-ionization depend strongly on the orientation of the H2 molecule.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-08-01
The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the direct or inverse characterization of multiple scattering systems in acoustically-engineered metamaterials, cloaking devices, particle dynamics, levitation, manipulation and handling, and other areas.
Analyses of Third Order Bose-Einstein Correlation by Means of Coulomb Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi
2006-04-11
In order to include a correction by the Coulomb interaction in Bose-Einstein correlation (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for 3{pi} -BEC becomes simpler than that of our previous work. We re-analyze the raw data of 3{pi} -BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.
Simulation of wave propagation in three-dimensional random media
NASA Astrophysics Data System (ADS)
Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1995-04-01
Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2018-02-01
The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.
RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.
Zhang, Chao; Chen, Dong; Jiang, Xuefeng
2017-11-13
An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Photoelectron Diffraction from Valence States of Oriented Molecules
NASA Astrophysics Data System (ADS)
Krüger, Peter
2018-06-01
The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.
Fundamentals of microcrack nucleation mechanics
NASA Technical Reports Server (NTRS)
Fu, L. S.; Sheu, Y. C.; Co, C. M.; Zhong, W. F.; Shen, H. D.
1985-01-01
A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
NASA Astrophysics Data System (ADS)
Simpson, Harry Jay
Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 micron diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2 to 10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33 degrees on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz 'pump' wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz 'probe' wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid.
Lopes, J Henrique; Azarpeyvand, Mahdi; Silva, Glauber T
2016-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N objects suspended in an inviscid fluid are theoretically analyzed. We utilize the partial-wave expansion method with translational addition theorem and re-expansion of multipole series to solve the related multiple scattering problem. We show that the acoustic interaction force and torque can be obtained using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets' radii are comparable to the wavelength (i.e., Mie scattering regime). The results show that the acoustic interaction forces present an oscillatory spatial distribution which follows the pattern formed by interference between the external and rescattered waves. In addition, acoustic interaction torques arise on the absorbing droplets whenever a nonsymmetric wavefront is formed by the external and rescattered waves' interference.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Roldán-Molina, A; Nunez, Alvaro S; Duine, R A
2017-02-10
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires.
Natarov, Denys M; Marciniak, Marian; Sauleau, Ronan; Nosich, Alexander I
2014-11-17
We consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented. The observed resonance effects are studied and compared with their counterparts in the scattering by the same linear chain of wires in free space.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
Mach-6 Receptivity Measurements of Laser-Generated Perturbations on a Flared Cone
2014-08-01
to scatter these sound waves and the curva- ture of the shock is more likely to focus the waves. Also, the phases of the shock oscillation and of the...extent of the perturbation. The probe fiber optic was traversed across the schlieren image projected onto the traversing image plane. The reference...was to attempt to compensate for the change in curvature across the contoured window. The original spacing of these optical elements is provided in
Two space scatterer formalism calculation of bulk parameters of thunderclouds
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1994-01-01
In a previous study, we used a modified two-space scatterer formalism of Twersky to establish for a cloud modeled as a statistically homogeneous distribution of spherical water droplets, the dispersion relations that determine its bulk propagation numbers and bulk indexes of refraction in terms of the vector equivalent scattering amplitude and the dyadic scattering amplitude of the single water droplet in isolation. The results were specialized to the forward direction of scattering while demanding that the scatterers preserve the incident polarization. We apply this approach to obtain specific numerical values for the macroscopic parameters of the cloud. We work with a cloud of density rho = 100 cm(exp -3), a wavelength lambda = 0.7774 microns, and with spherical water droplets of common radius alpha = 10 microns. In addition, the scattering medium is divided into three parts, the medium outside the cloud, moist air (the medium inside the cloud but outside the droplets), and the medium inside the spherical water droplets. The results of this report are applicable to a cloud of any geometry since the boundary does not interfere with the calculations. Also, it is important to notice the plane wave nature of the incidence wave in the moist atmosphere.
Acoustic scattering from phononic crystals with complex geometry.
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2016-05-01
This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.
Detecting lower-mantle slabs beneath Asia and the Aleutians
NASA Astrophysics Data System (ADS)
Schumacher, L.; Thomas, C.
2016-06-01
To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Vastano, John A.; Lomax, Harvard
1992-01-01
Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Acoustic integrated extinction.
Norris, Andrew N
2015-05-08
The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.
Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9
NASA Astrophysics Data System (ADS)
Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.
2018-02-01
Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.
Nonlinear VLF Wave Physics in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.
2014-12-01
Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function [Storey and Lefeuvre, 1979] to yield the power distribution as a function of wave-normal angle and local azimuthal angle. We have validated this technique in the NRL space chamber and applied this methodology to Van Allen probe data to demonstrate that traditional wave-normal analaysis can give misleading results when multiple waves are present.
Electromagnetic scattering by impedance structures
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Griesser, Timothy
1987-01-01
The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.
Coupled-channel model for K ¯ N scattering in the resonant region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Ramírez, Cesar; Danilkin, Igor V.; Manley, D. Mark
2016-02-18
Here, we present a unitary multichannel model formore » $$\\bar{K}$$N scattering in the resonance region that fulfills unitarity. It has the correct analytical properties for the amplitudes once they are extended to the complex-$s$ plane and the partial waves have the right threshold behavior. In order to determine the parameters of the model, we have fitted single-energy partial waves up to J = 7/2 and up to 2.15 GeV of energy in the center-of-mass reference frame obtaining the poles of the Λ* and Σ* resonances, which are compared to previous analyses. Furthermore, we provide the most comprehensive picture of the S = –1 hyperon spectrum to date. Here, important differences are found between the available analyses making the gathering of further experimental information on $$\\bar{K}$$N scattering mandatory to make progress in the assessment of the hyperon spectrum.« less
Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Julianne K.; Wyatt, Robert E.
2008-03-07
To facilitate the search for isochrones when using complex-valued trajectory methods for quantum barrier scattering calculations, the structure and shape of isochrones in the complex plane were studied. Isochrone segments were categorized based on their distinguishing features, which are shared by each situation studied: High and low energy wave packets, scattering from both thick and thin Gaussian and Eckart barriers of varying height. The characteristic shape of the isochrone is a trifurcated system: Trajectories that transmit the barrier are launched from the lower branch (T), while the middle and upper branches form the segments for reflected trajectories (F and B).more » In addition, a model is presented for the curved section of the lower branch (from which transmitted trajectories are launched), and important features of the complex extension of the initial wave packet are identified.« less
Directional Fano resonances in light scattering by a high refractive index dielectric sphere
NASA Astrophysics Data System (ADS)
Tribelsky, Michael I.; Geffrin, Jean-Michel; Litman, Amelie; Eyraud, Christelle; Moreno, Fernando
2016-09-01
We report the experimental evidence of directional Fano resonances at the scattering of a linearly polarized electromagnetic plane wave by a homogeneous dielectric sphere with a high refractive index and low losses. We observe a typical asymmetric Fano profile for the intensity scattered in practically any given direction, while the overall extinction cross section remains Lorentzian. The phenomenon originates in the interference of the selectively excited electric dipolar and quadrupolar modes. The selectivity of the excitation is achieved by the proper choice of the frequency of the incident wave. Owing to the scaling invariance of the Maxwell equations, in these experiments we mimic the scattering of the visible and near IR radiation by a nanoparticle made of common semiconductor materials (Si, Ge, GaAs, GaP) by the equivalent scattering of a spherical particle of 18 mm in diameter in the microwave range. The theory developed to explain the experiments extends the conventional Fano approach to the case when both interfering partitions are resonant. A perfect agreement between the experiment and the theory is demonstrated.
Janesko, Benjamin G; Scuseria, Gustavo E
2006-09-28
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.
Correlated scattering states of N-body Coulomb systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berakdar, J.
1997-03-01
For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less
A fourth order accurate finite difference scheme for the computation of elastic waves
NASA Technical Reports Server (NTRS)
Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.
1986-01-01
A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.
Asymptotic quantum elastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2006-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.
Aircraft noise propagation. [sound diffraction by wings
NASA Technical Reports Server (NTRS)
Hadden, W. J.; Pierce, A. D.
1978-01-01
Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.
Wave optics simulation of statistically rough surface scatter
NASA Astrophysics Data System (ADS)
Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.
2017-09-01
The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.
An array effect of wave energy farm buoys
NASA Astrophysics Data System (ADS)
Kweon, Hyuck-Min; Lee, Jung-Lyul
2012-12-01
An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
1985-08-01
travels around the sphere (indicated by the dotted rays in Fig. 3). At the point• 2 energy is reradiated into the liquid in the direction of the receiver P...loaded elastic cylinder. 3 58 Using the coordinate system shown in Fig. 1 and au~uing a unit amplitude plane wave traveling in the +t direction the...reflection measured relative to a wave traveling in liquid alon1- the path (r ’ ’., e = 7) (r 0) -0 (r = 9, a ir--y). We have previously obtained results
Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations
NASA Astrophysics Data System (ADS)
Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner
2014-05-01
Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas extended sources are adapted in their spatial extent, magnitude and timing. Further, the effect of variations in the correlation length and perturbation magnitude of a random free surface topography as well as an internal random material distribution are studied.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Yurkin, Maxim A.
2018-07-01
Although free space cannot generate electromagnetic waves, the majority of existing accounts of frequency-domain electromagnetic scattering by particles and particle groups are based on the postulate of existence of an impressed incident field, usually in the form of a plane wave. In this tutorial we discuss how to account for the actual existence of impressed source currents rather than impressed incident fields. Specifically, we outline a self-consistent theoretical formalism describing electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents, some of which can be far removed from the object and some can reside in its vicinity, including inside the object. To make the resulting formalism applicable to a wide range of scattering-object morphologies, we use the framework of the volume integral equation formulation of electromagnetic scattering, couple it with the notion of the transition operator, and exploit the fundamental symmetry property of this operator. Among novel results, this tutorial includes a streamlined proof of fundamental symmetry (reciprocity) relations, a simplified derivation of the Foldy equations, and an explicit analytical expression for the transition operator of a multi-component scattering object.
A multiwave range test for obstacle reconstructions with unknown physical properties
NASA Astrophysics Data System (ADS)
Potthast, Roland; Schulz, Jochen
2007-08-01
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G
2012-10-19
Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.
Lattice dynamics and thermal transport in multiferroic CuCrO2
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Said, Ayman; Ehlers, Georg; Abernathy, Douglas L.; Huq, Ashfia; Kirkham, Melanie; Zhou, Haidong; Delaire, Olivier
2017-02-01
Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Néel temperature for long-range antiferromagnetic order, TN≃24 K . Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2.
An Experiment on the Particle-Wave Nature of Electrons
ERIC Educational Resources Information Center
Matteucci, Giorgio; Migliori, Andrea; Medina, Francisco; Castaneda, Roman
2009-01-01
A primary electron beam of a transmission electron microscope is scattered into secondary beams by the planes of atoms of a single crystal. These secondary beams are focused to form a diffraction pattern on the final screen. This experiment is similar to the Thompson one which, independently by Davisson and Germer, demonstrated the de Broglie…
Digital focusing of OCT images based on scalar diffraction theory and information entropy.
Liu, Guozhong; Zhi, Zhongwei; Wang, Ruikang K
2012-11-01
This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method.
Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-04-01
The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.
NASA Astrophysics Data System (ADS)
D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele
2017-09-01
The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji
2008-11-01
The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.
Shear Wave Generation by Explosions in Anisotropic Crystalline Rock
NASA Astrophysics Data System (ADS)
Rogers-Martinez, M. A.; Sammis, C. G.; Stroujkova, A. F.
2015-12-01
The use of seismic waves to discriminate between earthquakes and underground explosions is complicated by the observation that explosions routinely radiate strong S waves. Whether these S waves are primarily generated by non-linear processes at the source, or by mode conversions and scattering along the path remains an open question. It has been demonstrated that S waves are generated at the source by any mechanism that breaks the spherical symmetry of the explosion. Examples of such mechanisms include tectonic shear stress, spall, and anisotropy in the emplacement medium. Many crystalline rock massifs are transversely isotropic because they contain aligned fractures over a range of scales from microfractures at the grain scale (called the rift) to regional sets of joints. In this study we use a micromechanical damage mechanics to model the fracture damage patterns and seismic radiation generated by explosions in a material in which the initial distribution of fractures has a preferred direction. Our simulations are compared with a set of field experiments in a granite quarry in Barre, VT conducted by New England Research and Weston Geophysical. Barre granite has a strong rift plane of aligned microfractures. Our model captures two important results of these field studies: 1) the spatial extent of rock fracture and generation of S waves depends on the burn-rate of the explosion and 2) the resultant damage is anisotropic with most damage occurring in the preferred direction of the microfractures (the rift plane in the granite). The physical reason damage is enhanced in the rift direction is that the mode I stress intensity factor is large for each fracture in the array of parallel fractures in the rift plane. Tensile opening on the rift plane plus sliding on the preexisting fractures make strong non-spherical contributions to the moment tensor in the far-field.
High-frequency techniques for RCS prediction of plate geometries
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.
1992-01-01
The principal-plane scattering from perfectly conducting and coated strips and rectangular plates is examined. Previous reports have detailed Geometrical Theory of Diffraction/Uniform Theory of Diffraction (GTD/UTD) solutions for these geometries. The GTD/UTD solution for the perfectly conducting plate yields monostatic radar cross section (RCS) results that are nearly identical to measurements and results obtained using the Moment Method (MM) and the Extended Physical Theory of Diffraction (EPTD). This was demonstrated in previous reports. The previous analysis is extended to bistatic cases. GTD/UTD results for the principal-plane scattering from a perfectly conducting, infinite strip are compared to MM and EPTD data. A comprehensive overview of the advantages and disadvantages of the GTD/UTD and of the EPTD and a detailed analysis of the results from both methods are provided. Several previous reports also presented preliminary discussions and results for a GTD/UTD model of the RCS of a coated, rectangular plate. Several approximations for accounting for the finite coating thickness, plane-wave incidence, and far-field observation were discussed. Here, these approximations are replaced by a revised wedge diffraction coefficient that implicitly accounts for a coating on a perfect conductor, plane-wave incidence, and far-field observation. This coefficient is computationally more efficient than the previous diffraction coefficient because the number of Maliuzhinets functions that must be calculated using numerical integration is reduced by a factor of 2. The derivation and the revised coefficient are presented in detail for the hard polarization case. Computations and experimental data are also included. The soft polarization case is currently under investigation.
NASA Astrophysics Data System (ADS)
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-01-01
The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.
NASA Technical Reports Server (NTRS)
Law, P. H.; Burkholder, R. J.; Pathak, P. H.
1988-01-01
The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.
Random medium model for cusping of plane waves.
Li, Jia; Korotkova, Olga
2017-09-01
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.
Rayleigh scattering of twisted light by hydrogenlike ions
NASA Astrophysics Data System (ADS)
Peshkov, A. A.; Volotka, A. V.; Surzhykov, A.; Fritzsche, S.
2018-02-01
The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Dirac's relativistic equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis. Detailed calculations of the polarization Stokes parameters were performed for C5 + ions and for twisted Bessel beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly differ from their behavior for an incident plane-wave radiation.
Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field
NASA Astrophysics Data System (ADS)
Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola
2015-04-01
In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground penetrating radar (GPR) techniques to monitor the fouling conditions of water pipelines without the need to intervene destructively on the structure. Acknowledgements: This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity
NASA Astrophysics Data System (ADS)
Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.
2018-03-01
The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
Acoustic and elastic waves in metamaterials for underwater applications
NASA Astrophysics Data System (ADS)
Titovich, Alexey S.
Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.
Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te
NASA Astrophysics Data System (ADS)
Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng
2018-02-01
Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.
An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.
2016-05-11
Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less
An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.
Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less
Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.
Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA)more » representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and is acknowledged as the originator of the concept underpinning a recent patent grant (Aldridge and Bartel, 2016) involving electromagnetic wave scattering.« less
Digital focusing of OCT images based on scalar diffraction theory and information entropy
Liu, Guozhong; Zhi, Zhongwei; Wang, Ruikang K.
2012-01-01
This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method. PMID:23162717
Polarimetric optical imaging of scattering surfaces.
Barter, J D; Lee, P H
1996-10-20
A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Wang, Yirui; Liang, Jianwen
2016-06-01
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu
2016-03-01
Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less
The effect of dissipative inhomogeneous medium on the statistics of the wave intensity
NASA Technical Reports Server (NTRS)
Saatchi, Sasan S.
1993-01-01
One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.
NASA Astrophysics Data System (ADS)
Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut
2016-04-01
Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).
Simulation of wave propagation in three-dimensional random media
NASA Technical Reports Server (NTRS)
Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1993-01-01
Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.
Modeling boundary measurements of scattered light using the corrected diffusion approximation
Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.
2012-01-01
We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102
Light-Scattering Characteristics of Optical Surfaces
1975-01-01
6RSTR--O _____4. TITLE (ad . TYPE OF REPORT & PERIOD COVERED 4 Light-Scattering Characteristics of tica: / __ , o -, Sufcs 6 . PERFORMING ORG. REPORT...UO(-90 JJf A0(ct,B;O) e 2r( 6 +Pdd (2) A (cc, 8;A) - JJ U(.t,9;2) e~i2w(+O) dtdg (3) = fJ A(ao;) e i21r(a+00dade. ( 4 ) -c Equations (2) and ( 4 ...Eq. ( 4 ) and requiring the individual plane wave components to satisfy the Helmholtz equation, we find A(ca,;A) - Ao(Ca,;0) e 2wy ( 6 ) where • r. The
NASA Astrophysics Data System (ADS)
Minin, I. V.; Minin, O. V.; Tseplyaev, I. S.
2017-08-01
We demonstrated for the first time the influence of the main parameters of dielectric spherical cavity, immersed in water, to transformation of whispering gallery mode into acoustojet (acoustic jets) by interaction of acoustic plane wave scatterer. It has been shown that the relative speed of sound in the material, the relative density of the material and the radius of particle significantly affect the condition for the formation of WGM resonance. However, the "more sensitive" parameter is the relative speed of sound.
First direct observation of runaway electron-driven whistler waves in tokamaks
NASA Astrophysics Data System (ADS)
Spong, Donald A.
2017-10-01
Whistlers are electromagnetic waves that can be driven unstable by energetic electrons and are observed in natural plasmas, such as the ionosphere and Van Allen belts. Recent DIII-D experiments at low density demonstrate the first direct observation of whistlers in tokamaks, with 100-200 MHz waves excited by runaway electrons (REs) in the multi-MeV range. Whistler activity is correlated with RE intensity and the frequencies scale with magnetic field strength and electron density consistent with a whistler dispersion relation. Fluctuations occur in discrete frequency bands, and not a continuum as would be expected from plane wave analysis, suggesting the important role of toroidicity. An MHD model including the bounded/periodic nature of the plasma identifies multiple eigenmode branches. For a toroidal mode number n = 10, the predicted frequencies and spacing are similar to observations. The instabilities are stabilized with increasing magnetic field, as expected from the anomalous Doppler resonance. The whistler amplitudes show intermittent time variations. Predator-prey cycles with electron cyclotron emission (ECE) signals are observed, which can be interpreted as wave-induced pitch angle scattering of moderate energy REs. Such nonlinear dynamics are supported by quasi-linear simulations indicating that REs are scattered both by whistlers and high frequency magnetized plasma waves. The whistler wave predominantly scatters the high energy REs, while the magnetized plasma wave scatters the low energy REs, abruptly enhancing the ECE signal. Amplitude variations are also associated with sawtooth activity, indicating that the REs sample the q = 1 surface. These features of the RE-driven whistler have connections to ionospheric plasmas and open up new directions for the modeling and active control of tokamak REs. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-07ER54917, DE-SC00-16268, and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Annaby, M. H.; Asharabi, R. M.
2018-01-01
In a remarkable note of Chadan [Il Nuovo Cimento 39, 697-703 (1965)], the author expanded both the regular wave function and the Jost function of the quantum scattering problem using an interpolation theorem of Valiron [Bull. Sci. Math. 49, 181-192 (1925)]. These expansions have a very slow rate of convergence, and applying them to compute the zeros of the Jost function, which lead to the important bound states, gives poor convergence rates. It is our objective in this paper to introduce several efficient interpolation techniques to compute the regular wave solution as well as the Jost function and its zeros approximately. This work continues and improves the results of Chadan and other related studies remarkably. Several worked examples are given with illustrations and comparisons with existing methods.
RCS of resonant scatterers with attached wires
NASA Astrophysics Data System (ADS)
Trueman, C. W.; Mishra, S. R.; Kubina, S. J.; Larose, C. L.
1993-03-01
Some aircraft carry wire antennas for HF communication. This paper investigates the effect of such wires on the radar cross section (RCS) at HF frequencies by comparing the RCS of a strip, a cylinder, and a rod with and without an attached wire. The RCS is found for broadside incidence and for end-on incidence of the plane wave for scatterer lengths from 0.4 to 3.8 wavelengths, typical of aircraft size at HF frequencies. It is shown that the RCS of such fuselage-like targets with a wire 'antenna' is quite different from that of the targets without the wire. For broadside incidence, the wire contributes a sharp peak-and-trough to the RCS at the wire's fundamental resonant frequency. For end-on incidence the wire considerably enhances the RCS at frequencies making its length odd multiples of the quarter-wave.
Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry
NASA Astrophysics Data System (ADS)
Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.
2003-10-01
The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine; Abreu, Rafael
2018-03-01
We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.
Short wind waves on the ocean: Wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Plant, William J.
2015-03-01
Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
Single-qubit unitary gates by graph scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumer, Benjamin A.; Underwood, Michael S.; Feder, David L.
2011-12-15
We consider the effects of plane-wave states scattering off finite graphs as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9 vertices for which the scattering implements a single-qubit gate. As n increases, the number of new unitary operations increases exponentially, and for n>6 the majority correspond to rotations about axes distributed roughly uniformlymore » across the Bloch sphere. Rotations by both rational and irrational multiples of {pi} are found.« less
A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters
NASA Technical Reports Server (NTRS)
Mackowski, D. W.; Mishchenko, M. I.
2011-01-01
A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
NASA Astrophysics Data System (ADS)
Huang, Hao; Ouyang, Zhengbiao
2018-01-01
We propose a general method for eliminating the reflection of waves in 2 dimensional photonic crystal waveguides (2D-PCWs), a kind of 2D material, by introducing extra scatterers inside the 2D-PCWs. The intrinsic reflection in 2D-PCWs is compensated by the backward-scattered waves from these scatterers, so that the overall reflection is greatly reduced and the insertion loss is improved accordingly. We first present the basic theory for the compensation method. Then, as a demonstration, we give four examples of extremely-low-reflection and high-transmission 90°bent 2D-PCWs created according to the method proposed. In the four examples, it is demonstrated by plane-wave expansion method and finite-difference time-domain method that the 90°bent 2D-PCWs can have high transmission ratio greater than 90% in a wide range of operating frequency, and the highest transmission ratio can be greater than 99.95% with a return loss higher than 43 dB, better than that in other typical 90°bent 2D-PCWs. With our method, the bent 2D-PCWs can be optimized to obtain high transmission ratio at different operating wavelengths. As a further application of this method, a waveguide-based optical bridge for light crossing is presented, showing an optimum return loss of 46.85 dB, transmission ratio of 99.95%, and isolation rates greater than 41.77 dB. The method proposed provides also a useful way for improving conventional waveguides made of cables, fibers, or metal walls in the optical, infrared, terahertz, and microwave bands.
Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Wang, Wei; Li, Jinbin
2018-03-01
Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.
Evanescent waves and deaf bands in sonic crystals
NASA Astrophysics Data System (ADS)
Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.
2011-12-01
The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.
A programmable metasurface with dynamic polarization, scattering and focusing control
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-01-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997
A programmable metasurface with dynamic polarization, scattering and focusing control.
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-24
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
Three-dimensional charge density wave order in YBa 2Cu 3O 6.67 at high magnetic fields
Gerber, S.; Jang, H.; Nojiri, H.; ...
2015-11-20
In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
NASA Astrophysics Data System (ADS)
Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.
2018-05-01
Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.
Technical Report for the Period 1 October 1987 - 30 September 1989
1990-03-01
low pass filter results. -dt dt specifies the sampling rate in seconds. -gin specifies .w file (binary waveform data) input. - gout specifies .w file...waves arriving at moderate incidence angles, * high signal-to-noise ratio (SNR). The following assumptions are made, for simplicity* * additive...spatially uncorrelated noise, * simple signal model, free of refraction and scattering effects. This study is limited to the case of a plane incident P
The local density of optical states of a metasurface
NASA Astrophysics Data System (ADS)
Lunnemann, Per; Koenderink, A. Femius
2016-02-01
While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice.
Biot-type scattering effects in gas hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.
2008-06-01
This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.
NASA Technical Reports Server (NTRS)
Mittra, R.; Ko, W. L.; Rahmat-Samii, Y.
1979-01-01
This paper presents a brief review of some recent developments on the use of the spectral-domain approach for deriving high-frequency solutions to electromagnetics scattering and radiation problems. The spectral approach is not only useful for interpreting the well-known Keller formulas based on the geometrical theory of diffraction (GTD), it can also be employed for verifying the accuracy of GTD and other asymptotic solutions and systematically improving the results when such improvements are needed. The problem of plane wave diffraction by a finite screen or a strip is presented as an example of the application of the spectral-domain approach.
Coherent Diffractive Imaging: From Nanometric Down to Picometric Resolution
NASA Astrophysics Data System (ADS)
De Caro, Liberato; Carlino, Elvio; Siliqi, Dritan; Giannini, Cinzia
Coherent diffractive imaging (CDI) is a novel technique for inspecting (crystalline and non-crystalline) matter from nanometric down to picometric resolution. It was used originally with X-rays and, more recently, with electrons (so-called electron diffractive imaging, or EDI). This chapter introduces basic concepts concerning CDI and addresses the different types of X-ray CDI experiments that have been conducted, namely plane wave CDI from isolated objects in forward scattering, focused-beam Fresnel CDI from isolated objects in forward scattering, Bragg CDI from nanocrystals, and keyhole CDI and ptychography from extended objects. A CDI experiment with a transmission electron microscope, alternatively named an EDI experiment, is also introduced.
Hong, Seung Hwan; Bok, Jin Mo; Zhang, Wentao; He, Junfeng; Zhou, X J; Varma, C M; Choi, Han-Yong
2014-08-01
There is an enormous interest in the renormalization of the quasiparticle (qp) dispersion relation of cuprate superconductors both below and above the critical temperature T_{c} because it enables the determination of the fluctuation spectrum to which the qp's are coupled. A remarkable discovery by angle-resolved photoemission spectroscopy (ARPES) is a sharp low-energy feature (LEF) in qp spectra well below the superconducting energy gap but with its energy increasing in proportion to T_{c} and its intensity increasing sharply below T_{c}. This unexpected feature needs to be reconciled with d-wave superconductivity. Here, we present a quantitative analysis of ARPES data from Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} (Bi2212) using Eliashberg equations to show that the qp scattering rate due to the forward scattering impurities far from the Cu-O planes is modified by the energy gap below T_{c} and shows up as the LEF. This is also a necessary step to analyze ARPES data to reveal the spectrum of fluctuations promoting superconductivity.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Sooryakumar, R.; King, Sean
2010-03-01
Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.
Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films
NASA Astrophysics Data System (ADS)
Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.
2006-07-01
In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
NASA Astrophysics Data System (ADS)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
NASA Astrophysics Data System (ADS)
Mackowski, Daniel; Ramezanpour, Bahareh
2018-07-01
A formulation is developed for numerically solving the frequency domain Maxwell's equations in plane parallel layers of inhomogeneous media. As was done in a recent work [1], the plane parallel layer is modeled as an infinite square lattice of W × W × H unit cells, with W being a sample width of the layer and H the layer thickness. As opposed to the 3D volume integral/discrete dipole formulation, the derivation begins with a Fourier expansion of the electric field amplitude in the lateral plane, and leads to a coupled system of 1D ordinary differential equations in the depth direction of the layer. A 1D dyadic Green's function is derived for this system and used to construct a set of coupled 1D integral equations for the field expansion coefficients. The resulting mathematical formulation is considerably simpler and more compact than that derived, for the same system, using the discrete dipole approximation applied to the periodic plane lattice. Furthermore, the fundamental property variable appearing in the formulation is the Fourier transformed complex permittivity distribution in the unit cell, and the method obviates any need to define or calculate a dipole polarizability. Although designed primarily for random media calculations, the method is also capable of predicting the single scattering properties of individual particles; comparisons are presented to demonstrate that the method can accurately reproduce, at scattering angles not too close to 90°, the polarimetric scattering properties of single and multiple spheres. The derivation of the dyadic Green's function allows for an analytical preconditioning of the equations, and it is shown that this can result in significantly accelerated solution times when applied to densely-packed systems of particles. Calculation results demonstrate that the method, when applied to inhomogeneous media, can predict coherent backscattering and polarization opposition effects.
NASA Technical Reports Server (NTRS)
Bird, J. F.
1985-01-01
In testing a stochastic variational principle at high frequencies by using a Kirchhoffean trial function in an idealized model for surface scattering - a randomly embossed plane - we have found not only the predicted high-frequency improvement but also an unexpected low-frequency improvement in the calculated scattering amplitudes. To investigate systematically the all-frequency variational behavior, we consider here the deterministic one-boss case - Rayleigh's classic model whose exact solution is available for comparison - over all wavelengths, polarizations, and configurations of incidence and scattering. We examine analytically in particular the long-wave limit of the variational-Kirchhoff amplitudes; the results demonstrate improvements in both wavelength and angle depedence for horizontal (TM) polarization and some variational improvements for vertical (TE) polarization. This low-frequency behavior in tandem with the foreseen high-frequency improvement leads to good variational-Kirchhoff results through the intermediate resonance-frequency regime for this model.
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Albright, B. J.; Yin, L.; Bowers, K. J.; ...
2016-03-04
Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves(IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less
On prototypical wave transmission across a junction of waveguides with honeycomb structure
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2018-02-01
An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the `bondlength' in `broken' versus intact bonds can be constructed via a standard application of the Wiener-Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.
NASA Astrophysics Data System (ADS)
Every, A. G.; Kotane, L. M.; Comins, J. D.
2010-06-01
A simple and robust fitting procedure is presented for determining the three elastic constants of a cubic crystal from surface Brillouin scattering measurements carried out in the ⟨100⟩ and ⟨110⟩ directions in a (001) surface. The input data utilized are the Rayleigh surface wave velocity, the Lamb shoulder threshold velocity, and the longitudinal lateral wave velocity measured in the two directions. In fitting these velocities, use of simple closed-form expressions is made for the secular functions determining them. Corresponding expressions for the ⟨010⟩ and ⟨101¯⟩ directions in the (101) plane are also provided. The formulas for the Lamb shoulder threshold, which have not previously been available in the literature, should prove to be particularly useful, as they apply also to thin supported film structures. The procedure is applied to the determination of the elastic constants of the ternary semiconductor alloy InAs0.91Sb0.09 , yielding C11=74.4GPa , C12=40.5GPa , and C44=37.8GPa .
Visualization of the 3-dimensional flow around a model with the aid of a laser knife
NASA Technical Reports Server (NTRS)
Borovoy, V. Y.; Ivanov, V. V.; Orlov, A. A.; Kharchenko, V. N.
1984-01-01
A method for visualizing the three-dimensional flow around models of various shapes in a wind tunnel at a Mach number of 5 is described. A laser provides a planar light flux such that any plane through the model can be selectively illuminated. The shape of shock waves and separation regions is then determined by the intensity of light scattered by soot particles in the flow.
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2005-10-01
Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.
Connecting physical resonant amplitudes and lattice QCD
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
2016-03-18
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
On the long range propagation of sound over irregular terrain
NASA Technical Reports Server (NTRS)
Howe, M. S.
1984-01-01
The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance.
NASA Astrophysics Data System (ADS)
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.
Scattering on a rectangular potential barrier in nodal-line Weyl semimetals
NASA Astrophysics Data System (ADS)
Khokhlov, D. A.; Rakhmanov, A. L.; Rozhkov, A. V.
2018-06-01
We investigate single-particle ballistic scattering on a rectangular barrier in the nodal-line Weyl semimetals. Since the system under study has a crystallographic anisotropy, the scattering properties are dependent on mutual orientation of the crystalline axis and the barrier. To account for the anisotropy, we examine two different barrier orientations. It is demonstrated that, for certain angles of incidence, the incoming particle passes through the barrier with probability of unity. This is a manifestation of the Klein tunneling, a familiar phenomenon in the context of graphene and semimetals with Weyl points. However, the Klein tunneling in the Weyl-ring systems is observed when the angle of incidence differs from 90∘, unlike the cases of graphene and Weyl-point semimetals. The reflectionless transmission also occurs for the so-called "magic angles." The values of the magic angles are determined by geometrical resonances between the barrier width and the de Broglie length of the scattered particle. In addition, we show that under certain conditions the wave function of the transmitted and reflected particles may be a superposition of two plane waves with unequal momenta. Such a feature is a consequence of the nontrivial structure of the isoenergy surfaces of the nodal-line semimetals. Conductance of the barrier is briefly discussed.
NASA Astrophysics Data System (ADS)
Tsalamengas, John L.
2018-07-01
We study plane-wave electromagnetic scattering by radially and strongly inhomogeneous dielectric cylinders at oblique incidence. The method of analysis relies on an exact reformulation of the underlying field equations as a first-order 4 × 4 system of differential equations and on the ability to restate the associated initial-value problem in the form of a system of coupled linear Volterra integral equations of the second kind. The integral equations so derived are discretized via a sophisticated variant of the Nyström method. The proposed method yields results accurate up to machine precision without relying on approximations. Numerical results and case studies ably demonstrate the efficiency and high accuracy of the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalashov, A. G., E-mail: ags@appl.sci-nnov.ru; Gospodchikov, E. D.
An efficient and fairly simple method of solving the problem of the incidence of a plane electromagnetic wave on an inhomogeneous object with specified spherically symmetric distributions of its electric permittivity and magnetic permeability is presented. The fields inside the object and the integrated scattering and absorption cross sections are found by assuming the object to be small compared to the vacuum wavelength. Since no constraints are imposed on the scales of the fields inside the object, the method is suitable for investigating complex cases, including those associated with the local amplification and absorption of the electromagnetic field in inhomogeneousmore » resonant media.« less
NASA Astrophysics Data System (ADS)
Andrews, Mark P.; Kanigan, Tanya
2007-06-01
Orientation anisotropies in structural properties relevant to the use of cellulosic polymers as membranes for lab-on-chips were investigated for cellulose acetate (CA) and regenerated cellulose (RC) films deposited as slab waveguides. Anisotropy was probed with mode and polarization state selected guided wave Raman spectroscopy. CA exhibits partial chain orientation in the plane of the film, and this orientation is independent of sample substrate and film preparation conditions. RC films also show in-plane anisotropy, where the hexose sugar rings lie roughly in the plane of the film. Explanations are given of the role of artifacts in interpreting waveguide Raman spectra, including anomalous contributions to Raman spectra that arise from deviations from right angle scattering geometry, mode-dependent contributions to longitudinal electric field components and TE<-->TM mode conversion. We explore diffusion profiles of small molecules in cellulosic films by adaptations of an inverse-Wentzel-Kramers-Brillouin (iWKB) recursive, noninteger virtual mode index algorithm. Perturbations in the refractive index distribution, n(z), are recovered from the measured relative propagation constants, neffective,m, of the planar waveguide. The refractive index distribution then yields the diffusion profile.
NASA Astrophysics Data System (ADS)
Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce
2015-09-01
The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.
2017-03-15
We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.
Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan
2014-01-01
We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440
Ultra wide band 3-D cross section (RCS) holography
NASA Astrophysics Data System (ADS)
Collins, H. D.; Hall, T. E.
1992-07-01
Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.
NASA Astrophysics Data System (ADS)
Kocyigit, Ilker; Liu, Hongyu; Sun, Hongpeng
2013-04-01
In this paper, we consider invisibility cloaking via the transformation optics approach through a ‘blow-up’ construction. An ideal cloak makes use of singular cloaking material. ‘Blow-up-a-small-region’ construction and ‘truncation-of-singularity’ construction are introduced to avoid the singular structure, however, giving only near-cloaks. The study in the literature is to develop various mechanisms in order to achieve high-accuracy approximate near-cloaking devices, and also from a practical viewpoint to nearly cloak an arbitrary content. We study the problem from a different viewpoint. It is shown that for those regularized cloaking devices, the corresponding scattering wave fields due to an incident plane wave have regular patterns. The regular patterns are both a curse and a blessing. On the one hand, the regular wave pattern betrays the location of a cloaking device which is an intrinsic defect due to the ‘blow-up’ construction, and this is particularly the case for the construction by employing a high-loss layer lining. Indeed, our numerical experiments show robust reconstructions of the location, even by implementing the phaseless cross-section data. The construction by employing a high-density layer lining shows a certain promising feature. On the other hand, it is shown that one can introduce an internal point source to produce the canceling scattering pattern to achieve a near-cloak of an arbitrary order of accuracy.
Acoustic and electromagnetic wave interaction in the detection and identification of buried objects
NASA Astrophysics Data System (ADS)
Lawrence, Daniel Edward
2002-09-01
In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Bostian, C. W.; Stutzman, W. L.
1973-01-01
The influence of polarization on millimeter wave propagation is investigated from both an experimental and a theoretical viewpoint. First, previous theoretical and experimental work relating to the attenuation and depolarization of millimeter waves by rainfall is discussed. Considerable detail is included in the literature review. Next, a theoretical model is developed to predict the cross polarization level during rainfall from the path average rain rate and the scattered field from a single raindrop. Finally, data from the VPI and SU depolarization experiment are presented as verification of the new model, and a comparison is made with other theories and experiments. Aspects of the new model are: (1) spherical rather than plane waves are assumed, (2) the average drop diameter is used rather than a drop size distribution, and (3) it is simple enough so that the effect which changing one or more parameters has on the crosspolarization level is easily seen.
Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.
Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng
2018-02-14
Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.
Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO 1- x F x BiS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athauda, Anushika; Hoffmann, Christina; Aswartham, Saicharan
2017-05-15
Competing ferroelectric and charge density wave states have been proposed to exist in the electron–phonon coupled LaO1-xFxBiS2 superconductor. The lattice instability is proposed to arise from unstable phonon modes that can break the crystal symmetry. Using single crystal diffraction, a superlattice pattern is observed, that arises from coherent in-plane displacements of the sulfur atoms in the BiS2 superconducting planes. The distortions morph into coordinated ferrodistortive patterns with displacements in the x- and y-directions, that alternate along the c-axis. Diffuse scattering is observed along the (H0L) plane due to stacking faults but not along the (HH0) plane. The ferro-distortive pattern remainsmore » in the superconducting state upon fluorine doping, but the displacements are diminished in magnitude. Moreover, we find that the in-plane distortions give rise to disorder where the (00L) reflections become quite broad. It is possible that charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing.« less
Research into Influence of Gaussian Beam on Terahertz Radar Cross Section of a Semicircular Boss
NASA Astrophysics Data System (ADS)
Li, Hui-Yu; Li, Qi; She, Jian-Yu; Zhao, Yong-Peng; Chen, De-Ying; Wang, Qi
2013-08-01
In radar cross section (RCS) calculation of a rough surface, the model can be simplified into the scattering of geometrically idealized bosses on a surface. Thus the problem of the RCS calculation of a rough surface is changed to the RCS calculation of the semicircular boss. The RCS measurement of scale model can help save time and money. The utilization of terahertz in RCS is attractive because of its special properties: the wavelength of the terahertz wave can help limit the size of the model in a suitable range in the measurement of the scale model and get more detailed data in the measurement of the real object. However, usually the incident beam of a terahertz source is a Gaussian beam; in the theoretical RCS estimation, usually a plane wave is assumed as the incident beam for sake of simplicity which may lead to an error between the measurement and calculation results. In this paper, the method of images is used to calculate the RCS of a semicircular boss at 2.52 THz and the results are compared to the one calculated when the incident beam is a plane wave.
Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance
NASA Technical Reports Server (NTRS)
Hwang, Y. M.
1974-01-01
The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering
NASA Astrophysics Data System (ADS)
Lin, Hong
The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the field also stabilises the lock-in structure with q = 2/7c^* in both the intermediate and the CAM phases.
1984-06-30
solved one version of the Kadomtsev - Petviashvili equation , (ut + 6uux + U )x - 3uyy, (KP) on the plane (- * < x, y < -). Nanakov’s results were formal...dimensions. 3. Periodic Waves In Shallow Water The other version of the Kadomtsev - Petviashvili equation is (ut + 6uux U )x 3Uy 0. (KP2) Both equations have...A. I. P. Conf. Proc. #88, ed. by M. Tabor & Y. M. Treve, 1982, with T. Bountis. 14. "Comments on Inverse Scattering for the Kadomtsev - Petviashvili
Performance evaluation of a bigrating as a beam splitter.
Hwang, R B; Peng, S T
1997-04-01
The design of a bigrating for use as a beam splitter is presented. It is based on a rigorous formulation of plane-wave scattering by a bigrating that is composed of two individual gratings oriented in different directions. Numerical results are carried out to optimize the design of a bigrating to perform 1 x 4 beam splitting in two dimensions and to examine its fabrication and operation tolerances. It is found that a bigrating can be designed to perform two functions: beam splitting and polarization purification.
A numerical procedure for solving the inverse scattering problem for stratified dielectric media
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Yevick, D.; Ferwerda, H. A.
1983-05-01
In this paper the refractive index profile of a dielectric stratified medium, terminated by a perfect conductor, is calculated from the complex reflection coefficient for monochromatic plane waves, incident from different directions. The advantage of this approach is that the dispersion of the refractive index does not enter the calculations. The calculation is based on the Marchenko and Gelfand-Levitan equations taking into account the bound modes of the layer. Some illustrative numerical examples are presented.
Inverse spin Hall effect by spin injection
NASA Astrophysics Data System (ADS)
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
Propagation of propeller tone noise through a fuselage boundary layer
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Magliozzi, B.
1984-01-01
In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this paper a new three-dimensional theory is described that treats the combined effects of refraction and scattering by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The model for the incident waves is a near-field frequency-domain propeller source theory developed previously for free field studies. Calculations for an advanced turboprop (Prop-Fan) model flight test at 0.8 Mach number show a much smaller than expected pressure amplification at the noise directivity peak, strong boundary layer shielding in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference between fuselage surface and free-space noise predictions as a function of frequency and Mach number. Comparison of calculated and measured effects obtained in a Prop-Fan model flight test show good agreement, particularly near and aft of the plane of rotation at high cruise Mach number.
First- and second-order Raman scattering from MoTe2 single crystal
NASA Astrophysics Data System (ADS)
Caramazza, Simone; Collina, Arianna; Stellino, Elena; Ripanti, Francesca; Dore, Paolo; Postorino, Paolo
2018-02-01
We report on Raman experiments performed on a MoTe2 single crystal. The system belongs to the wide family of transition metal dichalcogenides which includes several of the most interesting two-dimensional materials for both basic and applied physics. Measurements were performed in the standard basal plane configuration, by placing the ab plane of the crystal perpendicular to the wave vector k i of the incident beam to explore the in-plane vibrational modes, and in the edge plane configuration with k i perpendicular to the crystal c axis, thus mainly exciting out-of-plane modes. For both configurations we performed a polarization-dependent study of the first-order Raman components and detailed computation of the corresponding selection rules. We were thus able to provide a complete assignment of the observed first-order Raman peaks, in agreement with previous literature results. A thorough analysis of the second-order Raman bands, as observed in both basal and edge plane configurations, provides new information and allows a precise assignment of these spectral structures. In particular, we have observed and assigned Raman active modes of the M point of the Brillouin zone previously predicted by ab initio calculations but never previously measured.
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
Field, Jeffrey J; Winters, David G; Bartels, Randy A
2015-11-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.
Out-of-plane reflections - are they evidence for deep subducted lithosphere?
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine
2015-04-01
Subduction zones form dominant tectonic features on the Earth and have complex three-dimensional structures. Tomographic inversions for P- and S-wave seismic velocities in the Earth's mantle give impressive images of slabs descending into the deep Earth. However, direct observations of deep slabs are scarce but necessary to make statements concerning physical parameters, structural differences within the slab and its behavior with depth. The main objective of this study is to investigate the geometry, physical parameters and structural differences of subducted lithosphere by investigating seismic P-wave arrivals that reflect off the base of the slab using seismic array techniques. The great circle paths of the source-receiver combinations used do not intersect the slab and serve as reference. We focus on the North pacific region by using earthquakes from Japan, the Philippines and the Hindukush recorded at North American networks (e.g. USArray, Alaska and Canada). The data cover a period from 2000-2012 with a minimum magnitude of 5.6 Mw and depths below 100 km. We are looking for reflections from the slab region that would arrive at the stations with deviating backazimuths. Information on slowness, backazimuth and travel time of the observed out-of-plane arrivals is used to backtrace the wave to its scattering location and to map seismic heterogeneities associated with subduction zones. The reflection points give an idea for the 3D structures within the mantle. Assuming only single scattering in the backtracing algorithm, most out-of-plane signals have to travel as P*P and only a few as S*P phases, due to their timing. Taking into account the radiation pattern of each event in direction of the great circle path and towards the calculated reflection point, it is possible to compare the polarities of the out-of-plane signals with P and/or PP. Furthermore, we analyze the out-of-plane waveforms in the beam trace of the observed slowness and backazimuth by cross-correlating them with great circle path phases and applying a systematic frequency analysis. Since the backtracing results are used for the further analysis of the signals, it is important to know how robust the backtracing routine is. We therefore analyze synthetic seismograms for 3D models with and without slab like heterogeneities. The result helps us to understand the depth dependent thermal behavior of sinking lithosphere, its internal structure and the extent to which it is seismically visible.
Novel doorways and resonances in large-scale classical systems
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.
2011-05-01
We show how the concept of doorway states carries beyond its typical applications and usual concepts. The scale on which it may occur is increased to large classical wave systems. Specifically we analyze the seismic response of sedimentary basins covered by water-logged clays, a rather common situation for urban sites. A model is introduced in which the doorway state is a plane wave propagating in the interface between the sediments and the clay. This wave is produced by the coupling of a Rayleigh and an evanescent SP-wave. This in turn leads to a strong resonant response in the soft clays near the surface of the basin. Our model calculations are compared with measurements during Mexico City earthquakes, showing quite good agreement. This not only provides a transparent explanation of catastrophic resonant seismic response in certain basins but at the same time constitutes up to this date the largest-scale example of the doorway state mechanism in wave scattering. Furthermore the doorway state itself has interesting and rather unusual characteristics.
Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements.
Zhao, Junming; Sima, Boyu; Jia, Nan; Wang, Cheng; Zhu, Bo; Jiang, Tian; Feng, Yijun
2016-11-28
In the paper, a flexible low-scattering metasurface is proposed and realized. The layout is composed of similar "#" shaped elements with variable sizes which are randomly distributed along the surface. The various dimensions of the meta-elements lead to different reflection phases for the meta-elements with respect to the incident plane wave, resulting a diffuse reflection surface and exhibiting a broadband backward low-scattering property. In consideration of the flexibility, metasurfaces composed of printed metallic element films attaching with flexible substrate are designed, fabricated and measured in microwave domain. The measurement results show that 10dB radar cross section (RCS) reduction is obtained across the X-band by coating them to either metallic plates or metallic cylinders with only 1/8 working wavelength thickness. We think that the proposed flexible metasurface is applicable to other frequency bands and can be applied in EM stealth technology.
Spin-isospin excitation of 3He with three-proton final state
NASA Astrophysics Data System (ADS)
Ishikawa, Souichi
2018-01-01
Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.
Broadband computation of the scattering coefficients of infinite arbitrary cylinders.
Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier
2012-07-01
We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.
Lattice dynamics and thermal transport in multiferroic CuCrO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.
Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less
Lattice dynamics and thermal transport in multiferroic CuCrO 2
Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; ...
2017-02-09
Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourmatin, Hossein, E-mail: mpourmat@andrew.cmu.edu; Dayal, Kaushik, E-mail: kaushik@cmu.edu
2016-10-15
Graphical abstract: - Abstract: We consider the scattering of incident plane-wave electrons from a defect in a crystal modeled by the time-harmonic Schrödinger equation. While the defect potential is localized, the far-field potential is periodic, unlike standard free-space scattering problems. Previous work on the Schrödinger equation has been almost entirely in free-space conditions; a few works on crystals have been in one-dimension. We construct absorbing boundary conditions for this problem using perfectly matched layers in a tight-binding formulation. Using the example of a point defect in graphene, we examine the efficiency and convergence of the proposed absorbing boundary condition.
NASA Technical Reports Server (NTRS)
Register, D. F.; Trajmar, S.; Fineman, M. A.; Poe, R. T.; Csanak, G.; Jensen, S. W.
1983-01-01
Differential (in angle) electron scattering experiments on laser-excited Ba-138 1P were carried out at 30- and 100-eV impact energies. The laser light was linearly polarized and located in the scattering plane. The superelastic scattering signal was measured as a function of polarization direction of the laser light with respect to the scattering plane. It was found at low electron scattering angles that the superelastic scattering signal was asymmetric to reflection of the polarization vector with respect to the scattering plane. This is in contradiction with theoretical predictions. An attempt was made to pinpoint the reason for this observation, and a detailed investigation of the influence of experimental conditions on the superelastic scattering was undertaken. No explanation for the asymmetry has as yet been found.
Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia
NASA Astrophysics Data System (ADS)
Rieger, Duayne Matthew
Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to discern a clipping anisotropic axis would help gain insight into the mantle dynamics of regions such as Cascadia. Lateral gradients of seismic anisotropy in Earth's upper mantle induce coupling among Earth's spheroidal and toroidal normal modes. This coupling can manifest as observable surface-wave polarization anomalies resulting from Love to Rayleigh wave conversions. These Love to Rayleigh conversions are known in the literature as Quasi-Love (QL) waves (Park and Yu, 1992) and are sensitive to both the strike and the dip of an anisotropic symmetry axis. In this dissertation I investigate the phenomenology of QL surface-wave scattering, including its sensitivity to the type and orientation of seismic anisotropy. I then apply my findings to observations of QL wave scattering in Cascada in order to further constrain subslab mantle anisotropy in the region. First, I make initial observations and confirm the presence of QL scattering in Cascada and the western U.S. using data recorded on USArray. I then move on to develop an algorithm to model efficiently QL wave scattering in the presence of 3-dimensional anisotropic structure. Using this forward-modeling algorithm, I investigate the dependence of QL wave scattering on the type and orientation of seismic Anisotropy. I find that P and S anisotropies exhibit independent effects on scattering. Scattering due to S anisotropy is stronger than that due to P anisotropy for all orientations and dominates in the observed scattering pattern. Both the phase and amplitude of the QL wave is dependent on the orientation (strike and dip) of the symmetry axis relative to the incident propagation azimuth of the source-receiver great-circle path. Due to this, the orientation of the anisotropic symmetry axis provides a distinct signature which is observable in the variation of QL wave scattering with wave-propagation azimuth. Finally, using data recorded on USArray, I observe the variation in QL wave scattering with propagation azimuth. I then attempt to forward-model the observed behavior using the algorithm developed earlier. The best-fitting model suggests coherent trench-perpendicular mantle anisotropy with an eastward dip in the sublsab mantle of the Cascadian subduction zone. The resulting anisotropic model adds confidence to the entrained subslab mantle-flow model for Cascadia and further refutes the 3-D return-flow model associated with slab rollback.
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Tunable zero-line modes via magnetic field in bilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Ke; Qiao, Zhenhua
Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru
2016-06-15
Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.
Holographic leaky-wave metasurfaces for dual-sensor imaging.
Li, Yun Bo; Li, Lian Lin; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-12-10
Metasurfaces have huge potentials to develop new type imaging systems due to their abilities of controlling electromagnetic waves. Here, we propose a new method for dual-sensor imaging based on cross-like holographic leaky-wave metasurfaces which are composed of hybrid isotropic and anisotropic surface impedance textures. The holographic leaky-wave radiations are generated by special impedance modulations of surface waves excited by the sensor ports. For one independent sensor, the main leaky-wave radiation beam can be scanned by frequency in one-dimensional space, while the frequency scanning in the orthogonal spatial dimension is accomplished by the other sensor. Thus, for a probed object, the imaging plane can be illuminated adequately to obtain the two-dimensional backward scattered fields by the dual-sensor for reconstructing the object. The relativity of beams under different frequencies is very low due to the frequency-scanning beam performance rather than the random beam radiations operated by frequency, and the multi-illuminations with low relativity are very appropriate for multi-mode imaging method with high resolution and anti- noise. Good reconstruction results are given to validate the proposed imaging method.
Metamaterials: supra-classical dynamic homogenization
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2015-12-01
Metamaterials are artificial composite structures designed for controlling waves or fields, and exhibit interaction phenomena that are unexpected on the basis of their chemical constituents. These phenomena are encoded in effective material parameters that can be electronic, magnetic, acoustic, or elastic, and must adequately represent the wave interaction behavior in the composite within desired frequency ranges. In some cases—for example, the low frequency regime—there exist various efficient ways by which effective material parameters for wave propagation in metamaterials may be found. However, the general problem of predicting frequency-dependent dynamic effective constants has remained unsolved. Here, we obtain novel mathematical expressions for the effective parameters of two-dimensional metamaterial systems valid at higher frequencies and wavelengths than previously possible. By way of an example, random configurations of cylindrical scatterers are considered, in various physical contexts: sound waves in a compressible fluid, anti-plane elastic waves, and electromagnetic waves. Our results point towards a paradigm shift in our understanding of these effective properties, and metamaterial designs with functionalities beyond the low-frequency regime are now open for innovation. Dedicated with gratitude to the memory of Prof Yves C Angel.
Full-wave simulation of a three-dimensional metamaterial prism
Basilio, Lorena I.; Langston, William L.; Warne, Larry K.; ...
2015-01-23
In our article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). Furthermore, to describe the methodology used in designing a n = -1 refractive index prism, our results include the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributionsmore » corresponding to a normally incident plane-wave excitation of the prism.« less
Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.
Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B
2016-01-01
A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.
Plane Evanescent Waves and Interface Waves
NASA Astrophysics Data System (ADS)
Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.
The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.
CaMn 2Sb 2: Spin waves on a frustrated antiferromagnetic honeycomb lattice
McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; ...
2015-05-22
Here we presenmore » t inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn 2 Sb 2 , which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first-and second-neighbor exchange interactions J 1 and J 2 in the Mn plane and also an exchange interaction between planes. The determined ratio J 2/J 1 ≈ 1/6 suggests that CaMn 2 Sb 2 is an example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the Néel phase and two different spiral phases coexist. Lastly, the magnitude of the determined exchange interactions reveals a mean field ordering temperature ≈ 4 times larger than the reported Néel temperature T N = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less
NASA Astrophysics Data System (ADS)
Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.
2009-02-01
The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).
On the estimation of ice thickness from scattering observations
NASA Astrophysics Data System (ADS)
Williams, T. D.; Squire, V. A.
2010-04-01
This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges are not sizeable, i.e. away from coastal regions of high deformation.
Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.
Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G
2011-04-10
We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Maximov, Vadim; Maximova, Elena; Damjanović, Ilija; Maximov, Paul
2014-09-01
Responses of direction-selective and orientation-selective motion detectors were recorded extracellularly from the axon terminals of ganglion cells in the superficial layers of the tectum opticum of immobilized goldfish, Carassius gibelio (Bloch, 1782). Color stripes or edges moving on some color background (presented on the CRT monitor with known emission spectra of its phosphors) served as stimuli. It was shown that stimuli of any color can be more or less matched with the background by varying their intensities what is indicative of color blindness of the motion detectors. Sets of stimuli which matched the background proved to represent planes in the three-dimensional color space of the goldfish. A relative contribution of different types of cones to the spectral sensitivity was estimated according to orientation of the plane of color matches. The spectral sensitivity of any motion detector was shown to be determined mainly by long-wave cones with a weak negative (opponent) contributions of middle-wave and/or short-wave ones. This resulted in reduced sensitivity in the blue-green end of the spectrum, what may be considered as an adaptation to the aquatic environment where, because of the substantial light scattering of a blue-green light, acute vision is possible only in a red region of the spectrum.
NASA Technical Reports Server (NTRS)
Miller, K. L.; Smith, L. G.
1976-01-01
The partially transparent echo from midlatitude sporadic E layers was recorded by ionosondes between the blanketing frequency and the maximum frequency. The theory that the midlatitude sporadic E layers are not uniform in the horizontal plane but contain localized regions of high electron density was evaluated using data obtained by incoherent scatter radar and found to provide a satisfactory explanation. The main features of midlatitude sporadic E layers are consistent with the convergence of metallic ions as described by the wind shear theory applied to gravity waves and tides. The interference of gravity waves with other gravity waves and tides can be recognized in the altitudes of occurrence and the structure of the layers. Small scale horizontal irregularities are attributed in some cases to critical level effects and in others to fluid instabilities. The convergence of a meteor trail can, under some circumstances, account for localized enhancement of the electron density in the layer.
Momentum signatures of the Anderson transition
NASA Astrophysics Data System (ADS)
Sanjib, Ghosh
This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.
Spin wave scattering and interference in ferromagnetic cross
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanayakkara, Kasuni; Kozhanov, Alexander; Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303
2015-10-28
Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.
Scattering on hyperbolic microspheres: From photonic nanojets to Poisson-Arago bright spots
NASA Astrophysics Data System (ADS)
Hodges, Reed; Dean, Cleon; Durach, Maxim
We investigate optical properties of metal-dielectric metamaterial microspheres composed of subwavelength spherical shells of two different materials alternating in an onion-layer fashion. Recently such metamaterial spheres were considered as cavities and their whispering gallery modes were investigated. We focus on the scattering of external radiation by the meta-micropheres in this work. We show that different scenarios are produced by altering the metal fraction in the spheres: as the microsphere transitions from all-dielectric to hyperbolic to all-metal, the photonic nanojets transform into Poisson-Arago bright spots. A new phenomenon also emerges as the percentage of metal in the microsphere increases. ``Hot spots'' of optical fields intensity appear at the center of the sphere. Their intensity is much higher than that of the incident plane wave.
Anisotropic scattering of discrete particle arrays.
Paul, Joseph S; Fu, Wai Chong; Dokos, Socrates; Box, Michael
2010-05-01
Far-field intensities of light scattered from a linear centro-symmetric array illuminated by a plane wave of incident light are estimated at a series of detector angles. The intensities are computed from the superposition of E-fields scattered by the individual array elements. An average scattering phase function is used to model the scattered fields of individual array elements. The nature of scattering from the array is investigated using an image (theta-phi plot) of the far-field intensities computed at a series of locations obtained by rotating the detector angle from 0 degrees to 360 degrees, corresponding to each angle of incidence in the interval [0 degrees 360 degrees]. The diffraction patterns observed from the theta-Phi plot are compared with those for isotropic scattering. In the absence of prior information on the array geometry, the intensities corresponding to theta-Phi pairs satisfying the Bragg condition are used to estimate the phase function. An algorithmic procedure is presented for this purpose and tested using synthetic data. The relative error between estimated and theoretical values of the phase function is shown to be determined by the mean spacing factor, the number of elements, and the far-field distance. An empirical relationship is presented to calculate the optimal far-field distance for a given specification of the percentage error.
Effective electron mass and phonon modes in n-type hexagonal InN
NASA Astrophysics Data System (ADS)
Kasic, A.; Schubert, M.; Saito, Y.; Nanishi, Y.; Wagner, G.
2002-03-01
Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m0. The resonantly excited zone center E1 (TO) phonon mode is observed at 477 cm-1 in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A1(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm-1 constitutes a lower limit for the unscreened A1(LO) phonon frequency.
1986-01-01
mn, 5] sin OdOd (B.39) 98 V Due to the orthogonality of the Legendre polynomials (shown in Appendix D), there is only a value when v = v’. This yields... some of his unpublished results. These results were for the special case of axial incidence on the semi- infinite cone, and were useful in verifying my... general solution. I express gratitude to Mr.(Ph.D. Candidate) Ming Cheng Liang for our many hours of discussion, and to my office mate Mr.(Ph.D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Zhiqi
The Full Potential Linear Augmented Plane Wave (FPLAPW or FLAPW) method is used for a spin-polarized band calculation for ordered Fe 3Pt. As major purpose, the momentum distributions of the spin-polarized electrons are calculated and compared with results from a magnetic Compton scattering measurement. To get related information, the electronic behavior is also analyzed by examining the partial densities of states and the spatial electron distributions; the role of alloying effects is then explored by studying the electrons in some related alloys: Fe 3Ni, Fe 3Pd, Ni 3Pt and Co 3Pt.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
Goedel, Penrose, anti-Mach: Extra supersymmetries of time-dependent plane waves
NASA Astrophysics Data System (ADS)
Blau, Matthias; Meessen, Patrick; O'Loughlin, Martin
2003-09-01
We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Gödel-like metrics, show that the Penrose limit of the M-theory Gödel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.
Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L
2015-12-09
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.
Network representations of angular regions for electromagnetic scattering
2017-01-01
Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573
Scattering by tilted plastic cylinders having curved ends and truncated plastic cones
NASA Astrophysics Data System (ADS)
Espana, Aubrey; Baik, Kyungmin; Marston, Philip L.
2005-04-01
In prior research an acoustic backscattering enhancement was demonstrated for a bluntly truncated plastic cylinder caused by a merged caustic [F. J. Blonigen and P. L. Marston, J. Acoust. Soc. Am. 107, 689-698 (2000)]. This was confirmed with analogous light scattering experiments [P. L. Marston, Y. B. Zhang, and D. B. Thiessen, Appl. Opt. 42, 412-417 (2003)]. In recent work a different backscattering enhancement associated with a caustic was identified for tilted plastic cylinders having curved ends. When the cylinder is tilted so as to focus a shear wave at the point of internal specular reflection, the curvature of the outgoing acoustic wavefront vanishes orthogonal to the meridional plane. This was verified with analogous light scattering experiments. The flatness of the outgoing wavefront enhances the scattering. Backscattering by truncated plastic cones as a function of tilt also shows enhancements associated with the composition of the target. The time dependence of the backscattering envelope as a function of tilt reveals different features depending on whether the top or bottom of the cone is illuminated by tone bursts. [Work supported by the Office of Naval Research.
String scattering amplitudes and deformed cubic string field theory
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2018-01-01
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
Wave propagation, scattering and emission in complex media
NASA Astrophysics Data System (ADS)
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M. Gitterman. Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer / G. V. Jandieri, G. D. Aburjunia, V. G. Jandieri. Numerical analysis of microwave heating on saponification reaction / K. Huang, K. Jia -- IV. Scattering from complex targets. Analysis of electromagnetic scattering from layered crossed-gratings of circular cylinders using lattice sums technique / K. Yasumoto, H. T. Jia. Scattering by a body in a random medium / M. Tateiba, Z. Q. Meng, H. El-Ocla. A rigorous analysis of electromagnetic scattering from multilayered crossed-arrays of metallic cylinders / H. T. Jia, K. Yasumoto. Vector models of non-stable and spatially-distributed radar objects / A. Surkov ... [et al.]. Simulation of algorithm of orthogonal signals forming and processing used to estimate back scattering matrix of non-stable radar objects / D. Nosov ... [et al.]. New features of scattering from a dielectric film on a reflecting metal substrate / Z. H. Gu, I. M. Fuks, M. Ciftan. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan -- V. Radiative transfer and remote sensing. Simulating microwave emission from Antarctica ice sheet with a coherent model / M. Tedesco, P. Pampaloni. Scattering and emission from inhomogeneous vegetation canopy and alien target by using three-dimensional Vector Radiative Transfer (3D-VRT) equation / Y. Q. Jin, Z. C. Liang. Analysis of land types using high-resolution satellite images and fractal approach / H. G. Zhang ... [et al.]. Data fusion of RADARSAT SAR and DMSP SSM/I for monitoring sea ice of China's Bohai Sea / Y. Q. Jin. Retrieving atmospheric temperature profiles from simulated microwave radiometer data with artificial neural networks / Z. G. Yao, H. B. Chen -- VI. Wave propagation and wireless communication. Wireless propagation in urban environments: modeling and experimental verification / D. Erricolo ... [et al.]. An overview of physics-based wave propagation in forested environment / K. Sarabandi, I. Koh. Angle-of-arrival fluctuations due to meteorological conditions in the diffraction zone of C-band radio waves, propagated over the ground surface / T. A. Tyufilina, A. A. Meschelyakov, M. V. Krutikov. Simulating radio channel statistics using ray based prediction codes / H. L. Bertoni. Measurement and simulation of ultra wideband antenna elements / W. Sörgel, W. Wiesbeck. The experimental investigation of a ground-placed radio complex synchronization system / V. P. Denisov ... [et al.] -- VII. Computational electromagnetics. Analysis of 3-D electromagnetic wave scattering with the Krylov subspace FFT iterative methods / R. S. Chen ... [et al.]. Sparse approximate inverse preconditioned iterative algorithm with block toeplitz matrix for fast analysis of microstrip circuits / L. Mo, R. S. Chen, E. K. N. Yung. An Efficient modified interpolation technique for the translation operators in MLFMA / J. Hu, Z. P. Nie, G. X. Zou. Efficient solution of 3-D vector electromagnetic scattering by CG-MLFMA with partly approximate iteration / J. Hu, Z. P. Nie. The effective constitution at interface of different media / L. G. Zheng, W. X. Zhang. Novel basis functions for quadratic hexahedral edge element / P. Liu ... [et al.]. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan. Attenuation of electric field eradiated by underground source / J. P. Dong, Y. G. Gao.
Random-phase metasurfaces at optical wavelengths
NASA Astrophysics Data System (ADS)
Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.
2016-06-01
Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.
NASA Astrophysics Data System (ADS)
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
Wave energy trapping and localization in a plate with a delamination
NASA Astrophysics Data System (ADS)
Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter
2012-12-01
The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.
1993-04-01
An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less
NASA Astrophysics Data System (ADS)
Hsu, Chen-Hsuan; Wang, Zhiqiang; Chakravarty, Sudip
2012-12-01
In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave, the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies. From numerical calculations within the framework of random phase approximation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energy ω≤90meV, which are reminiscent of the experiments. At very high energy ω≥165meV, we also find energy-dependent incommensurability. Although there are some important differences between the three cases, unpolarized neutron measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass shape dispersion.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
Analysis of the electromagnetic scattering from an inlet geometry with lossy walls
NASA Technical Reports Server (NTRS)
Myung, N. H.; Pathak, P. H.; Chunang, C. D.
1985-01-01
One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.
The use of the virtual source technique in computing scattering from periodic ocean surfaces.
Abawi, Ahmad T
2011-08-01
In this paper the virtual source technique is used to compute scattering of a plane wave from a periodic ocean surface. The virtual source technique is a method of imposing boundary conditions using virtual sources, with initially unknown complex amplitudes. These amplitudes are then determined by applying the boundary conditions. The fields due to these virtual sources are given by the environment Green's function. In principle, satisfying boundary conditions on an infinite surface requires an infinite number of sources. In this paper, the periodic nature of the surface is employed to populate a single period of the surface with virtual sources and m surface periods are added to obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible to obtain a convergent sum with relatively small number of terms (∼40). The accuracy of the technique is verified by comparing its results with those obtained using the integral equation technique.
Electron- and proton-induced ionization of pyrimidine
Champion, Christophe; Quinto, Michele; Weck, Philippe F
2015-03-27
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less
Exploring the relative boundaries of the patchy pulsating aurora
NASA Astrophysics Data System (ADS)
Carlisle, E.; Donovan, E.; Jackel, B. J.
2017-12-01
Pulsating aurora is a common auroral feature that occurs most frequently on the nightside, in the equatorward part of the auroral oval. It is caused by pitch angle scattering of electrons due to wave-particle interactions near the equatorial plane. As such, observations of pulsating aurora provide information about the distribution of the plasma waves in the magnetosphere. Anecdotal evidence suggests that pulsating aurora occur equatorward of the proton aurora, and hence in the largely dipolar region at or inside the inner edge of the plasma sheet. Here we present results of a statistical survey of photometer observations of proton aurora and simultaneous all-sky imager observations of electron aurora. Our objective is to provide a definitive statement regarding the location of pulsating aurora relative to the proton aurora.
A general purpose wideband optical spatial frequency spectrum analyzer
NASA Technical Reports Server (NTRS)
Ballard, G. S.; Mellor, F. A.
1972-01-01
The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.
Single to Multiquasiparticle Excitations in the Itinerant Helical Magnet CeRhIn 5
Stock, C.; Rodriguez-Rivera, J. A.; Schmalzl, K.; ...
2015-06-19
Neutron scattering is used to measure the quantum spin fluctuations in CeRhIn 5 - the parent material of the eXIn 5 superconducting series. Out-of-plane spin fluctuations are gapped and localized in momentum, similar to the spin excitons in CeCoIn5. The in-plane fluctuations consist of sharp spin-wave excitations parameterized by a nearest neighbor exchange J RKKY =0.88 ± 0.05 meV that crossover to a temporally and spatially broad multiparticle spectrum with energies of ~ 2 × J RKKY . This continuum represents composite fluctuations that illustrate the breakdown of single magnons originating from the delicate energy balance between localized 4f andmore » itinerant behavior in a heavy metal. The experiment therefore shows how quasiparticle behavior is changed by the close proximity of quantum criticality.« less
Passive characterization of hydrofracture properties using signals from hydraulic pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector III, J.W.; Dong, Q.; Patzek, T.W.
1999-01-02
Massive hydraulic fracturing is used to enhance production from the low-permeability diatomite fields of Kern County, CA. Although critical for designing injection and recovery well patterns, the in-situ hydraulic fracture geometry is poorly understood. In 1990, Shell conducted an extensive seismic monitoring experiment on several hydrofractures prior to a steam drive pilot to characterize hydrofracture geometry. The seismic data were recorded by cemented downhole geophone arrays in three observation holes (MO-1, MO-2, and MO-3) located near the hydraulic fracture treatment wells. Using lowpass filtering and moveout analysis, events in the geophone recordings are identified as conical shear waves radiating frommore » tube waves traveling down the treatment well. These events appear to be created by the hydraulic pumps, since their amplitudes are correlated with the injection rate and the wellhead pressure. Conical wave amplitudes are related to the tube wave attenuation in the treatment well and to wave-propagation characteristics of the shear component traveling in the earth. During the main fracturing stage, geophones above the fracture zone for wells MO-1 and MO-2 (both roughly along the inferred vertical fracture plane) exhibited conical-wave amplitude increases that are caused by shear wave reflection/scattering off the top of a fracture zone. From changes in the reflection amplitude as a function of depth, we interpret that the fracture zone initially extends along a confined vertical plane at a depth that correlates with many of the microseismic events. Toward the end of the main fracturing stage, the fracture zone extends upward and also extends in width, although we cannot determine the dimensions of the fracture from the reflection amplitudes alone. For all wells, we observe that the reflection (and what we infer to be the initial fracture) begins during a time period where no marked change in fracture pressure or injection rate or slurry concentration is observed. As the main fracturing stage progressed, we observed a significant decrease in amplitude for geophones below the top of the fracture zone. The attenuation was most pronounced for wells MO-1 and MO-2 (along the fracture plane). However, near the end of the main stage, well MO-3 also exhibited a significant amplitude decrease, suggesting the development of a fractured ''process zone'' around the main fracture plane. In addition, well MO-3 also exhibited an amplitude decrease in an interval well below the initial fracture zone. Both the interval and the direction (toward MO-3) correspond with temperature log increases observed during later steam injection.« less
Ultrafast dynamic response of single crystal β-HMX
NASA Astrophysics Data System (ADS)
Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.
2017-01-01
We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.
Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation
NASA Astrophysics Data System (ADS)
Kuryliak, Dozyslav; Lysechko, Victor
2017-11-01
The diffraction problem of the plane acoustic wave on the semi-infinite truncated soft and rigid cones in the case of axial incidence is solved. The problem is formulated as a boundary-value problem in terms of Helmholtz equation, with Dirichlet and Neumann boundary conditions, for scattered velocity potential. The incident field is taken to be the total field of semi-infinite cone, the expression of which is obtained by solving the auxiliary diffraction problem by the use of Kontorovich-Lebedev integral transformation. The diffracted field is sought via the expansion in series of the eigenfunctions for subdomains of the Helmholtz equation taking into account the edge condition. The corresponding diffraction problem is reduced to infinite system of linear algebraic equations (ISLAE) making use of mode matching technique and orthogonality properties of the Legendre functions. The method of analytical regularization is applied in order to extract the singular part in ISLAE, invert it exactly and reduce the problem to ISLAE of the second kind, which is readily amenable to calculation. The numerical solution of this system relies on the reduction method; and its accuracy depends on the truncation order. The case of degeneration of the truncated semi-infinite cone into an aperture in infinite plane is considered. Characteristic features of diffracted field in near and far fields as functions of cone's parameters are examined.
Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen
2017-10-01
The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.
NASA Astrophysics Data System (ADS)
Vollmerhausen, Richard H.
This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.
Scattering calculation and image reconstruction using elevation-focused beams
Duncan, David P.; Astheimer, Jeffrey P.; Waag, Robert C.
2009-01-01
Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering. PMID:19425653
Scattering calculation and image reconstruction using elevation-focused beams.
Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C
2009-05-01
Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
Stock, C.; Rodriguez, E. E.; Bourges, P.; ...
2017-04-07
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Miyoshi, Y.; Oyama, S.; Saito, S.; ...
2015-04-21
Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyoshi, Y.; Oyama, S.; Saito, S.
Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, C.; Rodriguez, E. E.; Bourges, P.
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.
2017-04-01
The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.
Non-plane-wave Hartree-Fock states and nuclear homework potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, G.; Plastino, A.; de Llano, M.
1979-12-01
It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.
Determination of Residual Stress in Composite Materials Using Ultrasonic Waves
NASA Technical Reports Server (NTRS)
Rokhlin, S. I.
1997-01-01
The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual stresses. It is based on the generalized self-consistent multiple scattering model. Calculation results for longitudinal and shear ultrasonic wave velocities propagating perpendicular to the fibers direction in SCS-6/Ti composite with and without residual stresses are presented. They show that velocity changes due to presence of stresses are of order 1%.
Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jorgen Arendt
2016-11-01
This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where image quality for a λ -pitch transducer is compared with a λ /2-pitch transducer. Grating lobe artifacts for λ -pitch transducers degrade the contrast in plane wave images, and the impact on frame rate is studied. Field II simulations of plane wave images are made for all combinations of the parameters, and the optimal setup is selected based on Pareto optimality. The optimal setup for a simulated 4.1-MHz λ -pitch transducer uses 61 emissions and a maximum steering angle of 20° for depths from 0 to 60 mm. The achieved lateral full-width at half-maximum (FWHM) is 1.5λ and the contrast is -29 dB for a scatterer at 9 mm ( 24λ ). Using a λ /2-pitch transducer and only 21 emissions within the same angle range, the image quality is improved in terms of contrast, which is -37 dB. For imaging in regions deeper than 25 mm ( 66λ ), only 21 emissions are optimal for both the transducers, resulting in a -36 dB contrast at 34 mm ( 90λ ). Measurements are performed using the experimental SARUS scanner connected to a λ -pitch and λ /2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned and show the performance using the optimized sequences for the transducers. FWHM is 1.6λ and contrast is -25 dB for a wire at 9 mm using the λ -pitch transducer. For the λ /2-pitch transducer, contrast is -29 dB. In vivo scans of the carotid artery of a healthy volunteer show improved contrast and present fewer artifacts, when using the λ /2-pitch transducer compared with the λ -pitch. It is demonstrated with a frame rate, which is three times higher for the λ /2-pitch transducer.
The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
Ogam, Erick; Depollier, Claude; Fellah, Z E A
2010-09-01
Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, S.; Jang, H.; Nojiri, H.
In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less
Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects
NASA Technical Reports Server (NTRS)
Lock, James A.
1996-01-01
Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Multiple scattering in particulate planetary surfaces
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Peltoniemi, Jouni; Markkanen, Johannes; Penttilä, Antti; Videen, Gorden
2015-08-01
There are two ubiquitous phenomena observed at small solar phase angles (the Sun-Object-Observer angle) from, for example, asteroids and transneptunian objects. First, a nonlinear increase of brightness is observed toward the zero phase angle in the magnitude scale that is commonly called the opposition effect. Second, the scattered light is observed to be partially linearly polarized parallel to the Sun-Object-Observer plane that iscommonly called the negative polarization surge.The observations can be interpreted using a radiative-transfer coherent-backscattering Monte Carlo method (RT-CB, Muinonen 2004) that makes use of a so-called phenomenological fundamental single scatterer (Muinonen and Videen 2012). For the validity of RT-CB, see Muinonen et al. (2012). The method can allow us to put constraints on the size, shape, and refractive index of the fundamental scatterers.In the present work, we extend the RT-CB method for the specific case of a macroscopic medium of electric dipole scatterers. For the computation of the interactions, the far-field approximation inherent in the RT-CB method is replaced by an exact treatment, allowing us to account for, e.g., the so-called near-field effects. The present method constitutes the first milestone in the development of a multiple-scattering method, where the so-called ladder and maximally crossed cyclical diagrams of the multiple electromagnetic interactions are rigorously computed. We expect to utilize the new methods in the spectroscopic, photometric, and polarimetric studies of asteroids, as well as in the interpretation of radar echoes from small Solar System bodies.Acknowledgments. The research is funded by the ERC Advanced Grant No 320773 entitled Scattering and Absorption of Electromagnetic Waves in Particulate Media (SAEMPL).K. Muinonen, Waves in Random Media 14, 365 (2004).K. Muinonen, K., and G. Videen, JQSRT 113, 2385 (2012).K. Muinonen, M. I. Mishchenko, J. M. Dlugach, E. Zubko, A. Penttilä,and G. Videen, ApJ 760, 118 (2012).
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
New phase method of measuring particle size with laser Doppler radar
NASA Astrophysics Data System (ADS)
Zemlianskii, Vladimir M.
1996-06-01
A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Strong SH-to-Love wave scattering off the Southern California Continental Borderland
Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.
2017-01-01
Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.
Review and New Results of Local Helioseismology
NASA Astrophysics Data System (ADS)
Chou, Dean-Yi
2011-10-01
We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.
NASA Astrophysics Data System (ADS)
Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu
2017-08-01
The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.
Impulse approximation in nuclear pion production reactions: Absence of a one-body operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Miller, Gerald A.
2011-06-15
The impulse approximation of pion production reactions is studied by developing a relativistic formalism, consistent with that used to define the nucleon-nucleon potential. For plane wave initial states we find that the usual one-body (1B) expression O{sub 1B} is replaced by O{sub 2B}=-iK(m{sub {pi}}/2)O{sub 1B}/m{sub {pi}}, where K(m{sub {pi}}/2) is the sum of all irreducible contributions to nucleon-nucleon scattering with energy transfer of m{sub {pi}}/2. We show that O{sub 2B}{approx_equal}O{sub 1B} for plane wave initial states. For distorted waves, we find that the usual operator is replaced with a sum of two-body operators that are well approximated by the operatormore » O{sub 2B}. Our new formalism solves the (previously ignored) problem of energy transfer forbidding a one-body impulse operator. Using a purely one pion exchange deuteron, the net result is that the impulse amplitude for np{yields}d{pi}{sup 0} at threshold is enhanced by a factor of approximately two. This amplitude is added to the larger ''rescattering'' amplitude and, although experimental data remain in disagreement, the theoretical prediction of the threshold cross section is brought closer to (and in agreement with) the data.« less
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konno, Kohkichi, E-mail: kohkichi@tomakomai-ct.ac.jp; Nagasawa, Tomoaki, E-mail: nagasawa@tomakomai-ct.ac.jp; Takahashi, Rohta, E-mail: takahashi@tomakomai-ct.ac.jp
We consider the scattering of a quantum particle by two independent, successive parity-invariant point interactions in one dimension. The parameter space for the two point interactions is given by the direct product of two tori, which is described by four parameters. By investigating the effects of the two point interactions on the transmission probability of plane wave, we obtain the conditions for the parameter space under which perfect resonant transmission occur. The resonance conditions are found to be described by symmetric and anti-symmetric relations between the parameters.
NASA Technical Reports Server (NTRS)
Tuhela-Reuning, S. R.; Walton, E. K.
1991-01-01
The design, construction, and testing of a low cost, planar scanning system to be used in a compact range environment for bistatic radar cross-section (bistatic RCS) measurement data are discussed. This scanning system is similar to structures used for measuring near-field antenna patterns. A synthetic aperture technique is used for plane wave reception. System testing entailed comparison of measured and theoretical bistatic RCS of a sphere and a right circular cylinder. Bistatic scattering analysis of the ogival target support, target and pedestal interactions, and compact range room was necessary to determine measurement validity.
Author Correction: The unpolarized macronova associated with the gravitational wave event GW 170817
NASA Astrophysics Data System (ADS)
Covino, S.; Wiersema, K.; Fan, Y. Z.; Toma, K.; Higgins, A. B.; Melandri, A.; D'Avanzo, P.; Mundell, C. G.; Palazzi, E.; Tanvir, N. R.; Bernardini, M. G.; Branchesi, M.; Brocato, E.; Campana, S.; di Serego Alighieri, S.; Götz, D.; Fynbo, J. P. U.; Gao, W.; Gomboc, A.; Gompertz, B.; Greiner, J.; Hjorth, J.; Jin, Z. P.; Kaper, L.; Klose, S.; Kobayashi, S.; Kopac, D.; Kouveliotou, C.; Levan, A. J.; Mao, J.; Malesani, D.; Pian, E.; Rossi, A.; Salvaterra, R.; Starling, R. L. C.; Steele, I.; Tagliaferri, G.; Troja, E.; van der Horst, A. J.; Wijers, R. A. M. J.
2017-11-01
In the version of this Letter originally published, in the third paragraph of the text Kyutoku et al. were not correctly cited and the sentence should have read: "As pointed out by Kyutoku at al.28, in the case of high optical depth to electron scattering ( 1) and assuming spectral lines do not significantly depolarize the global emission, the linear polarization observed from the equatorial plane could be as high as a few per cent." Also, in the Author contributions section, the final sentence should have read: "C.G.M. contributed to the writing of the paper."
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitriadis, Alexandros I., E-mail: aldimitr@ee.auth.gr; Kantartzis, Nikolaos V., E-mail: kant@auth.gr; Tsiboukis, Theodoros D., E-mail: tsibukis@auth.gr
2015-01-15
Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to verymore » specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.« less
Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano
NASA Astrophysics Data System (ADS)
Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.
2017-12-01
This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to highlight a chimney-shaped structure inside Erebus volcano with true positive rates ranging from 80% to 95%. Although computed independently, the results at each depth are spatially consistent, substantiating their physical reliability. The identified structure is therefore likely to describe accurately the internal structure of the Erebus volcano.
When holography meets coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2012-12-17
The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.
Ingle, Atul; Varghese, Tomy
2014-09-03
This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.
Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.
2003-01-01
Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are compared. These spectra show surface waves generated/ scattered at the edges of the Santa Clara Valley and possibly within the valley at the western edge of the Evergreen basin.
Metadisorder for designer light in random systems
Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo
2016-01-01
Disorder plays a critical role in signal transport by controlling the correlation of a system, as demonstrated in various complex networks. In wave physics, disordered potentials suppress wave transport, because of their localized eigenstates, from the interference between multiple scattering paths. Although the variation of localization with tunable disorder has been intensively studied as a bridge between ordered and disordered media, the general trend of disorder-enhanced localization has remained unchanged, and the existence of complete delocalization in highly disordered potentials has not been explored. We propose the concept of “metadisorder”: randomly coupled optical systems in which eigenstates can be engineered to achieve unusual localization. We demonstrate that one of the eigenstates in a randomly coupled system can always be arbitrarily molded, regardless of the degree of disorder, by adjusting the self-energy of each element. Ordered waves with the desired form are then achieved in randomly coupled systems, including plane waves and globally collective resonances. We also devise counterintuitive functionalities in disordered systems, such as “small-world–like” transport from non–Anderson-type localization, phase-conserving disorder, and phase-controlled beam steering. PMID:27757414
Analysis of localized fringes in the holographic optical Schlieren system
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1980-01-01
The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
NASA Astrophysics Data System (ADS)
Yoshihara, Akira; Ohnuma, Shigehiro; Fujimori, Hiroyasu; Nakamura, Shintaro; Nojima, Tsutomu
2008-09-01
A systematic Brillouin light scattering (BLS) study on long-wavelength spin waves (SWs) in ferromagnetic TM-Al-O (TM=Co, Fe) nano-granular films with thickness of >1 μm was performed under magnetic fields of up to 4 kOe at room temperature. BLS spectra consist of a pair of bulk SW peaks on both frequency sides and a surface localized SW peak only on the positive frequency side in this study. These SW frequencies as a function of the magnetic field can be fully reproduced by the magnetostatic frequency formula developed for a semi-infinite uniform ferromagnetic medium with an exchange coupling and an in-plane uniaxial magnetic anisotropy. We determined a set of the magnetic constants including the exchange field HE for each film. Combining the exchange field HE with the electrical resistivity ρ for each film at room temperature, we found an inverse-square law given by ρ=a(HE)-2 for both the Co and Fe granular films with aFe=30.3 μΩ\\cdotcm\\cdot(kOe)2 and aCo=22.1 μΩ\\cdotcm\\cdot(kOe)2, respectively.
Excitations in the field-induced quantum spin liquid state of α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E.
2018-03-01
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes; ...
2018-02-20
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Line-source excitation of realistic conformal metasurface cloaks
NASA Astrophysics Data System (ADS)
Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea
2012-11-01
Following our recently introduced analytical tools to model and design conformal mantle cloaks based on metasurfaces [Padooru et al., J. Appl. Phys. 112, 034907 (2012)], we investigate their performance and physical properties when excited by an electric line source placed in their close proximity. We consider metasurfaces formed by 2-D arrays of slotted (meshes and Jerusalem cross slots) and printed (patches and Jerusalem crosses) sub-wavelength elements. The electromagnetic scattering analysis is carried out using a rigorous analytical model, which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. It is shown that the homogenized grid-impedance expressions, originally derived for planar arrays of sub-wavelength elements and plane-wave excitation, may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks illuminated by near-field sources. Our closed-form analytical results are in good agreement with full-wave numerical simulations, up to sub-wavelength distances from the metasurface, confirming that mantle cloaks may be very effective to suppress the scattering of moderately sized objects, independent of the type of excitation and point of observation. We also discuss the dual functionality of these metasurfaces to boost radiation efficiency and directivity from confined near-field sources.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less
The scattering analog for infiltration in porous media
NASA Astrophysics Data System (ADS)
Philip, J. R.
1989-11-01
This review takes the form of a set of Chinese boxes. The outermost box gives a brief general account of modem developments in the mathematical physics of unsaturated flow in soils and porous media. This provides the necessary foundations for the second box, which describes the quasi-linear analysis of steady multidimensional unsaturated flow, which is an essential prerequisite to the analog. Only then can we proceed to the innermost box, devoted to our major theme. An exact analog exists between steady quasi-linear flow in unsaturated soils and porous media and the scattering of plane pulses, and the analog carries over to the scattering of plane harmonic waves. Numerous established results, and powerful techniques such as Watson transforms, far-field scattering functions, and optical theorems, become available for the solution and understanding of problems of multidimensional infiltration. These are needed, in particular, to provide the asymptotics of the physically interesting and practically important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero. This is the limit of large s, where s is a characteristic length of the water supply surface normalized with respect to the sorptive length of the soil. These problems are singular in the sense that ignoring capillarity gives a totally incorrect picture of the wetted region. In terms of the optical analog, neglecting capillarity is equivalent to using geometrical optics, with coherent shadows projected to infinity. When exact solutions involve exotic functions, difficulties of both analysis and series summation may be avoided through use of small-s and large-s expansions provided by the analog. Numerous examples are given of solutions obtained through the analog. The scope for extending the application to flows from surface sources, to anisotropic and heterogeneous media, to unsteady flows, and to linear convection-diffusion processes in general is described briefly.
Compact Polarimetry in a Low Frequency Spaceborne Context
NASA Technical Reports Server (NTRS)
Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.
2011-01-01
Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is proposed.
Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua
2015-06-15
We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by rubymore » fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)« less
NASA Astrophysics Data System (ADS)
Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.
2018-03-01
The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.
Laser pulsing in linear Compton scattering
Krafft, G. A.; Johnson, E.; Deitrick, K.; ...
2016-12-16
Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such anmore » approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. In addition, as discussed in the body of the paper, many of the results allow easy scaling estimates to be made of the expected spectrum. A misconception in the literature on Compton scattering of circularly polarized beams is corrected and recorded.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian
Matlab code for inversion of frequency domain, electrostatic geophysical data in terms of scalar scattering amplitudes in the subsurface. The data is assumed to be the difference between two measurements: electric field measurements prior to the injection of an electrically conductive proppant, and the electric field measurements after proppant injection. The proppant is injected into the subsurface via a well, and its purpose is to prop open fractures created by hydraulic fracturing. In both cases the illuminating electric field is assumed to be a vertically incident plane wave. The inversion strategy is to solve a set of linear system ofmore » equations, where each equation defines the amplitude of a candidate scattering volume. The model space is defined by M potential scattering locations and the frequency domain (of which there are k frequencies) data are recorded on N receivers. The solution thus solves a kN x M system of linear equations for M scalar amplitudes within the user-defined solution space. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed to be scattered by subsurface proppant volumes. No field validation examples have so far been provided.« less
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania; Universita Kore di Enna, Enna
2008-12-15
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailedmore » formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.« less
Confinement-induced p-wave resonances from s-wave interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
2010-12-15
We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less
Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering
NASA Astrophysics Data System (ADS)
Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.
2017-12-01
Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Source and listener directivity for interactive wave-based sound propagation.
Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh
2014-04-01
We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.
The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
NASA Astrophysics Data System (ADS)
Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen
2017-12-01
Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; ...
2016-02-05
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Nematicity in stripe ordered cuprates probed via resonant x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achkar, A. J.; Zwiebler, M.; McMahon, Christopher
We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M) 2CuO 4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M) 2O 2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M) 2O 2 layers and the electronic nematicity of the CuO 2 planes, with only the latter being enhancedmore » by the onset of CDW order. Our results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less
Interpretation of Extinction in Gaussian-Beam Scattering
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The extinction efficiency for the interaction of a plane wave with a large nonabsorbing spherical particle is approximately 2.0. When a Gaussian beam of half-width w(sub 0) is incident upon a spherical particle of radius a with w(sub 0)/a less than 1, the extinction efficiency attains unexpectedly high or low values, contrary to intuitive expectations. The reason for this is associated with the so-called compensating term in the scattered field, which cancels the field of the Gaussian beam behind the particle, thereby producing the particle's shadow. I introduce a decomposition of the total exterior field into incoming and outgoing portions that are free of compensating terms. It is then shown that a suitably defined interaction efficiency has the intuitively expected asymptotic values of 2.0 for w(sub 0)/a much greater than 1 and 1.0 for w(sub 0)/a much less than 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, A.; Zanetti, F.M.; Lyra, M.L., E-mail: marcelo@fis.ufal.br
2016-10-15
In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations.more » - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.« less
Inverse obstacle problem for the scalar Helmholtz equation
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.
1994-07-01
The method presented is aimed at identifying the shape of an axially symmetric, sound soft acoustic scatterer from knowledge of the incident plane wave and of the scattering amplitude. The method relies on the approximate back propagation (ABP) of the estimated far field coefficients to the obstacle boundary and iteratively minimizes a boundary defect, without the addition of any penalty term. The ABP operator owes its structure to the properties of complete families of linearly independent solutions of Helmholtz equation. If the obstacle is known, as it happens in simulations, the theory also provides some independent means of predicting the performance of the ABP method. The ABP algorithm and the related computer code are outlined. Several reconstruction examples are considered, where noise is added to the estimated far field coefficients and other errors are deliberately introduced in the data. Many numerical and graphical results are provided.
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2004-12-01
Pseudodifferential operators (PSDOs) yield in principle exact one--way seismic wave equations, which are attractive both conceptually and for their promise of computational efficiency. The one--way operators can be extended to include multiple--scattering effects, again in principle exactly. In practice approximations must be made and, as an example, the variable--wavespeed Helmholtz equation for scalar waves in two space dimensions is here factorized to give the one--way wave equation. This simple case permits clear identification of a sequence of physically reasonable approximations to be used when the mathematically exact PSDO one--way equation is implemented on a computer. As intuition suggests, these approximations hinge on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow--angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so--called ``standard--ordering'' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane--wave synthesis lying at the heart of the calculations. The decision on whether a slow or a fast Fourier transform code should be used rests upon how many lateral model parameters are truly distinct. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one--way propagator for the laterally varying case, representing the intuitive extension of classical integral--transform solutions for a laterally homogeneous medium. This exponential propagator suggests the use of larger discrete step sizes, and it can also be used to approach phase--screen like approximations (though the latter are not the main interest here). Numerical comparisons with finite--difference solutions will be presented in order to assess the approximations being made and to gain an understanding of computation time differences. The ideas described extend to the three--dimensional, generally anisotropic case and to multiple scattering by invariant embedding.
WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y; Wu, S; Qi, H
Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less
Diffraction of a plane wave by a three-dimensional corner
NASA Technical Reports Server (NTRS)
Ting, L.; Kung, F.
1971-01-01
By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.
Enhanced backscattering through a deep random phase screen
NASA Astrophysics Data System (ADS)
Jakeman, E.
1988-10-01
The statistical properties of radiation scattered by a system consisting of a plane mirror placed in the Fresnel region behind a smoothly varying deep random-phase screen with off-axis beam illumination are studied. It is found that two mechanisms cause enhanced scattering around the backward direction, according to the mirror position with respect to the focusing plane of the screen. In all of the plane mirror geometries considered, the scattered field remains a complex Gaussian process with a spatial coherence function identical to that expected for a single screen, and a speckle size smaller than the width of backscatter enhancement.
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
Kravets, V G; Kabashin, A V; Barnes, W L; Grigorenko, A N
2018-06-27
When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.
NASA Astrophysics Data System (ADS)
Margerin, Ludovic
2013-01-01
This paper presents an analytical study of the multiple scattering of seismic waves by a collection of randomly distributed point scatterers. The theory assumes that the energy envelopes are smooth, but does not require perturbations to be small, thereby allowing the modelling of strong, resonant scattering. The correlation tensor of seismic coda waves recorded at a three-component sensor is decomposed into a sum of eigenmodes of the elastodynamic multiple scattering (Bethe-Salpeter) equation. For a general moment tensor excitation, a total number of four modes is necessary to describe the transport of seismic waves polarization. Their spatio-temporal dependence is given in closed analytical form. Two additional modes transporting exclusively shear polarizations may be excited by antisymmetric moment tensor sources only. The general solution converges towards an equipartition mixture of diffusing P and S waves which allows the retrieval of the local Green's function from coda waves. The equipartition time is obtained analytically and the impact of absorption on Green's function reconstruction is discussed. The process of depolarization of multiply scattered waves and the resulting loss of information is illustrated for various seismic sources. It is shown that coda waves may be used to characterize the source mechanism up to lapse times of the order of a few mean free times only. In the case of resonant scatterers, a formula for the diffusivity of seismic waves incorporating the effect of energy entrapment inside the scatterers is obtained. Application of the theory to high-contrast media demonstrates that coda waves are more sensitive to slow rather than fast velocity anomalies by several orders of magnitude. Resonant scattering appears as an attractive physical phenomenon to explain the small values of the diffusion constant of seismic waves reported in volcanic areas.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Interference Fringes of Solar Acoustic Waves around Sunspots
NASA Astrophysics Data System (ADS)
Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao
2012-10-01
Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.
NASA Astrophysics Data System (ADS)
Bini, Donato; Chicone, Carmen; Mashhoon, Bahram
2018-03-01
In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.
The magnetic ground state and relationship to Kitaev physics in α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab
The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.
TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Dinghui; Tong, Ping; Ma, Xiao
2018-05-01
We develop a new time-space optimized symplectic (TSOS) method for numerically solving elastic wave equations in heterogeneous isotropic media. We use the phase-preserving symplectic partitioned Runge-Kutta method to evaluate the time derivatives and optimized explicit finite-difference (FD) schemes to discretize the space derivatives. We introduce the averaged medium scheme into the TSOS method to further increase its capability of dealing with heterogeneous media and match the boundary-modified scheme for implementing free-surface boundary conditions and the auxiliary differential equation complex frequency-shifted perfectly matched layer (ADE CFS-PML) non-reflecting boundaries with the TSOS method. A comparison of the TSOS method with analytical solutions and standard FD schemes indicates that the waveform generated by the TSOS method is more similar to the analytic solution and has a smaller error than other FD methods, which illustrates the efficiency and accuracy of the TSOS method. Subsequently, we focus on the calculation of synthetic seismograms for teleseismic P- or S-waves entering and propagating in the local heterogeneous region of interest. To improve the computational efficiency, we successfully combine the TSOS method with the frequency-wavenumber (FK) method and apply the ADE CFS-PML to absorb the scattered waves caused by the regional heterogeneity. The TSOS-FK hybrid method is benchmarked against semi-analytical solutions provided by the FK method for a 1-D layered model. Several numerical experiments, including a vertical cross-section of the Chinese capital area crustal model, illustrate that the TSOS-FK hybrid method works well for modelling waves propagating in complex heterogeneous media and remains stable for long-time computation. These numerical examples also show that the TSOS-FK method can tackle the converted and scattered waves of the teleseismic plane waves caused by local heterogeneity. Thus, the TSOS and TSOS-FK methods proposed in this study present an essential tool for the joint inversion of local, regional, and teleseismic waveform data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2014-09-15
Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in the previous work by Zhangmore » and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153]. In that earlier work, collision strengths were also provided for N-like ions, but for a more comprehensive data set consisting of all possible 105 Δn=0 transitions, six scattered energies and the 81 ions with Z in the range 12≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153] and are presented here to replace those earlier results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2015-01-15
Relativistic distorted-wave collision strengths have been calculated for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20,0.42,0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5.83. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L.more » Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357]. In that earlier work, collision strengths were also provided for O-like ions, but for a more comprehensive data set consisting of all possible 45 Δn=0 transitions, six scattered energies, and the 79 ions with Z in the range 14≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357] and are presented here to replace those earlier results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2014-05-15
Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−3.33. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang andmore » Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41]. In that earlier work, collision strengths were also provided for B-like ions, but for a more comprehensive data set consisting of all 105 Δn=0 transitions, six scattered energies and the 85 ions with Z in the range 8≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41] and are presented here to replace those earlier results.« less
Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Trusov, Leonid A.; Owen, Neil R.; Bailey, Michael R.; Cleveland, Robin O.
2006-05-01
Although extracorporeal shock wave lithotripsy (a procedure of kidney stone comminution using focused shock waves) has been used clinically for many years, a proper monitoring of the stone fragmentation is still undeveloped. A method considered here is based on recording shock wave scattering signals with a focused receiver placed far from the stone, outside the patient body. When a fracture occurs in the stone or the stone becomes smaller, the elastic waves in the stone will propagate differently (e.g. shear waves will not cross a fracture) which, in turn, will change the scattered acoustic wave in the surrounding medium. Theoretical studies of the scattering phenomenon are based on a linear elastic model to predict shock wave scattering by a stone, with and without crack present in it. The elastic waves in the stone and the nearby liquid were modeled using a finite difference time domain approach. The subsequent acoustic propagation of the scattered waves into the far-field was calculated using the Helmholtz-Kirchhoff integral. Experimental studies were conducted using a research electrohydraulic lithotripter that produced the same acoustic output as an unmodified Dornier HM3 clinical lithotripter. Artificial stones, made from Ultracal-30 gypsum and acrylic, were used as targets. The stones had cylindrical shape and were positioned co-axially with the lithotripter axis. The scattered wave was measured by focused broadband PVDF hydrophone. It was shown that the size of the stone noticeably changed the signature of the reflected wave.
Sauter-Schwinger pair creation dynamically assisted by a plane wave
NASA Astrophysics Data System (ADS)
Torgrimsson, Greger; Schneider, Christian; Schützhold, Ralf
2018-05-01
We study electron-positron pair creation by a strong and constant electric field superimposed with a weaker transversal plane wave which is incident perpendicularly (or under some angle). Comparing the fully nonperturbative approach based on the world-line instanton method with a perturbative expansion into powers of the strength of the weaker plane wave, we find good agreement—provided that the latter is carried out to sufficiently high orders. As usual for the dynamically assisted Sauter-Schwinger effect, the additional plane wave induces an exponential enhancement of the pair-creation probability if the combined Keldysh parameter exceeds a certain threshold.
Beason, Melissa; Smith, Christopher; Coffaro, Joseph; Belichki, Sara; Spychalsky, Jonathon; Titus, Franklin; Crabbs, Robert; Andrews, Larry; Phillips, Ronald
2018-06-01
Experimental measurements were recently made which displayed characteristics of plane wave propagation through anisotropic optical turbulence. A near-plane wave beam was propagated a distance of 1 and 2 km at a height of 2 m above the concrete runway at the Shuttle Landing Facility, Kennedy Space Center, Florida, during January and February of 2017. The spatial-temporal fluctuations of the beam were recorded, and the covariance of intensity was calculated. These data sets were compared to a theoretical calculation of covariance of intensity for a plane wave.
First plasma wave observations at neptune.
Gurnett, D A; Kurth, W S; Poynter, R L; Granroth, L J; Cairns, I H; Macek, W M; Moses, S L; Coroniti, F V; Kennel, C F; Barbosa, D D
1989-12-15
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.
Screw-symmetric gravitational waves: A double copy of the vortex
NASA Astrophysics Data System (ADS)
Ilderton, A.
2018-07-01
Plane gravitational waves can admit a sixth 'screw' isometry beyond the usual five. The same is true of plane electromagnetic waves. From the point of view of integrable systems, a sixth isometry would appear to over-constrain particle dynamics in such waves; we show here, though, that no effect of the sixth isometry is independent of those from the usual five. Many properties of particle dynamics in a screw-symmetric gravitational wave are also seen in a (non-plane-wave) electromagnetic vortex; we make this connection explicit, showing that the screw-symmetric gravitational wave is the classical double copy of the vortex.
A plane wave generation method by wave number domain point focusing.
Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann
2010-11-01
A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.
Two-dimensional fast marching for geometrical optics.
Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore
2014-11-03
We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre
Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut
2014-01-01
Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.
1993-01-01
The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.
Development of an ejecta particle size measurement diagnostic based on Mie scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, Martin Michael; Buttler, William Tillman; Frayer, Daniel K.
The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived bymore » Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.« less
Nonlinear Scattering of VLF Waves in the Radiation Belts
NASA Astrophysics Data System (ADS)
Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish
2014-10-01
Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.
Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity
NASA Astrophysics Data System (ADS)
Ciarkowski, Adam
Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact solution, found yet by Sommerfeld. We take advantage of this solution and transform it back from complex frequency to the time domain. In this transformation both inverse Fourier transform and Felsen technique are used. Finally, the transient field obtained in the moving frame of reference is Lorentz transformed to the laboratory frame. We carry our calculations for both E- and H-field polarizations and show that the field distribution in the laboratory frame is not simply a moving image of that in the moving frame. For wedge velocities much lower than the velocity of light we reduce general expressions for the field in this frame to simpler ones.
Theoretical Calculations for Electron Impact Ionization of Atoms and Molecules
NASA Astrophysics Data System (ADS)
Amami, Sadek Mohamed Fituri
In the last twenty years, significant progress has been made for the theoretical treatment of electron impact ionization (e,2e) of atoms and molecules and, for some cases, very nice agreement between experiment and theory has been achieved. In particular, excellent agreement between theory and experiment and theory has been achieved for ionization of hydrogen and helium. However, agreement between experiment and theory is not nearly as good for ionization of larger atoms and molecules. In the first part of this dissertation, different theoretical approaches will be employed to study the triply differential cross section (TDCS) for low and intermediate energy electron-impact ionization of Neon and Argon for different orbital states. There is a very recent interest in studying ionization of Laser aligned atoms in order to get a better understanding about electron impact ionization of molecules. In the next part of this dissertation, results will be presented for electron-impact ionization of three laser aligned atoms, Mg, Ca, and Na. The comparison between the theory and experiment showed that our three body distorted wave (3DW) model gave excellent agreement with experiment in the scattering plane but very poor agreement perpendicular to the scattering plane. An explanation for this poor agreement out of the scattering plane has been provided by comparing our theoretical results with those of the time depended close coupling (TDCC) model and this explanation is also provided in this dissertation. Recently, significant attention has been directed towards obtaining a better under-standing of electron-impact ionization of molecules which are significantly more challenging than atoms. In the last part of this dissertation, results will be presented for electron-impact ionization of three different molecules (N2 , H2O, and CH4) which have been studied comprehensively using different theoretical approximations for different types of geometries. The published papers in section two contain a detailed analysis and discussion for each of these topics.
Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
NASA Astrophysics Data System (ADS)
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke
2018-05-01
We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.
Matrix basis for plane and modal waves in a Timoshenko beam
Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-01-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668
Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej
2016-03-01
Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.
2017-01-01
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492
Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G
2017-03-09
Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.
Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation
NASA Technical Reports Server (NTRS)
Harris, F. S., Jr.; McCormick, M. P.
1973-01-01
Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.
Optical theorem for acoustic non-diffracting beams and application to radiation force and torque
Zhang, Likun; Marston, Philip L.
2013-01-01
Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam. PMID:24049681
2010-02-05
Herzberger Yu. Introduction to interval computation. 1983 5. Gutman S . Identification of multilayered particles from scattering...66 68 70 72 74 76 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 f, GHz an gl e( V s ) , ra d 1 2 1 2 Fig. 5. Modeling of exfoliation in plate. Two plexiglass...1 10 0 |V s | 58 60 62 64 66 68 70 72 74 76 -3 -2.5 -2 -1.5 -1 -0.5 f, GHz an gl e( V s ) , ra d Fig. 7. Two plexiglass plates without a gap 58
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Petrisor, T.; Mos, R. B.; Stashkevich, A.; Chérif, S. M.; Tiusan, C.
2018-02-01
C o2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm ≤tCFA≤1.8 nm ), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of these structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the saturating field perpendicular to the film plane increases with decreasing CFA thickness suggesting the existence of a perpendicular interface anisotropy. The presence of a magnetic dead layer of 0.44 nm has been detected by VSM. The MS-FMR with the magnetic field applied perpendicularly to the film plane has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin wave propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by the Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab initio calculation on Ir/Co, where it is found to be positive. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The surface DMI constant Ds was estimated to be -0.37 pJ /m for the thickest samples, where a linear thickness dependence of the effective DMI constant has been observed.
Electron- and proton-induced ionization of pyrimidine
NASA Astrophysics Data System (ADS)
Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.
2015-05-01
The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.
Van Zandt, Noah R; Spencer, Mark F; Steinbock, Michael J; Anderson, Brian M; Hyde, Milo W; Fiorino, Steven T
2018-05-20
Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.
Cooling rates and intensity limitations for laser-cooled ions at relativistic energies
NASA Astrophysics Data System (ADS)
Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal
2018-04-01
The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
Higher Order Bases in a 2D Hybrid BEM/FEM Formulation
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.
2002-01-01
The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englund, Carl-Johan; Agåker, Marcus, E-mail: marcus.agaker@physics.uu.se; Fredriksson, Pierre
2015-09-15
A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30°-150°, while the pressure change is less than 2 × 10{sup −10} mbars.
Noise Equalization for Ultrafast Plane Wave Microvessel Imaging.
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D; Chen, Shigao
2017-11-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enable more robust clutter filtering based on singular value decomposition. However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This paper was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation induced) and microvessel blood flow signal and 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality.
Stimulated Raman scattering of sub-millimeter waves in bismuth
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Tripathi, V. K.
2007-12-01
A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.
Thermal conductivity model for nanoporous thin films
NASA Astrophysics Data System (ADS)
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Rotational superradiant scattering in a vortex flow
NASA Astrophysics Data System (ADS)
Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke
2017-09-01
When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.
The Wave Principle Of The Distribution Of Substance In Solar System
NASA Astrophysics Data System (ADS)
Smirnov, V.
The opinion about the wave nature of substanceS distribution in Solar system comes out of fundamental book of J.Kepler "Welt Harmonik" . In this book by J.Kepler the musical proportions are united with geometrical means of building Plato's in- scribed and described figures. The definition of the planetsS orbits according to the constructed SPlatoS figuresT is geometrically possible in case of existence of com- & cedil;mon measure for these geometrical constructions. Proportions, received by J.Kepler, are possible in the case of formations of standing waves in the space of Solar system, when the place of the formation of planets conforms the main surfaces of standing waves having as the source the central luminary of Solar system. Similarly in experiments of Chladni, during the formation of standing wave on the planes of fluctuating plate scattered along its particles are collecting together, getting from points which fluctuate with maximal amplitude, to the points, the amplitude of fluctuations of which is equal to zero, filling in the main lines. (On space this will be the "main surfaces"). If we will consider the Central luminary of the planetS system or their satellites as a source of "gravitational waves" which are reflected from the environment with less density on the borders of system in the period of its initial evolution then the standing wave with crests and nodes in definite points along the direction of its distribution. According to the principle of the unity of the laws of nature, evidently that not only the equation of Schrodinger E., but also pattern of superstring with corresponding modes can describe the history of formation and the existence of macrobodies of Solar System. So, if we will consider the central luminary the source of gravitational waves which, reflecting from less densible environment, surrounding scattering substance of Solar system in the period of its initial evolution, then standing gravitational wave with certain points of maximum displacement and main points will form. The error in several cases in mentioned calculations does not exceed 10
Guided wave crack detection and size estimation in stiffened structures
NASA Astrophysics Data System (ADS)
Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor
2018-03-01
Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid
NASA Astrophysics Data System (ADS)
Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas
2013-08-01
Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.
Baseline-Subtraction-Free (BSF) Damage-Scattered Wave Extraction for Stiffened Isotropic Plates
NASA Technical Reports Server (NTRS)
He, Jiaze; Leser, Patrick E.; Leser, William P.
2017-01-01
Lamb waves enable long distance inspection of structures for health monitoring purposes. However, this capability is diminished when applied to complex structures where damage-scattered waves are often buried by scattering from various structural components or boundaries in the time-space domain. Here, a baseline-subtraction-free (BSF) inspection concept based on the Radon transform (RT) is proposed to identify and separate these scattered waves from those scattered by damage. The received time-space domain signals can be converted into the Radon domain, in which the scattered signals from structural components are suppressed into relatively small regions such that damage-scattered signals can be identified and extracted. In this study, a piezoelectric wafer and a linear scan via laser Doppler vibrometer (LDV) were used to excite and acquire the Lamb-wave signals in an aluminum plate with multiple stiffeners. Linear and inverse linear Radon transform algorithms were applied to the direct measurements. The results demonstrate the effectiveness of the Radon transform as a reliable extraction tool for damage-scattered waves in a stiffened aluminum plate and also suggest the possibility of generalizing this technique for application to a wide variety of complex, large-area structures.
A review and reassessment of diffraction, scattering, and shadows in electrodynamics
NASA Astrophysics Data System (ADS)
Berg, Matthew J.; Sorensen, Christopher M.
2018-05-01
The concepts of diffraction and scattering are well known and considered fundamental in optics and other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, i.e., no change in the average propagation direction, while scattering is the deflection of waves with a clear change of propagation direction. However, the terms "diffraction" and "scattering" are often used interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic waves, the "diffracted" wave from an object is the Ewald-Oseen extinction wave in the far-field zone. The intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this is the same Ewald-Oseen wave that cancels the incident wave inside the object and thereafter continues to do so immediately behind the object to create a shadow. If the object is much wider than the beam but has a hole, e.g., a screen with an aperture, the Ewald-Oseen extinction wave creates the shadow behind the screen and the incident light that passes through the aperture creates the diffraction pattern. This point of view also illustrates Babinet's principle. Thus, it is the Ewald-Oseen extinction theorem that binds together diffraction, scattering, and shadows.
Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX
NASA Astrophysics Data System (ADS)
Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team
2014-10-01
The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola
2017-10-01
Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.
Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors
NASA Astrophysics Data System (ADS)
Meng, Chong; Zhang, Xiaonan; Tang, Suet To; Yang, Min; Yang, Zhiyu
2017-03-01
We report the experimental realization of acoustic coherent perfect absorption (CPA) of four symmetric scatterers of very different structures. The only conditions necessary for these scatterers to exhibit CPA are that both the reflection and transmission amplitudes of the scatterers are 0.5 under one incident wave, and there are two collinear and counter-propagating incident waves with appropriate relative amplitude and phase. Nearly 1000 times in the modulation of output power has been demonstrated by changing the relative phase of the incident waves over 180°. We further demonstrate that these scatterers could potentially be sensitive devices to detect the small differences between two nearly equal incident waves. A 27% change in the strength of the scattering wave has been demonstrated for every degree of phase deviation from the optimum condition between the incident waves.
Spiral density waves and vertical circulation in protoplanetary discs
NASA Astrophysics Data System (ADS)
Riols, A.; Latter, H.
2018-06-01
Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.
NASA Astrophysics Data System (ADS)
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.
2017-08-01
Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.
NASA Astrophysics Data System (ADS)
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-02-01
Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Peng; Department of Physics, Renmin University of China, Beijing 100872; Naidon, Pascal
Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f{sub 1}(k) is given by f{sub 1}(k)=-1/[ik+1/(Vk{sup 2})+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. Inmore » this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f{sub 1}(k)=-1/[ik+1/(V{sup eff}k{sup 2})+1/(S{sup eff}k)+1/R{sup eff}] where V{sup eff}, S{sup eff}, and R{sup eff} are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of {sup 6}Li and {sup 40}K when the scattering volume is enhanced by the resonance.« less
Time-domain Brillouin scattering assisted by diffraction gratings
NASA Astrophysics Data System (ADS)
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
NASA Astrophysics Data System (ADS)
Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.
2018-03-01
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.
Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.
2017-01-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169
NASA Astrophysics Data System (ADS)
Croccolo, Fabrizio; Scheffold, Frank; Bataller, Henri
2013-04-01
We present preliminary near-field light scattering (NFS) data concerning the analysis of the static power spectrum and of the relaxation time constant as a function of the wave vector for non-equilibrium fluctuations (NEFs). The goal of these measurements is to obtain information about the Soret and the mass diffusion coefficients of a binary mixture undergoing thermodiffusion. In particular, we show how the interaction between NEFs and the gravity force gives rise to a critical wavelength that provides additional information about the Soret coefficient. We suggest that a quantitative analysis can be performed by means of this non-invasive optical technique. In our setup, the sample is monitored parallel to the imposed temperature gradient, thus being insensitive to the refractive index profile along the vertical axis, while at the same time we are able to detect the light scattered by the refractive index fluctuations in horizontal planes. We select a shadowgraph layout for the NFS setup due to the extremely small wave vectors we aim to analyze. From a double-frame differential analysis of the acquired images, we obtain both the static power spectrum and the dynamics of NEFs. As a proof-of-principle experiment, we present Soret and diffusion coefficient data on a liquid mixture of tetrahydronaphthalene/n-dodecane.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2007-01-01
In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.
Space-time windowing of angle-beam wavefield data to characterize scattering from defects
NASA Astrophysics Data System (ADS)
Weng, Yu; Michaels, Jennifer E.
2018-04-01
The primary focus of ultrasonic nondestructive evaluation is defect detection and characterization. In particular, fatigue cracks emanating from fastener holes are commonly found in aerospace structures. Therefore, scattering of ultrasonic waves from crack-like notches is of practical interest. Here, angle-beam shear waves are used to interrogate notches in aluminum plates. In prior work, notch-scattering was characterized and quantified in the frequency-wavenumber domain, which has the undesirable effect of lumping all scattered shear wave energy from notches into a single energy curve. This present work focuses on developing space-time windowing methods to quantify notch-scattered energy directly in the time-space domain. Two strategies are developed. The first is to indirectly characterize notch-scattering via the change in scattering as compared to the undamaged through-hole. The second strategy is to directly track notch-scattered waves in the time-space domain and then quantify scattered energy by constructing energy-versus-direction curves. Both strategies provide a group of energy difference curves, which show how notch-scattering evolves as time progresses. Notch-scattering quantification results for different notch lengths are shown and discussed.
Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations
NASA Astrophysics Data System (ADS)
Al-Saidi, W. A.; Walter, E. J.; Rappe, A. M.
2008-02-01
We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe , Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r , and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.
NASA Astrophysics Data System (ADS)
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
Grating tuned unstable resonator laser cavity
Johnson, Larry C.
1982-01-01
An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2017-08-14
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow
NASA Astrophysics Data System (ADS)
Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.
2008-03-01
The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.