Sample records for planet detection methods

  1. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  2. Analysis of Error Sources in STEP Astrometry

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Liu, J. C.; Zhu, Z.

    2017-11-01

    The space telescope Search for Terrestrial Exo-Planets (STEP) employed a method of sub-pixel technology which ensures that the astrometric accuracy of telescope on the focal plane is at the order of 1 μas. This kind of astrometric precision is promising to detect earth-like planets beyond the solar system. In this paper, we analyze the influence of some key factors, including errors in the stellar proper motions, parallax, the optical center of the system, and the velocities and positions of the satellite, on the detection of exo-planets. We propose a relative angular distance method to evaluate the non-linear terms in stellar distance caused by possibly existing exo-planets. This method could avoid the direct influence of measured errors of the position and proper motion of the reference stars. Supposing that there are eight reference stars in the same field of view and a star with a planet system, we simulate their five-year observational data, and use the least square method to get the parameters of the planet orbit. Our results show that the method is robust to detect terrestrial planets based on the 1 μas precision of STEP.

  3. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  4. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  5. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  6. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  7. NEXT GENERATION OF TELESCOPES OR DYNAMICS REQUIRED TO DETERMINE IF EXO-MOONS HAVE PROGRADE OR RETROGRADE ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Karen M.; Fujii, Yuka

    2014-08-20

    We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which canmore » implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself.« less

  8. Detecting transit signatures of exoplanetary rings using SOAP3.0

    NASA Astrophysics Data System (ADS)

    Akinsanmi, B.; Oshagh, M.; Santos, N. C.; Barros, S. C. C.

    2018-01-01

    Context. It is theoretically possible for rings to have formed around extrasolar planets in a similar way to that in which they formed around the giant planets in our solar system. However, no such rings have been detected to date. Aims: We aim to test the possibility of detecting rings around exoplanets by investigating the photometric and spectroscopic ring signatures in high-precision transit signals. Methods: The photometric and spectroscopic transit signals of a ringed planet is expected to show deviations from that of a spherical planet. We used these deviations to quantify the detectability of rings. We present SOAP3.0 which is a numerical tool to simulate ringed planet transits and measure ring detectability based on amplitudes of the residuals between the ringed planet signal and best fit ringless model. Results: We find that it is possible to detect the photometric and spectroscopic signature of near edge-on rings especially around planets with high impact parameter. Time resolution ≤7 min is required for the photometric detection, while 15 min is sufficient for the spectroscopic detection. We also show that future instruments like CHEOPS and ESPRESSO, with precisions that allow ring signatures to be well above their noise-level, present good prospects for detecting rings.

  9. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    PubMed

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  10. Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Deeg, H. J.; Lacy, C. H. S.

    2009-10-01

    Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets exist - then they will soon be found. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.

  11. Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K., Jr.

    2011-01-01

    The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.

  12. WFIRST: Searching for Microlens Planets in Very Wide Orbits and the MOA Microlensing Data Release

    NASA Astrophysics Data System (ADS)

    Hirao, Yuki; Bennett, David; Sumi, Takahiro; MOA Collaboration

    2018-01-01

    Gravitational microlensing is an unique technique to detect exoplanets down to low mass planets beyond the snow line because it is sensitive to planets orbiting near the Einstein ring radius of a few AU away from its host star, which is complementary to the other methods. Detecting such planets are important for understanding the formation of our solar system because gas giants and ice giants planets are believed to be formed beyond the snow line, where the protoplanetary disk is cold enough for ice to condense, in the core accretion theory. Microlensing Observations in Astrophysics (MOA) group has conducted high cadence survey observations towards the Galactic bulge to detect exoplanets since 2006 at Mt.John University Observatory in NZ using MOA-II 1.8 meter telescope equipped with a very wide field-of-view MOA-cam3 CCD camera. MOA has alerted about 600 microlensing events every year and detected dozens of exoplanets in wide orbits. Future space telescope, WFIRST will conduct survey observations towards the Galactic bulge and is expected to detect thousands of planets in wide orbit via microlensing to complete the census of exoplanets begun by Kepler Space telescope which found planets in close orbits via transit method. To contribute to the WFIRST and make the microlensing community larger, MOA will open its data from 2006 to 2014 to the public. Through the off-line analysis, we have found some short binary events which were not detected in the real time analysis. Short-timescale microlensing events are important because they are candidates of free-floating or wide-separation planets. The poster will present the data release and some results of the analysis of short-timescale binary events.

  13. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  14. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  15. Transit visibility zones of the Solar system planets

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.

    2018-01-01

    The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.

  16. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

  17. A method to directly image exoplanets in multi-star systems such as Alpha-Centauri

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Belikov, Ruslan; Bendek, Eduardo

    2015-09-01

    Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets 107 times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around single host stars, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri. Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  18. Searching for co-orbital planets by combining transit and radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.

    2017-09-01

    Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.

  19. The Earthshine Project: Applications to the Search of Exoearths

    NASA Astrophysics Data System (ADS)

    Montañés-Rodríguez, P.; Pallé Bagó, E.

    2010-10-01

    To be able to detect a biosphere in an extrasolar planet, life in that planet should have been able to alter the original composition of the planetary atmosphere. In this way, an external observer could detect the chemical disequilibrium introduced by living organisms in the planet. The earthshine technique has allowed us to determine the best disk-integrated planetary features that we could use to find life in an exoplanet similar to Earth. Different observing methods have been investigated. In this poster, we summarize the scientific goals that could be reached using a variety of observational methods.

  20. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  1. Adaptive Nulling for Interferometric Detection of Planets

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Peters, Robert D.

    2010-01-01

    An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.

  2. A photometric search for transiting planets

    NASA Astrophysics Data System (ADS)

    Baliber, Nairn Reese

    In the decade since the discovery of the first planet orbiting a main-sequence star other than the Sun, more than 160 planets have been detected in orbit around other stars, most of them discovered by measuring the velocity of the reflexive motion of their parent stars caused by the gravitational pull of the planets. These discoveries produced a population of planets much different to the ones in our Solar System and created interest in other methods to detect these planets. One such method is searching for transits, the slight photometric dimming of stars caused by a close-orbiting, Jupiter-sized planet passing between a star and our line of sight once per orbit. We report results from TeMPEST, the Texas, McDonald Photometric Extrasolar Search for Transits, a transit survey conducted with the McDonald Observatory 0.76 m Prime Focus Corrector (PFC). We monitored five fields of stars in the plane of the Milky Way over the course of two and a half years. We created a photometry pipeline to perform high-precision differential photometry on all of the images, and used a software detection algorithm to detect transit signals in the light curves. Although no transits were found, we calculated our detection probability by determining the fraction of the stars monitored by TeMPEST which were suitable to show transits, measuring the probability of detecting transit signals based on the temporal coverage of our fields, and measuring our detection efficiency by inserting false transits into TeMPEST data to see what fraction could be recovered by our automatic detection software. We conclude that in our entire data set, we generated an effective sample of 2660 stars, a sample in which if any star is showing a transit, it would have been detected. We found no convincing transits in our data, but current statistics from radial velocity surveys indicate that only one in about 1300 of these stars should be showing transits. These numbers are consistent with the lack of transits produced by TeMPEST and the small number of transits generated by other surveys. We therefore discuss methods by which a transit survey's effective sample may be increased to make such surveys productive in a reasonable amount of time.

  3. THREE PLANETS ORBITING WOLF 1061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planetmore » falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.« less

  4. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1985-01-01

    Four approaches exist for the detection of extrasolar planets. According to the only direct method, the planet is imaged at some wavelength in a manner which makes it possible to differentiate its own feeble luminosity (internal energy source plus reflected starlight) from that of the nearby host star. The three indirect methods involve the detection of a planetary mass companion on the basis of the observable effects it has on the host star. A search is conducted regarding the occurrence of regular, periodic changes in the stellar spatial motion (astrometric method) or the velocity of stellar emission line spectra (spectroscopic method) or in the apparent total stellar luminosity (photometric method). Details regarding the approaches employed for implementing the considered methods are discussed.

  5. Kepler Planet Detection Metrics: Automatic Detection of Background Objects Using the Centroid Robovetter

    NASA Technical Reports Server (NTRS)

    Mullally, Fergal

    2017-01-01

    We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.

  6. Direct imaging of exoplanets around multiple star systems

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine

    2015-01-01

    Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets 10^7 times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved binaries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri.Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  7. Educational And Public Outreach Software On Planet Detection For The Macintosh (TM)

    NASA Technical Reports Server (NTRS)

    Koch, David; Brady, Victoria; Cannara, Rachel; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The possibility of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections has only heightened the interest in the topic. School children are particularly interested in learning about space. Astronomers have the knowledge and responsibility to present this information in both an understandable and interesting format. Since most classrooms and homes are now equipped with computers this media can be utilized to provide more than a traditional "flat" presentation. An interactive "stack" has been developed using Hyperstudio (TM). The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Earth-Sized Planets"; and "A Mission Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program stacks to determine the orbit and planet size, the planet's temperature and surface gravity, and finally determines if the planet is habitable. Additional related sections are also included. Many of the figures are animated to assist in comprehension of the material. A set of a dozen lesson plans for the middle school has also been drafted.

  8. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  9. Transit spectroscopy of the extrasolar planet HD 209458B: The search for water

    NASA Astrophysics Data System (ADS)

    Rojo, Patricio Michel

    This dissertation describes an attempt to detect water in the atmosphere of the extrasolar planet HD 209458b using transit spectroscopy. It first discusses the importance of water detection and reviews the state of knowledge about extrasolar planets. This review discusses the main statistical trends and describes the detection methods employed to this date. The importance of the transiting planets and the many measurements of the known ones are also discussed. A radiative transfer model designed and built specifically for this project predicts, given a planetary temperature/pressure/composition profile, the dependence in wavelength of the stellar spectrum modulation due to a transiting planet. A total of 352 spectra around 1.8 [mu]m were obtained on four nights (three in transit) of observations on August 3--4, September 26, and October 3 of 2002 using ISAAC at the Very Large Telescope. Correlating the modeled modulation with the infrared spectra yields a nondetection of water in the atmosphere of HD 209458b. It is found that the nondetection is due to an unfortunate choice of observing parameters and conditions that made it impossible to reach the required sensitivity. Nonetheless, the results are scaled with synthetic spectra to place strong limits on the planetary system configurations for which the observing parameters and telluric conditions would have yielded a successful detection. None of the 10 other known transiting planets would be detectable with the choice of parameters and conditions for this observation. A quantitative model of an improved observing strategy for future observations of this kind is developed. The improvements include: airmass and timing constraints, the simultaneous observation of a calibrator star, and a new method to find the optimal wavelength range. The data-reduction process includes several original techniques that were developed during this work, such as a method to remove fringes from flat fields and several methods to correct for telluric absorption, among others. Some of the code developed for this project is available under the GNU General Public License at the DSpace Internet archive from Cornell University.

  10. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  11. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  12. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Ziegler, Carl; Morton, Tim

    2014-08-10

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designedmore » for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.« less

  13. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195. The peak in the curve in (a) shows the main microlensing by the lens star. An additional blip just after the peak, shown in detail in inset (b), shows the additional lensing by the planet. [Shvartzvald et al. 2017]A team of scientists led by Yossi Shvartzvald (NASA Postdoctoral Fellow at the Jet Propulsion Laboratory) have now presented the discovery of planet OGLE-2016-BLG-1195Lb, which was made using both ground-based (the Korea Microlensing Telescope Network) and space-based (Spitzer) observations of a microlensing event. The combination of these observations allowed the team to determine a number of properties of the system.The teams models indicate that the host is a 0.072 solar-mass ( 74 Jupiter-mass) star, which if it has the same metallicity as the Sun likely lies just below the hydrogen-burning mass limit. A 1.3 Earth-mass planet is orbiting it at a projected separation of 1.11 AU. The system lies in the galactic disk, roughly 13,700 light-years away.Looking to the FutureThis discovery confirms that the protoplanetary disks of ultracool dwarfs do, in fact, contain enough mass to form terrestrial planets. In addition, the find represents a remarkable technical achievement. OGLE-2016-BLG-1195Lb is the lowest-mass planet ever detected using gravitational microlensing, which bodeswell for continued and future microlensing campaigns with high cadences and high detection sensitivity. With luck well soon be able to expand our sample of planets discovered around these unusual hosts, allowing us to build statistics and better understand how and where these planets form.CitationY. Shvartzvald et al 2017 ApJL 840 L3. doi:10.3847/2041-8213/aa6d09

  14. On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Wang, Songhu; Laughlin, Gregory

    2016-05-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.

  15. Simulation of a method to directly image exoplanets around multiple stars systems

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Bendek, Eduardo; Belikov, Ruslan

    2014-08-01

    Direct imaging of extra-solar planets has now become a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the GPI, SPHERE, P1640 and SCExAO. These systems will allow detection of planets 107 times fainter than their host star. For space- based missions, such as EXCEDE, EXO-C, EXO-S, WFIRST/AFTA, different teams have shown in laboratories contrasts reaching 10-10 within a few diffraction limits from the star using a combination of a coronagraph to suppress light coming from the host star and a wavefront control system. These demonstrations use a de- formable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved bi- naries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighbor star Alpha Centauri. Until now, it has been thought that removing the light of a companion star is impossible with current technology, excluding binary star systems from target lists of direct imaging missions. Direct imaging around binaries/multiple systems at a level of contrast allowing Earth-like planet detection is challenging because the region of interest, where a dark zone is essential, is contaminated by the light coming from the hosts star companion. We propose a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  16. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  17. Formation and Detection of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  18. Towards the Detection of Reflected Light from Exo-planets: a Comparison of Two Methods

    NASA Astrophysics Data System (ADS)

    Rodler, Florian; Kürster, Martin

    For exo-planets the huge brightness contrast between the star and the planet constitutes an enormous challenge when attempting to observe some kind of direct signal from the planet. With high resolution spectroscopy in the visual one can exploit the fact that the spectrum reflected from the planet is essentially a copy of the rich stellar absorption line spectrum. This spectrum is shifted in wavelength according to the orbital RV of the planet and strongly scaled down in brightness by a factor of a few times 10-5, and therefore deeply buried in the noise. The S/N of the plantetary signal can be increased by applying one of the following methods. The Least Squares Deconvolution Method (LSDM, eg. Collier Cameron et al. 2002) combines the observed spectral lines into a high S/N mean line profile (star + planet), determined by least-squares deconvolution of the observed spectrum with a template spectrum (from VALD, Kupka et al. 1999). Another approach is the Data Synthesis Method (DSM, eg. Charbonneau et al. 1999), a forward data modelling technique in which the planetary signal is modelled as a scaled-down and RV-shifted version of the stellar spectrum.

  19. Searching for Exoplanets using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  20. A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296

    NASA Astrophysics Data System (ADS)

    Teague, Richard; Bae, Jaehan; Bergin, Edwin A.; Birnstiel, Tilman; Foreman-Mackey, Daniel

    2018-06-01

    We present the first kinematical detection of embedded protoplanets within a protoplanetary disk. Using archival Atacama Large Millimetre Array (ALMA) observations of HD 163296, we demonstrate a new technique to measure the rotation curves of CO isotopologue emission to sub-percent precision relative to the Keplerian rotation. These rotation curves betray substantial deviations caused by local perturbations in the radial pressure gradient, likely driven by gaps carved in the gas surface density by Jupiter-mass planets. Comparison with hydrodynamic simulations shows excellent agreement with the gas rotation profile when the disk surface density is perturbed by two Jupiter-mass planets at 83 and 137 au. As the rotation of the gas is dependent upon the pressure of the total gas component, this method provides a unique probe of the gas surface density profile without incurring significant uncertainties due to gas-to-dust ratios or local chemical abundances that plague other methods. Future analyses combining both methods promise to provide the most accurate and robust measures of embedded planetary mass. Furthermore, this method provides a unique opportunity to explore wide-separation planets beyond the mm continuum edge and to trace the gas pressure profile essential in modeling grain evolution in disks.

  1. Forecasting the detectability of known radial velocity planets with the upcoming CHEOPS mission

    NASA Astrophysics Data System (ADS)

    Yi, Joo Sung; Chen, Jingjing; Kipping, David

    2018-04-01

    The CHaracterizing ExOPlanets Satellite (CHEOPS) mission is planned for launch next year with a major objective being to search for transits of known radial velocity (RV) planets, particularly those orbiting bright stars. Since the RV method is only sensitive to planetary mass, the radii, transit depths and transit signal-to-noise values of each RV planet are, a priori, unknown. Using an empirically calibrated probabilistic mass-radius relation, forecaster, we address this by predicting a catalogue of homogeneous credible intervals for these three keys terms for 468 planets discovered via RVs. Of these, we find that the vast majority should be detectable with CHEOPS, including terrestrial bodies, if they have the correct geometric alignment. In particular, we predict that 22 mini-Neptunes and 82 Neptune-sized planets would be suitable for detection and that more than 80 per cent of these will have apparent magnitude of V < 10, making them highly suitable for follow-up characterization work. Our work aims to assist the CHEOPS team in scheduling efforts and highlights the great value of quantifiable, statistically robust estimates for upcoming exoplanetary missions.

  2. Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images

    DOE PAGES

    Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.; ...

    2017-01-11

    A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3-5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (more » $${d}_{9}\\lesssim 430$$ au). In this paper, we develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ~1 day intervals. We apply our methodology to a ~2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. Finally, we anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.

    A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3-5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (more » $${d}_{9}\\lesssim 430$$ au). In this paper, we develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ~1 day intervals. We apply our methodology to a ~2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. Finally, we anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.« less

  4. Simulating the exoplanet yield of a space-based mid-infrared interferometer based on Kepler statistics

    NASA Astrophysics Data System (ADS)

    Kammerer, Jens; Quanz, Sascha P.

    2018-01-01

    Aims: We predict the exoplanet yield of a space-based mid-infrared nulling interferometer using Monte Carlo simulations. We quantify the number and properties of detectable exoplanets and identify those target stars that have the highest or most complete detection rate. We investigate how changes in the underlying technical assumptions and uncertainties in the underlying planet population impact the scientific return. Methods: We simulated 2000 exoplanetary systems, based on planet occurrence statistics from Kepler with randomly orientated orbits and uniformly distributed albedos around each of 326 nearby (d< 20 pc) stars. Assuming thermal equilibrium and blackbody emission, together with the limiting spatial resolution and sensitivity of our simulated instrument in the three specific bands 5.6, 10.0, and 15.0 μm, we quantified the number of detectable exoplanets as a function of their radii and equilibrium temperatures. Results: Approximately exoplanets, with radii 0.5 REarth ≤ Rp ≤ 6 REarth, were detected in at least one band and half were detected in all three bands during 0.52 years of mission time assuming throughputs 3.5 times worse than those for the James Webb Space Telescope and 40% overheads. Accounting for stellar leakage and (unknown) exozodiacal light, the discovery phase of the mission very likely requires 2-3 years in total. The uncertainties in planet yield are dominated by uncertainties in the underlying planet population, but the distribution of the Bond albedos also has a significant impact. Roughly 50% of the detected planets orbit M stars, which also have the highest planet yield per star; the other 50% orbit FGK stars, which show a higher completeness in the detectability. Roughly 85 planets could be habitable (0.5 REarth ≤ Rp ≤ 1.75 REarth and 200 K ≤ Teq ≤ 450 K) and are prime targets for spectroscopic observations in a second mission phase. Comparing these results to those of a large optical/near-infrared telescope, we find that a mid-infrared interferometer would detect more planets and the number of planets depends less strongly on the wavelength. Conclusions: An optimized space-based nulling interferometer operating in the mid-infrared would deliver an unprecedented dataset for the characterization of (small) nearby exoplanets including dozens of potentially habitable worlds.

  5. Inferring Planet Occurrence Rates With a Q1-Q17 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; McCauliff, Sean D.; Burke, Christopher; Bryson, Steve; Batalha, Natalie; Coughlin, Jeffrey; Rowe, Jason; mullally, fergal; thompson, susan; Seader, Shawn; Twicken, Joseph; Li, Jie; morris, robert; smith, jeffrey; haas, michael; christiansen, jessie; Clarke, Bruce

    2015-08-01

    NASA’s Kepler Space Telescope monitored the photometric variations of over 170,000 stars, at half-hour cadence, over its four-year prime mission. The Kepler pipeline calibrates the pixels of the target apertures for each star, produces light curves with simple aperture photometry, corrects for systematic error, and detects threshold-crossing events (TCEs) that may be due to transiting planets. The pipeline estimates planet parameters for all TCEs and computes diagnostics used by the Threshold Crossing Event Review Team (TCERT) to produce a catalog of objects that are deemed either likely transiting planet candidates or false positives.We created a training set from the Q1-Q12 and Q1-Q16 TCERT catalogs and an ensemble of synthetic transiting planets that were injected at the pixel level into all 17 quarters of data, and used it to train a random forest classifier. The classifier uniformly and consistently applies diagnostics developed by the Transiting Planet Search and Data Validation pipeline components and by TCERT to produce a robust catalog of planet candidates.The characteristics of the planet candidates detected by Kepler (planet radius and period) do not reflect the intrinsic planet population. Detection efficiency is a function of SNR, so the set of detected planet candidates is incomplete. Transit detection preferentially finds close-in planets with nearly edge-on orbits and misses planets whose orbital geometry precludes transits. Reliability of the planet candidates must also be considered, as they may be false positives. Errors in detected planet radius and in assumed star properties can also bias inference of intrinsic planet population characteristics.In this work we infer the intrinsic planet population, starting with the catalog of detected planet candidates produced by our random forest classifier, and accounting for detection biases and reliabilities as well as for radius errors in the detected population.Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  6. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.

  7. Kepler Planet Detection Metrics: Per-Target Detection Contours for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    A necessary input to planet occurrence calculations is an accurate model for the pipeline completeness (Burke et al., 2015). This document describes the use of the Kepler planet occurrence rate products in order to calculate a per-target detection contour for the measured Data Release 25 (DR25) pipeline performance. A per-target detection contour measures for a given combination of orbital period, Porb, and planet radius, Rp, what fraction of transit signals are recoverable by the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017). The steps for calculating a detection contour follow the procedure outlined in Burke et al. (2015), but have been updated to provide improved accuracy enabled by the substantially larger database of transit injection and recovery tests that were performed on the final version (i.e., SOC 9.3) of the Kepler pipeline (Christiansen, 2017; Burke Catanzarite, 2017a). In the following sections, we describe the main inputs to the per-target detection contour and provide a worked example of the python software released with this document (Kepler Planet Occurrence Rate Tools KeplerPORTs)1 that illustrates the generation of a detection contour in practice. As background material for this document and its nomenclature, we recommend the reader be familiar with the previous method of calculating a detection contour (Section 2 of Burke et al.,2015), input parameters relevant for describing the data quantity and quality of Kepler targets (Burke Catanzarite, 2017b), and the extensive new transit injection and recovery tests of the Kepler pipeline (Christiansen et al., 2016; Burke Catanzarite, 2017a; Christiansen, 2017).

  8. A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Bennett, D. P.; Udalski, A.; Bond, I. A.; Sumi, T.; Han, C.; Kim, Ho-il.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Onishi, K.; Oyokawa, H.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Poleski, R.; Mróz, P.; Skowron, J.; Szymański, M. K.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Wyrzykowski, Ł.; Ulaczyk, K.; OGLE Collaboration

    2018-06-01

    We report on the analysis of a microlensing event, OGLE-2014-BLG-1722, that showed two distinct short-term anomalies. The best-fit model to the observed light curves shows that the two anomalies are explained with two planetary mass ratio companions to the primary lens. Although a binary-source model is also able to explain the second anomaly, it is marginally ruled out by 3.1σ. The two-planet model indicates that the first anomaly was caused by planet “b” with a mass ratio of q=({4.5}-0.6+0.7)× {10}-4 and projected separation in units of the Einstein radius, s = 0.753 ± 0.004. The second anomaly reveals planet “c” with a mass ratio of {q}2=({7.0}-1.7+2.3)× {10}-4 with Δχ 2 ∼ 170 compared to the single-planet model. Its separation has two degenerated solutions: the separation of planet c is s 2 = 0.84 ± 0.03 and 1.37 ± 0.04 for the close and wide models, respectively. Unfortunately, this event does not show clear finite-source and microlensing parallax effects; thus, we estimated the physical parameters of the lens system from Bayesian analysis. This gives the masses of planets b and c as {m}{{b}}={56}-33+51 and {m}{{c}}={85}-51+86 {M}\\oplus , respectively, and they orbit a late-type star with a mass of {M}host} ={0.40}-0.24+0.36 {M}ȯ located at {D}{{L}}={6.4}-1.8+1.3 {kpc} from us. The projected distances between the host and planets are {r}\\perp ,{{b}}=1.5+/- 0.6 {au} for planet b and {r}\\perp ,{{c}}={1.7}-0.6+0.7 {au} and {r}\\perp ,{{c}}={2.7}-1.0+1.1 {au} for the close and wide models of planet c. If the two-planet model is true, then this is the third multiple-planet system detected using the microlensing method and the first multiple-planet system detected in low-magnification events, which are dominant in the microlensing survey data. The occurrence rate of multiple cold gas giant systems is estimated using the two such detections and a simple extrapolation of the survey sensitivity of the 6 yr MOA microlensing survey combined with the 4 yr μFUN detection efficiency. It is estimated that 6% ± 2% of stars host two cold giant planets.

  9. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.

  10. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  11. HADES RV Programme with HARPS-N at TNG. II. Data treatment and simulations

    NASA Astrophysics Data System (ADS)

    Perger, M.; García-Piquer, A.; Ribas, I.; Morales, J. C.; Affer, L.; Micela, G.; Damasso, M.; Suárez-Mascareño, A.; González-Hernández, J. I.; Rebolo, R.; Herrero, E.; Rosich, A.; Lafarga, M.; Bignamini, A.; Sozzetti, A.; Claudi, R.; Cosentino, R.; Molinari, E.; Maldonado, J.; Maggio, A.; Lanza, A. F.; Poretti, E.; Pagano, I.; Desidera, S.; Gratton, R.; Piotto, G.; Bonomo, A. S.; Martinez Fiorenzano, A. F.; Giacobbe, P.; Malavolta, L.; Nascimbeni, V.; Rainer, M.; Scandariato, G.

    2017-02-01

    Context. The distribution of exoplanets around low-mass stars is still not well understood. Such stars, however, present an excellent opportunity for reaching down to the rocky and habitable planet domains. The number of current detections used for statistical purposes remains relatively modest and different surveys, using both photometry and precise radial velocities, are searching for planets around M dwarfs. Aims: Our HARPS-N red dwarf exoplanet survey is aimed at the detection of new planets around a sample of 78 selected stars, together with the subsequent characterization of their activity properties. Here we investigate the survey performance and strategy. Methods: From 2700 observed spectra, we compare the radial velocity determinations of the HARPS-N DRS pipeline and the HARPS-TERRA code, calculate the mean activity jitter level, evaluate the planet detection expectations, and address the general question of how to define the strategy of spectroscopic surveys in order to be most efficient in the detection of planets. Results: We find that the HARPS-TERRA radial velocities show less scatter and we calculate a mean activity jitter of 2.3 m s-1 for our sample. For a general radial velocity survey with limited observing time, the number of observations per star is key for the detection efficiency. In the case of an early M-type target sample, we conclude that approximately 50 observations per star with exposure times of 900 s and precisions of approximately 1 ms-1 maximizes the number of planet detections. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC).

  12. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20more » are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.« less

  13. The observational case for Jupiter being a typical massive planet.

    PubMed

    Lineweaver, Charles H; Grether, Daniel

    2002-01-01

    We identify a subsample of the recently detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this subsample in the period-Msin(i) plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus indicating that Jupiter is a typical massive planet rather than an outlier. Our analysis suggests that Jupiter is more typical than indicated by previous analyses. For example, instead of MJup mass exoplanets being twice as common as 2 MJup exoplanets, we find they are three times as common.

  14. The First Thousand Exoplanets: Twenty Years of Excitement and Discovery

    NASA Astrophysics Data System (ADS)

    Impey, Chris

    The recent "explosion" in the number of extrasolar planets, or exoplanets, is perhaps the most exciting phenomenon in all of science. Two decades ago, no planets were known beyond the Solar System, and now there are more than 770 confirmed exoplanets and several thousand more candidates, while the mass detection limit has marched steadily downwards from Jupiter mass in 1995 to Neptune mass in the early 2000s to Earth mass now. The vast majority of these exoplanets are detected indirectly, by their gravitational influence on the parent star or the partial eclipse they cause when they periodically pass in front of it. Doppler detection of the planet's reflex motion yields a period and an estimate of the mass, while transits or eclipses yield the size. Exoplanet detection taxes the best observatories in space, yet useful contributions can be made by amateur astronomers armed with 6-inch telescopes. The early discoveries were surprising; no one predicted "hot Jupiters" or the wild diversity of exoplanet properties that has been seen. It is still unclear if the Solar System is "typical" or not, but at current detection limits at least 10 % of Sun-like stars harbor planets and architectures similar to the Solar System are now being found. Over a hundred multiple planet systems are known and the data are consistent with every star in the Milky Way having at least one planet, with an implication of millions of habitable, Earth-like planets, and of which could harbor life. Doppler and transit data can be combined to give average density, and additional methods are beginning to give diagnostics of atmospheric composition. When this work can be extended to rocky and low mass exoplanets, and the imprint of biology on a global atmosphere can be measured, this might be the way that life beyond Earth is finally detected for the first time.

  15. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  16. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  17. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra containing hydrocarbons such as methane and ethane. Spectroscopic information on extrasolar planets thus can permit their classification. Spectra and spectral lines contain information on the temperature structure of the atmosphere. Line and band spectra can be used to identify the molecular constituents and retrieve species abundances, thereby classifying and characterizing the planet. At high enough spectral resolution characteristic planetary atmospheric dynamics and unique phenomena such as failure of local thermodynamic equilibrium can be identified. Dynamically induced effects such as planetary rotation and orbital velocity shift and change the shape of spectral features and must be modeled in detailed spectral studies. We will use our knowledge of the compositional, thermal and dynamical characteristics of planetary atmospheres in our own solar system to model spectra observed remotely on similar planets in extrasolar planetary systems. We will use a detailed radiative transfer and beam integration program developed for the modeling and interpretation of thermal infrared spectra measured from nearby planet planets to generate models of an extra-solar "Earth" and "Jupiter". From these models we will show how key spectral features distinguish between terrestrial and gaseous planets, what information can be obtained with different spectral resolution, what spectral features can be used to search for conditions for biogenic activity, and how dynamics and distance modify the observed spectra. We also will look at unique planetary phenomena such as atmospheric lasing and discuss their utility as probes for detection and identification of planets. Results of such studies will provide information to constrain design for instrumentation needed to directly detect extrasolar planets.

  18. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  19. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; hide

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  20. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  1. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe; Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When themore » lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.« less

  3. Polarimetry Microlensing of Close-in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Hundertmark, Markus

    2017-04-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  4. Detecting Planet Pairs in Mean Motion Resonances via the Astrometry Method

    NASA Astrophysics Data System (ADS)

    Wu, Dong-Hong; Liu, Hui-Gen; Yu, Zhou-Yi; Zhang, Hui; Zhou, Ji-Lin

    2016-07-01

    Gaia is leading us into a new era with a high astrometry precision of ˜10 μas. Under such precision, astrometry can play an important role in detecting and characterizing exoplanets. In particular, we can identify planet pairs in mean motion resonances (MMRs), which constrain the formation and evolution of planetary systems. In accordance with observations, we consider two-Jupiter or two-super-Earth systems in 1:2, 2:3, and 3:4 MMRs. Our simulations show that the false alarm probabilities (FAPs) of a third planet are extremely small, while the two real planets can be fitted well with a signal-to-noise ratio (S/N) \\gt 3. The probability of reconstructing a resonant system is related to the eccentricities and the resonance intensity. Generally, when the S/N ≥slant 10, if the eccentricities of both planets are larger than 0.01 and the resonance is quite strong, the probability of reconstructing the planet pair in MMRs is ≥slant 80 % . Jupiter pairs in MMRs are reconstructed more easily than super-Earth pairs with similar S/N when we consider dynamical stability. FAPs are also calculated when we detect planet pairs in or near MMRs. The FAPs for 1:2 MMRs are the largest, I.e., FAP \\gt 15 % when S/N ≤slant 10. Extrapolating from the Kepler planet pairs near MMRs and assuming a S/N ˜ 3, we discover and reconstruct a few tens of Jupiter pairs and hundreds of super-Earth pairs in 2:3 and 1:2 MMRs within 30 pc. We also compare the differences between even and uneven data cadence and find that planets are better measured with more uniform phase coverage.

  5. The Kepler Mission: A Photometric Search for Earthlike Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)

    1998-01-01

    If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.

  6. Osmotic fragility changes in preserved blood: measurements by coil planet centrifuge and parpart methods.

    PubMed

    Sasakawa, S; Tokunaga, E; Hasegawa, G; Nakagawa, S

    1977-09-01

    The coil planet centrifuge (CPC) can be used to measure the osmotic fragility of erythrocytes. Fragility measured by this method alters when different salts are used. The CPC and Parpart methods were used to measure the changes during storage in red cell osmotic fragility in ACD or CPD blood with or without adenine. More marked changes were detected by the CPC method, especially in old cells. The changes of fragility of erythrocytes during storage seem to occur mainly in old cells. Adenine is effective in preventing such changes.

  7. Transiting Exoplanet Observations at Grinnell College

    NASA Astrophysics Data System (ADS)

    Sauerhaft, Julia; Slough, P.; Cale, B.; Kempton, E.

    2014-01-01

    Grinnell College, a small liberal arts college in Grinnell, Iowa with 1600 undergraduate students, is home to the Grant O. Gale Observatory. Over the past year, we have successfully detected extrasolar planets using the transit method with our 24-inch Cassegrain reflecting telescope equipped with a CCD camera. With little light pollution and an easily accessible observatory, Grinnell College is an optimal location for transiting exoplanet observations. With the current telescope set-up and CCD camera, we have taken time series data and created image calibration and post-processing programs that detect exoplanet transits at high photometric precision. In the future, we will continue to use these observation and data reduction procedures to conduct transiting exoplanet research. Goals for our research program include performing follow-up observations of transiting exoplanet candidates to confirm their planetary nature, searching for additional exoplanets in known planetary systems using the transit timing detection method, tracking long period transiting planets, and refining properties of exoplanets and their host stars. Ground-based transiting planet science is especially important in the post-Kepler era, and our dedicated mid-sized telescope with plenty of access to dark clear nights provides an ideal resource for a variety of follow up and exoplanet detection efforts.

  8. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

    NASA Astrophysics Data System (ADS)

    Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.

    2018-03-01

    Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.

  9. Finding A Planet Through the Dust

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral fellow at the Jet Propulsion Laboratory (JPL), a team of scientists now presents preliminary results from a near-infrared microlensing survey conducted with the United Kingdom Infrared Telescope (UKIRT) in Hawaii. Though the full study has not yet been published, the team reports on their first outcome: the detection of a giant planet in the galactic bulge.Giant Planet FoundThe light curve of UKIRT-2017-BLG-001. The inset shows a close-up of the anomaly in the curve, produced by the presence of the planet. [Shvartzvald et al. 2018]UKIRT-2017-BLG-001 is a giant planet detected at an angle of just 0.35 from the dusty, crowded Galactic center. It suffers from a high degree of extinction, implying that this planet could only have been detected via a near-infrared survey. The mass ratio of UKIRT-2017-BLG-001 to its host star is about 1.5 times that of Jupiter to the Sun, and its host star appears to be about 80% the mass of the Sun.The starplanet pair is roughly 20,500 light-years from us, which likely places it in the galactic bulge. Intriguingly, evidence suggests that the source star the star that the foreground starplanet lensed lies in the far galactic disk. If this is true, this would be the first source star of a microlensing event to be identified as belonging to the far disk.Artists impression of the WFIRST mission. [NASA]Looking AheadWhats next for microlensing exoplanet studies? The goal of the UKIRT near-infrared microlensing survey isnt just to discover planets its to characterize the exoplanet occurrence rates in different parts of the galaxy to inform future surveys.In particular, the UKIRT survey explored potential fields for the upcoming Wide Field Infrared Survey Telescope (WFIRST) mission, slated to launch in the mid-2020s. This powerful space telescope stands to vastly expand the reach of infrared microlensing detection, broadly surveying our galaxy for planets hiding in the dust.CitationY. Shvartzvald et al 2018 ApJL 857 L8. doi:10.3847/2041-8213/aab71b

  10. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope -

    NASA Astrophysics Data System (ADS)

    Tamura, M.

    2016-02-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  11. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope.

    PubMed

    Tamura, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  12. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  13. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  14. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  15. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  16. Kepler's Final Survey Catalog

    NASA Astrophysics Data System (ADS)

    Mullally, S. E.

    2017-12-01

    The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.

  17. Probing LSST's Ability to Detect Planets Around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Cortes, Jorge; Kipping, David

    2018-01-01

    Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.

  18. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  19. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  20. The symbiosis of photometry and radial-velocity measurements

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1994-01-01

    The FRESIP mission is optimized to detect the inner planets of a planetary system. According to the current paradigm of planet formation, these planets will probably be small Earth-sized objects. Ground-based radial-velocity programs now have the sensitivity to detect Jovian-mass planets in orbit around bright solar-type stars. We expect the more massive planets to form in the outer regions of a proto-stellar nebula. These two types of measurements will very nicely complement each other, as they have highest detection probability for very different types of planets. The combination of FRESIP photometry and ground-based spectra will provide independent confirmation of the existence of planetary systems in orbit around other stars. Such detection of both terrestrial and Jovian planets in orbit around the same star is essential to test our understanding of planet formation.

  1. Double-blind test program for astrometric planet detection with Gaia

    NASA Astrophysics Data System (ADS)

    Casertano, S.; Lattanzi, M. G.; Sozzetti, A.; Spagna, A.; Jancart, S.; Morbidelli, R.; Pannunzio, R.; Pourbaix, D.; Queloz, D.

    2008-05-01

    Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for detecting and measuring planetary systems. The identified capabilities are then put in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets in the next decade. Methods: We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. Results: 1) Planets with astrometric signatures α≃ 3 times the assumed single-measurement error σ_ψ and period P≤ 5 yr can be detected reliably and consistently, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 15-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≤ P≤ 9 yr, astrometric signal-to-noise ratio 2≤α/σ_ψ≤ 50, and eccentricity e≤ 0.6 are correctly identified. 4) Favorable orbital configurations (both planets with P≤ 4 yr and α/σ_ψ≥ 10, redundancy over a factor of 2 in the number of observations) have orbital elements measured to better than 10% accuracy > 90% of the time, and the value of the mutual inclination angle i_rel determined with uncertainties ≤ 10°. 5) Finally, nominal uncertainties obtained from the fitting procedures are a good estimate of the actual errors in the orbit reconstruction. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σ_ψ = 8 μas, in its unbiased and complete magnitude-limited census of planetary systems, will discover and measure several thousands of giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia's planet discovery potential into context, identifying several areas of planetary-system science (statistical properties and correlations, comparisons with predictions from theoretical models of formation and evolution, interpretation of direct detections) in which Gaia can be expected, on the basis of our results, to have a relevant impact, when combined with data coming from other ongoing and future planet search programs.

  2. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit K.; Meadows, Victoria S.

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for thesemore » telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.« less

  3. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: sjchung@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr

    2014-04-20

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCPmore » events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M {sub E} planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M {sub E} planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.« less

  4. INSTRUMENTS AND METHODS OF INVESTIGATION Ice satellites of planets of the Solar System and the on-orbit radio detection of ultrahigh-energy particles

    NASA Astrophysics Data System (ADS)

    Gusev, G. A.; Lomonosov, B. N.; Ryabov, Vladimir A.; Chechin, V. A.

    2010-12-01

    The problem of detecting nature's most energetic particles—cosmic rays and neutrinos—is reviewed. Prospects for using orbital radio detectors for these highest-energy particles are examined. Apertures are calculated for space experiments using the Moon and similar-sized ice satellites of planets of the Solar System as targets for the interaction of cosmic-ray particles and neutrinos. A comparative analysis shows that using the Moon as a target is the most promising scenario.

  5. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are the clear detection of the well-known differential rotation of Neptune, measured for the first time through the rotational modulation of its photometry, and the detection of the Sun's oscillations, for the first time in an indirect way in intensity measurements.

  6. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  7. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  8. Algorithms for Autonomous Plume Detection on Outer Planet Satellites

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Bunte, M. K.; Saripalli, S.; Greeley, R.

    2011-12-01

    We investigate techniques for automated detection of geophysical events (i.e., volcanic plumes) from spacecraft images. The algorithms presented here have not been previously applied to detection of transient events on outer planet satellites. We apply Scale Invariant Feature Transform (SIFT) to raw images of Io and Enceladus from the Voyager, Galileo, Cassini, and New Horizons missions. SIFT produces distinct interest points in every image; feature descriptors are reasonably invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint. We classified these descriptors as plumes using the k-nearest neighbor (KNN) algorithm. In KNN, an object is classified by its similarity to examples in a training set of images based on user defined thresholds. Using the complete database of Io images and a selection of Enceladus images where 1-3 plumes were manually detected in each image, we successfully detected 74% of plumes in Galileo and New Horizons images, 95% in Voyager images, and 93% in Cassini images. Preliminary tests yielded some false positive detections; further iterations will improve performance. In images where detections fail, plumes are less than 9 pixels in size or are lost in image glare. We compared the appearance of plumes and illuminated mountain slopes to determine the potential for feature classification. We successfully differentiated features. An advantage over other methods is the ability to detect plumes in non-limb views where they appear in the shadowed part of the surface; improvements will enable detection against the illuminated background surface where gradient changes would otherwise preclude detection. This detection method has potential applications to future outer planet missions for sustained plume monitoring campaigns and onboard automated prioritization of all spacecraft data. The complementary nature of this method is such that it could be used in conjunction with edge detection algorithms to increase effectiveness. We have demonstrated an ability to detect transient events above the planetary limb and on the surface and to distinguish feature classes in spacecraft images.

  9. Book Review: Distant wanderers / Copernicus Books/Springer , 2001/2002

    NASA Astrophysics Data System (ADS)

    Bhatt, H. C.

    2002-06-01

    Are we alone in the Universe? The Earth, teeming with life, as we know it, is only one amongst the nine planets (wanderers) that wander around the Sun in more or less circular orbits. Do distant stars also have planets circling them? Are some of them similar to Earth and support life? These questions have long occupied the human mind. However, until the closing years of the twentieth century, the idea that there are stars, other than the Sun, that have planets orbiting them, remained a subject of speculation and controversy because the astronomical observing techniques used for the detection of planetary companions of stars did not have the necessary precision. During the past several years, advances in technology and dedicated efforts of planet-hunting astronomers have made it possible to detect Jupiter-like or more massive planets around nearby stars. So far about 70 such extra-solar planets have been discovered indicating that our solar system is not unique and distant wanderers are not uncommon. Distant Wanderers narrates the story of the search for extra-solar planets, even as the search is becoming more vigorous with newer instruments pushing the limits of sensitivity that has often resulted in the detection of planetary systems with totally unexpected characteristics. The book is primarily aimed at non specialists, but practicing scientists, including astronomers, will find the narrative very interesting and sometimes offering a perspective that is unfamiliar to professionals. The book begins with an introduction to some basic astronomical facts about the Universe, evolution of stars, supernovae and formation of pulsars. The first extra-solar planets were discovered in 1992 around a radio pulsar (PSR 1257+12) by measuring the oscillatory perturbations in the pulse arrival times from the pulsar caused by the presence of orbiting earth-sized planets as their gravity forces the pulsar also to move in orbit around the system barycenter. Such planetary systems are, however, very rare and only one other planet around a pulsar has so far been found. The first extra-solar planet around a sun-like star was discovered in 1995 by M. Mayor and D. Queloz circling the star 51 Pegasi by the method of Doppler spectroscopy. Since then about 70 extra-solar planets have been discovered. Most of these have been detected by Doppler spectroscopy, but now newer methods like occultation and gravitational lensing have also begun to reveal extra-solar planets and candidate extra-solar planets. Distant Wanderers gives a brief description of current theories of planet formation in dusty disks around stars as they form by gravitational collapse of rotating interstellar clouds. Various techniques used by astronomers for the detection of extra-solar planets are discussed. Important astrophysical concepts relevant to planet formation and their detection are also explained. The reader is taken to observatories on mountain tops, laboratories where instruments are built and conferences where astronomers announce their discoveries, debate the results and discuss future strategies for the search for distant wanderers. The extra-solar planets discovered so far, around sun-like stars, are similar in mass to Jupiter or more massive. Their orbits show a great variety. Some are in very close orbits (orbital periods of a few days) about the parent star, and are therefore very hot (hot Jupiters), while others are in wider orbits and cold. Some have nearly circular orbits, while many of them have highly eccentric orbits. There are extra-solar planets with masses as large as about 10 times the mass of Jupiter, close to being brown dwarfs. The existence of such planetary systems was never predicted by the standard theories of planet and star formation. As the hunt for extra-solar planets continues with more sophisticated instruments using innovative ideas, astronomers can be sure to be rewarded with more surprises. In Distant Wanderers, these discoveries and technological developments, currently taking place and being planned for the future, in the search for extra-solar planets, are narrated by the author, Bruce Dorminey, in simple language and lucid style. There are a few technical errors in the book. For example, on page 4, the angular momentum , which must always be conserved, is said to be created. In the discussion of the proper motion (which is measured on the plane of the sky) of Barnard's star, on page 111, it is incorrect to say that the star is moving toward the Sun. The book is, otherwise, well written and succeeds in communicating the excitement of the hunt for the distant wanderers.

  10. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  11. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  12. A high-precision radial-velocity survey for other planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Hatzes, Artie P.

    1994-01-01

    The precise measurement of variations in stellar radial velocities provides one of several promising methods of surveying a large sample of nearby solar type stars to detect planetary systems in orbit around them. The McDonald Observatory Planetary Search (MOPS) was started in 1987 September with the goal of detecting other nearby planetary systems. A stabilized I2 gas absorption cell placed in front of the entrance slit to the McDonald Observatory 2.7 m telescope coude spectrograph serves as the velocity metric. With this I2 cell we can achieve radial velocity measurement precision better than 10 m/s in an individual measurement. At this level we can detect a Jupiter-like planet around a solar-type star, and have some hope of detecting Saturn-like planets in a long-term survey. The detectability of planets is ultimately limited by stellar pulsation modes and photospheric motions. Monthly MOPS observing runs allow us to obtain at least 5 independent observations per year of the 33 solar-type (F5-K7) stars on our observing list. We present representative results from the first five years of the survey.

  13. Development and Application of the Transit Timing Planet Detection Technique

    NASA Astrophysics Data System (ADS)

    Steffen, J. H.; Agol, E.

    2005-12-01

    We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.

  14. Detection of Terrestrial Planets Using Transit Photometry

    NASA Technical Reports Server (NTRS)

    Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.

  15. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  16. The TROY project: Searching for co-orbital bodies to known planets. I. Project goals and first results from archival radial velocity

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Figueira, P.; Leleu, A.; Santos, N. C.; Correia, A. C. M.; Robutel, P.; Faria, J. P.

    2018-01-01

    Context. The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the first stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. Aims: In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (η-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. Methods: We used archival radial velocity data of 46 close-in (P < 5 days) transiting planets (without detected companions) with information from high-precision radial velocity instruments. We took advantage of the time of mid-transit and secondary eclipses (when available) to constrain the possible presence of additional objects co-orbiting the star along with the planet. This, together with a good phase coverage, breaks the degeneracy between a trojan planet signature and signals coming from additional planets or underestimated eccentricity. Results: We identify nine systems for which the archival data provide >1σ evidence for a mass imbalance between L4 and L5. Two of these systems provide >2σ detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings. Radial velocity data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A96

  17. Polarimetry of gas planets

    NASA Astrophysics Data System (ADS)

    Joos, Franco

    The quest for new worlds was not only an adventure at the times of Columbus. Also nowadays mankind searches for new, undiscovered territories. But today they lie no longer only on our Earth, but also well outside the solar system. There, new planets are sought and found. One of the challenges of modern astrophysics is the direct detection of extra- solar planets. To reach this goal, the largest available telescopes and most sophisticated detection techniques are required. A promising method to "see" and analyse extra-solar planets is based on the fact, that light reflected by a planet can be polarised. For its detection, accurate polarisation measurements are needed. This is one of the methods ESO intends to make use of to find new planets outside the solar system. The Institute of Astronomy of ETH Zürich contributes ZIMPOL to this planet-finder project. ZIMPOL is a very sensitive imaging polarimeter. This thesis is situated within the ESO-planet-finder project. It deals with two problems that are crucial for a successful mission: (1) Instrumental polarisation can seriously hamper the performance of the instrument. It is therefore essential, to keep instrumental polarisation very low. (2) A knowledge of the polarisation properties of our targets would be very helpful. For this reason the polarisation properties of our solar system planets are investigated. Promising candidates for a detection with ZIMPOL are large planets with atmospheres similar to those of our giant gas planets Jupiter, Saturn, Uranus and Neptune. In the first part of the thesis the planet-finder project is presented and the role of ZIMPOL is explained. To obtain the instrumental polarisation, the polarimetric properties of mirrors and other optical components of our planet- finder instrument are analysed. The instrumental polarisation for the wavelength range of 600 to 1000 nm and for all zenith distances is calculated with Mueller matrices. Methods for reducing the instrumental polarisation are proposed and checked by the renewed application of the Mueller calculus. The correction of the instrumental polarisation is divided into two parts. First, a combination of a rotating half-wave plate and a plane mirror compensate the polarisation introduced by the Nasmyth mirror. Secondly, a rotatable and tiltable glass plate compensates the residual polarisation introduced by oblique reflections on mirrors after the Nasmyth mirror. Further, possible aging effects of the mirrors are considered and consequences for the polarisation are highlighted. An error budget for non perfect retardation of the half-wave plate is also regarded, and the effects for the polarisation are calculated. In the second part spectropolarimetric measurements of the four gas planets Jupiter, Saturn, Uranus and Neptune for the wavelength range from 530 to 930 nm are presented. Our measurements of Uranus and Neptune are the first of their kind. For Uranus and Neptune a second-order scattering effect, leading to limb polarisation, has been measured. This effect is expected in atmospheres of Rayleigh scattering type and allows conclusions on the properties of the scatterers and the stratification inside the atmosphere. The limb polarisation reaches a maximum of more than 3% on Uranus. Spectropolarimetric plots for selected regions on Uranus and polarimetric profiles parallel to the spectrographic slits are presented. An enhanced polarisation in the methane absorption bands is detected. For both planets the limb polarisation decreases with wavelength. For Jupiter and Saturn profiles parallel to the slits and polarimetric spectra for some selected regions such as the poles of Jupiter or the ring system of Saturn are presented. The poles of Jupiter exhibit a large polarisation (up to 10%) perpendicular to the limb. In the methane absorption bands at the Jovian poles the polarisation is enhanced compared to the adjacent higher albedo regions. The polarisation decreases from short wavelengths towards longer wavelengths. Disc resolved spectropolarimetry of Saturn has not yet been published in the literature. Therefore, the spectropolarimetric data of Saturn presented in this thesis are the first of their kind. The polarised profiles for Saturn show an enhanced limb polarisation at the South Pole perpendicular to the limb and a small negative polarisation for the ring system (parallel to the scattering plane). In addition, we observe, an enhanced polarisation at northern mid- latitudes. An appendix is added that contains numerous spectropolarimetric plots and all profiles of the four planets. The main body of the text only contains a small selection of these data.

  18. Infrared spectroscopy of the transiting extrasolar planet HD 209458 b during secondary eclipse

    NASA Astrophysics Data System (ADS)

    Richardson, Lee Jeremy

    2003-10-01

    We present spectroscopic observations that place strong limits on the atmospheric structure of the transiting extrasolar planet HD 209458 b. The discovery of the transit has led to several new observations that have provided the most de tailed information on the physical properties of a planet outside the solar system. These observations have concentrated on the primary eclipse, the time at which the planet crosses in front of the star as seen from Earth. The measurements have determined the basic physical characteristics of the planet, including radius, mass, average density, and orbital inclination, and have even refined values of the stellar mass and radius. Transmission spectroscopy of the system during primary eclipse resulted in the first detection of the atmosphere of an extrasolar planet, with the measurement of the sodium doublet. The present work discusses the first reported attempts to detect the secondary eclipse, or the disappearance of the planet behind the star, in the infrared. We devise the method of ‘occultation spectroscopy’ to detect the planetary spectrum, by searching in combined light for subtle changes in the shape of the spectrum as the planet passes behind the star. Predicted secondary eclipse events were observed from the Very Large Telescope (VLT) on UT 8 and 15 July 2001 using the Infrared Spectrometer and Array Camera (3.5 3.7 μm). Further observations from the NASA Infrared Telescope Facility (IRTF) using the SpeX instrument (1.9 4.2 μm) included two predicted secondary eclipse events on UT 20 and 27 September 2001. Analysis of these data reveal a statistically significant non- detection of the planetary spectrum. The results place strong limits on the structure of the planetary atmosphere and reject widely-accepted models for the planet that assume the incident stellar radiation is completely absorbed and re-emitted in the substellar hemisphere. Situations that remain consistent with our data include an isothermal atmosphere or the presence of a high absorptive or reflective cloud. The latter case is also consistent with the observed low sodium abundance from transmission spectroscopy. These results represent the strongest limits to date on the temperature structure of the planetary atmosphere.

  19. Extreme coronagraphy with an adaptive hologram. Simulations of exo-planet imaging

    NASA Astrophysics Data System (ADS)

    Ricci, D.; Le Coroller, H.; Labeyrie, A.

    2009-08-01

    Aims: We present a solution to improve the performance of coronagraphs for the detection of exo-planets. Methods: We simulate numerically several kinds of coronagraphic systems, with the aim of evaluating the gain obtained with an adaptive hologram. Results: The detection limit in flux ratio between a star and a planet (F_s/F_p) observed with an apodized Lyot coronagraph characterized by wavefront bumpiness imperfections of λ/20 (resp. λ/100) turns out to be increased by a factor of 103.4 (resp. 105.1) when equipped with a hologram. Conclusions: This technique could provide direct imaging of an exo-Earth at a distance of 11 parsec with a 6.5 m space telescope such as the JWST with the optical quality of the HST.

  20. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  1. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  2. M Stars as Targets for Terrestrial Exoplanet Searches And Biosignature Detection

    NASA Astrophysics Data System (ADS)

    Scalo, John; Kaltenegger, Lisa; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu. N.; Grenfell, John L.; Rauer, Hieke; Odert, Petra; Leitzinger, Martin; Selsis, F.; Khodachenko, Maxim L.; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M⊕ range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first ~1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions. Key Words: M star planets-Habitable planets - Life and stellar activity - Spectral biosignatures - Terrestrial planet formation - Exoplanet properties. Astrobiology 7(1), 85 - 166.

  3. SEEDS — Strategic explorations of exoplanets and disks with the Subaru Telescope —

    PubMed Central

    TAMURA, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453

  4. DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca

    2016-02-20

    The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less

  5. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  6. Detection of Planets Orbiting Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul

    1996-12-01

    During the past 11 months, astronomers have finally discovered planets orbiting Sun-like stars. A total of eight planets has been detected by the Doppler technique, and there are possible planets detected by astrometry around one other star. Some of the new planets exhibit properties similar to those in our Solar System. But many of them have properties that were unexpected. Several planets are more massive than Jupiter, and some orbit their host star in orbits smaller than Mercury's orbit. Equally unexpected is that three of these planets have noncircular orbits. Current theory of the formation of planetary systems is challenged to account for these new planetary properties, but several models are emerging, involving gravitational scattering of planetesimals and viscous or tidal decay of orbits. The occurrence rate of true analogs of our Solar System will soon be determined with the detection of long-period gas giants analogous to Jupiter.

  7. Searching for transits in the WTS with the difference imaging light curves

    NASA Astrophysics Data System (ADS)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J < 16. However, difference photometry light curves present a significant improvement for fainter stars. In order to detect transits in the WTS light curves, we use a modified version of the box-fitting algorithm. The implementation on the detection algorithm performs a trapezoid-fit to the folded light curve. We show that the new fit is able to produce more accurate results than the box-fit model. We describe a set of selection criteria to search for transit candidates that include a parameter calculated by our detection algorithm: the V-shape parameter, which has proven to be useful to automatically identify and remove eclipsing binaries from the survey. The criteria are optimized using Monte-Carlo simulations of artificial transit signals that are injected into the real WTS light curves and subsequently analyzed by our detection algorithm. We separately optimize the selection criteria for two different sets of light curves, one for F-G-K stars, and another for M-dwarfs. In order to search for transiting planet candidates, the optimized selection criteria are applied to the aperture photometry and difference imaging light curves. In this way, the best 200 transit candidates from a sample of ~ 475 000 sources are automatically selected. A visual inspection of the folded light curves of these detections is carried out to eliminate clear false-positives or false-detections. Subsequently, several analysis steps are performed on the 18 best detections, which allow us to classify these objects as transiting planet and eclipsing binary candidates. We report one planet candidate orbiting a late G-type star, which is proposed for photometric follow-up. The independent analysis on the M-dwarf sample provides no planet candidates around these stars. Therefore, the null detection hypothesis and upper limits on the occurrence rate of giant planets around M-dwarfs with J < 17 mag presented in a prior study are confirmed. In this work, we extended the search for transiting planets to stars with J < 18 mag, which enables us to impose a more strict upper limit of 1.1 % on the occurrence rate of short-period giant planets around M-dwarfs, which is significantly lower than other limit published so far. The lack of Hot Jupiters around M-dwarfs play an important role in the existing theories of planet formation and orbital migration of exo-planets around low-mass stars. The dearth of gas-giant planets in short-period orbit detections around M stars indicates that it is not necessary to invoke the disk instability formation mechanism, coupled with an orbital migration process to explain the presence of such planets around low-mass stars. The much reduced efficiency of the core-accretion model to form Jupiters around cool stars seems to be in agreement with the current null result. However, our upper limit value, the lowest reported sofar, is still higher than the detection rates of short-period gas-giant planets around hotter stars. Therefore, we cannot yet reach any firm conclusion about Jovian planet formation models around low-mass and cool main-sequence stars, since there are currently not sufficient observational evidences to support the argument that Hot Jupiters are less common around M-dwarfs than around Sun-like stars. The way to improve this situation is to monitor larger samples of M-stars. For example, an extended analysis of the remaining three WTS fields and currently running M-dwarf transit surveys (like Pan-Planets and PTF/M-dwarfs projects, which are monitoring up to 100 000 objects) may reduce this upper limit. Current and future space missions like Kepler and GAIA could also help to either set stricter upper limits or finally detect Hot Jupiters around low-mass stars. In the last part of this thesis, we present other applications of the difference imaging light curves. We report the detection of five faint extremely-short-period eclipsing binary systems with periods shorter than 0.23 d, as well as two candidates and one confirmed M-dwarf/M-dwarf eclipsing binaries. The etections and results presented in this work demonstrate the benefits of using the difference imaging light curves, especially when going to fainter magnitudes.

  8. Minerva exoplanet detection sensitivity from simulated observations

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Nava, C.

    2014-01-01

    Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.

  9. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  10. Exploring a Nearby Habitable World...Orbiting an M-Dwarf Star

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets and detection techniques, direct and indirect detection methods, summary of the known exoplanets, exploiting transits to characterize super earth atmospheres, how to characterize exoplanet atmospheres, and emitted or reflected spectra of hot Jupiters.

  11. Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa

    2018-01-01

    In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.

  12. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  13. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory

    NASA Technical Reports Server (NTRS)

    Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.

    1996-01-01

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  14. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan

    2014-10-10

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg{sup 2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t {sub exp} = 120more » s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M{sub p} /M {sub ⊕} < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.« less

  15. The Exoplanet Migration Timescale from K2 Young Clusters

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron

    A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.

  16. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  17. a Theoretical Calculation of Microlensing Signatures Caused by Free-Floating Planets Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Hamolli, L.; Hafizi, M.; Nucita, A. A.

    2013-08-01

    Free-floating planets (FFPs) are recently drawing a special interest of the scientific community. Gravitational microlensing is up to now the exclusive method for the investigation of FFPs, including their spatial distribution function and mass function. In this paper, we examine the possibility that the future Euclid space-based observatory may allow to discover a substantial number of microlensing events caused by FFPs. Based on latest results about the free-floating planet (FFP) mass function in the mass range [10-5, 10-2]M⊙, we calculate the optical depth towards the Galactic bulge as well as the expected microlensing rate and find that Euclid may be able to detect hundreds to thousands of these events per month. Making use of a synthetic population, we also investigate the possibility of detecting parallax effect in simulated microlensing events due to FFPs and find a significant efficiency for the parallax detection that turns out to be around 30%.

  18. Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.

    2015-01-01

    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.

  19. Noise Sources in Photometry and Radial Velocities

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    The quest for Earth-like, extrasolar planets (exoplanets), especially those located inside the habitable zone of their host stars, requires techniques sensitive enough to detect the faint signals produced by those planets. The radial velocity (RV) and photometric transit methods are the most widely used and also the most efficient methods for detecting and characterizing exoplanets. However, presence of astrophysical "noise" makes it difficult to detect and accurately characterize exoplanets. It is important to note that the amplitude of such astrophysical noise is larger than both the signal of Earth-like exoplanets and state-of-the-art instrumentation limit precision, making this a pressing topic that needs to be addressed. In this chapter, I present a general review of the main sources of noise in photometric and RV observations, namely, stellar oscillations, granulation, and magnetic activity. Moreover, for each noise source I discuss the techniques and observational strategies which allow us to mitigate their impact.

  20. Sensitivity of the terrestrial planet finder

    NASA Technical Reports Server (NTRS)

    Beichman, Charles

    1998-01-01

    A key long-term goal of NASA's Origins program is the detection and characterization of habitable planets orbiting stars within the solar neighborhood. A cold, space-borne interferometer operating in the mid-infrared with a approx. 75 m baseline can null the light of a parent star and detect the million-times fainter radiation from an Earth-like planet located in the "habitable zone" around stars as far as 15 pc away. Such an interferometer, designated the Terrestrial Planet Finder (TPF) by NASA, could even detect atmospheric signatures of species such as CO2, O3, and H2O indicative of either the possibility or presence of primitive life. This talk highlights some of the sensitivity issues affecting the detectability of terrestrial planets. Sensitivity calculations show that a system consisting of 2 m apertures operating at 5 AU or 4 m apertures operating at 1 AU can detect terrestrial planets in reasonable integration times for levels of exo-zodiacal emission up to 10 times that seen in our solar system (hereafter denoted as 10xSS). Additionally, simulations show that confusion noise from structures in the exo-zodiacal cloud should not impede planet detection until the exo-zodiacal emission reaches the 10xSS level.

  1. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  2. Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets

    PubMed Central

    Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-01-01

    Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets—Habitability—Radiative transfer—Biosignatures. Astrobiology 14, 67–86. PMID:24432758

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilat-Lohinger, E.; Bazsó, A.; Funk, B.

    Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture.more » As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.« less

  4. Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?

    NASA Astrophysics Data System (ADS)

    Quarles, B.; Satyal, S.; Kostov, V.; Kaib, N.; Haghighipour, N.

    2018-04-01

    The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.

  5. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  6. An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver

    2014-01-01

    Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable against the general paucity of multiple systems in the presence of giant planets like Kepler-87 b.

  7. Habitability in the Solar System and on Extrasolar Planets and Moons

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  8. Habitability in The Solar System and on Extrasolar Planets and Moons

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    2015-12-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitable environments in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  9. Searching for exoplanets using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.

    2018-02-01

    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.

  10. M stars as targets for terrestrial exoplanet searches and biosignature detection.

    PubMed

    Scalo, John; Kaltenegger, Lisa; Segura, Antígona; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu N; Grenfell, John L; Rauer, Heike; Odert, Petra; Leitzinger, Martin; Selsis, F; Khodachenko, Maxim L; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.

  11. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  12. Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.

    PubMed

    Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M

    2014-07-04

    Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.

  13. No large population of unbound or wide-orbit Jupiter-mass planets.

    PubMed

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-10

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  14. A pilot investigation to constrain the presence of ring systems around transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Hatchett, W. Timothy; Barnes, Jason W.; Ahlers, John P.; MacKenzie, Shannon M.; Hedman, Matthew M.

    2018-04-01

    We demonstrate a process by which to evaluate the presence of large, Saturn-like ring systems around transiting extrasolar giant planets. We use extrasolar planet candidate KOI-422.01 as an example around which to establish limits on the presence of ring systems. We find that the spherical-planet (no-rings) fit matches the lightcurve of KOI-422.01 better than a lightcurve with a planet having obliquity angles 90°, 60°, 45°, or 20°. Hence we find no evidence for rings around KOI-422.01, but the methods that we have developed can be used for more comprehensive ring searches in the future. If the Hedman (2015) low-temperature rings hypothesis is correct, then the first positive detection of exorings might require transits of very long period ( ≳ 10 yr) giant planets outside their stars' ice lines.

  15. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    PubMed

    Kasting, J F

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?

  16. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?.

  17. Kepler AutoRegressive Planet Search (KARPS)

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel

    2018-01-01

    One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.

  18. From Extrasolar Planets to Exo-Earths

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  19. An adaptive optics search for young extrasolar planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Max, C. E.; Olivier, S.

    2000-10-01

    In the past five years, many extrasolar planets have been detected indirectly, through radial velocity variations induced in their parent stars. Advances in technology now open up the possibility of directly detecting extrasolar planets through the photons they emit. Direct detection would allow determination of the temperature, radius, and composition of a planet, particularly one in a wide orbit - an important complement to radial velocity techniques. Seeing a planet against the halo of scattered light from its parent star is extremely challenging, but adaptive optics (AO) on 8-10 m telescopes can make this possible. The first such large-telescope AO system is now operational on the 10-m W.M. Keck II telescope. Its current performance is sufficient to detect objects at contrast ratios of 105 at separations of 1" and 106 at 2". This is insufficient to detect the reflected light from a mature Jupiter-like planet, but we can easily detect the near-infrared thermal emission from young (<10-50 MYr) planets, or older brown dwarfs. We are carrying out a search for such planetary companions to young nearby stars, including the TW Hydrae association. We present preliminary results from this survey, including sensitivity limits and follow-up of candidate companions originally detected by NICMOS. We have also imaged the Epsilon Eridani system, and present upper limits on the brightness of the planet detected via radial velocity variations by Cochran et al. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive Optics under the STC Program of the National Science Foundation under Agreement No. AST-9876783

  20. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  1. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don

    2015-10-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  2. Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO

    NASA Astrophysics Data System (ADS)

    Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.

    2017-09-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  3. Detectability of the Reflection Signal from Inner Planets

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Jenkins, J. M.; Scargle, J.; Koch, D.; Doyle, L. R.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Mayor and Queloz (1996) and Marcy and Butler (1996) have found massive planets with orbital periods Tp=approx.4 days around two solar-like stars (51 Pegasi and v Andromeda). These planets are most likely similar in size and composition to the gas giants in our solar system (Burrows et al 1996). Based on this expectation and assuming the same albedo as Jupiter, we examined the feasibility of searching for similar planets with a dedicated space-based 1-m telescope. The Kepler mission will survey approximately 70,000 main-sequence dwarf stars from 9 to 14 mag continuously for four years to detect transiting Earthlike planets. Based on the detection statistics of Marcy and Butler, we expect to detect 1400 inner-orbit giant planets. Such planets in a much wider range of orbital inclinations (i) will produce nearly sinusoidal modulations of the star light flux due to the varying planetary phases. The relative signal amplitudes are of order 2x10(exp -5) and decrease as Tp(exp 4/3) for i >> 0deg. We estimated the expected signal to noise ratio (SNR) using the solar irradiance measurements from the ACRIM 1 experiment along with expected shot and detector noises. The figure shows SNR as a function of Tp for a 12 mag star, and indicates the planet radius required for detection. The survey will be sensitive to planets with periods from 12 hr to approx.8 days at the 6 sigma level.

  4. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the field of young-star identification, we carried out a systematic near-infrared search for young planetary companions to {approx}200 young stars. We also carried out targeted high-sensitivity observations of selected stars surrounded by circumstellar dust rings. We developed advanced image processing techniques to allow detection of even fainter sources buried in the noisy halo of scattered starlight. Even with these techniques, around most of our targets our search was only sensitive to planets in orbits significantly wider than our solar system. With some carefully selected targets--very young dusty stars in the solar neighborhood--we reach sensitivities sufficient to see solar systems like our own. Although we discovered no unambiguous planets, we can significantly constrain the frequency of such planets in wide (>50 AU) orbits, which helps determine which models of planet formation remain plausible. Successful modeling of our observations has led us to the design of a next-generation AO system that will truly be capable of exploring solar systems resembling our own.« less

  5. Prevalence and Properties of Planets from Kepler and K2

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan

    2015-12-01

    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.

  6. First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi

    NASA Astrophysics Data System (ADS)

    Langlois, M.; Pohl, A.; Lagrange, A.-M.; Maire, A.-L.; Mesa, D.; Boccaletti, A.; Gratton, R.; Denneulin, L.; Klahr, H.; Vigan, A.; Benisty, M.; Dominik, C.; Bonnefoy, M.; Menard, F.; Avenhaus, H.; Cheetham, A.; Van Boekel, R.; de Boer, J.; Chauvin, G.; Desidera, S.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J. H.; Henning, T.; Janson, M.; Kopytova, T.; Kral, Q.; Ligi, R.; Messina, S.; Peretti, S.; Pinte, C.; Sissa, E.; Stolker, T.; Zurlo, A.; Magnard, Y.; Blanchard, P.; Buey, T.; Suarez, M.; Cascone, E.; Moller-Nilsson, O.; Weber, L.; Petit, C.; Pragt, J.

    2018-06-01

    Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims: Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods: We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 μm). Results: We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.

  7. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  8. Age aspects of habitability

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Murthy, J.; Shchekinov, Yu. A.

    2016-04-01

    A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.

  9. Early 2017 observations of TRAPPIST-1 with Spitzer

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  10. Exploiting physical constraints for multi-spectral exo-planet detection

    NASA Astrophysics Data System (ADS)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation based on the singular value decomposition of the rescaled images. We show how the difficult problem to fitting a bilinear model on the can be solved in practise. The results are promising for further developments including application to real data and joint planet detection in multi-variate data (multi-spectral and multiple exposures images).

  11. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-08-20

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less

  12. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  13. Nemesis, Tyche, Planet Nine Hypotheses. I. Can We Detect the Bodies Using Gravitational Lensing?

    NASA Astrophysics Data System (ADS)

    Philippov, J. P.; Chobanu, M. I.

    2016-08-01

    In this paper, the hypothesis of the existence of a massive dark body (Nemesis, Tyche, Planet Nine, or any other trans-Plutonian planet) at the Solar system periphery is analysed. Basic physical properties and orbital characteristics of such massive bodies are considered. The problem of the definition of a scattering angle of a photon in the gravitational field of a spherical lens is studied. It is shown that, the required value of the scattering angle can be measured for the cases of Nemesis and Tyche. The formation of gravitational lensing images is studied here for a point mass event. It is demonstrated that in most cases of the close rapprochement of a source and the lens (for Nemesis and Tyche), it is possible to resolve two images. The possibility of resolving these images is one of the main arguments favouring the gravitational lensing method as its efficiency in searching for dark massive objects at the edge of the Solar System is higher than the one corresponding to other methods such as stellar occultation. For the cases of Planet Nine and any other trans-Plutonian planet, the strong gravitational lensing is impossible because at least one of the images is always eclipsed.

  14. Kepler Planet Detection Metrics: Window and One-Sigma Depth Functions for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    This document describes the window and one-sigma depth functions relevant to the Transiting Planet Search (TPS) algorithm in the Kepler pipeline (Jenkins 2002; Jenkins et al. 2017). The window function specifies the fraction of unique orbital ephemeris epochs over which three transits are observable as a function of orbital period. In this context, the epoch and orbital period, together, comprise the ephemeris of an orbiting companion, and ephemerides with the same period are considered equivalent if their epochs differ by an integer multiple of the period. The one-sigma depth function specifies the depth of a signal (in ppm) for a given light curve that results in a one-sigma detection of a transit signature as a function of orbital period when averaged over all unique orbital ephemerides. These planet detection metrics quantify the ability of TPS to detect a transiting planet signature on a star-by-star basis. They are uniquely applicable to a specific Kepler data release, since they are dependent on the details of the light curves searched and the functionality of the TPS algorithm used to perform the search. This document describes the window and one-sigma depth functions relevant to Kepler Data Release 25 (DR25), where the data were processed (Thompson et al. 2016) and searched (Twicken et al. 2016) with the SOC 9.3 pipeline. In Section 4, we describe significant differences from those reported in Kepler Data Release 24 (Burke Seader 2016) and document our verification method.

  15. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

    NASA Astrophysics Data System (ADS)

    Shallue, Christopher J.; Vanderburg, Andrew

    2018-02-01

    NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.

  16. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and 0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. Conclusions: The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit periods.

  17. Optimizing the TESS Planet Finding Pipeline

    NASA Astrophysics Data System (ADS)

    Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center

    2017-10-01

    The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.

  18. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunitomo, M.; Ikoma, M.; Sato, B.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (ormore » the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.« less

  19. Exoplanets: The Hunt Continues!

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial-velocity measurements of HD 80606, a star with a planet in a very elongated orbit . A major international effort The discovery of eleven new exoplanets has resulted from three high-precision radial-velocity surveys now searching for such objects: * The CORALIE planet-search programme on La Silla [4], conducted by astronomers of the Geneva Observatory [1] * The ELODIE high-precision radial-velocity survey of solar-type stars at the Haute-Provence Observatory (OHP/France) conducted by a Swiss-French team, including the Geneva, Grenoble and Haute-Provence Observatories [1] * The G-dwarf project , an ELODIE-HIRES/Keck planet-search programme set up by a team of astronomers from the Geneva Observatory, the Center for Astrophysics (Cambridge, Mass., USA) and the Tel Aviv University (Israel) [1] The new results are the outcome of high-precision radial-velocity measurements . This fundamental observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [3]. Four of the new planets were detected from La Silla and three ELODIE candidates were secured with CORALIE measurements. With the eleven new discoveries, the CORALIE/ELODIE programmes have contributed to the detection of about half (32) of the known (63) planetary candidates with minimum masses below 10 Jupiter masses, or 36 out of 67 known objects with minimum masses below 17 Jupiter masses [2]. Several unusual systems Among the present detections, there are two new planetary systems (HD 82943 and HD 74156), each with two planets. They bring to six the number of known multi-planet systems, four of which owe their detection to CORALIE/ELODIE measurements. This demonstrates the outstanding role that comparatively small telescopes can still play in modern astrophysics. Detailed information about all of the new planets are available on the dedicated web page at the Geneva Observatory web site: http://obswww.unige.ch/~udry/planet/new_planet.html. Of the systems discovered at La Silla, two are quite unusual: HD 82943: a "resonant" system ESO PR Photo 13a/01 ESO PR Photo 13a/01 [Preview - JPEG: 367 x 400 pix - 53k] [Normal - JPEG: 734 x 800 pix - 248k] Caption : PR Photo 13a/01 shows the radial-velocity measurements of the central star, 82493 , in a two-planet system, as observed with the CORALIE instrument at La Silla. The best-fit curve corresponds to expected variations, caused by the planets described in the text. The abscissa shows the date; the ordinate the velocity The detection of the outer planet that orbits the star HD 82943 was announced earlier ( ESO Press Release 13/00 ), together with seven CORALIE planet candidates at other stars. The follow-up observations at La Silla soon revealed a departure from the previously determined orbit. The accumulated measurements ( PR Photo 13a/01 ) now allow the detection of a second, inner planet in this system. Its orbital period (221 days) is about half of that of the outer one (444 days). Future observations should confirm the 1:2 ratio between the periods; this indicates a "resonance" that may result from the gravitational interaction between the two planets. Similar orbital resonances are known in the solar system, especially in case of the minor planets (asteroids). HD 28185: a giant planet in the "habitable" zone With the exception of the planet iota Hor b (cf. ESO PR 12/99 ), circular orbits among exoplanets have only been found for short-period systems, contrary to what is the case for the giant planets in our own Solar System. However, the orbit of the newly found planet near the sun-like star HD 28185 is very nearly circular and with a period of 385 days (close to 1 Earth year), its distance from the star, 150.6 million km, is almost equal to the distance betwen the Sun and the Earth (149.6 million km). This new planet is therefore located in the "habitable zone" where temperatures like those on the Earth are possible. Still, it is a giant, gaseous planet (with a minimum mass of 3.5 times that of Jupiter, or about 1000 times that of the Earth) and thus an unlikely place for the development of life. Nevertheless, it may be orbited by one or more moons on which a more bio-friendly environment has evolved. The presence of natural satellites ("moons") around giant extra-solar planets is not a far-fetched idea, just look at our own Solar System. HD 80606: a giant planet in an extremely elongated orbit ESO PR Photo 13b/01 ESO PR Photo 13b/01 [Preview - JPEG: 400 x 233 pix - 21k] [Normal - JPEG: 800 x 465 pix - 41k] Caption : PR Photo 13b/01 shows the radial-velocity measurements of the star HD 80606 that hosts a planet in a very eccentric orbit. A planet in an extremely elongated orbit around the star HD 80606 was found in the frame of the ELODIE/Keck collaboration. The measured, very large eccentricity (e = 0.93; PR Photo 13b/01 ) implies of factor of no less than 26 between the smallest and largest distance to the star. When the planet is closest to the star, it is only a few stellar radii away (about 5 million kilometres). Continuation of the programme Further progress within the current programme is expected soon, when the Very Large Telescope Interferometer (VLTI) at Paranal becomes available, cf. ESO PR 06/01. This new instrument will have the observational capability of very high-accuracy positional measurements (astrometry) and thus be able to detect even very small wobbles of stellar positions in the sky that are due to the pull of orbiting planets. This will provide a crucial contribution to the determination of the true repartition of exoplanetary masses, a hotly debated question. Important advancement in our understanding of the formation of planetary systems is also expected with the advent of HARPS. This new high-resolution spectrograph, capable of reaching the extremely high radial-velocity precision of 1 m/sec, will be installed on the ESO 3.6-m telescope at La Silla at the end of 2002. HARPS will extend the domain of planets accessible with the radial-velocity technique towards significantly lower masses - down to about ten Earth masses on short-period orbits . It will also greatly improve our capability of detecting planets with longer periods and multi-planet systems. More information More information on these discoveries may be found in a Press Release from the Tel Aviv University and on the Geneva planet-search web page. Notes [1] The team consists of: Geneva Observatory (Switzerland): Michel Mayor, Dominique Naef, Francesco Pepe, Didier Queloz, Nuno C. Santos, Stephane Udry, Michel Burnet Grenoble Observatory (France): Christian Perrier, Jean-Luc Beuzit Haute-Provence Observatory (France): Jean-Pierre Sivan Center for Astrophysics (Cambridge, Mass., USA): David Latham, Guillermo Torres Tel Aviv University (Israel): Tsevi Mazeh, Shay Zucker, G. Drukier [2] The mass units for the exoplanets used in this text are 1 Jupiter mass = 318 Earth masses. [3] A fundamental limitation of the radial-velocity method, currently used by all planet-hunting research teams, is that because of the uncertainty of the inclination of the planetary orbit, it only allows to determine a lower mass limit for the planet. However, statistical considerations indicate that in most cases, the true mass will not be much higher than this value. [4] Earlier accounts of this research programme have been published as ESO Press Release 18/98 and ESO Press Release 13/00. Views of the 1.2-m Leonard Euler telescope and its dome at La Silla are available as PR Photos 13a-c/00.

  20. Kepler Mission Website: Portal to the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.

  1. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  2. On the Detectability of Planet X with LSST

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Bellm, Eric C.; Malhotra, Renu

    2018-06-01

    Two planetary mass objects in the far outer solar system—collectively referred to here as Planet X— have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptionally faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18000 deg2), deep (limiting magnitude of individual frames of 24.5) survey (the “wide-fast-deep (WFD)” survey) of the southern sky beginning in 2022, and it will therefore be an important tool in searching for these hypothesized planets. Here, we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the WFD survey plus additional coverage), we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to ∼75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a nondetection of Planet X in LSST data.

  3. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  4. A new statistical method for characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Henderson, Cassandra S.; Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2017-10-01

    By detecting light from extrasolar planets, we can measure their compositions and bulk physical properties. The technologies used to make these measurements are still in their infancy, and a lack of self-consistency suggests that previous observations have underestimated their systemic errors. We demonstrate a statistical method, newly applied to exoplanet characterization, which uses a Bayesian formalism to account for underestimated errorbars. We use this method to compare photometry of a substellar companion, GJ 758b, with custom atmospheric models. Our method produces a probability distribution of atmospheric model parameters including temperature, gravity, cloud model (fsed) and chemical abundance for GJ 758b. This distribution is less sensitive to highly variant data and appropriately reflects a greater uncertainty on parameter fits.

  5. Astrometry and exoplanets in the Gaia era: a Bayesian approach to detection and parameter recovery

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Hobbs, D.; Lindegren, L.

    2018-06-01

    The Gaia mission is expected to make a significant contribution to the knowledge of exoplanet systems, both in terms of their number and of their physical properties. We develop Bayesian methods and detection criteria for orbital fitting, and revise the detectability of exoplanets in light of the in-flight properties of Gaia. Limiting ourselves to one-planet systems as a first step of the development, we simulate Gaia data for exoplanet systems over a grid of S/N, orbital period, and eccentricity. The simulations are then fit using Markov chain Monte Carlo methods. We investigate the detection rate according to three information criteria and the Δχ2. For the Δχ2, the effective number of degrees of freedom depends on the mission length. We find that the choice of the Markov chain starting point can affect the quality of the results; we therefore consider two limit possibilities: an ideal case, and a very simple method that finds the starting point assuming circular orbits. We use 6644 and 4402 simulations to assess the fraction of false positive detections in a 5 yr and in a 10 yr mission, respectively; and 4968 and 4706 simulations to assess the detection rate and how the parameters are recovered. Using Jeffreys' scale of evidence, the fraction of false positives passing a strong evidence criterion is ≲0.2% (0.6%) when considering a 5 yr (10 yr) mission and using the Akaike information criterion or the Watanabe-Akaike information criterion, and <0.02% (<0.06%) when using the Bayesian information criterion. We find that there is a 50% chance of detecting a planet with a minimum S/N = 2.3 (1.7). This sets the maximum distance to which a planet is detectable to 70 pc and 3.5 pc for a Jupiter-mass and Neptune-mass planets, respectively, assuming a 10 yr mission, a 4 au semi-major axis, and a 1 M⊙ star. We show the distribution of the accuracy and precision with which orbital parameters are recovered. The period is the orbital parameter that can be determined with the best accuracy, with a median relative difference between input and output periods of 4.2% (2.9%) assuming a 5 yr (10 yr) mission. The median accuracy of the semi-major axis of the orbit can be recovered with a median relative error of 7% (6%). The eccentricity can also be recovered with a median absolute accuracy of 0.07 (0.06).

  6. Detection of Terrestrial Planets Using Transit Photometry

    NASA Astrophysics Data System (ADS)

    Koch, D.; Witteborn, F.; Jenkins, J.; Dunham, E.; Borucki, W.

    2000-12-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial-size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a periodic signature (differential brightness change) being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b (Charbonneau, et al. 2000, Castellano et al. 2000 and references therein). However, photometry 100 times better is required to detect terrestrial planets. We present results of measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a spacebased photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm per transit (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These "transits" were reliably detected as part of the tests. Funding for this work was provided by NASA's Discovery and Origins programs and by NASA Ames. Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M., ApJ, 529, L45, 2000. Castellano, T., Jenkins, J., Trilling, D. E., Doyle, L., and Koch, D., ApJ Let. 532, L51-L53 (2000)

  7. Water maser emission from exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  8. The most conserved genome segments for life detection on Earth and other planets.

    PubMed

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  9. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  10. Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581.

    PubMed

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-25

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g. Copyright © 2014, American Association for the Advancement of Science.

  11. pyLIMA : The first open source microlensing modeling software

    NASA Astrophysics Data System (ADS)

    Bachelet, Etienne; Street, Rachel; Bozza, Valerio

    2018-01-01

    Microlensing is highly sensitive to planets beyond the snowline and distributed along the line of sight towards the Galactic Bulge. The WFIRST-AFTA mission should detect about 3000 of these planets and significantly improves our knowledge of planet formation and statistics, complementing results found by transit and radial velocity methods. However, the modeling of microlensing event is challenging on different aspects leading to a highly time consuming analysis. After a quick summarize of these different challenges, I will present pyLIMA, the first open source microlensing modeling software. The aimed goal of this software are to be flexible, powerful and user friendly. This presentation will focus on various case and early results.

  12. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

  13. Orbital dynamics of multi-planet systems with eccentricity diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu

    2014-04-01

    Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less

  14. The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Kane, Stephen R.

    2017-12-01

    The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.

  15. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    2011-01-10

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less

  16. Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Cheongho; Shin, In-Gu; Jung, Youn Kil

    Chang–Refsdal (C–R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C–R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C–R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C–Rmore » lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C–R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C–R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C–R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.« less

  17. The Frequency of Low-Mass Exoplanets

    NASA Astrophysics Data System (ADS)

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.; Wittenmyer, R. A.

    2009-08-01

    We report first results from the Anglo-Australian Telescope Rocky Planet Search—an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat α ~ -1 (for dN/dM vprop M α) and that between 15% ± 10% (at α = -0.3) and 48% ± 34% (at α = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M ⊕.

  18. WFIRST Microlensing Exoplanet Characterization with HST Follow up

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.

    2018-01-01

    More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.

  19. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.

    PubMed

    Heller, René; Pudritz, Ralph E

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  20. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone

    NASA Astrophysics Data System (ADS)

    Heller, René; Pudritz, Ralph E.

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 105 K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 104) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  1. Planet Formation Instrument for the Thirty Meter Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B; Troy, M; Graham, J

    2006-02-22

    In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. Thesemore » systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.« less

  2. A Toolbox for Exoplanet Exploration

    NASA Astrophysics Data System (ADS)

    Jensen-Clem, Rebecca Marie

    2017-05-01

    In this thesis, I develop a new suite of tools to address two questions in exoplanet science: how common are Earth-mass planets in the habitable zones of Solar-type stars, and can we detect signs of life on other worlds? Answering the first question requires a method for detecting Earth-Sun analogs. Currently, the radial velocity (RV) method of exoplanet detection is one of the most successful tools for probing inner planetary systems. However, degeneracy between a spectrometer's wavelength calibration and the astrophysical RV shift has limited the sensitivity of today's instruments. In my thesis, I address a method for breaking this degeneracy: by combining a traditional spectrometer design with a dynamic interferometer, a fringe pattern is generated at the image plane that is highly sensitive to changes in the radial velocity of the target star. I augmented previous theoretical studies of the method, creating an end-to-end simulation to 1) introduce and recover wavelength calibration errors, and 2) investigate the effects of interferometer position errors on the RV precision. My simulation showed that using this kind of interferometric system, a 5-m class telescope could detect an Earth-Sun analog. Addressing the occurrence rate of Earth twins also requires an understanding of planet formation in multiple star systems, which encompass half of all Solar-type stars. Gravitational interactions between binary components separated by 10-100 astronomical units are predicted to truncate the outer edges of their respective disks, possibly reducing the disks' lifetimes. Consequently, the pool of material and the amount of time available for planet formation may be smaller than in single star systems. The stars' rotational periods provide a fossil record of these events: star-disk magnetic interactions initially prevent a contracting pre-main sequence star from spinning up, and hence a star with a shorter-lived disk is expected to be spinning more quickly when it reaches the zero age main sequence. In order to conduct a large-scale multiplicity survey to investigate the relationship between stellar rotation and binary system properties (e.g. their separations and mass ratios), I contributed to the commissioning of Robo-AO, a robotic laser guide star adaptive optics system, at the Kitt Peak 2.1-m. After the instrument's installation, I wrote a data pipeline to optimize the system's sensitivity to close stellar companions via reference star differential imaging. I then characterized Robo-AO's performance during its first year of operations. Finally, I used Robo-AO to search for binaries among the 759 stars in the Pleiades with rotational periods measured using the photometric data of the re-purposed Kepler telescope, K2. Detecting signs of life on other worlds will require detailed characterization of rocky exoplanet atmospheres. Polarimetry has long been proposed as a means of probing these atmospheres, but current instruments lack the sensitivity to detect the starlight reflected and polarized by such small, close-in planets. However, the latest generation of high contrast imaging instruments (e.g. GPI and SPHERE) may be able to detect the polarization of thermal emission by young gas giants due to scattering by aerosols in their atmospheres. Observational constraints on the details of clouds physics imposed by polarized emission will improve our understanding of the planets' compositions, and hence their formation histories. For the case of the brown dwarf HD19467 B orbiting a nearby Sun-like star, I demonstrated that the Gemini Planet Imager can detect linear polarizations on the order predicted for these cloudy exoplanets. My current pilot programs can produce the first detections of polarized exoplanet emission, while also building expertise for reflected starlight polarimetry with future observatories.

  3. Automated Detection of Craters in Martian Satellite Imagery Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Norman, C. J.; Paxman, J.; Benedix, G. K.; Tan, T.; Bland, P. A.; Towner, M.

    2018-04-01

    Crater counting is used in determining surface age of planets. We propose improvements to martian Crater Detection Algorithms by implementing an end-to-end detection approach with the possibility of scaling the algorithm planet-wide.

  4. OGLE-2017-BLG-0482Lb: A Microlensing Super-Earth Orbiting a Low-mass Host Star

    NASA Astrophysics Data System (ADS)

    Han, C.; Hirao, Y.; Udalski, A.; Lee, C.-U.; Bozza, V.; Gould, A.; and; Abe, F.; Barry, R.; Bond, I. A.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N.; Saito, T.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; The MOA Collaboration; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Kim, D.; Kim, W.-T.; Kim, H.-W.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; The KMTNet Collaboration

    2018-05-01

    We report the discovery of a planetary system in which a super-Earth orbits a late M-dwarf host. The planetary system was found from the analysis of the microlensing event OGLE-2017-BLG-0482, wherein the planet signal appears as a short-term anomaly to the smooth lensing light curve produced by the host. Despite its weak signal and short duration, the planetary signal was firmly detected from the dense and continuous coverage by three microlensing surveys. We find a planet/host mass ratio of q ∼ 1.4 × 10‑4. We measure the microlens parallax {π }{{E}} from the long-term deviation in the observed lensing light curve, but the angular Einstein radius {θ }{{E}} cannot be measured because the source trajectory did not cross the planet-induced caustic. Using the measured event timescale and the microlens parallax, we find that the masses of the planet and the host are {M}{{p}}={9.0}-4.5+9.0 {M}\\oplus and {M}host}={0.20}-0.10+0.20 {M}ȯ , respectively, and the projected separation between them is {a}\\perp ={1.8}-0.7+0.6 au. The estimated distance to the lens is {D}{{L}}={5.8}-2.1+1.8 kpc. The discovery of the planetary system demonstrates that microlensing provides an important method to detect low-mass planets orbiting low-mass stars.

  5. Reprocessing of Archival Direct Imaging Data of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Safsten, Emily; Stephens, Denise C.

    2017-01-01

    Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. They are the higher mass analogs of the better-known T Tauri stars. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales, particularly around massive stars. So far, only one planet, HD 100546b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars.Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the central star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We present here current work with the PSF subtraction program PynPoint, which employs a method of principal component analysis, to reprocess archival images of HAeBe stars to increase the likelihood of detecting a planet in their disks.

  6. Detection of Intermediate-Period Transiting Planets with a Network of Small Telescopes: transitsearch.org

    NASA Astrophysics Data System (ADS)

    Seagroves, Scott; Harker, Justin; Laughlin, Gregory; Lacy, Justin; Castellano, Tim

    2003-12-01

    We describe a project (transitsearch.org) currently attempting to discover transiting intermediate-period planets orbiting bright parent stars, and we simulate that project's performance. The discovery of such a transit would be an important astronomical advance, bridging the critical gap in understanding between HD 209458b and Jupiter. However, the task is made difficult by intrinsically low transit probabilities and small transit duty cycles. This project's efficient and economical strategy is to photometrically monitor stars that are known (from radial velocity surveys) to bear planets, using a network of widely spaced observers with small telescopes. These observers, each individually capable of precision (1%) differential photometry, monitor candidates during the time windows in which the radial velocity solution predicts a transit if the orbital inclination is close to 90°. We use Monte Carlo techniques to simulate the performance of this network, performing simulations with different configurations of observers in order to optimize coordination of an actual campaign. Our results indicate that transitsearch.org can reliably rule out or detect planetary transits within the current catalog of known planet-bearing stars. A distributed network of skilled amateur astronomers and small college observatories is a cost-effective method for discovering the small number of transiting planets with periods in the range 10 days

  7. Commissioning and performance results of the WFIRST/PISCES integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Saxena, Prabal; Rizzo, Maxime J.; Mejia Prada, Camilo; Llop Sayson, Jorge; Gong, Qian; Cady, Eric J.; Mandell, Avi M.; Groff, Tyler D.; McElwain, Michael W.

    2017-09-01

    Direct imaging of exoplanets has become a priority in the field of exoplanet discovery and characterization due to its ability to directly obtain evidence about a planet's atmosphere and some bulk properties. Features such as atmospheric composition, structure and clouds are just some of the planetary properties obtainable from directly imaged spectra. However, detecting and observing spectra of exoplanets using direct imaging is challenging due to the combination of extreme star to planet contrast ratios and the relatively small apparent physical separation between a host star and an orbiting planet. Detection of Earth-sized planets in reflected visible light requires contrast ratios of 1010, while even detection of Jupiter-sized planets and large young self-luminous planets requires contrast ratios of 108 and 106, respectively. Consequently, direct detection of exoplanets requires observing strategies which push the boundaries of high contrast imaging. The use of coronagraphy to occult a host star has been combined with adaptive optics (AO) technology to yield a particularly promising means of potentially achieving the required contrast ratios in regions close-in enough to the host star. Ground based adaptive optics systems such as The Gemini Planet Imager (GPI)1 and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)2 instrument have been able to achieve contrast ratios nearing 107 using post-processing techniques3, 4 and have yielded a number of direct detections of young self-luminous planets. Advancing these technologies onto a space based platform immune to the difficulties posed by the effects of Earth's atmosphere is the next step in accessing even larger contrast ratios.

  8. Direct IR Interferometric Detection of Extra Solar Planets

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    1989-01-01

    This paper describes a concept for the direct detection of extra solar planets. The concept is based on a decade old idea from Bracewell but expanded. A long baseline interferometer is examined with two three meter telescopes, cooled to 70K and a baseline of 30-50 meters. In space, this instrument would be able to detect an Earth sized planet around a solar like star at 10 parsec in approximately 1 hour of integration (5 sigma). The total number of candidate stars with detectable "Earths" number in the thousands.

  9. Looking for planetary moons in the spectra of distant Jupiters.

    PubMed

    Williams, D M; Knacke, R F

    2004-01-01

    More than 100 nearby stars are known to have at least one Jupiter-sized planet. Whether any of these giant gaseous planets has moons is unknown, but here we suggest a possible way of detecting Earth-sized moons with future technology. The planned Terrestrial Planet Finder observatory, for example, will be able to detect objects comparable in size to Earth. Such Earth-sized objects might orbit their stars either as isolated planets or as moons to giant planets. Moons of Jovian-sized planets near the habitable zones of main-sequence stars should be noticeably brighter than their host planets in the near-infrared (1-4 microm) if their atmospheres contain methane, water, and water vapor, because of efficient absorption of starlight by these atmospheric components. By taking advantage of this spectral contrast, future space observatories will be able to discern which extrasolar giant planets have Earth-like moons capable of supporting life.

  10. A population study of hot Jupiter atmospheres

    NASA Astrophysics Data System (ADS)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yrchenko, S. N.

    2017-09-01

    In the past two decades, we have learnt that every star hosts more than one planet. While the hunt for new exoplanets is on-going, the current sample of more than 3500 confirmed planets reveals a wide spectrum of planetary characteristics. While small planets appear to be the most common, the big and gaseous planets play a key role in the process of planetary formation. We present here the analysis of 30 gaseous extra-solar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 Jupiter radii. These planets were spectroscopically observed with the Wide Field Camera 3 on-board the Hubble Space Telescope, which is currently one of the most successful instruments for observing exoplanetary atmospheres. The quality of the HST/WFC3 spatially-scanned data combined with our specialised analysis tools, allows us to create the largest and most self-consistent sample of exoplanetary transmission spectra to date and study the collective behaviour of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets. For most of the Jupiters in our sample we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity is a secondary factor in the evolution of planetary atmospheres. We detect the presence of water vapour in all the statistically detectable atmospheres and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present on WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  11. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2016-01-01

    We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  12. The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.

    2017-05-01

    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117

  13. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  14. Terrestrial Planet Finder Interferometer Technology Status and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.

    2006-01-01

    A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.

  15. Habitable worlds with no signs of life

    PubMed Central

    Cockell, Charles S.

    2014-01-01

    ‘Most habitable worlds in the cosmos will have no remotely detectable signs of life’ is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the ‘problem of exoplanet thermodynamic uncertainty’). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers. PMID:24664917

  16. Habitable worlds with no signs of life.

    PubMed

    Cockell, Charles S

    2014-04-28

    'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.

  17. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.

  18. Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems

    NASA Astrophysics Data System (ADS)

    Satyal, Suman

    The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic-aperiodic orbits. The stability of the system is defined in terms of its lifetime and maximum eccentricity during the integration period then a regime is established for the known and injected planet's orbital parameters. The de-stabilizing resonances due to the outer planet extend by 1.36 AU towards the star, nonetheless, existence of two Earth-mass planets seems plausible. The radial velocity (RV) curves generated for the test planets reveals a weak RV signal that cannot be measured by currently available instruments. A theory has been developed by extrapolating the radio emission processes in the Jupiter-Io system, which could reveal the presence of exomoons around the giant exoplanets. Based on this theory, maximum distance, radius and masses of exoplanets and exomoons are calculated that could be detected by the available radio telescopes. Observation time at the Low Frequency Array (LOFAR) radio telescope has been proposed to detect exomoon in five different stellar systems. Subjects of my future studies include analysis of the data from LOFAR, search for the additional transiting planets in Kepler 47 circumbinary system and observation at the Subaru telescope to verify the predicted planets in GJ 832 system by the method of direct imaging.

  19. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11

  20. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  1. An Integral-Field Spectrograph for a Terrestrial Planet Finding Mission

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    We describe a conceptual design for an integral field spectrograph for characterizing exoplanets that we developed for NASA's Terrestrial Planet Finder Coronagraph (TPF-C), although it is equally applicable to an external-occulter mission. The spectrograph fulfills all four scientific objectives of a terrestrial planet finding mission by: (1) Spectrally characterizing the atmospheres of detected planets in search of signatures of habitability or even biological activity; (2) Directly detecting terrestrial planets in the habitable zone around nearby stars; (3) Studying all constituents of a planetary system including terrestrial and giant planets, gas and dust around sun-like stars of different ages and metallicities; (4) Enabling simultaneous, high-spatial-resolution, spectroscopy of all astrophysical sources regardless of central source luminosity, such as AGN's, proplyds, etc.

  2. Parent stars of extrasolar planets - XIV. Strong evidence of Li abundance deficit

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.

    2015-01-01

    We report the results of our analysis of new high-resolution spectra of 30 late-F to early-G dwarf field stars for the purpose of deriving their Li abundances. They were selected from the subsample of stars in the Valenti and Fischer compilation that are lacking detected planets. These new data serve to expand our comparison sample used to test whether stars with Doppler-detected giant planets display Li abundance anomalies. Our results continue to show that Li is deficient among stars with planets when compared to very similar stars that lack such planets. This conclusion is strengthened when we add literature data to ours in a consistent way. We present a table of stars with planets paired with very similar stars lacking planets, extending the recent similar results of Delgado Mena et al.

  3. Convection in Cool Stars, as Seen Through Kepler's Eyes

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.

    2015-01-01

    Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve ``flicker.'' We show that ``flicker'' not only yields a simple measurement of surface gravity with a precision of ˜0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.

  4. PlanetPack: A radial-velocity time-series analysis tool facilitating exoplanets detection, characterization, and dynamical simulations

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.

    2013-08-01

    We present PlanetPack, a new software tool that we developed to facilitate and standardize the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter, that can run either in an interactive mode or in a batch mode of automatic script interpretation. Its major abilities include: (i) advanced RV curve fitting with the proper maximum-likelihood treatment of unknown RV jitter; (ii) user-friendly multi-Keplerian as well as Newtonian N-body RV fits; (iii) use of more efficient maximum-likelihood periodograms that involve the full multi-planet fitting (sometimes called as “residual” or “recursive” periodograms); (iv) easily calculatable parametric 2D likelihood function level contours, reflecting the asymptotic confidence regions; (v) fitting under some useful functional constraints is user-friendly; (vi) basic tasks of short- and long-term planetary dynamical simulation using a fast Everhart-type integrator based on Gauss-Legendre spacings; (vii) fitting the data with red noise (auto-correlated errors); (viii) various analytical and numerical methods for the tasks of determining the statistical significance. It is planned that further functionality may be added to PlanetPack in the future. During the development of this software, a lot of effort was made to improve the calculational speed, especially for CPU-demanding tasks. PlanetPack was written in pure C++ (standard of 1998/2003), and is expected to be compilable and useable on a wide range of platforms.

  5. Moon or Planet? The Exomoon Hunt Continues Artist Concept

    NASA Image and Video Library

    2014-04-10

    Researchers have detected the first exomoon candidate -- a moon orbiting a planet that lies outside our solar system. Using a technique called microlensing, they observed what could be either a moon and a planet -- or a planet and a star.

  6. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  7. Kepler Mission: A Search for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Jenkens, J.; Dunham, E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Kepler Mission is a search for terrestrial planets by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all known sources of noise including, spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer will stare at a single field of stars for four years, with an option to continue for two more years. This allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the activity cycles and rotation rates of the stars observed. For the 3,000 stars brighter than mv= 11.4 p-mode oscillations are measured. The mission has been selected as one of three candidates for NASA's next Discovery mission.

  8. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  9. Ground-based K-band detection of thermal emission from the exoplanet TrES-3b

    NASA Astrophysics Data System (ADS)

    de Mooij, E. J. W.; Snellen, I. A. G.

    2009-01-01

    Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.

  10. THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agol, Eric; Jansen, Tiffany; Lacy, Brianna

    2015-10-10

    Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon. We consider two model systems, for which we discuss the requirements for detection of exomoons around nearby stars. We simulate themore » characterization of an Earth–Moon analog system with spectroastrometry, showing that the orbit, the planet mass, and the spectra of both bodies can be recovered. To enable the detection and characterization of exomoons we recommend that coronagraphic telescopes should extend in wavelength coverage to 3 μm, and should be designed with spectroastrometric requirements in mind.« less

  11. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  12. Building Better Planet Populations for EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2018-01-01

    The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.

  13. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  14. Interior structures and tidal heating in the TRAPPIST-1 planets

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Dobos, Vera; Kiss, László L.

    2018-05-01

    Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.

  15. A Spitzer search for transits of radial velocity detected super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less

  16. EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsing, Johan

    We present a simple and powerful method for extracting transit signals associated with a known transiting planet from noisy light curves. Assuming the orbital period of the planet is known and the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies by only using data within a fixed time frame with a width equal to an integer number of orbital periods. This results in a reconstruction of the full transit signal, which on average is unbiased despite no prior knowledge of either the noise or the transit signal itself being used inmore » the analysis. The method therefore has clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we can extract the full orbital transit signal (360°) simultaneously, and Kepler-like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our presented method is in general the optimal and least biased estimator and could therefore lead the way toward the first detections of, e.g., planet rings and exo-trojan asteroids.« less

  17. Characterising Hot-Jupiters' atmospheres with observations and modelling

    NASA Astrophysics Data System (ADS)

    Tinetti, G.

    2007-08-01

    Exoplanet transit photometry and spectroscopy are currently the best techniques to probe the atmospheres of extrasolar worlds. The best targets to be observed with these methods, are the planets that orbit very close to their parent star, both because their probability to transit grows and their atmospheres are warmer and more expanded, hence easier to probe. These characteristics are met by the so called Hot-Jupiters, massive low-density gaseous planets orbiting very close-in. Phase-curves allow to observe the change in brightness in the combined light of the planet-star system, also for non-transiting exoplanets. We review here the most crucial observations performed with the Hubble and Spitzer Space Telescopes at multiple wavelenghts, and the most successful models proposed in the literature to plan and interpret those observations. In particular we will focus on most recent observations and modelling claiming the detection of water vapour in the atmospheres of these planets. Further into the future, the JamesWebb Space Telescope will allow to probe the atmospheres of smaller size-planets with the same techniques. We briefly report here the results expected for hot and warm Neptunes, or transiting terrestrial planets.

  18. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  19. The road to Earth twins

    NASA Astrophysics Data System (ADS)

    Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.

    2011-06-01

    A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010

  20. Kepler Detects Planet Orbiting Two Stars (Kepler-16b) Reporter Package for TWAN

    NASA Image and Video Library

    2011-09-19

    NASA's Kepler Mission has made the first detection of a planet orbiting two stars. About 200 light years away from our solar system, the planet Kepler-16b is cold, gaseous and about the size of Saturn. Its stars are both smaller than the Sun and about 2 billion years younger than our Solar System. They orbit around each other, so from our vantage point they take turns eclipsing each other about every 41 days. The planet Kepler-16b orbits around both stars every 229 days.

  1. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  2. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P., E-mail: tsasaki@vandals.uidaho.edu, E-mail: jwbarnes@uidaho.edu, E-mail: obrien@psi.edu

    2012-07-20

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion ofmore » lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.« less

  3. Planetary mass function and planetary systems

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  4. Detecting planets in Kepler lightcurves using methods developed for CoRoT.

    NASA Astrophysics Data System (ADS)

    Grziwa, S.; Korth, J.; Pätzold, M.

    2011-10-01

    Launched in March 2009, Kepler is the second space telescope dedicated to the search for extrasolar planets. NASA released 150.000 lightcurves to the public in 2010 and announced that Kepler has found 1.235 candidates. The Rhenish Institute for Environmental Research (RIU-PF) is one of the detection groups from the CoRoT space mission. RIU-PF developed the software package EXOTRANS for the detection of transits in stellar lightcurves. EXOTRANS is designed for the fast automated processing of huge amounts of data and was easily adapted to the analysis of Kepler lightcurves. The use of different techniques and philosophies helps to find more candidates and to rule out others. We present the analysis of the Kepler lightcurves with EXOTRANS. Results of our filter (trend, harmonic) and detection (dcBLS) techniques are compared with the techniques used by Kepler (PDC, TPS). The different approaches to rule out false positives are discussed and additional candidates found by EXOTRANS are presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in themore » atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.« less

  6. Exploring the Effects of Stellar Multiplicity on Exoplanet Occurrence Rates

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Shabram, Megan

    2017-06-01

    Determining the frequency of habitable worlds is a key goal of the Kepler mission. During Kepler's four year investigation it detected thousands of transiting exoplanets with sizes varying from smaller than Mercury to larger than Jupiter. Finding planets was just the first step to determining frequency, and for the past few years the mission team has been modeling the reliability and completeness of the Kepler planet sample. One effect that has not typically been built into occurrence rate statistics is that of stellar multiplicity. If a planet orbits the primary star in a binary or triple star system then the transit depth will be somewhat diluted resulting in a modest underestimation in the planet size. However, if a detected planet orbits a fainter star then the error in measured planet radius can be very significant. We have taken a hypothetical star and planet population and passed that through a Kepler detection model. From this we have derived completeness corrections for a realistic case of a Universe with binary stars and compared that with a model Universe where all stars are single. We report on the impact that binaries have on exoplanet population statistics.

  7. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  8. One Hundred Thousand Eyes: Analysis of Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    We are using a powerful resource, more than 100,000 eyes of users on the successful Planet Hunters Web project, who will identify the best follow-up science targets for this ADAP proposal among the Kepler public archive light curves. Planet Hunters is a Citizen Science program with a user base of more than 50,000 individuals who have already contributed the 24/7 cumulative equivalent of 200 human years assessing Kepler data. They independently identified most of the Kepler candidates with radii greater than 3-4 REARTH and they detected ten transiting planet candidates that were missed by the Kepler pipeline algorithms, including two circumbinary transiting planet candidates. These detections have provided important feedback for the Kepler algorithms about possible leaks where candidates might be lost. Our scientific follow up program will use Planet Hunter classifications of archival data from the Kepler Mission to: "Detect and model new transiting planets: for radii greater than 3 4 REARTH and orbital periods longer than one year, the Planet Hunters should be quite competitive with automated pipelines that require at least 3 transits for a detection and fill in the parameter space for Neptune-size planets over a wide range of orbital periods. For stars where a single transit can be modeled as a long period planet, we will establish a watch list for future transits. We will carry out checks for false positives (pixel centroiding analysis, AO observations, Doppler measurements where appropriate). "Analyze the completeness statistics for Kepler transits and independently determine a corrected planet occurrence rate as a function of planet radius and orbital period. This will be done by injecting synthetic transits into real Kepler light curves and calculating the efficiency with which the transits are detected by Planet Hunters. "Model the full spectroscopic and photometric orbital solutions for a set of ~60 detached eclipsing binary systems with low mass K and M dwarf components- quadrupling the number of fully characterized eclipsing systems with low-mass stars. We will revise the spectral synthesis modeling code, SME, to handle double line spectroscopic binaries (including velocity offets and relative intensity as free parameters). Our data, coupled with the sparse data currently available on late-type stellar radii, will allow us to explore the long-standing discrepancy between theory and observation in the sense that directly determined radii exceed theory predictions by ~10%. As such, host star radii are often the limiting factor in extracting the planetary radii from Kepler transiting systems since model approaches appear currently flawed. Thus, an empirical calibration to radius relationships for low-mass stars will be fundamentally enabling for the Kepler mission. "Carry out a search for transiting circumbinary planets; Planet Hunters has already detected two of four known eclipsing binary systems with transiting planets. "Develop a guest scientist program so that the larger community can tap into Planet Hunters with special programs. "Further develop our in-house software analysis tools for modeling light curves, analyzing pixel centroid offsets and measuring Doppler shifts in eclipsing binaries; we will make these programs available in the public domain (Astrophysics Source Code Library).

  9. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; hide

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  10. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  11. The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.

    2013-08-01

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  12. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    NASA Astrophysics Data System (ADS)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  13. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic properties will keep it under observation. NSF grant AST 98-20711, Litton Marine Systems, Levinson Fund, University of Virginia, Hampden-Sydney College, and US Naval Observatory supported this research.

  14. Sensitivity of the TPF Interferometer for Planet Detection

    NASA Technical Reports Server (NTRS)

    Beichman, C.; Velusamy, T.

    1999-01-01

    The Terrestrial Planet Finder (TPF) offers the prospect of revolutionizing humanity's perception of its own place in the Universe by identifying habitable and possibly even life-bearing planets orbiting other stars.

  15. Optical Images of an Exosolar Planet 25 Light-Years from Earth

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    Fomalhaut is a bright star 7.7 parsec (25 light year) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate. Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 All of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 micron flux is also consistent with that of a planet with mass a few limes that of Jupiter. The brightness at 0.6 microns and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 microns.

  16. Optical Images of an Exosolar Planet 25 Light Years from Earth

    NASA Technical Reports Server (NTRS)

    Kalas, Paul; Graham, James R.; Chiang, Eugene; Fitzgerald, Michael P.; Clampin, Mark; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-01-01

    Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

  17. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Melo, C.

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10-4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10-7. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  18. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function.

    PubMed

    Martins, J H C; Santos, N C; Figueira, P; Melo, C

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10 -4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10 -7 . To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  19. Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill

    2018-06-01

    Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.

  20. A Census of Habitable Planets around Nearby stars?

    NASA Astrophysics Data System (ADS)

    Leger, Alain M.

    2015-12-01

    One day or another, a spectroscopic mission will be launched searching for biosignatures in the atmospheres of Earth-like planets, i.e. planets located in the Habitable Zone (HZ) of their stars and hopefully rocky. This could be done blindly, the expensive spectroscopic mission searching for the candidates before performing their spectroscopy. According to a clear tendency in the Kepler data, the mean number of Earth-like planets, ηEarth, around the Kepler stars is rather low (10% - 20%). It makes this approach pretty inefficient, most of the stars studied (90% - 80%) having no such planets, and the corresponding mission time being essentially lost. This is more severe when the random position of planets on their orbits is taken into account. An exhaustive census of these planets around the nearby stars, the only ones accessible to the mission, appears desirable priorly to its launch.Up to now, the detection of low mas planets in the HZ of their stars by the Radial Velocity technique is limited to stars with very low activity (~ 2% of F,G,K stars). The detection by transits is limited by the low probability the randomly oriented orbits, few of them leading to a transit (0.5% for solar-type stars). On the other hand, ultra accurate astrometry is less sensitive to stellar activity and could detect Earth-like planets around most of the nearby solar-type stars.We present the project of a space mission, Theia+, that could do the job and measure the masses and orbits of these planets, a key piece of information to derive a possible statement about the likelihood of the actual presence of life on a planet. Other capabilities of the mission regarding Dark Matter, Very Compact Object, Cosmology, and Stellar Formation is also rapidly mentioned.

  1. Three Super-Earths Orbiting HD 7924

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.

    2015-06-01

    We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  2. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  3. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  4. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar-type and post-MS hosting stars, and provide further support to the core-accretion formation model. Based on observations collected at La Silla - Paranal Observatory under programs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs IDs CN 12A-073, CN 12B-047, CN 13A-111, CN 13B-51, CN 14A-52, CN-15A-48, and CN-15B-25.

  5. Photometric Exoplanet Characterization and Multimedia Astronomy Communication

    NASA Astrophysics Data System (ADS)

    Cartier, Kimberly M. S.

    The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for transiting planets presented in this work quantifies the information contained in a sequence of transit depths using a normalized information content metric. The normalized information content metric can distinguish between naturally occurring, regular transits of real exoplanets detected via Kepler (low information content) and simulated artificial beacons whose depth and timing vary in a prime number sequence (high information content). Highly variable transit sequences with natural explanations--as seen with KIC 12557548, for example--can only be distinguished from artificial beacons when observed at a high signal-to-noise ratio (moderate information content) and may otherwise be confused with a more information-rich sequence. This dissertation also presents a review of effective methods for communicating science to various audiences, with specific applications to astronomy. That chapter highlights the necessity of integrating formal communications training into the early stages of a career in astronomy, explains why and how to apply story telling techniques to astronomy communication, and details specific strategies to apply when using common communication media. Examples are given for effectively communicating astronomy through academic research papers, slides for an oral presentation, and academic research posters, as well as examples of popular science blogs, feature articles, and news stories.

  6. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Bourcki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth's atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  7. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth#s atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  8. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  9. Search for giant planets in M 67. IV. Survey results

    NASA Astrophysics Data System (ADS)

    Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M. T.; Bonifacio, P.; Bedin, L. R.; Libralato, M.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2017-07-01

    Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67. Aims: We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail. Methods: We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency of planets for each star. Results: All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in this survey, we find an occurrence of giant planets of 18.0+12.0-8.0% in the selected period-mass range. This frequency is slightly higher but consistent within the errors with the estimate for the field stars, which leads to the general conclusion that open cluster and field statistics agree. However, we find that the rate of hot Jupiters in the cluster ( 5.7+5.5-3.0%) is substantially higher than in the field. Based on observations collected at the ESO 3.6m telescope (La Silla), at the 1.93 m telescope of the Observatoire de Haute-Provence (OHP, France), at the Hobby Eberly Telescope (HET, Texas), at the Telescopio Nazionale Galileo (TNG, La Palma) and at the Euler Swiss Telescope (La Silla).Individual RV measurements are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A85

  10. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for themore » geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 {+-} 0.008, 0.023 {+-} 0.003, and 0.013 {+-} 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R{sub Circled-Plus }, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P{sub 0}. For smaller planets, P{sub 0} has larger values, suggesting that the 'parking distance' for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T{sub eff} range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R{sub Circled-Plus} planets in the Kepler field increases with decreasing T{sub eff}, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).« less

  11. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  12. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  13. Full exploration of the giant planet population around β Pictoris

    NASA Astrophysics Data System (ADS)

    Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.

    2018-05-01

    Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108

  14. The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Chapellier, E.; Guillot, T.; Abe, L.; Agabi, A.; De Pra, Y.; Schmider, F.-X.; Zwintz, K.; Stevenson, K. B.; Wang, J. J.; Lagrange, A.-M.; Bigot, L.; Crouzet, N.; Fanteï-Caujolle, Y.; Christille, J.-M.; Kalas, P.

    2017-12-01

    Aims: The Antarctica Search for Transiting Extrasolar Planets (ASTEP), an automatized 400 mm telescope located at Concordia station in Antarctica, monitored β Pictoris continuously to detect any variability linked to the transit of the Hill sphere of its planet β Pictoris b. The long observation sequence, from March to September 2017, combined with the quality and high level duty cycle of our data, enables us to detect and analyse the δ Scuti pulsations of the star. Methods: Time series photometric data were obtained using aperture photometry by telescope defocussing. The 66 418 data points were analysed using the software package Period04. We only selected frequencies with amplitudes that exceed four times the local noise level in the amplitude spectrum. Results: We detect 31 δ Scuti pulsation frequencies, 28 of which are new detections. All the frequencies detected are in the interval 34.76-75.68 d-1. We also find that β Pictoris exhibits at least one pulsation mode that varies in amplitude over our monitoring duration of seven months.

  15. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Bakos, G. A.; Buchhave, L.

    2012-05-10

    Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt formore » Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, {eta} leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.« less

  16. Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Valencic, L. A.

    2018-06-01

    It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.

  17. Bayesian analysis of caustic-crossing microlensing events

    NASA Astrophysics Data System (ADS)

    Cassan, A.; Horne, K.; Kains, N.; Tsapras, Y.; Browne, P.

    2010-06-01

    Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.

  18. Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunine, J; Fischer, D; Hammel, H

    2008-06-02

    This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common ormore » rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth-mass planets, followed by direct detection and study via a spaceborne coronagraph/occulter or interferometric mission, is the most robust approach to pursue. Ground and space-based microlensing programs pursued in parallel would provide complementary information on planetary system architectures on galactic scales. The program for F, G, and K stars must be preceded, at the beginning of the strategy, by broad yet detailed technical assessments to determine whether the astrometric and direct detection technologies will be ready in the time frames envisioned (the second and third 5-yr periods, respectively). Also measurement of dust around nearby candidate stars must be undertaken early to determine whether typical systems are clean enough to make direct detection feasible. Alternative strategies are discussed should problems arise in any of these areas. Finally, the Task Force lays out recommended programs in ground-based observations of larger planets, of planet-forming disks, and theoretical and laboratory studies crucial to interpreting and understanding the outcome of the planet search and characterization observations.« less

  19. KOI-676: An active star with two transiting planets and a third possible candidate detected with TTV

    NASA Astrophysics Data System (ADS)

    Ioannidis, P.; Schmitt, J.; Avdellidou, C.; von Essen, C.; Eric, A.

    2013-09-01

    We report the detection and characterization of two short period, Neptune sized planets, around the active star KOI-676. The orbital elements of both planets are not the expected ones, as they lead to miscalculation of the stellar parameters. We discuss various scenarios which could cause that discrepancy and we suggest that the reason is most probably the high eccentricities of the orbits. We use the Transit Timing Variations, detected in both planets' O-C diagrams to support our theory, while due to the lack of autocorrelation in their pattern we suggest the existence of a third, more massive, mutual inclined, outer perturber. To clarify our suggestions we use n-body simulations to model the TTVs and check the stability of the system.

  20. Colors of extreme exo-Earth environments.

    PubMed

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  1. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.

  2. HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.

    Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit aremore » shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.« less

  3. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  4. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  5. Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons

    NASA Technical Reports Server (NTRS)

    Heller, Rene; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric

    2016-01-01

    We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is suciently slow.We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio.We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10 percent moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.

  6. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}< 2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  7. Long-Period Exoplanets from Photometric Transit Surveys

    NASA Astrophysics Data System (ADS)

    Osborn, Hugh

    2017-10-01

    Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way

  8. DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.

    2011-12-15

    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude tomore » estimate the planet's minimum mass, which results in M{sub p} sin i = 9.2 {+-} 1.1 M{sub J} (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.« less

  9. OGLE-2017-BLG-1434Lb: Eighth q<1×10-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Ryu, Y.-H.; Sajadian, S.; Gould, A.; Mrǎłz, P.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y., K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Bozza, V.; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Burgdorf, M.; Campbell-White, J.; Ciceri, S.; Evans, D.; Figuera Jaimes, R.; Fujii, Y. I.; Haikala, L. K.; Henning, T.; Hinse, T. C.; Mancini, L.; Peixinho, N.; Rahvar, S.; Rabus, M.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; von Essen, C.

    2018-03-01

    We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊙) orbiting a low-mass (M=0.23±0.03) M⊙ dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q<1×10-4. We apply a new planet-detection sensitivity method, which is a variant of "V/Vmax", to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d lnq ∝ qp, with p=1.05+0.78-0.68, which confirms the "turnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42-0.34.

  10. Progress in four-beam nulling: results from the Terrestrial Planet Finder planet detection testbed

    NASA Technical Reports Server (NTRS)

    Martin, Stefan

    2006-01-01

    The Terrestrial Planet Finder Interferometer (TPF-I) is a large space telescope consisting of four 4 meter diameter telescopes flying in formation in space together with a fifth beam combiner spacecraft.

  11. Progress in four-beam nulling: results from the Terrestrial Planet Finder Planet Detection Testbed

    NASA Technical Reports Server (NTRS)

    Martin, Stefan

    2006-01-01

    The Terrestrial Planet Finder Interferometer (TPF-I) is a large space telescope consisting of four 4 meter diameter telescopes flying in formation in space together with a fifth beam combiner spacecraft.

  12. Project Orion: A Design Study of a System for Detecting Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor)

    1980-01-01

    A design concept for a ground based astrometric telescope that could significantly increase the potential accuracy of astrometric observations is considered. The state of current techniques and instrumentation is examined in the context of detecting extrasolar planets. Emphasis is placed on the direct detection of extrasolar planets at either visual or infrared wavelengths. The design concept of the imaging stellar interferometer (ISI), developed under Project Orion, is described. The Orion ISI employs the state-of-the-art technology and is theoretically capable of attaining 0.00010 arc sec/yr accuracy in relative astrometric observations.

  13. A windowing and mapping strategy for gear tooth fault detection of a planetary gearbox

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zuo, Ming J.; Liu, Libin

    2016-12-01

    When there is a single cracked tooth in a planet gear, the cracked tooth is enmeshed for very short time duration in comparison to the total time of a full revolution of the planet gear. The fault symptom generated by the single cracked tooth may be very weak. This study aims to develop a windowing and mapping strategy to interpret the vibration signal of a planetary gear at the tooth level. The fault symptoms generated by a single cracked tooth of the planet gear of interest can be extracted. The health condition of the planet gear can be assessed by comparing the differences among the signals of all teeth of the planet gear. The proposed windowing and mapping strategy is tested with both simulated vibration signals and experimental vibration signals. The tooth signals can be successfully decomposed and a single tooth fault on a planet gear can be effectively detected.

  14. The Terrestrial Planet Finder and Darwin Missions

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2004-01-01

    Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.

  15. Kepler planet-detection mission: introduction and first results.

    PubMed

    Borucki, William J; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Dupree, Andrea K; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kondo, Yoji; Latham, David W; Marcy, Geoffrey W; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J; Monet, David G; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B; Holman, Matthew J; Seager, Sara; Steffen, Jason H; Welsh, William F; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D; Quintana, Elisa V; Clarke, Bruce D; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-19

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  16. Discovery of a stellar companion to the nearby solar-analogue HD 104304

    NASA Astrophysics Data System (ADS)

    Schnupp, C.; Bergfors, C.; Brandner, W.; Daemgen, S.; Fischer, D.; Marcy, G.; Henning, Th.; Hippler, S.; Janson, M.

    2010-06-01

    Context. Sun-like stars are promising candidates to host exoplanets and are often included in exoplanet surveys by radial velocity (RV) and direct imaging. In this paper we report on the detection of a stellar companion to the nearby solar-analogue star HD 104304, which previously was considered to host a planetary mass or brown dwarf companion. Aims: We searched for close stellar and substellar companions around extrasolar planet host stars with high angular resolution imaging to characterize planet formation environments. Methods: The detection of the stellar companion was achieved by high angular resolution measurements, using the “Lucky Imaging” technique at the ESO NTT 3.5 m with the AstraLux Sur instrument. We combined the results with VLT/NACO archive data, where the companion could also be detected. The results were compared to precise RV measurements of HD 104304, obtained at the Lick and Keck observatories from 2001-2010. Results: We confirmed common proper motion of the binary system. A spectral type of M4V of the companion and a mass of 0.21 M_⊙ was derived. Due to comparison of the data with RV measurements of the unconfirmed planet candidate listed in the Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is the origin of the RV trend and that the inclination of the orbit of i≈35°explains the relatively small RV signal. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatory under programme IDs 083.C-0145 and 084.C-0812, and on data obtained from the ESO Science Archive Facility.

  17. Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas

    2015-08-01

    Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler and TESS Missions has been provided by the NASA Science Mission Directorate.

  18. NEAT: a spatial telescope to detect nearby exoplanets using astrometry

    NASA Astrophysics Data System (ADS)

    Crouzier, Antoine

    2015-01-01

    With the present state of exoplanet detection techniques, none of the rocky planets of the Solar System would be discovered, yet their presence is a very strong constraint on the scenarios of formation of planetary systems. Astrometry, by measuring the reflex effect of planets on their central host stars, lead us to the mass of planets and to their orbit determination. This technique is used frequently and is very successful to determine the masses and the orbits of binary stars. From space, it is possible to use differential astrometry around nearby Solar-type stars to detect exoplanets down to one Earth mass in habitable zone, where the sensitivity of the technique is optimal. Finding habitable Earths in the Solar neighborhood would be a major step forward for exoplanet detection and these planets would be prime targets for attempting to find life outside of the Solar System, by searching for bio-markers in their atmospheres. A scientific consortium has formed to promote this kind of astrometric space mission. A mission called NEAT (Nearby Earth Astrometric Telescope) has been proposed to ESA in 2010. A laboratory testbed called NEAT-demo was assembled at IPAG, its main goal is to demonstrate CCD detector calibration to the required accuracy. During my PhD, my activities were related to astrophysical aspects as well as instrumental aspects of the mission. Regarding the scientific case, I compiled a catalog of mission target stars and reference stars (needed for the differential astrometric measurements) and I estimated the scientific return of NEAT-like missions in terms of number of detected exoplanets and their parameter distributions. The second aspect of the PhD is relative to the testbed, which mimics the NEAT telescope configuration. I am going to present the testbed itself, the data analysis methods and the results. An accuracy of 3e-4 pixel was obtained for the relative positions of artificial stars and we have determined that measures of pixel positions by the metrology is currently limited by stray light.

  19. Two New Long-period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-period Radial Velocity Signals Related to Stellar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R.; Horch, Elliott; Simon, Attila E.; Howell, Steve B.; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G.

    2016-02-01

    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 {M}{{Jup}} and an orbital semimajor axis of 5.2 AU. The giant planet ψ1 Dra Bb has a minimum mass of 1.5 {M}{{Jup}} and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, ψ1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.

  20. ARTIST'S CONCEPT -- 'HOT JUPITER' AROUND THE STAR HD 209458

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of the gas-giant planet orbiting the yellow, Sun-like star HD 209458, 150 light-years from Earth. Astronomers used NASA's Hubble Space Telescope to look at this world and make the first direct detection of an atmosphere around an extrasolar planet. The planet was not directly seen by Hubble. Instead, the presence of sodium was detected in light filtered through the planet's atmosphere when it passed in front of its star as seen from Earth (an event called a transit). The planet was discovered in 1999 by its subtle gravitational pull on the star. The planet is 70 percent the mass of Jupiter, the largest planet in our solar system. Its orbit is tilted nearly edge-on to Earth, which allows repeated transit observations. The planet is merely 4 million miles from the star. The distance between the pair is so close that the yellow star looms in the sky, with an angular diameter 23 times larger than the full Moon's diameter as seen from Earth, and glows 500 times brighter than our Sun. At this precarious distance the planet's atmosphere is heated to 2000 degrees Fahrenheit (1100 degrees Celsius). But the planet is big enough to hold onto its seething atmosphere. Illustration Credit: NASA and Greg Bacon (STScI/AVL)

  1. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  2. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkel, Natalie R.; Kane, Stephen R., E-mail: natalie.hinkel@gmail.com

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated fluxmore » on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.« less

  3. Radial velocity detection of extra-solar planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1991-01-01

    The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition.

  4. Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.

    In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to

  5. Infrared excesses in stars with and without planets using revised WISE photometry

    NASA Astrophysics Data System (ADS)

    Maldonado, Raul F.; Chavez, Miguel; Bertone, Emanuele; Cruz-Saenz de Miera, Fernando

    2017-11-01

    We present an analysis on the potential prevalence of mid-infrared excesses in stars with and without planetary companions. Based on an extended data base of stars detected with the Wide Infrared Survey Explorer (WISE) satellite, we studied two stellar samples: one with 236 planet hosts and another with 986 objects for which planets have been searched, but not found. We determined the presence of an excess over the photosphere by comparing the observed flux ratio at 22 and 12 μm (f22/f12) with the corresponding synthetic value, derived from results of classical model photospheres. We found a detection rate of 0.85 per cent at 22 μm (two excesses) in the sample of stars with planets and 0.1 per cent (1 detection) for the stars without planets. The difference of the detection rate between the two samples is not statistically significant, a result that is independent of the different approaches found in the literature to define an excess in the wavelength range covered by WISE observations. As an additional result, we found that the WISE fluxes required a normalization procedure to make them compatible with synthetic data, probably pointing out a revision of the WISE data calibration.

  6. On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.; Burrows, Christopher J.

    1990-01-01

    The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.

  7. Transit detection of a `starshade' at the inner lagrange point of an exoplanet

    NASA Astrophysics Data System (ADS)

    Gaidos, E.

    2017-08-01

    All water-covered rocky planets in the inner habitable zones of solar-type stars will inevitably experience a catastrophic runaway climate due to increasing stellar luminosity and limits to outgoing infrared radiation from wet greenhouse atmospheres. Reflectors or scatterers placed near Earth's inner Lagrange point (L_1) have been proposed as a "geoengineering' solution to anthropogenic climate change and an advanced version of this could modulate incident irradiation over many Gyr or `rescue' a planet from the interior of the habitable zone. The distance of the starshade from the planet that minimizes its mass is 1.6 times the Earth-L_1 distance. Such a starshade would have to be similar in size to the planet and the mutual occultations during planetary transits could produce a characteristic maximum at mid-transit in the light curve. Because of a fortuitous ratio of densities, Earth-size planets around G dwarf stars present the best opportunity to detect such an artefact. The signal would be persistent and is potentially detectable by a future space photometry mission to characterize transiting planets. The signal could be distinguished from natural phenomenon, I.e. starspots or cometary dust clouds, by its shape, persistence and transmission spectrum.

  8. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  9. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  10. The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders

    2017-07-01

    We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.

  11. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges such as those produced by Kozai mechanism or planet scattering.

  12. Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Shaklan, Stuart B.

    1996-01-01

    The detection of extrasolar planets around stars like the Sun remains an important goal of astronomy. We present results from Palomar 5 m observations of the open cluster NGC 2420 in which we measure some of the sources of noise that will be present in an astrometric search for extrasolar planets. This is the first time that such a large aperture has been used for high-precision astrometry. We find that the atmospheric noise is 150 micro-arcsec hr(exp 1/2) across a 90 sec field of view and that differential chromatic refraction (DCR) can be calibrated to 128 micro-arcsec for observations within 1 hr of the meridian and 45 deg of zenith. These results confirm that a model for astrometric measurements can be extrapolated to large apertures. We demonstrate, based upon these results, that a large telescope achieves the sensitivity required to perform a statistically significant search for extra solar planets. We describe an astrometric technique to detect planets, the astrometric signals expected, the role of reference stars, and the sources of measurement noise: photometric noise, atmospheric motion between stars, sky background, instrumental noise, and DCR. For the latter, we discuss a method to reduce the noise further to 66 micro-arcsecond for observations within 1 hr of the meridian and 45 deg of zenith. We discuss optimal lists of target stars taken from the latest Gliese & Jahreiss catalog of nearby stars with the largest potential astrometric signals, declination limits for both telescope accessibility and reduced DCR, and galactic latitude limits for a sufficiant number of reference stars. Two samples are described from which one can perform statistically significant searches for gas giant planets around nearby stars. One sample contains 100 "solar class" stars with an average stellar mass of 0.82 solar mass; the other maximizes the number of stars, 574, by searching mainly low-mass M stars. We perform Monte Carlo simulations of the statistical significance of the expected results by using measured and estimated noise quantities. We show the semimajor axis parameter spaces that are searched for each star and how an increase in the length of the observing program expands these spaces. The search over semimajor axis parameter space relates to the theory of gas giant planet formation.

  13. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic observations from 0.6-27 microns. The primary mirror find and understand predicted first light objects, observe galaxies back to their earliest precursors so that we can understand their growth and evolution, unravel the birth and early evolution of stars and planetary systems, and study planetary systems and the origins of life. In this paper we discuss the science goals for JWST in the context of the performance requirements they levy on the observatory.

  14. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    NASA Astrophysics Data System (ADS)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  15. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to measurement frequencies, intervals and errors.

  16. Distinguishing the albedo of exoplanets from stellar activity

    NASA Astrophysics Data System (ADS)

    Serrano, L. M.; Barros, S. C. C.; Oshagh, M.; Santos, N. C.; Faria, J. P.; Demangeon, O.; Sousa, S. G.; Lendl, M.

    2018-03-01

    Context. Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. Aims: We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the obervations planned in the context of the CHEOPS mission. Methods: As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process. Results: We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. As an additional result, we found that with a 6.5 magnitude star and the noise level of CHEOPS, it is possible to detect the planetary albedo up to a lower limit of Rp = 0.03 R*. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.

  17. The Hunt for Exomoons with Kepler

    NASA Astrophysics Data System (ADS)

    Kipping, David M.

    2012-01-01

    Extrasolar moons may be frequent temperate abodes for life and their detection would not only have astrobiological significance but would also greatly further our understanding of planet/moon formation theories. To date, the bulk of research on this topic has been mostly theoretical, focussing on detection techniques and expected sensitivities as well as exomoon origin and evolution. Here, we introduce a new observational project which aims to change this, enabled by the fact both the theory and available instrumentation have evolved to the required level to make such a search feasible. Our project, "The Hunt for Exomoons with Kepler” (HEK), will be a systematic search for exomoons around planets which are viable hosts, with the explicit goal of determining the frequency of large exomoons in the cosmos. We will overview the observational strategy including the detection tools and target selection routines which have been developed, methods to vet false-positives, and some preliminary results from our first batch of candidates. This research is enabled by the NASA Carl Sagan fellowships for exoplanetary research.

  18. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    NASA Astrophysics Data System (ADS)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower occurrence rate for cool stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  19. Eccentricity in planetary systems and the role of binarity. Sample definition, initial results, and the system of HD 211847

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.

    2017-06-01

    We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).

  20. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  1. Polarimetry of hot-Jupiter systems and radiative transfer models of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Bott, Kimberly; Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Cotton, Daniel; Marshall, Jonathan

    2016-01-01

    Thousands of exoplanets and planet candidates have been detected. The next important step in the contexts of astrobiology, planetary classification and planet formation is to characterise them. My dissertation aims to provide further characterisation to four hot Jupiter exoplanets: the relatively well-characterised HD 189733b, WASP-18b which is nearly large enough to be a brown dwarf, and two minimally characterised non-transiting hot Jupiters: HD 179949b and tau Bootis b.For the transiting planets, this is done through two means. First, published data from previous observations of the secondary eclipse (and transit for HD 189733b) are compared to models created with the Versatile Software for the Transfer of Atmospheric Radiation (VSTAR). Second, new polarimetric observations from the HIgh Precision Polarimetric Instrument are compared to Lambert-Rayleigh polarised light phase curves. For the non-transiting planets, only the polarimetric measurements are compared to models, but toy radiative transfer models are produced for concept. As an introduction to radiative transfer models, VSTAR is applied to the planet Uranus to measure its D/H isotope ratio. A preliminary value is derived for D/H in one part of the atmosphere.Fitting a single atmospheric model to the transmitted, reflected, and emitted light, I confirm the presence of water on HD 189733b, and present a new temperature profile and cloud profile for the planet. For WASP-18b, I confirm the general shape of the temperature profile. No conclusions can be drawn from the polarimetric measurements for the non-transiting planets. I detect a possible variation with phase for transiting planet WASP-18b but cannot confirm it at this time. Alternative sources to the planet are discussed. For HD 189733b, I detect possible variability in the polarised light at the scale expected for the planet. However, the data are also statistically consistent with no variability and are not matched to the phase of the planet.

  2. The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.

    2012-07-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  3. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less

  4. Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M.

    2016-09-01

    Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system. Aims: We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. Methods: We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. Results: The JHK-band photometry of the newly identified candidate is at better than 1σ consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky imaging z' photometric detection limit z' = 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (<10 Myr) L - T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). Conclusions: This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 h and about 27 000 yr. The two orbits may have formed during a mutual catastrophic event of planet-planet scattering. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.C-0448(A), 290.C-5018(B), 092.C-0488(A) and at the Centro Astronómico Hispano-Alemán in programme H15-2.2-002.

  5. Thoughts on the Theory of Irradiated Giant Planets

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Sudarsky, David; Hubeny, Ivan

    2004-06-01

    We have derived physical diagnostics that can inform the direct detection and remote sensing programs of extrasolar giant planets (EGPs) now being planned or proposed. Stellar irradiation of the planet's atmosphere and the effects of water and ammonia clouds are incorporated in a consistent fashion. Whether an EGP is at wide or close-in separations from its parent star, direct detection will soon be possible and will yield centrally important physical and chemical constraints. Our theory of irradiated EGPs is being developed to meet this challenge.

  6. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes.

  7. Planet from another galaxy discovered - Galactic cannibalism brings an exoplanet of extragalactic origin within astronomers' reach

    NASA Astrophysics Data System (ADS)

    2010-11-01

    An exoplanet orbiting a star that entered our Milky Way from another galaxy has been detected by a European team of astronomers using the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The Jupiter-like planet is particularly unusual, as it is orbiting a star nearing the end of its life and could be about to be engulfed by it, giving tantalising clues about the fate of our own planetary system in the distant future. Over the last 15 years, astronomers have detected nearly 500 planets orbiting stars in our cosmic neighbourhood, but none outside our Milky Way has been confirmed [1]. Now, however, a planet with a minimum mass 1.25 times that of Jupiter [2] has been discovered orbiting a star of extragalactic origin, even though the star now finds itself within our own galaxy. It is part of the so-called Helmi stream [3] - a group of stars that originally belonged to a dwarf galaxy that was devoured by our galaxy, the Milky Way, in an act of galactic cannibalism about six to nine billion years ago. The results are published today in Science Express. "This discovery is very exciting," says Rainer Klement of the Max-Planck-Institut für Astronomie (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach." The star is known as HIP 13044, and it lies about 2000 light-years from Earth in the southern constellation of Fornax (the Furnace). The astronomers detected the planet, called HIP 13044 b, by looking for the tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. For these precise observations, the team used the high-resolution spectrograph FEROS [4] attached to the 2.2-metre MPG/ESO telescope [5] at ESO's La Silla Observatory in Chile. Adding to its claim to fame, HIP 13044 b is also one of the few exoplanets known to have survived the period when its host star expanded massively after exhausting the hydrogen fuel supply in its core - the red giant phase of stellar evolution. The star has now contracted again and is burning helium in its core. Until now, these so-called horizontal branch stars have remained largely uncharted territory for planet-hunters. "This discovery is part of a study where we are systematically searching for exoplanets that orbit stars nearing the end of their lives," says Johny Setiawan, also from MPIA, who led the research. "This discovery is particularly intriguing when we consider the distant future of our own planetary system, as the Sun is also expected to become a red giant in about five billion years." HIP 13044 b is near to its host star. At the closest point in its elliptical orbit, it is less than one stellar diameter from the surface of the star (or 0.055 times the Sun-Earth distance). It completes an orbit in only 16.2 days. Setiawan and his colleagues hypothesise that the planet's orbit might initially have been much larger, but that it moved inwards during the red giant phase. Any closer-in planets may not have been so lucky. "The star is rotating relatively quickly for an horizontal branch star," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the red giant phase, which would make the star spin more quickly." Although HIP 13044 b has escaped the fate of these inner planets so far, the star will expand again in the next stage of its evolution. HIP 13044 b may therefore be about to be engulfed by the star, meaning that it is doomed after all. This could also foretell the demise of our outer planets - such as Jupiter - when the Sun approaches the end of its life. The star also poses interesting questions about how giant planets form, as it appears to contain very few elements heavier than hydrogen and helium - fewer than any other star known to host planets. "It is a puzzle for the widely accepted model of planet formation to explain how such a star, which contains hardly any heavy elements at all, could have formed a planet. Planets around stars like this must probably form in a different way," adds Setiawan. Notes [1] There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events, in which the planet passing in front of an even more distant star leads to a subtle, but detectable "flash". However, this method relies on a singular event - the chance alignment of a distant light source, planetary system and observers on Earth - and no such extragalactic planet detection has been confirmed. [2] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet, as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [3] Astronomers can identify members of the Helmi stream as they have motions (velocity and orbits) that are rather different from the average Milky Way stars. [4] FEROS stands for Fibre-fed Extended Range Optical Spectrograph. [5] The 2.2-metre telescope has been in operation at La Silla since early 1984 and is on indefinite loan to ESO from the Max-Planck Society (Max Planck Gesellschaft or MPG in German). Telescope time is shared between MPG and ESO observing programmes, while the operation and maintenance of the telescope are ESO's responsibility. More information This research was presented in a paper, "A Giant Planet Around a Metal-poor Star of Extragalactic Origin", by J. Setiawan et al., to appear in Science Express on 18 November 2010. The team is composed of J. Setiawan, R. J. Klement, T. Henning, H.-W. Rix, and B. Rochau (Max-Planck-Institut für Astronomie, Heidelberg, Germany), J. Rodmann (European Space Agency, Noordwijk, the Netherlands), and T. Schulze-Hartung (Max-Planck-Institut für Astronomie, Heidelberg, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    NASA Astrophysics Data System (ADS)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-09-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  9. Exoplanet exploration for brown dwarfs with infrared astrometry

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    The astrometry is one of the oldest method for the exoplanet exploration. However, only one exoplanet has been found with the method. This is because the planet mass is sufficiently smaller than the mass of the central star, so that it is hard to observe the fluctuation of the central star by the planet. Therefore, we investigate the orbital period and mass of planets which we can discover by the future astrometric satellites for brown dwarfs, with the mass less than a tenth of the solar mass. So far five planetary systems of brown dwarfs have been found, whose mass ratios are larger than a tenth. For example, for the system whose distance, orbital period and mass ratio are 10 pc, 1 year and a tenth, respectively, the apparent semi-major axis reaches 3 milli-arcsecond, which can be well detected with the future astrometric satellites such as Small-JASMINE and Gaia. With these satellite, we can discover even super-Earth for the above system. We further investigate where in the period-mass plane we can explore the planet for individual brown dwarf with Small-JASMINE and Gaia. As a result, we find that we can explore a wide region where period and mass are within 5 years and larger than 3 earth mass. In addition, we can explore the region around 0.1 day and 10 Jovian mass, where planets have never found for any central star, and where we can explore only with Small-JASMINE for most target brown dwarfs.

  10. NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M.

    2015-01-20

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. Themore » remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.« less

  11. Probing the atmosphere of the coolest super-Earth

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel; Charbonneau, David; Berta, Zachory; Burke, Christopher; Irwin, Jonathan; Nutzman, Philip; Miller-Ricci, Eliza

    2010-02-01

    Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Our team recently detected a super-Earth transiting the nearby low-mass star GJ1214 (Charbonneau et al., 2009). This detection has opened the door to testing predictions of low mass planet atmosphere theories. We propose to use the Spitzer space telescope to detect the atmosphere and infer the molecular composition of GJ1214b. The mid-infrared (MIR) is particularly well suited to observe numerous molecular signatures such as water vapor. We plan to observe the primary eclipse of the planet (when the planet passes in front of the parent star) with the IRAC instrument in the two available channels at 3.6 and 4.5 microns. Comparing the radius measurements obtained in the two band-passes will allow us to detect the atmosphere of this object and to place constraints on its molecular composition. This study is possible because of the small size of the host star GJ1214. Consequently, the expected atmospheric signatures observed in transmission (0.1%) can be detected with the same level of confidence as has successfully been accomplished with much larger planets (hot-Jupiters). Moreover, the high photometric precision, continuous coverage and no limb-darkening of these light curves will improve the planetary parameters, and allow to search for transiting moons.

  12. Magellan/PFS Radial Velocities of GJ 9827, a Late K dwarf at 30 pc with Three Transiting Super-Earths

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Wang, Sharon; Wolfgang, Angie; Dai, Fei; Shectman, Stephen A.; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.

    2018-04-01

    The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These “super-Earths” continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with σ mass < 25%), due in part to the faintness of their host stars causing ground-based mass measurements to be challenging. Recently, three transiting super-Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the “radius gap” detected by Fulton et al. (2017), and all orbit within ∼6.5 days, easing follow-up observations. Here, we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RADVEL, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis but find the correlated stellar noise is not well constrained by the PFS data and that the GP tends to over-fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c and d) but do indicate that planet b, at 1.64 R ⊕ and ∼8 M ⊕, is one of the most massive (and dense) super-Earth planets detected to date.

  13. The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Butler, R. P.; Tinney, C. G.; Horner, Jonathan; Carter, B. D.; Wright, D. J.; Jones, H. R. A.; Bailey, J.; O'Toole, Simon J.

    2016-03-01

    We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of {6.2}-1.6+2.8% for giant planets in orbits from 3 to 7 au. When a consistent definition of “Jupiter analog” is used, our results are in agreement with those from other legacy radial-velocity surveys.

  14. Transits of extrasolar moons around luminous giant planets

    NASA Astrophysics Data System (ADS)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  15. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A63

  16. By Inferno's Light: Characterizing TESS Object of Interest Host Stars for Prioritizing Our Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.

    2016-12-01

    The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"

  17. Kepler’s Earth-like Planets Should Not Be Confirmed without Independent Detection: The Case of Kepler-452b

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey L.; Burke, Christopher J.; Rowe, Jason F.

    2018-05-01

    We show that the claimed confirmed planet Kepler-452b (a.k.a., K07016.01, KIC 8311864) cannot be confirmed using a purely statistical validation approach. Kepler detects many more periodic signals from instrumental effects than it does from transits, and it is likely impossible to confidently distinguish the two types of events at low signal-to-noise. As a result, the scenario that the observed signal is due to an instrumental artifact cannot be ruled out with 99% confidence, and the system must still be considered a candidate planet. We discuss the implications for other confirmed planets in or near the habitable zone.

  18. The Search for Planet Nine

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22

  19. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Ridden-Harper, A. R.; Snellen, I. A. G.; Keller, C. U.; de Kok, R. J.; Di Gloria, E.; Hoeijmakers, H. J.; Brogi, M.; Fridlund, M.; Vermeersen, B. L. A.; van Westrenen, W.

    2016-10-01

    Context. The atmospheric and surface characterization of rocky planets is a key goal of exoplanet science. Unfortunately, the measurements required for this are generally out of reach of present-day instrumentation. However, the planet Mercury in our own solar system exhibits a large exosphere composed of atomic species that have been ejected from the planetary surface by the process of sputtering. Since the hottest rocky exoplanets known so far are more than an order of magnitude closer to their parent star than Mercury is to the Sun, the sputtering process and the resulting exospheres could be orders of magnitude larger and potentially detectable using transmission spectroscopy, indirectly probing their surface compositions. Aims: The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. Methods: High resolution (R ~ 110 000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6 m and HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km s-1. Results: Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1σ). Interestingly, this latter signal originates from just one of the transit measurements - with a 4.9σ detection at this epoch. Unfortunately, due to the low significance of the measured sodium signal and the potentially variable Ca+ signal, we estimate the p-values of these signals to be too high (corresponding to <4σ) to claim unambiguous exospheric detections. By comparing the observed signals with artificial signals injected early in the analysis, the absorption by Na and Ca+ are estimated to be at a level of ~2.3 × 10-3 and ~7.0 × 10-2 respectively, relative to the stellar spectrum. Conclusions: If confirmed, the 3σ signal would correspond to an optically thick sodium exosphere with a radius of 5 R⊕, which is comparable to the Roche lobe radius of the planet. The 4.9σ detection of Ca+ in a single HARPS data set would correspond to an optically thick Ca+ exosphere approximately five times larger than the Roche lobe radius. If this were a real detection, it would imply that the exosphere exhibits extreme variability. Although no formal detection has been made, we advocate that probing the exospheres of hot super-Earths in this way has great potential, also knowing that Mercury's exosphere varies significantly over time. It may be a fast route towards the first characterization of the surface properties of this enigmatic class of planets. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 092.C-0178 and 288.C-5010 and the Telescopio Nazionale Galileo under programme CAT13B_33.

  20. Stellar Companions of Exoplanet Host Stars in K2

    NASA Astrophysics Data System (ADS)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  1. K2's First Five-Planet System

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an excellent target for transmission spectroscopy, to examine its atmosphere. [Vanderburg et al. 2016]Newly Discovered CandidatesThe systems candidates include two sub-Neptune-sized planets, which were both observed over multiple transits. They orbit in what is nearly a 2:1 resonance, with periods of 31.7 and 15.6 days. Based on modeling of their transits, Vanderburg and collaborators estimate that they have radii of 2.6 and 2.9 Earth radii.The system also contains three larger outer-planet candidates: one Neptune-sized (~4 Earth radii), one sub-Saturn-sized (~5 Earth radii), and one Jupiter-sized (~10 Earth radii). These planets were detected with only a single transit each, so their properties are harder to determine with certainty. The authors models, however, suggest that their periods are ~160 days, ~130 days, and ~1 year.This systems brightness, the accessible size of its planets, and its rich architecture make it an excellent target for follow-up observations. In particular, the brightness of the host star and the transit depth of the outermost planet, HIP 41378 f, make this candidate an ideal target for future transit transmission spectroscopy measurements.Since past observations of exoplanet atmospheres have been primarily of short-period, highly irradiated planets, being able to examine the atmosphere of such a long-period gas giant could open up a new regime of exoplanet atmospheric studies.CitationAndrew Vanderburg et al 2016 ApJ 827 L10. doi:10.3847/2041-8205/827/1/L10

  2. Searching for Strange Quark Matter Objects in Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn

    2017-10-20

    The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get verymore » close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.« less

  3. Bringing "The Moth" to light: A planet-sculpting scenario for the HD 61005 debris disk

    DOE PAGES

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; ...

    2016-09-16

    Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less

  4. CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp

    2013-11-20

    We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision withmore » the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.« less

  5. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    PubMed

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  6. How do external companions affect spin-orbit misalignment of hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Lai, Dong; Anderson, Kassandra R.; Pu, Bonan

    2018-04-01

    Consider a planet with its orbital angular momentum axis aligned with the spin axis of its host star. To what extent does an inclined distant companion (giant planet or binary star) affect this alignment? We provide an analytic, quantitative answer and apply it to hot Jupiter systems, for which misalignments between the orbital axis and the stellar spin axis have been detected. We also show how similar consideration can be applied to multiplanet systems with distant companions (such as Kepler-56). The result of this paper provides a simple method to assess the dynamical role played by external companions on spin-orbit misalignments in exoplanetary systems.

  7. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; hide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  8. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes acrosswavelength bands.CitationJohn Southworth et al 2017 AJ 153 191. doi:10.3847/1538-3881/aa6477

  9. RoboTAP: Target priorities for robotic microlensing observations

    NASA Astrophysics Data System (ADS)

    Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Horne, K.; Bozza, V.; Bramich, D. M.; Cassan, A.; D'Ago, G.; Figuera Jaimes, R.; Kains, N.; Ranc, C.; Schmidt, R. W.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Mao, S.; Ment, K.; Menzies, J.; Li, Z.; Cross, S.; Maoz, D.; Shvartzvald, Y.

    2018-01-01

    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims: Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods: Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results: We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys.

  10. Detection of a Third Planet in the HD 74156 System Using the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Armstrong, Amber

    2008-01-01

    We report the discovery of a third planetary-mass companion to the G0 star HD 74156. High-precision radial velocity measurements made with the Hobby-Eberly Telescope aided the detection of this object. The best-fit triple-Keplerian model to all the available velocity data yields an orbital period of 347 days and a minimum mass of 0.4 MJup for the new planet. We determine revised orbital periods of 51.7 and 2477 days and minimum masses of 1.9 and 8.0 MJup, respectively, for the previously known planets. Preliminary calculations indicate that the derived orbits are stable, although all three planets have significant orbital eccentricities (e = 0.64, 0.43, and 0.25). With our detection, HD 74156 becomes the eighth normal star known to host three or more planets. Further study of this system's dynamical characteristics will likely give important insight into planet formation and evolutionary processes. Based on data obtained with the Hobby-Eberly Telescope (HET). The HET is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität Muenchen, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

  11. Terrestrial Zone Exoplanets and Life

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  12. Status of the Terrestrial Planet Finder Interferometer (TPF-I)

    NASA Technical Reports Server (NTRS)

    Beichman, Charles; Lawson, Peter; Lay, Oliver; Ahmed, Asif; Unwin, Steve; Johnston, K.

    2006-01-01

    The interferometric version of the Terrestrial Planet Finder (TPF-I) has the potential to find and characterize earth-sized planets in the habitable zones of over 250 nearby stars and to search for life using biomarkers in the atmospheres of any planets found. The scientific case for such a mission continues to be strengthened by on-going progress in the detection of planets via indirect means. This paper summarizes the status of TPF-I, illustrative scientific requirements for the mission, and its enabling technologies.

  13. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  14. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected distribution of host distances from a simulated microlensing survey, correcting for dominant selection effects. They then compared the distribution of distances in this model sample to the distribution of distances measured for the actual, observed systems.Histogram and cumulative distribution (black lines) of distance estimates for microlensing planet hosts. Red lines show the distributions predicted by the model if the disk and bulge abundances were the same. [Penny et al. 2016]Intriguingly, the two distributions dont match when you assume that the planet abundances in the disk and the bulge are the same. The relative abundances appear to be higher in the disk than in the bulge, according to the teams results: the observations agree with a model in which the bulge/disk abundance ratio is less than 0.54.Whats to Blame?There are a few ways to interpret this result: 1) distance measurements for the sample of planets discovered by microlensing have errors, 2) the model is too simplified; it needs to also include dependence of planet abundance and detection sensitivity on properties like host mass and metallicity, or 3) the galactic bulge actually has fewer planets than the disk.Penny and collaboratorssuspect some combination of the first two interpretations is most likely, but an actual paucity of planets in the galactic bulge cant be ruled out. Performing similar analysis on a larger sample of microlensing planets expected from upcoming, second-generation microlensing searches and obtaining more accurate distance measurements will help us to address this puzzlemore definitively in the future.CitationMatthew T. Penny et al 2016 ApJ 830 150. doi:10.3847/0004-637X/830/2/150

  15. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields amore » geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.« less

  16. The MEarth-North and MEarth-South Transit Surveys: Searching for Habitable Super-Earth Exoplanets Around Nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Irwin, Jonathan M.; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason; Falco, Emilio E.; Newton, Elisabeth R.; Nutzman, Philip

    2015-01-01

    Detection and characterization of potentially habitable Earth-size extrasolar planets is one of the major goals of contemporary astronomy. By applying the transit method to very low-mass M-dwarfs , it is possible to find these planets from the ground with present-day instrumentation and observational techniques. The MEarth project is one such survey with stations in both hemispheres: MEarth-North at the Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, and MEarth-South at Cerro Tololo Inter-American Observatory, Chile. We present an update on recent results of this survey, for planet occurrence rates, and interesting stellar astrophysics, for which our sample of 3000 nearby mid-to-late M-dwarfs has been very fruitful. All light curves gathered during the survey are made publicly available after one year, and we describe how to access and use these data.

  17. Extraterrestrials - Where are they?

    NASA Astrophysics Data System (ADS)

    Hart, M. H.; Zuckerman, B.

    Explanations for the absence of evidence for extraterrestrial beings are discussed, together with the probabilities of other habitable planets in the universe, programs to detect radio signals from other civilizations, and the processes that can lead to the appearance of life. Probability estimates are presented for the appearance of life, the occurrence of interstellar colonization, and the times involved in interstellar colonization. It is suggested that the first civilization to begin interstellar colonization will be the civilization that colonizes the Galaxy, and calculations are presented for the propulsion methods, techniques for terraforming planets, and the incidence of habitable planets in the Galaxy. Primordial organic chemistry is reviewed, together with nucleosynthesis and evolution in the Galaxy, and consideration is devoted to the rate of formation of DNA strands and other substances by which life forms could exist in the infinite universe. For individual items see A83-41502 to A83-41515

  18. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-08-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with Teff = 2300 K to Teff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4-20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. To observe signatures of life—O2/O3 in combination with reducing species like CH4—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3Cl could become detectable, depending on the depth of the overlapping N2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  19. Spectral fingerprints of Earth-like planets around FGK stars.

    PubMed

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.

    Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less

  1. Advances in the Kepler Transit Search Engine

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.

    2016-10-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.

  2. Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Artigau, Étienne; Delfosse, Xavier; Malo, Lison; Moutou, Claire; Doyon, René; Donati, Jean-Francois; Cumming, Andrew; Dumusque, Xavier; Hébrard, Élodie; Menou, Kristen

    2018-02-01

    The SPIRou near-infrared spectropolarimeter is destined to begin science operations at the Canada–France–Hawaii Telescope in mid-2018. One of the instrument’s primary science goals is to discover the closest exoplanets to the solar system by conducting a three- to five-year long radial velocity survey of nearby M dwarfs at an expected precision of ∼1 m s‑1, the SPIRou Legacy Survey-Planet Search (SLS-PS). In this study, we conduct a detailed Monte Carlo simulation of the SLS-PS using our current understanding of the occurrence rate of M dwarf planetary systems and physical models of stellar activity. From simultaneous modeling of planetary signals and activity, we predict the population of planets to be detected in the SLS-PS. With our fiducial survey strategy and expected instrument performance over a nominal survey length of ∼3 years, we expect SPIRou to detect {85.3}-12.4+29.3 planets including {20.0}-7.2+16.8 habitable-zone planets and {8.1}-3.2+7.6 Earth-like planets from a sample of 100 M1–M8.5 dwarfs out to 11 pc. By studying mid-to-late M dwarfs previously inaccessible to existing optical velocimeters, SPIRou will put meaningful constraints on the occurrence rate of planets around those stars including the value of {η }\\oplus at an expected level of precision of ≲ 45 % . We also predict that a subset of {46.7}-6.0+16.0 planets may be accessible with dedicated high-contrast imagers on the next generation of extremely large telescopes including {4.9}-2.0+4.7 potentially imagable Earth-like planets. Lastly, we compare the results of our fiducial survey strategy to other foreseeable survey versions to quantify which strategy is optimized to reach the SLS-PS science goals. The results of our simulations are made available to the community on GitHub (https://github.com/r-cloutier/SLSPS_Simulations).

  3. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    PubMed

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  4. It's Far, It's Small, It's Cool: It's an Icy Exoplanet!

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Using a network of telescopes scattered across the globe, including the Danish 1.54m telescope at ESO La Silla (Chile), astronomers [1] discovered a new extrasolar planet significantly more Earth-like than any other planet found so far. The planet, which is only about 5 times as massive as the Earth, circles its parent star in about 10 years. It is the least massive exoplanet around an ordinary star detected so far and also the coolest [2]. The planet most certainly has a rocky/icy surface. Its discovery marks a groundbreaking result in the search for planets that support life. ESO PR Photo 03a/06 ESO PR Photo 03a/06 Artist's Impression of the Newly Found Exoplanet The new planet, designated by the unglamorous identifier of OGLE-2005-BLG-390Lb, orbits a red star five times less massive than the Sun and located at a distance of about 20,000 light years, not far from the centre of our Milky Way galaxy. Its relatively cool parent star and large orbit implies that the likely surface temperature of the planet is 220 degrees Centigrade below zero, too cold for liquid water. It is likely to have a thin atmosphere, like the Earth, but its rocky surface is probably deeply buried beneath frozen oceans. It may therefore more closely resemble a more massive version of Pluto, rather than the rocky inner planets like Earth and Venus. "This planet is actually the first and only planet that has been discovered so far that is in agreement with the theories for how our Solar System formed ", said Uffe Gråe Jørgensen (Niels Bohr Institute, Copenhagen, Denmark), member of the team. The favoured theoretical explanation for the formation of planetary systems proposes that solid 'planetesimals' accumulate to build up planetary cores, which then accrete nebular gas - to form giant planets - if they are sufficiently massive. Around red dwarfs, the most common stars of our Galaxy, this model favours the formation of Earth- to Neptune-mass planets being between 1 and 10 times the Earth-Sun distance away from their host. "OGLE-2005-BLG-390Lb is only the third extra-solar planet discovered so far through microlensing searches ", said Jean-Philippe Beaulieu (Institut d'Astrophysique de Paris, France), the lead author. "While the other two microlensing planets have masses of a few times that of Jupiter, the discovery of a 5 Earth mass planet - though much harder to detect than more massive ones - is a strong hint that these lower-mass objects are very common. " Contrary to most exoplanets discovered, OGLE-2005-BLG-390Lb was indeed found using the 'microlensing' technique, based on an effect noted by Albert Einstein in 1912. "With this method, we let the gravity of a dim, intervening star act as a giant natural telescope for us, magnifying a more distant star, which then temporarily looks brighter ", explained team member Andrew Williams (Perth Observatory, Australia). "A small 'defect' in the brightening reveals the existence of a planet around the lens star. We don't see the planet, or even the star that it's orbiting, we just see the effect of their gravity. " Such an intervening star causes a characteristic brightening that lasts about a month. Any planets orbiting this star can produce an additional signal, lasting days for giant planets down to hours for Earth-mass planets. In order to be able to catch and characterize these planets, nearly-continuous round-the-clock high-precision monitoring of ongoing microlensing events is required. This is achieved by the PLANET network of 1m-class telescopes consisting of the ESO 1.54m Danish at La Silla (Chile), the Canopus Observatory 1.0m (Hobart, Tasmania, Australia), the Perth 0.6m (Bickley, Western Australia), the Boyden 1.5m (South Africa), and the SAAO 1.0m (Sutherland, South Africa). Since 2005, PLANET operates a common campaign with RoboNet, a UK operated network of 2m fully robotic telescopes currently comprising the Liverpool Telescope (Roque de Los Muchachos, La Palma, Spain) and the Faulkes Telescope North (Haleakala, Hawaii, USA). ESO PR Photo 03b/06 ESO PR Photo 03b/06 Light Curve of OGLE-2005-BLG-390 The OGLE (Optical Gravitational Lensing Experiment) search team (led by A. Udalski, Warsaw University Observatory, Poland) discovered the event OGLE-2005-BLG-390 on 11 July 2005, triggering the PLANET telescopes to start taking data. A light curve consistent with a single lens star peaking at an amplification of about 3 on 31 July 2005 was observed, until 10 August when PLANET member Pascal Fouqué, observing at the Danish 1.54m at ESO La Silla, noticed a planetary deviation. An OGLE point from the same night showed the same trend, while the last half of the planetary deviation, lasting about a day, had been covered by images from Perth Observatory. The MOA (Microlensing Observations in Astrophysics) collaboration was later able to identify the source star on its images and confirmed the deviation. No other interpretation than the presented sub-Neptune mass planet with its quoted parameters appeared to fit the extensive data set. This discovery brings a fresh look at the field of planetary science. In particular, astronomers now think that such frozen worlds are much more common than their larger, Jupiter-like brethren. "Indeed if Jupiter-like planets were as widespread, the microlensing method should have found dozens of them by now ", said David Bennett (University of Notre Dame, USA), another PLANET team member. The microlensing technique is most probably the only method currently capable of detecting planets similar to Earth. "The search for a second Earth is the driving force behind our research and this discovery constitutes a major leap forward since it is the most Earth-like planet we know of so far ", said co-author Daniel Kubas, from ESO. ESO PR Video 03/06 ESO PR Video 03/06 Learn more with the video! A report has been published in the 26 January 2006 edition of the leading journal Nature ("Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing" by J.-P. Beaulieu, D. P. Bennett, P. Fouqué, A. Williams, M. Dominik, U. G. Jørgensen, D. Kubas et al.). High resolution images and their captions are available on this page. This press release is also accompanied by Broadcast quality material.

  5. Instruments and methods to search for extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2015-09-01

    Is Life restricted to the Planet Earth? or Does life exist elsewhere in the Cosmos? The existence of extraterrestrial life is the fundamental question of Astrobiology. Detecting evidence for living organisms beyond our planet is even more difficult than finding fossilized remains of ancient organisms. Microbiological investigations during the past century have established the fundamental physical and chemical requirements and limits for life on Earth. It is now known that life requires only water, a source of energy, and a small suite of biogenic elements under a surprisingly wide range of environmental conditions. The discovery that microbial extremophiles live and grow over a very broad span of temperature, pH, salinity, pressure and radiation levels has greatly enhanced the possibility that life may be present on many bodies of our Solar System. Recent discoveries by Space Missions and Rovers have invalidated many long held paradigms regarding the distribution of water, organic chemicals and the possibility of life elsewhere in the Cosmos. This paper considers the discovery of water, ice and organics on distant planets, moons and comets and evidence for fossil organisms on Mars and in SNC and carbonaceous meteorites. Instruments and methods are considered for spectroscopy and fluorescence of biomolecules (e.g., photosynthetic pigments) for remote detection of conclusive evidence for extraterrestrial life. Optical Video Microscopy is discussed as a direct means for detecting extraterrestrial life using small visible light/UV video microscopes, with ample magnification to record motile bacteria and other living organisms in samples collected by Rovers or Landers. Locomotion of living cells of bacteria and other microbes requires great expenditure of energy and motile cells can be distinguished by video microscopy from the physico-chemical movements (by Brownian Motion, Diffusion or Current Drift) of dead cells, dust particles and abiotic mineral grains.

  6. TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.; Belikov, R.; Bendek, E.

    2015-09-01

    Direct imaging of extra-solar planets is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640, and SCExAO). These systems allow of planets 10{sup 7} times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching 10{sup −10} within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star, while most non-M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systemsmore » at a level of contrast allowing detection of Earth-like planets is challenging because the region of interest is contaminated by the host star's companion in addition to the host itself. Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls outside the correcting zone of the deformable mirror (DM) with respect to the companion. Until now, it has been thought that removing the light of a companion star is too challenging, leading to the exclusion of many binary systems from target lists of direct imaging coronographic missions. In this paper, we will show new techniques for high-contrast imaging of planets around multi-star systems and detail the Super-Nyquist Wavefront Control (SNWC) method, which allows wavefront errors to be controlled beyond the nominal control region of the DM. Our simulations have demonstrated that, with SNWC, raw contrasts of at least 5 × 10{sup −9} in a 10% bandwidth are possible.« less

  7. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    NASA Astrophysics Data System (ADS)

    Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration

    2017-03-01

    We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.

  8. The detection and characterization of a nontransiting planet by transit timing variations.

    PubMed

    Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R

    2012-06-01

    The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.

  9. Toward the 4-Micron Infrared Spectrum of the Transiting Extrasolar Planet HD 209458 b

    NASA Astrophysics Data System (ADS)

    Richardson, L. J.; Deming, D.

    2003-12-01

    We have continued our analysis of infrared spectra of the "transiting planet" system, HD 209458, recorded at the NASA IRTF in September 2001. The spectra cover two predicted secondary eclipse events, wherein the planet passed behind the star and re-emerged. We are attempting to detect the planet's infrared continuum peaks, by exploiting the spectral modulation which accompanies the secondary eclipse. Our initial analysis placed the strongest limits to date on the spectrum of the planet near 2.2 microns (Richardson, Deming & Seager 2003, recently appeared in ApJ). Further analysis of our long wavelength data (3.0--4.2 microns) decorrelates and removes most of the systematic errors due to seeing and guiding fluctuations. This decorrelation has improved the precision of our analysis to the level where a predicted 4-micron planetary flux peak may now be detectable.

  10. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  11. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-01

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet—GJ 581g—is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  12. Probing the Impact of Stellar Duplicity on Planet Occurrence with Spectroscopic and Imaging Observations

    NASA Astrophysics Data System (ADS)

    Eggenberger, Anne; Udry, Stéphane

    Over the past 14 years, Doppler spectroscopy has been very successful in detecting and characterizing extrasolar planets, providing us with a wealth of information on these distant worlds (e.g., Marcy et al. 2005a; Udry and Santos 2007b; Udry et al. 2007a). One important and considerably unexpected fact these new data have taught us is that diversity is the rule in the planetary world. Diversity is found not only in the characteristics and orbital properties of the ˜ 340 planets detected thus far,1 but also in the types of environments in which they reside and are able to form. This observation has prompted a serious revision of the theories of planet formation (e.g., Lissauer and Stevenson 2007; Durisen et al. 2007; Nagasawa et al. 2007), leading to the idea that planet formation may be a richer and more robust process than originally thought.

  13. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  14. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  15. The HARPS search for southern extra-solar planets. III. Three Saturn-mass planets around HD 93083, HD 101930 and HD 102117

    NASA Astrophysics Data System (ADS)

    Lovis, C.; Mayor, M.; Bouchy, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Udry, S.; Benz, W.; Bertaux, J.-L.; Mordasini, C.; Sivan, J.-P.

    2005-07-01

    We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 MJup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 MJup. For HD 102117, we present the independent detection of a companion with m2 sin{i} = 0.14 MJup and orbital period P = 20.7 days. This planet was recently detected by Tinney et al. (ApJ, submitted). Activity and bisector indicators exclude any significant RV perturbations of stellar origin, reinforcing the planetary interpretation of the RV variations. The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and 0.9 m s-1 respectively, showing the unprecedented RV accuracy achieved with HARPS. A sample of stable stars observed with HARPS is also presented to illustrate the long-term precision of the instrument. All three stars are metal-rich, confirming the now well-established relation between planet occurrence and metallicity. The new planets are all in the Saturn-mass range, orbiting at moderate distance from their parent star, thereby occupying an area of the parameter space which seems difficult to populate according to planet formation theories. A systematic exploration of these regions will provide new constraints on formation scenarios in the near future.

  16. Dispatch Scheduling to Maximize Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Johnson, Samson; McCrady, Nate; MINERVA

    2016-01-01

    MINERVA is a dedicated exoplanet detection telescope array using radial velocity measurements of nearby stars to detect planets. MINERVA will be a completely robotic facility, with a goal of maximizing the number of exoplanets detected. MINERVA requires a unique application of queue scheduling due to its automated nature and the requirement of high cadence observations. A dispatch scheduling algorithm is employed to create a dynamic and flexible selector of targets to observe, in which stars are chosen by assigning values through a weighting function. I designed and have begun testing a simulation which implements the functions of a dispatch scheduler and records observations based on target selections through the same principles that will be used at the commissioned site. These results will be used in a larger simulation that incorporates weather, planet occurrence statistics, and stellar noise to test the planet detection capabilities of MINERVA. This will be used to heuristically determine an optimal observing strategy for the MINERVA project.

  17. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  18. A Herschel-Detected Correlation between Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.

    2013-01-01

    The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.

  19. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  20. The Terrestrial Planet Finder coronagraph dynamics error budget

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart B.; Marchen, Luis; Green, Joseph J.; Lay, Oliver P.

    2005-01-01

    The Terrestrial Planet Finder Coronagraph (TPF-C) demands extreme wave front control and stability to achieve its goal of detecting earth-like planets around nearby stars. We describe the performance models and error budget used to evaluate image plane contrast and derive engineering requirements for this challenging optical system.

  1. Cubesat-Derived Detection of Seagrasses Using Planet Imagery Following Unmixing-Based Denoising: is Small the Next Big?

    NASA Astrophysics Data System (ADS)

    Traganos, D.; Cerra, D.; Reinartz, P.

    2017-05-01

    Seagrasses are one of the most productive and widespread yet threatened coastal ecosystems on Earth. Despite their importance, they are declining due to various threats, which are mainly anthropogenic. Lack of data on their distribution hinders any effort to rectify this decline through effective detection, mapping and monitoring. Remote sensing can mitigate this data gap by allowing retrospective quantitative assessment of seagrass beds over large and remote areas. In this paper, we evaluate the quantitative application of Planet high resolution imagery for the detection of seagrasses in the Thermaikos Gulf, NW Aegean Sea, Greece. The low Signal-to-noise Ratio (SNR), which characterizes spectral bands at shorter wavelengths, prompts the application of the Unmixing-based denoising (UBD) as a pre-processing step for seagrass detection. A total of 15 spectral-temporal patterns is extracted from a Planet image time series to restore the corrupted blue and green band in the processed Planet image. Subsequently, we implement Lyzenga's empirical water column correction and Support Vector Machines (SVM) to evaluate quantitative benefits of denoising. Denoising aids detection of Posidonia oceanica seagrass species by increasing its producer and user accuracy by 31.7 % and 10.4 %, correspondingly, with a respective increase in its Kappa value from 0.3 to 0.48. In the near future, our objective is to improve accuracies in seagrass detection by applying more sophisticated, analytical water column correction algorithms to Planet imagery, developing time- and cost-effective monitoring of seagrass distribution that will enable in turn the effective management and conservation of these highly valuable and productive ecosystems.

  2. On the Radio Detectability of Circumplanetary Discs

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Andrews, Sean M.; Isella, Andrea

    2018-06-01

    Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple α disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. λ ≲ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has a viscosity parameter α ≲ 0.001, ALMA can detect this disc when it accretes faster than 10-10M⊙/yr. ALMA can also detect the "minimum mass sub-nebulae" disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 102-103 years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).

  3. Validating the Presence of a Moon Orbiting Kepler-1625b

    NASA Astrophysics Data System (ADS)

    Teachey, Alex

    2017-08-01

    The Hunt for Exomoons with Kepler (HEK) project has been engaged in the search for exomoons for the past several years, but so far no reliable exomoon detection can be found in the literature. After our largest survey to date, we have recently detected a strong candidate moon signal in the light curve of Kepler-1625b. The planet exhibits three transits in the Kepler data (P 287 days), in which we detect out-of-transit flux dips consistent with the presence of a large moon to greater than 4 sigma confidence. We propose to observe the next transit of the planet, which will occur October 29th, 2017 (Cycle-25), in the near-infrared using the Wide Field Camera 3 instrument on HST. We request 26 orbits of the telescope, which will allow us to capture the full planet-moon transit event and provide an opportunity to measure the transmission spectra of both the planet and the moon. We anticipate that the proposed measurements would be sufficient to confirm the first unambiguous detection of a moon beyond our Solar System.

  4. Optimization of Planet Finder Observing Strategy

    NASA Astrophysics Data System (ADS)

    Sinukoff, E.

    2014-03-01

    We evaluate radial velocity observing strategies to be considered for future planethunting surveys with the Automated Planet Finder, a new 2.4-m telescope at Lick Observatory. Observing strategies can be optimized to mitigate stellar noise, which can mask and imitate the weak Doppler signals of low-mass planets. We estimate and compare sensitivities of 5 different observing strategies to planets around G2-M2 dwarfs, constructing RV noise models for each stellar spectral type, accounting for acoustic, granulation, and magnetic activity modes. The strategies differ in exposure time, nightly and monthly cadence, and number of years. Synthetic RV time-series are produced by injecting a planet signal onto the stellar noise, sampled according to each observing strategy. For each star and each observing strategy, thousands of planet injection recovery trials are conducted to determine the detection efficiency as a function of orbital period, minimum mass, and eccentricity. We find that 4-year observing strategies of 10 nights per month are sensitive to planets ~25-40% lower in mass than the corresponding 1 year strategies of 30 nights per month. Three 5-minute exposures spaced evenly throughout each night provide a 10% gain in sensitivity over the corresponding single 15-minute exposure strategies. All strategies are sensitive to planets of lowest mass around the modeled K7 dwarf. This study indicates that APF surveys adopting the 4-year strategies should detect Earth-mass planets on < 10-day orbits around quiet late-K dwarfs as well as > 1.6 Earth-mass planets in their habitable zones.

  5. Indirect and Direct Signatures of Young Planets in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning

    2015-12-01

    Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.

  6. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  7. Understanding exoplanet populations with simulation-based methods

    NASA Astrophysics Data System (ADS)

    Morehead, Robert Charles

    The Kepler candidate catalog represents an unprecedented sample of exoplanet host stars. This dataset is ideal for probing the populations of exoplanet systems and exploring their architectures. Confirming transiting exoplanets candidates through traditional follow-up methods is challenging, especially for faint host stars. Most of Kepler's validated planets relied on statistical methods to separate true planets from false-positives. Multiple transiting planet systems (MTPS) have been previously shown to have low false-positive rates and over 850 planets in MTPSs have been statistically validated so far. We show that the period-normalized transit duration ratio (xi) offers additional information that can be used to establish the planetary nature of these systems. We briefly discuss the observed distribution of xi for the Q1-Q17 Kepler Candidate Search. We also use xi to develop a Bayesian statistical framework combined with Monte Carlo methods to determine which pairs of planet candidates in an MTPS are consistent with the planet hypothesis for a sample of 862 MTPSs that include candidate planets, confirmed planets, and known false-positives. This analysis proves to be efficient and advantageous in that it only requires catalog-level bulk candidate properties and galactic population modeling to compute the probabilities of a myriad of feasible scenarios composed of background and companion stellar blends in the photometric aperture, without needing additional observational follow-up. Our results agree with the previous results of a low false-positive rate in the Kepler MTPSs. This implies, independently of any other estimates, that most of the MTPSs detected by Kepler are planetary in nature, but that a substantial fraction could be orbiting stars other than then the putative target star, and therefore may be subject to significant error in the inferred planet parameters resulting from unknown or mismeasured stellar host attributes. We also apply approximate Bayesian computation (ABC) using forward simulations of the Kepler planet catalog to simultaneously constrain the distributions of mutual inclination between the planets, orbital eccentricity, the underlying number of planets per planetary system, and the fraction of stars that host planet systems in a subsample of Kepler candidate planets using SimpleABC, a Python package we developed that is a general-purpose framework for ABC analysis. For our investigation into planet architectures, we limit our investigation to candidates in orbits from 10 to 320 days, where the false-positive contamination rate is expected to be low. We test two models, the first is an independent eccentricity ( e) model where mutual inclination and e are drawn from Rayleigh distributions with dispersions sigmaim and sigmae, planets per planetary system is drawn from a Poisson distribution with mean lambda, and the fraction of stars with planetary systems is drawn from two-state categorical distribution parameterized by etap. We also test an Equipartition Model identical to the Independent e Model, except that sigmae is linked to sigmaim by a scaling factor gammae. For the Independent e Model, we find sigmaim = 5.51° +8.00-3.35, sigmae = 0.03+0.05-0.01, lambda = 6.62+7.74 -3.36, and etap = 0.20 +0.18-0.11. For the Equipartition Model, we find sigmaim = 1.15°+0.56-0.33 , gammae = 1.38+1.89 -0.93, lambda = 2.25+0.56-0.29, and etap = 0.56+0.08-0.11 . These results, especially the Equipartition Model, are in good agreement with previous studies. However, deficiencies in our single population models suggest that at least one additional subpopulation of planet systems is needed to explain the Kepler sample, providing more confirmation of the so-called "Kepler Dichotomy".

  8. A 3π Search for Planet Nine at 3.4 μm with WISE and NEOWISE

    NASA Astrophysics Data System (ADS)

    Meisner, A. M.; Bromley, B. C.; Kenyon, S. J.; Anderson, T. E.

    2018-04-01

    The recent “Planet Nine” hypothesis has led to many observational and archival searches for this giant planet proposed to orbit the Sun at hundreds of astronomical units. While trans-Neptunian object searches are typically conducted in the optical, models suggest Planet Nine could be self-luminous and potentially bright enough at ∼3–5 μm to be detected by the Wide-field Infrared Survey Explorer (WISE). We have previously demonstrated a Planet Nine search methodology based on time-resolved WISE coadds, allowing us to detect moving objects much fainter than would be possible using single-frame extractions. In the present work, we extend our 3.4 μm (W1) search to cover more than three-quarters of the sky and incorporate four years of WISE observations spanning a seven-year time period. This represents the deepest and widest-area WISE search for Planet Nine to date. We characterize the spatial variation of our survey’s sensitivity and rule out the presence of Planet Nine in the parameter space searched at W1 < 16.7 in high Galactic latitude regions (90% completeness).

  9. THE RADIAL VELOCITY TATOOINE SEARCH FOR CIRCUMBINARY PLANETS: PLANET DETECTION LIMITS FOR A SAMPLE OF DOUBLE-LINED BINARY STARS-INITIAL RESULTS FROM KECK I/HIRES, SHANE/CAT/HAMSPEC, AND TNG/SARG OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konacki, Maciej; Helminiak, Krzysztof G.; Muterspaugh, Matthew W.

    2009-10-10

    We present preliminary results of the first and on-going radial velocity survey for circumbinary planets. With a novel radial velocity technique employing an iodine absorption cell, we achieve an unprecedented radial velocity (RV) precision of up to 2 m s{sup -1} for double-lined binary stars. The high-resolution spectra collected with the Keck I/Hires, TNG/Sarg, and Shane/CAT/Hamspec telescopes/spectrographs over the years 2003-2008 allow us to derive RVs and compute planet detection limits for 10 double-lined binary stars. For this initial sample of targets, we can rule out planets on dynamically stable orbits with masses as small as approx0.3 to 3 Mmore » {sub Jup} for the orbital periods of up to approx5.3 years. Even though the presented sample of stars is too small to make any strong conclusions, it is clear that the search for circumbinary planets is now technique-wise possible and eventually will provide new constraints for the planet formation theories.« less

  10. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    PubMed Central

    Gillon, Michaël; Triaud, Amaury H. M. J.; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M.; Lederer, Susan M.; de Wit, Julien; Burdanov, Artem; Ingalls, James G.; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N.; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R.; Carey, Sean J.; Chaushev, Aleksander; Copperwheat, Chris M.; Delrez, Laetitia; Fernandes, Catarina S.; Holdsworth, Daniel L.; Kotze, Enrico J.; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-01-01

    One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away1. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible in-depth studies of their atmospheric properties with current and future astronomical facilities1,2,3. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward4,5. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces6,7,8. PMID:28230125

  11. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    PubMed

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  12. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  13. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    PubMed

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  14. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    PubMed Central

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  15. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  16. Rainbows, polarization, and the search for habitable planets.

    PubMed

    Bailey, Jeremy

    2007-04-01

    Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.

  17. Characterizing Pale Blue Dots Around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Sasselov, D. D.; Segura, A.

    2015-12-01

    Exoplanet characterization of small rocky worlds will be a main focus in the coming decades. For future telescopes like JWST and UVOIR/HDST, an exoplanet's host star will influence our ability to detect and interpret spectral features, including biosignatures. We present a complete suit of stellar models and a grid of model atmospheres for Earth-like planets at equivalent stages of geological evolution in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. Since M dwarfs are simultaneously the most numerous in the universe, the most active, and the most likely stars to host terrestrial exoplanets, we focus in particular on the range of UV emission possible in each sub M spectral class. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by HST and IUE we model the effect of stellar activity on Earth-like planets. We also model the amount of UV flux reaching the surface for Earth-like planets at various geological epochs ranging from a pre-biotic world through the rise of oxygen and for Earth-like planets orbiting FGKM stars at equivalent stages of evolution. When modeling the remotely detectable spectra of these planets we focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, CO2, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-like planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 μm) and the IR (5 - 20 μm) range as input for future missions like JWST and concepts like UVOIR/HDST.

  18. Advances in the Kepler Transit Search Engine and Automated Approaches to Identifying Likely Planet Candidates in Transit Surveys

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon Michael

    2015-08-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.

  19. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  20. The Discovery of Extrasolar Planets via Transits

    NASA Astrophysics Data System (ADS)

    Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.

    2014-01-01

    The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.

  1. The Monitor project: searching for occultations in young open clusters

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Hodgkin, S.; Irwin, J.; Hebb, L.; Irwin, M.; Favata, F.; Moraux, E.; Pont, F.

    2007-02-01

    The Monitor project is a photometric monitoring survey of nine young (1-200Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (<~10Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars. The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ~3 transiting planets with radial velocity signatures detectable with currently available facilities.

  2. Molecular Detectability in Exoplanetary Emission Spectra

    NASA Astrophysics Data System (ADS)

    Tessenyi, M.; Tinetti, G.; Savini, G.; Pascale, E.

    2013-09-01

    Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. We study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered — hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths — cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH.

  3. Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.

    2011-08-01

    After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the Earth-Sun distance. In Astronomy, we cannot do experiments; we are a part of it. Instead, we search and characterise several similar objects in order to extract information out of them statistically. To answer our question, we needed to find several objects and detect the clues from their past history bringing us back to the processes that led to their formation. There are several manners with which one can find planets. For this thesis, the so-called transit method was used. It consists in detecting a periodic loss of light from a star in front of which a planet passes: a transit. This method is particularly sensitive to the presence of hot Jupiters. During this thesis, about fifty planets of such type have been discovered, about a third of the known hot Jupiters. Those planets are confirmed thanks to radial velocity measurements, the same technique that led to the discovery of the first extrasolar planet, around the star 51 Pegasi. The analysis of the stellar light affected by the presence of a planet around it, notably the light received during transit, allows us to know about the mass, the size of the planet, its orbital period, the shape of its orbit, its temperature, even the chemical composition of its atmosphere. Furthermore, these observations give us the occasion to study the star around which is found the planet, such as its mass, its size, its rotation speed, as well as give estimates on its age. One type of observations was employed in particular: the Rossiter-McLaughlin effect. During transit, this effect creates an anomaly compared to the expected radial velocities. Through a modelisation of this anomaly, it is possible to measure the projection of the angle between the orbital plane of the planet and the equatorial plane of the star, on the sky. In our System, all planets are located more or less in a same plane : the ecliptic. The equatorial plane of the Sun is also almost aligned with the ecliptic. This observation led Kant and Laplace to postulate on the formation of planets from matter spread in the form of a primordial disc around the Sun; such discs are nowadays observed around young stars. This angle was measured for the newly discovered planets, and, surprisingly, instead of observing planets in orbit above the equator of their star, a wide variety was found. Some planets are even in orbit in the direction counter to that which was expected. Those observations, combined with others of similar type, as well as with those already known parameters from that astonishing planet population, allow us to explore the phenomena that occurred probably soon after their formation. Those hot Jupiters have had an eventful history. When the disc in which they formed dissipated, gravitational interactions with other planets in the same system, or caused by the presence of another star in the system, have led those gas giants on inclined, some retrograde, and very elliptic orbits. During their regular passage at the closest point with their star, the dissipation of tidal forces within the planet and the star induced a circularisation and a reduction of their orbital periods, on which we observe them nowadays.

  4. RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. I. NEAR-INFRARED SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppenheimer, B. R.; Beichman, C.; Brenner, D.

    2013-05-01

    We obtained spectra in the wavelength range {lambda} = 995-1769 nm of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5 m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R {approx} 35) spectra. Data reduction employed two different methods of speckle suppression and spectrum extraction, both yielding results that agree. The spectra do not directly correspond to those of any known objects, although similarities with L and T dwarfs are present, asmore » well as some characteristics similar to planets such as Saturn. We tentatively identify the presence of CH{sub 4} along with NH{sub 3} and/or C{sub 2}H{sub 2}, and possibly CO{sub 2} or HCN in varying amounts in each component of the system. Other studies suggested red colors for these faint companions, and our data confirm those observations. Cloudy models, based on previous photometric observations, may provide the best explanation for the new data presented here. Notable in our data is that these presumably co-eval objects of similar luminosity have significantly different spectra; the diversity of planets may be greater than previously thought. The techniques and methods employed in this paper represent a new capability to observe and rapidly characterize exoplanetary systems in a routine manner over a broad range of planet masses and separations. These are the first simultaneous spectroscopic observations of multiple planets in a planetary system other than our own.« less

  5. CRITICAL CURVES AND CAUSTICS OF TRIPLE-LENS MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daněk, Kamil; Heyrovský, David, E-mail: kamil.danek@utf.mff.cuni.cz, E-mail: heyrovsky@utf.mff.cuni.cz

    2015-06-10

    Among the 25 planetary systems detected up to now by gravitational microlensing, there are two cases of a star with two planets, and two cases of a binary star with a planet. Other, yet undetected types of triple lenses include triple stars or stars with a planet with a moon. The analysis and interpretation of such events is hindered by the lack of understanding of essential characteristics of triple lenses, such as their critical curves and caustics. We present here analytical and numerical methods for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses.more » We apply the methods to the analysis of four symmetric triple-lens models, and obtain altogether 9 different critical-curve topologies and 32 caustic structures. While these results include various generic types, they represent just a subset of all possible triple-lens critical curves and caustics. Using the analyzed models, we demonstrate interesting features of triple lenses that do not occur in two-point-mass lenses. We show an example of a lens that cannot be described by the Chang–Refsdal model in the wide limit. In the close limit we demonstrate unusual structures of primary and secondary caustic loops, and explain the conditions for their occurrence. In the planetary limit we find that the presence of a planet may lead to a whole sequence of additional caustic metamorphoses. We show that a pair of planets may change the structure of the primary caustic even when placed far from their resonant position at the Einstein radius.« less

  6. Optical images of an exosolar planet 25 light-years from Earth.

    PubMed

    Kalas, Paul; Graham, James R; Chiang, Eugene; Fitzgerald, Michael P; Clampin, Mark; Kite, Edwin S; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-11-28

    Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mum is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mum and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mum.

  7. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, M.

    2003-01-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  8. Captain Cook, the Terrestrial Planet Finder and the search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Beichman, C.

    2002-01-01

    A recently completed NASA study has concluded that a Terrestrial Planet Finder could be launched within a decade to detect terrestrial planets around nearby stars. Such a mission, complemented by projects (Kepler and Eddington) that will provide statistical information on the frequency of Earth-sized planets in the habitable zone, will determine key terms in the Drake equation that describes the number of intelligent civilizations in the Universe.

  9. 75 FR 61980 - Airworthiness Directives; Eurocopter France Model SA-365N, SA-365N1, AS-365N2, AS-365N3, SA-366G1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... gearbox (MGB) planet gear carrier for a crack and replacing any MGB that has a cracked planet gear carrier... planet gear carrier and additional analysis that indicates that the initial inspection interval must be shortened. The actions specified by this AD are intended to detect a crack in the web of the planet gear...

  10. Characterizing the UV environment of GJ1214b

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel

    2010-09-01

    The recent detection of a super-Earth transiting a nearby low-mass star GJ1214 {Charbonneau et al., 2009} has opened the door to testing the predictions of low mass planet atmosphere theories. Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. Planets which orbit close to their parent stars, such as close-in hot-Jupiters and super-Earths, are exposed to strong XEUV flux that influence their atmospheres and may trigger atmospheric escape processes. This phenomenon, which shapes planetary atmospheres, determines the evolution of the planet. This can also dramatically enhance the detectability of a heavily irradiated hydrogen atmosphere when the planet transits in front of its parent star. We propose to use HST/STIS/G140M to determine the intensity and variability of the Lyman-alpha chromospheric emission line and provide observational constraints to super-Earth atmospheric models. We propose to coordinate this measurement with a planetary transit in order to detect large upper atmospheric signatures if present. This short measurement also enables us to determine whether a larger program dedicated to upper atmospheric study is feasible for a following cycle.

  11. TeMPEST: the Texas, McDonald Photometric Extrasolar Search for Transits

    NASA Astrophysics Data System (ADS)

    Baliber, N. R.; Cochran, W. D.

    2001-11-01

    The TeMPEST project is a photometric search for transits of extrasolar giant planets orbiting at distances < ~ 0.1 AU to their parent stars. As is the case with HD 209458, the only known transiting system, measurements of the photometric dimming of stars with transiting planets, along with radial velocity (RV) data, will provide information on physical characteristics (mass, radius, and mean density) of these planets. Further study of HD 209458 b and planets like it might reveal their reflectivity, putting further constraints on their surface temperatures, as well as allow measurement of the composition of their outer atmospheres. To detect these types of systems, we use the McDonald Observatory 0.76m Prime Focus Camera (PFC), which provides a 46.2 arcmin square field. We are currently obtaining our first full season of data, and by early 2002 will have sufficient data to follow approximately 5,000 stars with the precision necessary to detect transits of close-orbiting Jovian planets. We also present data of the detection of the transit of the planet orbiting HD 209458 using the 0.76m PFC. These data are consistent with the partial occultation of the light from the star caused by the transit of an opaque disc of radius 1.4 R Jup. The TeMPEST project is funded by the NASA Origins program.

  12. A spectrophotometric method for detecting substellar companions to late-type M stars

    NASA Astrophysics Data System (ADS)

    Oetiker, Brian Glen

    The most common stars in the Galaxy are the main-sequence M stars, yet current techniques are not optimized for detecting companions around the lowest mass stars; those with spectral designations ranging from M6 to M10. Described in this study is a search for companions around such stars using two methods: a unique implementation of the transit method, and a newly designed differential spectrophotometric method. The TEP project focusses on the detection of transits of terrestrial sized and larger companions in the eclipsing binary system CM Draconis. The newly designed spectrophotometric technique combines the strengths of the spectroscopic and photometric methods, while minimizing their inherent weaknesses. This unique method relies on the placement of three narrow band optical filters on and around the Titanium Oxide (TiO) bandhead near 8420 Å, a feature commonly seen in the atmospheres of late M stars. One filter is placed on the slope of the bandhead feature, while the remaining two are located on the adjacent continuum portions of the star's spectrum. The companion-induced motion of the star results in a doppler shifting of the bandhead feature, which in turn causes a change in flux passing through the filter located on the slope of the TiO bandhead. The spectrophotometric method is optimized for detecting compact systems containing brown dwarfs and giant planets. Because of its low dispersion-high photon efficiency design, this method is well suited for surveying large numbers of faint M stars. A small scale survey has been implemented, producing a candidate brown dwarf class companion of the star WX UMa. Applying the spectrophotometric method to a larger scale survey for brown dwarf and giant planet companions, coupled with a photometric transit study addresses two key astronomical issues. By detecting or placing limits on compact late type M star systems, a discrimination among competing theories of planetary formation may be gained. Furthermore, searching for a broad range of companion masses, may result in a better understanding of the substellar mass function.

  13. Finding Terrestrial Planets Using External Occulters

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2007-01-01

    In order to identify a detected exoplanet as an Earth-like (habitable) planet, we must obtain its spectrum to verify that its atmosphere shows evidence of water vapor. We argue that a regular, optical telescope combined with a large occulter to block light from the star offers the most promising, cost-effective way to detect and characterize exoplanets.

  14. Hubble Case Studies of Transiting Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Wilkins, Ashlee N.; Deming, Drake; Barker, Adrian; Benneke, Björn; Delrez, Laetitia; Gillon, Michaël; Hamilton, Douglas P.; Jehin, Emmanuel; Knutson, Heather; Lewis, Nikole K.; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter R.; Wakeford, Hannah R.

    2017-01-01

    The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond mere detection, which only yields bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, which allow us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, habitability and presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. This dissertation talk will focus on transiting exoplanet case studies with the Hubble Space Telescope’ Wide-Field Camera-3 (WFC-3) as a tool of exoplanet characterization in a near-infrared band dominated by strong water features. I will first present a characterization the WFC-3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals, and then a study of four transiting giant planets (HATS-7b, HAT-p-3b, HD 149026b, and WASP-18b) in transmission, and two (WASP-18b and CoRoT-2b) in eclipse. Finally, I will discuss the role of transit timing monitoring of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, massive planet. The five planets range from Neptune-class to Super-Jupiter-class in size/mass. Though these planets may be relatively rare, their observability represents a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. These observations also yield insights into aerosols (i.e. clouds/hazes) in the atmosphere; clouds and/or hazes should significantly impact atmospheric chemistry and observational signatures, and we as a community must get a better handle on the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. Further, as part of a large Hubble program, we are working to advance the state of exoplanet atmosphere observations from single, planet-by-planet, case studies, to an understanding of the large, hot, gaseous planets as a population.

  15. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  16. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less

  17. Nonconscious intelligence in the universe.

    PubMed

    Raup, D M

    1992-01-01

    Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.

  18. Nonconscious intelligence in the universe

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1992-01-01

    Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.

  19. Equilibrium Temperatures and Albedos of Habitable Earth-Like Planets in a Coupled Atmosphere-Ocean GCM

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell

    2017-01-01

    The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?

  20. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  1. HST Confirmation and Characterization of a Potentially Habitable World

    NASA Astrophysics Data System (ADS)

    Ehrenreich, David

    2015-10-01

    Atmospheric characterization of exoplanets in habitable zones is one of the greatest challenge of astrophysics. In fact, all known potential targets either do not transit, or they transit stars too faint or distant, making them impossible to probe with transit spectroscopy. A recently announced K2 planet candidate found in the habitable zone of a nearby M dwarf, could be a game changer as the first habitable-zone super-Earth (2.2 R_Earth) amenable to characterization. We propose to use HST to (1) validate the planet candidate by observing a high-precision near-infrared transit with WFC3 and (2) characterize its atmosphere by detecting an extended hydrogen exosphere in the far ultraviolet with STIS. Hydrogen escape is indeed a telltale sign of terrestrial planets enduring a runaway greenhouse effect. Further considerations on the habitable potential of the planet thus need to be vet against a detection of hydrogen escape. Our recent STIS Lyman-alpha observations of a moderately irradiated neptune show that extended upper atmospheres can reach much larger sizes around such planets than around very hot exoplanets. We could thus obtain a significant detection with a modest amount of HST orbits. In parallel, we started a ground-based campaign to constrain the yet unknown mass of this planet with Doppler measurements. Combining the Lyman-alpha transit depth with the measurement of the planet bulk density (from the accurate near-infrared transit and the Doppler mass), will reveal for the first time whether an exoplanet can be telluric and actually habitable, or if it is losing its water because of a runaway greenhouse effect.

  2. Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.

    2018-01-01

    We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.

  3. Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities

    NASA Astrophysics Data System (ADS)

    Ida, Shigeru; Lin, D. N. C.

    2004-11-01

    The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass Mp through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanets migrate and attain their asymptotic semimajor axis a through tidal interaction with their nascent disk. Based on the observed properties of protostellar disks, we generate an Mp-a distribution. Our results reproduce the observed lack of planets with intermediate mass Mp=10-100 M⊕ and a<~3 AU and with large mass Mp>~103 M⊕ and a<~0.2 AU. Based on the simulated Mp-a distributions, we also evaluate the metallicity dependence of the fraction of stars harboring planets that are detectable with current radial velocity surveys. If protostellar disks attain the same fraction of heavy elements as contained in their host stars, the detection probability around metal-rich stars would be greatly enhanced because protoplanetary cores formed in them can grow to several Earth masses prior to their depletion. These large masses are required for the cores to initiate rapid gas accretion and to transform into giant planets. The theoretically extrapolated metallicity dependence is consistent with the observations. This correlation does not arise naturally in the gravitational-instability scenario. We also suggest other metallicity dependences of the planet distributions that can be tested by ongoing observations.

  4. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  5. Using a generalized version of the Titius-Bode relation to extrapolate the patterns seen in Kepler multi-exoplanet systems, and estimate the average number of planets in circumstellar habitable zones

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.

    2015-08-01

    The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in press) MNRAS, arXiv:14126230v3.

  6. On the Nature of Small Planets around the Coolest Kepler Stars

    NASA Astrophysics Data System (ADS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Lépine, Sébastien

    2012-02-01

    We constrain the densities of Earth- to Neptune-size planets around very cool (Te = 3660-4660 K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index α ≈ 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with α = 2 is ruled out unless our Doppler errors are >=5 m s-1, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of γ rocky planets (α = 3.85) and 1 - γ gas-rich planets (α = 2), then γ > 0.5 unless Doppler errors are >=4 m s-1. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact. Some data were obtained at the W. M. Keck Observatory, which is operated by the California Institute of Technology, the University of California, and NASA, and made possible by the financial support of the W. M. Keck Foundation.

  7. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets: The Case of GJ 581d

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri V.; Berghea, Ciprian; Efroimsky, Michael

    2012-12-01

    GJ 581d is a potentially habitable super-Earth in the multiple system of exoplanets orbiting a nearby M dwarf. We investigate this planet's long-term dynamics with an emphasis on its probable final rotation states acquired via tidal interaction with the host. The published radial velocities for the star are re-analyzed with a benchmark planet detection algorithm to confirm that there is no evidence for the recently proposed two additional planets (f and g). Limiting the scope to the four originally detected planets, we assess the dynamical stability of the system and find bounded chaos in the orbital motion. For the planet d, the characteristic Lyapunov time is 38 yr. Long-term numerical integration reveals that the system of four planets is stable, with the eccentricity of the planet d changing quasi-periodically in a tight range around 0.27, and with its semimajor axis varying only a little. The spin-orbit interaction of GJ 581d with its host star is dominated by the tides exerted by the star on the planet. We model this interaction, assuming a terrestrial composition of the mantle. Besides the triaxiality-caused torque and the secular part of the tidal torque, which are conventionally included in the equation of motion, we also include the tidal torques' oscillating components. It turns out that, depending on the mantle temperature, the planet gets trapped into the 2:1 or an even higher spin-orbit resonance. It is very improbable that the planet could have reached the 1:1 resonance. This improves the possibility of the planet being suitable for sustained life.

  8. Discovery of Methanol in a Planetary Birthplace

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line) and data (dashed line) showing the methanol line detection. [Adapted from Walsh et al. 2016]Since TW Hyas disk has temperatures of less than ~100K (-173C), we would expect most of the disks methanol to be frozen. The gas-phase methanol observed by Walsh and collaborators was likely released from a larger reservoir of frozen methanol residing on dust grains in the disk. The peak of the methanol emission was detectedfroma ring located about 30 AU out from the central star, which suggests that the larger dust grains in the disk located in the inner 50 AU may host the bulk of the disk ice reservoir.Walsh and collaborators important detection opens a window into studying complex organic chemistry during planetary system formation. This stepping stone can help us to better understand the conditions when Earth formed and what we should look for in the search for life-supporting planets.CitationCatherine Walsh et al 2016 ApJ 823 L10. doi:10.3847/2041-8205/823/1/L10

  9. The K Dwarf Advantage for Biosignatures

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn David; Meadows, Victoria

    2018-01-01

    Biosignature detection is typically studied in the context of an atmosphere in chemical disequilibrium. Oxygen (O2) and methane (CH4) are generally considered the “canonical” biosignature disequilibrium pair. However, the modern CH4 concentration poses a major detection challenge to future direct imaging telescopes, and it has been difficult for Earth to accumulate spectrally detectable quantities of O2 and CH4 over its history (Olson et al 2016, Reinhard et al 2017). Even the lower atmospheric levels of O2 typical of the Earth’s Proterozoic eon (0.01-1% of the modern O2 amount) may have resulted in a reduced photochemical lifetime of CH4 due to decreased UV shielding of CH4 (Claire et al 2006, Goldblatt et al 2006). However, while the above is true for an Earthlike planet orbiting a sunlike star, the situation changes for other stars. For instance, Segura et al (2005) found longer photochemical lifetimes for CH4 in the atmospheres of Earthlike planets orbiting M dwarfs. M dwarfs, however, present several barriers to planetary habitability including desiccation during the stellar super-luminous pre-main sequence phase (Lugar and Barnes 2015) and tidal locking. K dwarfs, which comprise about 12% of all main sequence stars, avoid these M dwarf hazards, and will be important targets for future exoplanet direct imaging missions. Using a photochemical model, we find CH4 and O2 are simultaneously detectable in the atmospheres of K dwarf planets with various O2 concentrations ranging between Proterozoic levels and modern O2 amounts. For instance, for a planet with an Earth-like CH4 surface flux (1 x 1011 molecules/cm2/s) and a Proterozoic-like O2 level (1% of modern), the planet generates a CH4 surface mixing ratio of 1x10-5 for a planet orbiting the sun, and 1.5x10-4 – an order of magnitude more CH4 – for a planet orbiting a K6V star. This is enough to produce detectable CH4 and O2 for the planet orbiting the K6V star. We discuss the implications of this “K dwarf advantage” for biosignature searches in the context of potential future direct imaging exoplanet missions currently under study such as HabEx and LUVOIR.

  10. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric; Schwieterman, Edward

    2016-10-01

    Hazes are common in planetary atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze. The formation of organic hazes is initiated by methane photochemistry sensitive to the host star UV spectrum. Because methane can be produced by a variety of biological and geological processes, organic-rich terrestrial planets with hazes may be common in the galaxy. We use a 1D photochemical-climate model to examine the production of fractal organic haze on Archean Earthlike planets orbiting several different stars: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), a modeled quiescent M dwarf (M3.5V), ɛ Eridani (K2V), and σ Boötis (F2V). For the planetary atmospheric compositions used, planets orbiting stars with the highest or lowest UV fluxes do not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt haze production. Organic hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized for hazy M dwarf planets whose incident stellar radiation arrives at wavelengths where organic hazes are largely transparent. We generate synthetic planetary spectra to test the detectability of haze. For 10 transits of an Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope, gaseous absorption features at wavelengths < 2.5μm are 2-10σ shallower in the presence of a haze compared to a clear-sky planet, and methane and carbon dioxide are detectable at >5σ assuming photon-limited noise levels. An absorption feature from the haze can be detected at the 5σ level near 6.3μm, but higher signal-to-noise would be needed to uniquely distinguish haze from other absorbers in this spectral region. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hours. Although haze is often considered a feature that conceals planetary features, organic haze can indicate a geologically active planet - and therefore a potentially habitable one - and possibly even reveal the presence of life.

  11. WFIRST: Microlensing Parallax Observations from K2 in the Exoplanet Microlensing Field

    NASA Astrophysics Data System (ADS)

    Ranc, Clement; Radek Poleski, David Bennett, K2C9 Microlensing Science Experiment Team

    2018-01-01

    The recent explosion in our understanding of exoplanetary systems has been driven primarily by the Kepler mission, which has replaced radial velocities as our main planet discovery method. While Kepler has provided a large sample of planets that will allow a robust statistical determination of the properties of exoplanets in close orbits about their host stars, the Kepler mission was stopped shortly after the start of its 5th year. This led to the Kepler 2 (K2) mission, which could observe up to 18 different fields in the ecliptic plane, including a fraction of the WFIRST microlensing field. The K2 mission has focused on lower mass host stars and spending one observing campaign in the Galactic bulge to make use of Kepler’s orbit to determine the masses and distances to microlensing systems via the microlensing parallax effect. These K2 Campaign 9 observations help to develop the microlensing planet detection method, which will be employed by the WFIRST mission that will extend the statistical census of exoplanets to include low-mass planets in wide orbits. While the photometric light curve of a microlensing event observed from the ground provides important constraints on the lens physical parameters, in many cases the lens mass and distance from Earth remain degenerated. The poster will show how simultaneous space- and ground-based observations can break this mass-distance degeneracy. This method will be used for a fraction of the events observed by WFIRST. Finally, the poster will present a new method to correct the K2 photometry from the correlated systematic noise. This investigation helps in characterizing the properties of the lens stars and source stars in one WFIRST field with high extinction.

  12. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NASA Technical Reports Server (NTRS)

    Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; hide

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, René; Zuluaga, Jorge I., E-mail: rheller@physics.mcmaster.ca, E-mail: jzuluaga@fisica.udea.edu.co

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could alsomore » have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.« less

  14. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  15. Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.

    2017-10-01

    Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.

  16. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 au, Metal-poor Binary “Twins” HD 133131A & B

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela

    2016-12-01

    We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  17. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.

    2016-02-01

    Absorption of high-energy radiation in planetary thermospheres is generally believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy using current instrumentation. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show still unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact planets, such as HAT-P-2 b are hydrodynamically stable. Compact planets dispose of the radiative energy input through hydrogen Lyα and free-free emission. Radiative cooling is also important in HD 189733 b, but it decreases toward smaller planets like GJ 436 b. Computing the planetary Lyα absorption and emission signals from the simulations, we find that the strong and cool winds of smaller planets mainly cause strong Lyα absorption but little emission. Compact and massive planets with hot, stable thermospheres cause small absorption signals but are strong Lyα emitters, possibly detectable with the current instrumentation. The absorption and emission signals provide a possible distinction between these two classes of thermospheres in hot gas planets. According to our results, WASP-80 and GJ 3470 are currently the most promising targets for observational follow-up aimed at detecting atmospheric Lyα absorption signals. Simulated atmospheres are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A75

  18. Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric

    2017-12-01

    We explore the occurrence and detectability of planet–planet occultations (PPOs) in exoplanet systems. These are events during which a planet occults the disk of another planet in the same system, imparting a small photometric signal as its thermal or reflected light is blocked. We focus on the planets in TRAPPIST-1, whose orbital planes we show are aligned to < 0\\buildrel{\\circ}\\over{.} 3 at 90% confidence. We present a photodynamical model for predicting and computing PPOs in TRAPPIST-1 and other systems for various assumptions of the planets’ atmospheric states. When marginalizing over the uncertainties on all orbital parameters, we find that the rate of PPOs in TRAPPIST-1 is about 1.4 per day. We investigate the prospects for detection of these events with the James Webb Space Telescope, finding that ∼10–20 occultations per year of b and c should be above the noise level at 12–15 μm. Joint modeling of several of these PPOs could lead to a robust detection. Alternatively, observations with the proposed Origins Space Telescope should be able to detect individual PPOs at high signal-to-noise ratios. We show how PPOs can be used to break transit timing variation degeneracies, imposing strong constraints on the eccentricities and masses of the planets, as well as to constrain the longitudes of nodes and thus the complete three-dimensional structure of the system. We further show how modeling of these events can be used to reveal a planet’s day/night temperature contrast and construct crude surface maps. We make our photodynamical code available on github (https://github.com/rodluger/planetplanet).

  19. The Drake Equation

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.; Dowd, Matthew F.; Drake, Frank

    2015-07-01

    List of contributors; Foreword Frank Drake; Preface; Acknowledgements; Introduction Steven Dick; 1. Rate of formation of stars suitable for the development of intelligent life, R*, pre-1961 David DeVorkin; 2. Rate of formation of stars suitable for the development of intelligent life, R*, 1961 to the present Patrick François and Danielle Briot; 3. Fraction of stars with planetary systems, fp, pre-1961 Matthew F. Dowd; 4. Fraction of stars with planetary systems, fp, 1961 to the present Chris Impey; 5. Number of planets, per solar system, with an environment suitable for life, ne, pre-1961 Florence Raulin Cerceau; 6. Number of planets, per solar system, with an environment suitable for life, ne, 1961 to the present Danielle Briot and Jean Schneider; 7. Fraction of suitable planets on which life actually appears, fl, pre-1961 Stephané Tirard; 8. Fraction of suitable planets on which life actually appears, fl, 1961 to the present David J. Des Marais; 9. Fraction of life-bearing planets on which intelligent life emerges, fl, pre-1961 Michael Crowe; 10. Fraction of life-bearing planets on which intelligent life emerges, fl, 1961 to the present Lori Marino; 11. Fraction of civilizations that develop a technology that releases detectable signs of their existence into space, fc, pre-1961 Florence Raulin Cerceau; 12. Fraction of civilizations that develop a technology that releases detectable signs of their existence into space, fc, 1961 to the present Seth Shostak; 13. Length of time such civilizations release detectable signals into space, L, pre-1961 David Dunér; 14. Length of time such civilizations release detectable signals into space, L, 1961 to the present Garry Chick; Afterword Paul Davies; Index.

  20. Editorial: Special issue “Planetary evolution and life”

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman

    2014-08-01

    Given the enormous number of stars in the universe and the number of confirmed and postulated planets in our galaxy, it is generally agreed that our home planet Earth is not likely to be unique (e.g., Sagan, 1980; Bignami et al., 2005; Hawking and Mlodinow, 2010). But is it? Although the number of known extrasolar planets grows almost by the day, observational bias caused by the technological challenges of finding Earth-size, rocky extrasolar planets and determining their masses and sizes have thus far prohibited the detection of a second Earth. But even if a second Earth were to be found-located in what is termed the habitable zone (e.g., Kasting et al., 1993)-can we expect that life would have originated there and have evolved beyond the most primitive forms? Is the universe "bio-friendly" as Paul Davies said (cited after Sullivan and Baross, 2007) using the Anthropic Principle (Barrow and Tipler, 1986) or is the origin of life so complex and our home planet so peculiar (Ward and Brownlee, 2000) that we are the unlikely product of a chain of unlikely events (Gould, 1989)? And if life existed on a second Earth or on many other planets, would we be able to detect it? Would life have shaped these planets such as life has shaped the Earth?

  1. Exoplanet Science with TMT

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian

    2014-07-01

    TMT will have unparalleled capabilities for characterizing the composition of extrasolar planets and their atmospheres, and for probing the complex interplay between planet formation, evolution, and migration. In this plenary talk I will summarize these science cases and discuss their synergy with other observing facilities. High-resolution imaging with IRIS and PFI/SEIT will study young, hot planets in nearby star-forming regions, complementing JWST and WFIRST/AFTA coronagraphic efforts at larger semimajor axes. The same instruments will flesh out planets detected by radial velocity (RV) by measuring the albedos and bolometric radii of old, cold Jovian planets and a few ~300 K super-Earths. Complementing JWST and HST studies of short-period transiting planets, NIRES and IRMS spectroscopy will reveal atmospheric composition, dynamics, and thermal structure for dozens of hot Jupiters and Neptunes; NIRES will also produce 2D global maps and movies of a few exoplanets and dozens of brown dwarfs. HROS high-dispersion spectroscopy will precisely measure the composition of extrasolar planetesimals in polluted white dwarfs, and RV followup will continue to exploit the legacies of Kepler, K2, TESS, and PLATO to measure the masses, orbits, and bulk compositions of Earth analogues. Most exciting of all, TMT may facilitate the next major step in the study of exobiology by allowing the detection of biosignature gases around the closest habitable transiting planets.

  2. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragmentsmore » are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.« less

  3. Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-02-01

    Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.

  4. Direct Detection and Orbit Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Fukagawa, Misato; Thalmann, Christian; Matsumura, Soko; Plavchan, Peter

    2012-01-01

    We present previously unpublished July 2005 H-band coronagraphic data of the young, planet-hosting star HR 8799 from the newly-released Keck/NIRC2 archive. Despite poor observing conditions, we detect three of the planets (HR 8799 bcd), two of them (HR 8799 bc) without advanced image processing. Comparing these data with previously published 1998-2011 astrometry and that from re-reduced October 2010 Keck data constrains the orbits of the planets. Analyzing the planets' astrometry separately, HR 8799 d's orbit is likely inclined at least 25 deg from face-on and the others may be on in inclined orbits. For semimajor axis ratios consistent with a 4:2:1 mean-motion resonance our analysis yields precise values for HR 8799 bcd's orbital parameters and strictly constrains the planets' eccentricities to be less than 0.18-0.3. However, we find no acceptable orbital solutions with this resonance that place the planets in face-on orbits; HR 8799 d shows the largest deviation from such orbits. Moreover, few orbits make HR 8799 d coplanar with b and c, whereas dynamical stability analyses used to constrain the planets' masses typically assume coplanar and/or fare.on orbits. This paper illustrates the significant science gain enabled with the release of the NIRC2 archive.

  5. Habitable zones around low mass stars and the search for extraterrestrial life.

    PubMed

    Kasting, J F

    1997-06-01

    Habitable planets are likely to exist around stars not too different from the Sun if current theories about terrestrial climate evolution are correct. Some of these planets may have evolved life, and some of the inhabited planets may have evolved O2-rich atmospheres. Such atmospheres could be detected spectroscopically on planets around nearby stars using a space-based interferometer to search for the 9.6 micron band of O3. Planets with O2-rich atmospheres that lie within the habitable zone around their parent star are, in all probability, inhabited.

  6. Extrasolar Planets & The Power of the Dark Side

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, David

    It is only in the last decade that we have direct evidence for planets orbiting nearby Sun-like stars. If such planets happen to pass in front of their stars, we are presented with a golden opportunity to learn about the nature of these objects. Measurements of the dimming of starlight and gravitational wobble allow us to derive the planetary radius and mass, and, by inference, its composition. Recently, we used the Hubble Telescope to detect and study the atmosphere of an extrasolar planet for the first time. I will describe what we have learned about these planets 

  7. Young Star and Its Infant Planet (Artist animation)

    NASA Image and Video Library

    2016-06-20

    When a planet such as K2-33b passes in front of its host star, it blocks some of the star's light. Observing this periodic dimming, called a transit, from continual monitoring of a star's brightness, allows astronomers to detect planets outside our solar system with a high degree of certainty. This Neptune-sized planet orbits a star that is between 5 and 10 million years old. In addition to the planet, the star hosts a disk of planetary debris, seen as a bright ring encircling the star. An animation is available at: http://photojournal.jpl.nasa.gov/catalog/PIA20692

  8. Understanding stellar activity and flares to search for Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Del Sordo, Fabio

    2015-08-01

    The radial velocity method is a powerful way to search for exoplanetary systems and it led to many discoveries of exoplanets in the last 20 years. Nowadays, understanding stellar activity, flares and noise is a key factor for achieving a substantial improvement in such technique.Radial-velocity data are time-series containing the effect of both planets and stellar disturbances: the detection of Earth-like planets requires to improve the signal-to-noise ratio, i.e. it is central to understand the noise present in the data. Noise is caused by physical processes which operate on different time-scales, oftentimes acting in a non-periodic fashion. We present here an approach to such problem: to look for multifractal structures in the time-series coming from radial velocity measurements, identifying the underlying long-range correlations and fractal scaling properties, connecting them to the underlying physical processes (stellar oscillations, stellar wind, granulation, rotation, magnetic activity). This method has been previously applied to satellite data related to Arctic sea albedo, relevant for identify trends and noise in the Arctic sea ice (Agarwal, Moon, Wettlaufer, 2012). Here we suggest to use such analysis for exoplanetary data related to possible Earth-like planets.

  9. Companions in Color: High-Resolution Imaging of Kepler’s Sub-Neptune Host Stars

    NASA Astrophysics Data System (ADS)

    Ware, Austin; Wolfgang, Angie; Kannan, Deepti

    2018-01-01

    A current problem in astronomy is determining how sub-Neptune-sized exoplanets form in planetary systems. These kinds of planets, which fall between 1 and 4 times the size of Earth, were discovered in abundance by the Kepler Mission and were typically found with relatively short orbital periods. The combination of their size and orbital period make them unusual in relation to the Solar System, leading to the question of how these exoplanets form and evolve. One possibility is that they have been influenced by distant stellar companions. To help assess the influence of these objects on the present-day, observed properties of exoplanets, we conduct a NIR search for visual stellar companions to the stars around which the Kepler Mission discovered planets. We use high-resolution images obtained with the adaptive optics systems at the Lick Observatory Shane-3m telescope to find these companion stars. Importantly, we also determine the effective brightness and distance from the planet-hosting star at which it is possible to detect these companions. Out of the 200 KOIs in our sample, 42 KOIs (21%) have visual companions within 3”, and 90 (46%) have them within 6”. These findings are consistent with recent high-resolution imaging from Furlan et al. 2017 that found at least one visual companion within 4” for 31% of sampled KOIs (37% within 4" for our sample). Our results are also complementary to Furlan et al. 2017, with only 17 visual companions commonly detected in the same filter. As for detection limits, our preliminary results indicate that we can detect companion stars < 3-5 magnitudes fainter than the planet-hosting star at a separation of ~ 1”. These detection limits will enable us to determine the probability that possible companion stars could be hidden within the noise around the planet-hosting star, an important step in determining the frequency with which these short-period, sub-Neptune-sized planets occur within binary star systems.

  10. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    PubMed Central

    Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-01-01

    Abstract We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions. Key Words: Habitability—Planetary atmospheres—Extrasolar terrestrial planets—Spectroscopic biosignatures. Astrobiology 13, 251–269. PMID:23537136

  11. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks, the polarization degree is as high as ~2% at λ = 3.1 mm (band 3), which is well above the detection limit of future ALMA observations.

  12. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  13. Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry

    NASA Astrophysics Data System (ADS)

    Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.

    2011-03-01

    Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.

  14. The Astrophysics of Visible-light Orbital Phase Curves in the Space Age

    NASA Astrophysics Data System (ADS)

    Shporer, Avi

    2017-07-01

    The field of visible-light continuous time series photometry is now at its golden age, manifested by the continuum of past (CoRoT, Kepler), present (K2), and future (TESS, PLATO) space-based surveys delivering high precision data with a long baseline for a large number of stars. The availability of the high-quality data has enabled astrophysical studies not possible before, including, for example, detailed asteroseismic investigations and the study of the exoplanet census including small planets. This has also allowed to study the minute photometric variability following the orbital motion in stellar binaries and star-planet systems which is the subject of this review. We focus on systems with a main sequence primary and a low-mass secondary, from a small star to a massive planet. The orbital modulations are induced by a combination of gravitational and atmospheric processes, including the beaming effect, tidal ellipsoidal distortion, reflected light, and thermal emission. Therefore, the phase curve shape contains information about the companion’s mass and atmospheric characteristics, making phase curves a useful astrophysical tool. For example, phase curves can be used to detect and measure the mass of short-period low-mass companions orbiting hot fast-rotating stars out of reach of other detection methods. Another interesting application of phase curves is using the orbital phase modulations to look for non-transiting systems, which comprise the majority of stellar binary and star-planet systems. We discuss the science done with phase curves, the first results obtained so far, and the current difficulties and open questions related to this young and evolving subfield.

  15. Transit Precovery: Determining Ephemerides for Long-Period TESS Detections with KELT Photometry

    NASA Astrophysics Data System (ADS)

    Yao, Xinyu; Pepper, Joshua; KELT Collaboration

    2018-01-01

    The majority of the known exoplanets were discovered by using the transit method such as with Kepler and the upcoming TESS mission. Unlike the Kepler mission which observed stars for several years, 74% of the area to be observed by TESS will only have an observational baseline of 27 days. For those planets with periods longer than 13 days, TESS can only capture one or two transits which means the true ephemerides are difficult to determine. Since the ground based all sky survey project KELT has much longer observation baseline (up to ten years) and monitors fields that overlap with TESS fields, by using KELT photometric data the ephemerides of the single and double-transit events that will be detected by TESS can be determined precisely. By conducting a simulation process to insert transits into KELT light curves and recover periods, we find that KELT photometry can be used to confirm ephemerides with high accuracy for planets of Neptune size or larger with orbital periods as long as a year, and therefore across a wide range of planet equilibrium temperatures. The resulting periods of the signals can then be used by follow-up teams, whether part of the TESS mission or the community-organized TFOP project, to plan and coordinate follow-up observations to confirm these cases as planets, eclipsing binaries, or other false positives, as well as conduct detailed transit observations with facilities like JWST or HST.This project makes use of data from the KELT survey, including support from The Ohio State University, Vanderbilt University, and Lehigh University.

  16. Ogle-2012-blg-0724lb: A Saturn Mass Planet Around an M-dwarf

    NASA Technical Reports Server (NTRS)

    Hirao, Y.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Koshimoto, N.; Abe, F.; Asakura, Y.; Bhattacharya, A.

    2016-01-01

    We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high-cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio q = (1.58 +/- 0.15) x 10(exp -3). By conducting a Bayesian analysis, we estimate that the host star is an M dwarf with a mass of M(sub L) = 0.29(+0.33/-0.16) solar mass located at D(sub L) = 6.7(+1.1/-1.2) kpc away from the Earth and the companion's mass is m(sub P) = 0.47(+0.54/-0.26) M(Jup). The projected planet- host separation is a falsum = 1.6(+0.4/-0.3) AU. Because the lens-source relative proper motion is relatively high, future highresolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M dwarf, and such systems are commonly detected by gravitational microlensing. This adds another example of a possible pileup of sub-Jupiters (0.2 less than m(sub P)/M(sub Jup) less than 1) in contrast to a lack of Jupiters (approximately 1-2 M(sub Jup)) around M dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M dwarfs.

  17. Leveraging the power of a planet population: Mass-radius relation, host star multiplicity, and composition distribution of Kepler's sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie K.

    With the advent of large, dedicated planet hunting surveys, the search for extrasolar planets has evolved into an effort to understand the properties and formation of a planet population whose characteristics continue to surprise the provincial perspective we've derived from our own Solar System. The Kepler Mission in particular has enabled a large number of these studies, as it was designed to stare simultaneously at thousands of stars for several years and its automated transit search pipeline enables fairly uniform detection criteria and characterizable completeness and false positive rates. With the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 REarth, Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such a rich dataset provides an unprecedented opportunity for rigorous statistical study of the physics of these planets that have no analogs in our Solar System. Contributing to this endeavor, I present the statistical characterization of several aspects of this population, including the comparison between Kepler's planet candidates and low-mass occurrence rates inferred from radial velocity detections, the relationship between a sub-Neptune's mass and its radius, the frequency of Kepler planet candidate host stars which have nearby visual companions as revealed by follow-up high resolution imaging, and the distribution of gaseous mass fractions that these sub-Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical Bayesian modeling to tie theory more closely to observations and have acquired near infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find that even within this sub-Neptune population these planets are very diverse in nature: there is intrinsic scatter in masses at a given radius, the planet host stars have visual companions at a wide range of separations, and the composition distribution spans two orders of magnitude, with a peak at 1% hydrogen and helium by mass. There is much work to be done to explain this diversity quantitatively, and especially to tie these results to various planet formation scenarios; I have no doubt that many more surprises await us.

  18. An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Mayo, Andrew W.; Louden, Tom; Rajpaul, Vinesh M.; Bonomo, Aldo S.; Buchhave, Lars A.; Kreidberg, Laura; Kristiansen, Martti H.; Lopez-Morales, Mercedes; Mortier, Annelies; Vanderburg, Andrew; Coffinet, Adrien; Ehrenreich, David; Lovis, Christophe; Bouchy, Francois; Charbonneau, David; Ciardi, David R.; Collier Cameron, Andrew; Cosentino, Rosario; Crossfield, Ian J. M.; Damasso, Mario; Dressing, Courtney D.; Dumusque, Xavier; Everett, Mark E.; Figueira, Pedro; Fiorenzano, Aldo F. M.; Gonzales, Erica J.; Haywood, Raphaëlle D.; Harutyunyan, Avet; Hirsch, Lea; Howell, Steve B.; Johnson, John Asher; Latham, David W.; Lopez, Eric; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2018-03-01

    Ultra-short period (USP) planets are a class of low-mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, and it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of a USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b, we thus inferred a radius of 1.51 ± 0.05 R {}\\oplus and a mass of 5.08 ± 0.41 M {}\\oplus , consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV data set, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of 0.30 ± 0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at ∼3000 K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.

  19. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  20. A study of the shortest-period planets found with Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.

    2014-05-20

    We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours frommore » two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R {sub ⊕}, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51 ± 0.07)% of G-dwarf stars, and (0.83 ± 0.18)% of K-dwarf stars.« less

  1. A Demonstration Setup to Simulate Detection of Planets outside the Solar System

    ERIC Educational Resources Information Center

    Choopan, W.; Ketpichainarong, W.; Laosinchai, P.; Panijpan, B.

    2011-01-01

    We constructed a simple demonstration setup to simulate an extrasolar planet and its star revolving around the system's centre of mass. Periodic dimming of light from the star by the transiting planet and the star's orbital revolution simulate the two major ways of deducing the presence of an exoplanet near a distant star. Apart from being a…

  2. Searching for Life: Early Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.

  3. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): Performance for Imaging of Earth-like Exoplanets.

    NASA Astrophysics Data System (ADS)

    Martinache, F.; Guyon, O.; Pluzhnik, E.; Ridgway, S.; Galicher, R.

    2004-12-01

    PIAA is one of the powerful applications of pupil remapping. A set of two aspheric mirrors changes the distribution of light and provides an apodized pupil, suitable for coronagraphy, without light loss on an absorbing mask. Deployed on to a space telescope with coronagraphic quality optics, it may allow planet detection from a 1.2 λ /d inner working distance and a full working field. We describe the performance of a PIAA version of NASA's Terrestrial Planet Finder (TPF) in terms of Signal to Noise Ratio and compare it to Classical Pupil Apodization (CPA) performance. We also discuss the necessity of using different occulting masks and give an estimate of the total exposure time for the planet detection phase of the TPF mission. This study is based on realistic Monte Carlo simulations of terrestrial planets orbiting around F, G, K stars within 30 pc around the solar system and includes planet phase and angular separation probabilities. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  4. Extreme Adaptive Optics for the Thirty Meter Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B; al., e

    2006-05-02

    Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10more » AU scales in regions such as Taurus and Ophiucus--this requires very small inner working distances that are only possible with a 30m or larger telescope. The second is a robust census of extrasolar giant planets orbiting mature nearby stars. The third is detailed spectral characterization of the brightest extrasolar planets. The final targets are circumstellar dust disks, including Zodiacal light analogs in the inner parts of other solar systems. To achieve these, PFI combines advanced wavefront sensors, high-order MEMS deformable mirrors, a coronagraph optimized for a finely-segmented primary mirror, and an integral field spectrograph.« less

  5. Deep L'- and M-band Imaging for Planets around Vega and epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Heinze, A. N.; Hinz, Philip M.; Kenworthy, Matthew; Miller, Douglas; Sivanandam, Suresh

    2008-11-01

    We have obtained deep adaptive optics (AO) images of Vega and epsilon Eri to search for planetary mass companions. We observed at the MMT in the L' (3.8 μm) and M (4.8 μm) bands using Clio, a recently commissioned imager optimized for these wavelengths. Observing at these long wavelengths represents a departure from the H band (1.65 μm) more commonly used for AO imaging searches for extrasolar planets. The long wavelengths offer better predicted planet/star flux ratios and cleaner (higher Strehl) AO images at the cost of lower diffraction-limited resolution and higher sky background. We have not detected any planets or planet candidates around Vega or epsilon Eri. We report the sensitivities obtained around both stars, which correspond to upper limits on any planetary companions which may exist. The sensitivities of our L'- and M-band observations are comparable to those of the best H-regime observations of these stars. For epsilon Eri, our M-band observations deliver considerably better sensitivity to close-in planets than any previously published results, and we show that the M band is by far the best wavelength choice for attempts at ground-based AO imaging of the known planet epsilon Eri b. The Clio camera itself, with MMTAO, may be capable of detecting epsilon Eri b at its 2010 apastron, given a multinight observing campaign. Clio appears to be the only currently existing AO imager that has a realistic possibility of detecting epsilon Eri b. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  6. The atmospheres of earthlike planets after giant impact events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupu, R. E.; Freedman, Richard; Zahnle, Kevin

    2014-03-20

    It is now understood that the accretion of terrestrial planets naturally involves giant collisions, the moon-forming impact being a well-known example. In the aftermath of such collisions, the surface of the surviving planet is very hot and potentially detectable. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting predominantly of CO{sub 2} and H{sub 2}O. The atmospheric chemistry and structure are computed self-consistently for atmospheres in equilibrium with hot surfaces with composition reflecting either the bulk silicate Earth (which includes the crust, mantle, atmosphere, and oceans) or Earth's continental crust.more » We account for all major molecular and atomic opacity sources including collision-induced absorption. We find that these atmospheres are dominated by H{sub 2}O and CO{sub 2}, while the formation of CH{sub 4} and NH{sub 3} is quenched because of short dynamical timescales. Other important constituents are HF, HCl, NaCl, and SO{sub 2}. These are apparent in the emerging spectra and can be indicative that an impact has occurred. The use of comprehensive opacities results in spectra that are a factor of two lower brightness temperature in the spectral windows than predicted by previous models. The estimated luminosities show that the hottest post-giant-impact planets will be detectable with near-infrared coronagraphs on the planned 30 m class telescopes. The 1-4 μm will be most favorable for such detections, offering bright features and better contrast between the planet and a potential debris disk. We derive cooling timescales on the order of 10{sup 5-6} yr on the basis of the modeled effective temperatures. This leads to the possibility of discovering tens of such planets in future surveys.« less

  7. Observing exoplanet populations with high-precision astrometry

    NASA Astrophysics Data System (ADS)

    Sahlmann, Johannes

    2012-06-01

    This thesis deals with the application of the astrometry technique, consisting in measuring the position of a star in the plane of the sky, for the discovery and characterisation of extra-solar planets. It is feasible only with a very high measurement precision, which motivates the use of space observatories, the development of new ground-based astronomical instrumentation and of innovative data analysis methods: The study of Sun-like stars with substellar companions using CORALIE radial velocities and HIPPARCOS astrometry leads to the determination of the frequency of close brown dwarf companions and to the discovery of a dividing line between massive planets and brown dwarf companions; An observation campaign employing optical imaging with a very large telescope demonstrates sufficient astrometric precision to detect planets around ultra-cool dwarf stars and the first results of the survey are presented; Finally, the design and initial astrometric performance of PRIMA, ! a new dual-feed near-infrared interferometric observing facility for relative astrometry is presented.

  8. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-02

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  9. Observing the ExoEarth: Simulating the Retrieval of Exoplanet Parameters Using DSCOVR

    NASA Astrophysics Data System (ADS)

    Kane, S.; Cowan, N. B.; Domagal-Goldman, S. D.; Herman, J. R.; Robinson, T.; Stine, A.

    2017-12-01

    The field of exoplanets has rapidly expanded from detection to include exoplanet characterization. This has been enabled by developments such as the detection of terrestrial-sized planets and the use of transit spectroscopy to study exoplanet atmospheres. Studies of rocky planets are leading towards the direct imaging of exoplanets and the development of techniques to extract their intrinsic properties. The importance of properties such as rotation, albedo, and obliquity are significant since they inform planet formation theories and are key input parameters for Global Circulation Models used to determine surface conditions, including habitability. Thus, a complete characterization of exoplanets for understanding habitable climates requires the ability to measure these key planetary parameters. The retrieval of planetary rotation rates, albedos, and obliquities from highly undersampled imaging data can be honed using satellites designed to study the Earth's atmosphere. In this talk I will describe how the Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using data for the sunlit hemisphere of the Earth. Our methods use the high-resolution DSCOVR-EPIC images to simulate the Earth as an exoplanet, by deconvolving the images to match a variety of expected exoplanet mission requirements, and by comparing EPIC data with the cavity radiometer data from DSCOVR-NISTAR that views the Earth as a single pixel. Through this methodology, we are creating a grid of retrieval states as a function of image resolution, observing cadence, passband, etc. Our modeling of the DSCOVR data will provide an effective baseline from which to develop tools that can be applied to a variety of exoplanet imaging data.

  10. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Jeffrey L.; Thompson, Susan E.; Burke, Christopher J.

    The Kepler mission has to date found almost 6000 planetary transit-like signals, utilizing three years of data for over 170,000 stars at extremely high photometric precision. Due to its design, contamination from eclipsing binaries, variable stars, and other transiting planets results in a significant number of these signals being false positives (FPs). This directly affects the determination of the occurrence rate of Earth-like planets in our Galaxy, as well as other planet population statistics. In order to detect as many of these FPs as possible, we perform ephemeris matching among all transiting planet, eclipsing binary, and variable star sources. Wemore » find that 685 Kepler Objects of Interest (KOIs)—12% of all those analyzed—are FPs as a result of contamination, due to 409 unique parent sources. Of these, 118 have not previously been identified by other methods. We estimate that ∼35% of KOIs are FPs due to contamination, when performing a first-order correction for observational bias. Comparing single-planet candidate KOIs to multi-planet candidate KOIs, we find an observed FP fraction due to contamination of 16% and 2.4% respectively, bolstering the existing evidence that multi-planet KOIs are significantly less likely to be FPs. We also analyze the parameter distributions of the ephemeris matches and derive a simple model for the most common type of contamination in the Kepler field. We find that the ephemeris matching technique is able to identify low signal-to-noise FPs that are difficult to identify with other vetting techniques. We expect FP KOIs to become more frequent when analyzing more quarters of Kepler data, and note that many of them will not be able to be identified based on Kepler data alone.« less

  12. Star-planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Eggenberger, Patrick; Privitera, Giovanni; Georgy, Cyril; Ekström, Sylvia; Alibert, Yann; Lovis, Christophe

    2017-06-01

    The surface rotations of some red giants are so fast that they must have been spun up by tidal interaction with a close companion, either another star, a brown dwarf, or a planet. We focus here on the case of red giants that are spun up by tidal interaction with a planet. When the distance between the planet and the star decreases, the spin period of the star decreases, the orbital period of the planet decreases, and the reflex motion of the star increases. We study the change rate of these three quantities when the circular orbit of a planet of 15 MJ that initially orbits a 2 M⊙ star at 1 au shrinks under the action of tidal forces during the red giant phase. We use stellar evolution models coupled with computations of the orbital evolution of the planet, which allows us to follow the exchanges of angular momentum between the star and the orbit in a consistent way. We obtain that the reflex motion of the red giant star increases by more than 1 m s-1 per year in the last 40 yr before the planet engulfment. During this phase, the reflex motion of the star is between 660 and 710 m s-1. The spin period of the star increases by more than about 10 min per year in the last 3000 yr before engulfment. During this period, the spin period of the star is shorter than 0.7 yr. During this same period, the variation in orbital period, which is shorter than 0.18 yr, is on the same order of magnitude. Changes in reflex-motion and spin velocities are very small and thus most likely out of reach of being observed. The most promising way of detecting this effect is through observations of transiting planets, that is, through changes of the beginning or end of the transit. For the relatively long orbital periods expected around red giants, long observing runs of typically a few years are needed. Interesting star-planet systems that currently are in this stage of orbit-shrinking would be red giants with fast rotation (above typically 4-5 km s-1), a low surface gravity (log g lower than 2), and having a planet at a distance typically smaller than about 0.4-1 au, depending on log g. A space mission like PLATO might be of great interest for detecting planets that are on the verge of being engulfed by red giants. The discovery of a few systems, even only one, would provide very interesting clues about the physics of tidal interaction between a red giant and a planet.

  13. Grounded Eyes on Distant Watery Skies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    What can we learn about exoplanets from high-resolution, ground-based observations? A new view of the nearby upsilon Andromedae system has revealed a great deal about the systems closest-in exoplanet including the presence of water vapor in its atmosphere.Search for WobblesIllustration of how spectral lines shift when observing two objects that orbit each other. Click here to see a simulation of this process. [R. Pogge, OSU]The upsilon Andromedae system is located roughly 44 light-years from Earth. In 1997, a hot Jupiter exoplanet was discovered orbiting the primary star, and more planets were found not long after making this the first multiple-planet system discovered around a main-sequence star.These planets, however, were not discovered due to transits; their orbital planes are not aligned with our line of sight to the star. Instead, the hiddenplanets were first detected via the stars spectrum. The radial velocity method of detecting exoplanets searches for telltale periodic shifts of a stars spectral lines, which are induced by the orbiting planets gravitational tugs.In recent years, ground-based spectroscopy has become ever more powerful; thus revisiting old systems with higher resolution instruments can often open a whole new world of data to us. In the case of a recent study, a team of astronomers led by Danielle Piskorz (California Institute of Technology) revisited upsilon Andromedae with the high-resolution Near Infrared Spectrometer (NIRSPEC) at the Keck telescope in Hawaii. Their goal: to gather data about upsilon Andromedae b, the closest-in planet in the system.Top-down schematic of the orbit of upsilon Andromedae b around its star and the location in the orbit of the authors observations. [Piskorz et al. 2017]An Unusual ArchitecturePiskorz and collaborators obtained 13 different sets of observations of upsilon Andromedae with NIRSPEC across three different wavelength bands. By treating the starplanet system as though it were a spectroscopic binary, the authorshigh-resolution observations allowed them to resolve not only the stellar spectrum, but also the spectral lines fromthe hot Jupiter exoplanet itself.Obtaining a thermal spectrum of the planet permitted the team to break the usual observational degeneracy that occurs with exoplanet observations: they were able to disentangle the planet mass and its orbital inclination angle. Piskorz and collaborators found that the planet is roughly 1.7 Jupiter masses and its orbit is inclined 24 relative to our line of sight.Artists illustration of the closest three planets in the upsilon Andromedae system. The system also has a distant red-dwarf binary companion, as well as a possible fourth planet. [NASA/ESA/A. Feild (STScI)]These measurements of the orbital structure of upsilon Andromedae are critical for understanding this unusual system. With non-coplanar planets and a distant red-dwarf companion, the upsilon Andromedae system has long been suspected to lie on the precipice of instability. The new measurements of upsilon Andromeda bs orbital properties will help us to better understand how the system may have formed, evolved, and survived to today.Water FoundOne of the biggest benefits of spectroscopy of an exoplanet is the potentialto learn about its atmospheric composition. Using their NIRSPEC observations of upsilon Andromedae b and detailed atmospheric modeling, Piskorz and collaborators found that the planets opacity structure is dominated by water vapor at the wavelengths they probed.This detection of water vapor in upsilon Andromedae bs atmosphere and the constraints on the planets orbital properties demonstrate the power and potential of ground-based, high-resolution spectroscopy for characterizing exoplanets and constraining the architecture of distantsolar systems.CitationDanielle Piskorz et al 2017 AJ 154 78. doi:10.3847/1538-3881/aa7dd8

  14. Planets Under a Red Sun Artist Concept

    NASA Image and Video Library

    2011-04-08

    This artist concept illustrates a young, red dwarf star surrounded by three planets. NASA Galaxy Evolution Explorer is helping to identify young, red dwarf stars that are close to us by detecting their ultraviolet light.

  15. Super-Earths, Warm Neptunes, and Hot Jupiters: Transmission Spectroscopy for Comparative Planetology

    NASA Astrophysics Data System (ADS)

    Fraine, Jonathan D.; Deming, Drake; Jordan, Andres; Knutson, Heather

    2015-01-01

    The detections and non-detections of molecular species in transiting planets-- such as water, methane, and carbon monoxide-- lead to greater understanding of planet formation and evolution. Recent significant advances in both theoretical and observational discoveries from planets like HD189733b, HD209458b, GJ436b, as well as our own work with HAT-P-11b and GJ1214b, have shown that the range of measurable atmospheric properties spans from clear, molecular absorption dominated worlds to opaque worlds, with cloudy, hazy, or high mean molecular weight atmospheres. Characterization of significant non-detections allowed us to infer the existence of opaque cloud layers at very high altitudes or mean molecular weights upwards of ~1000x solar. The prevalence of these atmospheres was unexpected from extrapolations of solar system analogs. I will present our published results from GJ1214b and HAT-P-11b, as well as our recent work using both Spitzer and Magellan. Our results, combined with transmission spectra obtained for other similar planets, connect to develop a better understanding about the nature of these distant and alien worlds

  16. Search for spectroscopical signatures of transiting HD 209458b's exosphere

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Coustenis, A.; Schneider, J.; St Gilles, R.; Mayor, M.; Queloz, D.; Kaufer, A.

    2001-05-01

    Following recent attempts to detect the exosphere of the extra-solar planet 51 Pegb in the infrared (Coustenis et al. \\cite{cou97}, \\cite{cou98}; Rauer et al. \\cite{rau00a}), we discuss here a search for optical spectroscopic signatures from a gaseous extended envelope (called exosphere) surrounding the planet HD 209458b. This planet has a demonstrated photometric transit (Charbonneau et al. \\cite{cha00a}; Henry et al. \\cite{hen00}), thus offering an increased probability for the spectroscopic detection of such an envelope. Therefore it is the best known candidate for probing the exospheric composition of a giant planet, orbiting a Sun-like star at a short distance. The observations were performed with UVES at the VLT and cover most of the 328-669 nm range. We did not detect HD 209458b's exosphere at a level of 1%, a value close to the predictions. We discuss here the first results obtained and their limitations, as well as future prospective. Based on public data from the UVES Commissioning at the ESO 8.2~m Kueyen telescope operated on Paranal Observatory, Chile.

  17. Detectable close-in planets around white dwarfs through late unpacking

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Gänsicke, Boris T.

    2015-02-01

    Although 25-50 per cent of white dwarfs (WDs) display evidence for remnant planetary systems, their orbital architectures and overall sizes remain unknown. Vibrant close-in (≃1 R⊙) circumstellar activity is detected at WDs spanning many Gyr in age, suggestive of planets further away. Here we demonstrate how systems with 4 and 10 closely packed planets that remain stable and ordered on the main sequence can become unpacked when the star evolves into a WD and experience pervasive inward planetary incursions throughout WD cooling. Our full-lifetime simulations run for the age of the Universe and adopt main-sequence stellar masses of 1.5, 2.0 and 2.5 M⊙, which correspond to the mass range occupied by the progenitors of typical present-day WDs. These results provide (i) a natural way to generate an ever-changing dynamical architecture in post-main-sequence planetary systems, (ii) an avenue for planets to achieve temporary close-in orbits that are potentially detectable by transit photometry and (iii) a dynamical explanation for how residual asteroids might pollute particularly old WDs.

  18. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  19. CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca

    We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less

  20. KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit

    NASA Astrophysics Data System (ADS)

    Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin

    2014-03-01

    Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).

  1. Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2002-01-01

    This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T{sub eff} = 2300 K to T{sub eff} = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels onmore » detectable atmospheric features that indicate habitability on Earth, namely, H{sub 2}O, O{sub 3}, CH{sub 4}, N{sub 2}O, and CH{sub 3}Cl. To observe signatures of life—O{sub 2}/O{sub 3} in combination with reducing species like CH{sub 4}—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O{sub 2} spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N{sub 2}O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH{sub 3}Cl could become detectable, depending on the depth of the overlapping N{sub 2}O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.« less

  3. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  4. Planet Hunters: New Kepler Planet Candidates from Analysis of Quarter 2

    NASA Astrophysics Data System (ADS)

    Lintott, Chris J.; Schwamb, Megan E.; Barclay, Thomas; Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew; Lynn, Stuart; Parrish, Michael; Batalha, Natalie; Bryson, Steve; Jenkins, Jon; Ragozzine, Darin; Rowe, Jason F.; Schwainski, Kevin; Gagliano, Robert; Gilardi, Joe; Jek, Kian J.; Pääkkönen, Jari-Pekka; Smits, Tjapko

    2013-06-01

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R ⊕. The latter star has an additional known planet candidate with a radius of 5.05 R ⊕ and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged. .

  5. Exploring Disks Around Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515

  6. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in the inner circumstellar regions of two Herbig Ae stars, AB Aurigae and MWC 758. I analyze the temperature of the emitting gas by constructing rotational diagrams, showing that the temperature of the gas in both systems is approximately 700K. I calculate a secure abundance of emitting OH molecules in the upper vibrational state, and discuss the ramifications of various excitation processes on the extrapolation to the total number of OH molecules. I also calculate an inner radius for the emitting gas, showing that the derived Rin is equivalent to that found by near-IR imaging. I compare these results to models of circumstellar disk chemistry as well as observations of other chemical diagnostics, and discuss further improvements to excitation models that are necessary to fully understand the formation and thermal conditions of the detected OH gas.

  7. Direct imaging of extra-solar planets in star forming regions. Lessons learned from a false positive around IM Lupi

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Montagnier, G.; Riaud, P.; Surdej, J.; Ducourant, C.; Augereau, J.-C.; Röttinger, S.; Girard, J.; Krist, J.; Stapelfeldt, K.

    2012-08-01

    Context. Most exoplanet imagers consist of ground-based adaptive optics coronagraphic cameras which are currently limited in contrast, sensitivity and astrometric precision, but advantageously observe in the near-infrared window (1-5 μm). Because of these practical limitations, our current observational aim at detecting and characterizing planets puts heavy constraints on target selection, observing strategies, data reduction, and follow-up. Most surveys so far have thus targeted young systems (1-100 Myr) to catch the putative remnant thermal radiation of giant planets, which peaks in the near-infrared. They also favor systems in the solar neighborhood (d < 80 pc), which eases angular resolution requirements but also ensures a good knowledge of the distance and proper motion, which are critical to secure the planet status, and enable subsequent characterization. Aims: Because of their youth, it is very tempting to target the nearby star forming regions, which are typically twice as far as the bulk of objects usually combed for planets by direct imaging. Probing these interesting reservoirs sets additional constraints that we review in this paper by presenting the planet search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup, which is part of the Lupus star forming region (140-190 pc). Methods: We show and discuss why age determination, the choice of evolutionary model for both the central star and the planet, precise knowledge of the host star proper motion, relative or absolute (between different instruments) astrometric accuracy (including plate scale calibration), and patience are the key ingredients for exoplanet searches around more distant young stars. Results: Unfortunately, most of the time, precision and perseverance are not paying off: we discovered a candidate companion around IM Lup in 2008, which we report here to be an unbound background object. We nevertheless review in details the lessons learned from our endeavor, and additionally present the best detection limits ever calculated for IM Lup. We also accessorily report on the successful use of innovative data reduction techniques, such as the damped-LOCI and iterative roll subtraction. Based on the ESO observing programs 380.C-0910, 084.C-0444, 287.C-5040; and HST observing program 10177.

  8. Observational Constraints on the Orbit and Location of Planet Nine in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.; Batygin, Konstantin

    2016-06-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, the recently proposed perturber in a distant eccentric orbit in the outer solar system. We compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects (KBOs) and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric KBOs. Allowed orbits, which confine KBOs with semimajor axis beyond 380 au, have perihelia roughly between 150 and 350 au, semimajor axes between 380 and 980 au, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30°to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet’s detection and use these surveys to rule out approximately two-thirds of the planet’s orbit. Planet Nine is likely near aphelion with an approximate brightness of 22< V< 25. At opposition, its motion, mainly due to parallax, can easily be detected within 24 hours.

  9. Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Jofré, E.; Martioli, E.; Flores, M.; Petrucci, R.; Jaque Arancibia, M.

    2017-07-01

    Aims: We aim to explore the possible chemical signature of planet formation in the binary system HAT-P-4 by studying the trends of abundance vs. condensation temperature Tc. The star HAT-P-4 hosts a planet detected by transits, while its stellar companion does not have any detected planet. We also study the lithium content, which might shed light on the problem of Li depletion in exoplanet host stars. Methods: We derived for the first time both stellar parameters and high-precision chemical abundances by applying a line-by-line full differential approach. The stellar parameters were determined by imposing ionization and excitation equilibrium of Fe lines, with an updated version of the FUNDPAR program, together with ATLAS9 model atmospheres and the MOOG code. We derived detailed abundances of different species with equivalent widths and spectral synthesis with the MOOG program. Results: The exoplanet host star HAT-P-4 is found to be 0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies. We rule out a possible peculiar composition for each star, such as is the case for λ Boötis and δ Scuti, and neither is this binary a blue straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Li abundance in HAT-P-4 is greater than that of its companion by 0.3 dex, which is contrary to the model that explains the Li depletion by the presence of planets. We propose a scenario where at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly as a result of the migration of the giant planet. This explains the higher metallicity, the higher Li content, and the negative Tc trend we detected. A similar scenario was recently proposed for the solar-twin star HIP 68468, which is in some aspects similar to HAT-P-4. We estimate a mass of at least Mrock 10 M⊕ locked in refractory material in order to reproduce the observed Tc trends and metallicity. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the National Research Council (Canada), CONICYT (Chile), Min. de Ciencia y Tecnología (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).The average abundances, the line-by-line data and the reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/L4

  10. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  11. Detection of Lyman-alpha emission from the Saturnian disk and from the ring system

    NASA Technical Reports Server (NTRS)

    Weiser, H.; Vitz, R. C.; Moos, H. W.

    1977-01-01

    A rocket-borne spectrograph detected H I Lyman-alpha emission from the disk of Saturn and from the vicinity of the planet. The signal is consistent with an emission brightness of 700 rayleighs for the disk and 200 rayleighs for the vicinity of Saturn. The emission from the vicinity of the planet may be due to a hydrogen atmosphere associated with the Saturnian ring system.

  12. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Vigan, A.; Bonnefoy, M.; Desidera, S.; Bonavita, M.; Mesa, D.; Boccaletti, A.; Buenzli, E.; Carson, J.; Delorme, P.; Hagelberg, J.; Montagnier, G.; Mordasini, C.; Quanz, S. P.; Segransan, D.; Thalmann, C.; Beuzit, J.-L.; Biller, B.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Messina, S.; Meyer, M.; Mouillet, D.; Moutou, C.; Reggiani, M.; Schlieder, J. E.; Zurlo, A.

    2015-01-01

    Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (≥5-6 AU) orbits. Aims: In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods: We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results: During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD 8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD 8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD 61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 MJup and 10 MJup respectively, if we consider a uniform input distribution and a confidence level of 95%. Conclusions: The results from this survey agree with earlier programs emphasizing that massive, gas giant companions on wide orbits around solar-type stars are rare. These results will be part of a broader analysis of a total of ~210 young, solar-type stars to bring further statistical constraints for theoretical models of planetary formation and evolution. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252A).Tables 2 and 6 are available in electronic form at http://www.aanda.org

  13. Multiple spiral patterns in the transitional disk of HD 100546

    NASA Astrophysics Data System (ADS)

    Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.

    2013-12-01

    Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ. Based on data retrieved from the Gemini archive.

  14. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of critiquing scientists' discovery encouraged students' articulation of scientific uncertainty sources in different ways.

  15. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from the stellar atmosphere at the pericentre. We also detected three small dims in the phase-folded light curve. The combination of two of them agrees with the theoretical characteristics expected for secondary eclipse. Conclusions: Kepler-91b could be the previous stage of the planet engulfment, which has recently been detected for BD+48 740. Our estimations show that Kepler-91b will be swallowed by its host star in less than 55 Myr. Among the confirmed planets around giant stars, this is the closest to its host star. At pericentre, the star subtends an angle of 48°, covering around 10% of the sky as seen from the planet. The planetary atmosphere seems to be inflated probably due to the high stellar irradiation. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org

  16. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  17. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph at ESO's La Silla Observatory and announced two years ago -- this star was known to harbour a system with a Neptune-sized planet (ESO 30/05) and two super-Earths (ESO 22/07). With the discovery of Gliese 581 e, the planetary system now has four known planets, with masses of about 1.9 (planet e), 16 (planet b), 5 (planet c), and 7 Earth-masses (planet d). The planet furthest out, Gliese 581 d, orbits its host star in 66.8 days. "Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star," says team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. "‘d' could even be covered by a large and deep ocean -- it is the first serious 'water world' candidate," continued Udry. The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star's motion -- only about 7 km/hour, corresponding to brisk walking speed -- that can just be detected on Earth with today's most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced. Even so, detecting these tiny signals is still a challenge, and the discovery of Gliese 581 e and the refinement of Gliese 581 d's orbit were only possible due to HARPS's unique precision and stability. "It is amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 -- the one around 51 Pegasi," says Mayor. "The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years." The astronomers are confident that they can still do better. "With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable," says Bonfils. "The hunt continues." Notes This discovery was announced today at the JENAM conference during the European Week of Astronomy & Space Science, which is taking place at the University of Hertfordshire, UK. The results have also been submitted for publication in the research journal Astronomy & Astrophysics ("The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system", by Mayor et al., 2009). The team is composed of M. Mayor, S. Udry, C. Lovis, F. Pepe and D. Queloz (Geneva Observatory, Switzerland), X. Bonfils, T. Forveille , X. Delfosse, H. Beust and C. Perrier (LAOG, France), N. C. Santos (Centro de Astrofisica,Universidade de Porto), F. Bouchy (IAP, Paris, France) and J.-L. Bertaux (Service d'Aéronomie du CNRS, Verrières-le-Buisson, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  18. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  19. Review of methodology and technology available for the detection of extrasolar planetary systems.

    PubMed

    Tarter, J C; Black, D C; Billingham, J

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  20. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  1. The Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (<100 Myr, <75 pc) and adolescent (<300 Myr, <35 pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides accurate and calibrated recovery of exoplanet spectra. We will produce a complete archive of all reduced GPI data products (supplementing the existing Gemini archive of raw data) for use by our collaboration, and release that archive to the public on an 18-month cycle. Most importantly, we will execute the GPI observations, initially through classical telescope visits, transitioning to remote and queue modes as our techniques are refined. As the first direct-imaging planet search with statistical depth comparable to Doppler planet detection and the first to probe into the snow line, the GPI Exoplanet Survey will provide strong constraints on paradigms for planet formation, completing the picture of the giant planet distribution throughout other solar systems, and also illuminating its evolution with stellar age and mass. We will deliver a catalog of detected exoplanets— the principal legacy of this campaign—released for follow-up by the astronomical community within 18 months of observation, as well as searchable archive of fully reduced images and detection limits for all stars surveyed. For each detected planet, we will produce estimated effective temperatures, luminosities, and semi-major axes: for a subset, high-SNR fiducial spectra, orbital eccentricities, and dynamical characterization through polarimetric imaging of attendant debris disks. GPI will complete final acceptance testing this month (May 2013) and is now ready to ship to Chile for first light in September 2013. The GPI survey will provide the best-yet view of the nature of wide-orbit planetary companions, informing our knowledge of solar system formation to guide future NASA planet hunting missions, while simultaneously offering a real- world program using the techniques - from integral field spectroscopy to advanced coronagraphy - that will someday be used to directly image Earthlike planets from space.

  2. Oxygen in the stratospheres of the giant planets and Titan

    NASA Astrophysics Data System (ADS)

    Feuchtgruber, H.; Lellouch, E.; Encrenaz, Th.; Bezard, B.; Coustenis, A.; Drossart, P.; Salama, A.; de Graauw, Th.; Davis, G. R.

    1999-03-01

    Infrared spectra of the Short-Wavelength Spectrometer (SWS) of ISO at wavelengths between 25 - 45 μm have provided the first detection of stratospheric H2O on all four giant planets and Titan. Together with SWS observations of CO2 at 14.98 μm, leading to first detections on Neptune, Saturn and Jupiter an external source of oxygen is required to explain the derived upper stratospheric mixing ratios of up to several ppb at mbar-μbar levels. We provide an overview on the required amounts of external oxygen fluxes and a detailed discussion on the various scenarios for the origin of CO2 in the stratospheres of the giant planets.

  3. Planetary protection - assaying new methods

    NASA Astrophysics Data System (ADS)

    Nellen, J.; Rettberg, P.; Horneck, G.

    Space age began in 1957 when the USSR launched the first satellite into earth orbit. In response to this new challenge the International Council for Science, formerly know as International Council of Scientific Unions (ICSU), established the Committee on Space Research (COSPAR) in 1958. The role of COSPAR was to channel the international scientific research in space and establish an international forum. Through COSPAR the scientific community agreed on the need for screening interplanetary probes for forward (contamination of foreign planets) and backward (contamination of earth by returned samples/probes) contamination. To prevent both forms of contamination a set of rules, as a guideline was established. Nowadays the standard implementation of the planetary protection rules is based on the experience gained during NASA's Viking project in 1975/76. Since then the evaluation-methods for microbial contamination of spacecrafts have been changed or updated just slowly. In this study the standard method of sample taking will be evaluated. New methods for examination of those samples, based on the identification of life on the molecular level, will be reviewed and checked for their feasibility as microbial detection systems. The methods will be examined for their qualitative (detection and verification of different organisms) and quantitative (detection limit and concentration verification) qualities. Amongst the methods analyzed will be i.e. real-time / PCR (poly-chain-reaction), using specific primer-sets for the amplification of highly conserved rRNA or DNA regions. Measurement of intrinsic fluorescence, i.e ATP using luciferin-luciferase reagents. The use of FAME (fatty acid methyl esters) and microchips for microbial identification purposes. The methods will be chosen to give a good overall coverage of different possible molecular markers and approaches. The most promising methods shall then be lab-tested and evaluated for their use under spacecraft assembly conditions. Since mars became one of the most sought-after planets in our solar system and will be visited by man-made probes quiet often in the near future, planetary protection is as important as never before.

  4. On the Growth and Detectability of Land Plants on Habitable Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Cui, Duo; Tian, Feng; Wang, Yuwei; Li, Changshen; Yu, Chaoqing; Yu, Le

    2017-12-01

    One signature of life on Earth is the vegetation red edge (VRE) feature of land plants, a dramatic change of reflectivity at wavelength near 0.7 μm. Potentially habitable planets around M dwarfs are tidally locked, which can limit the distribution of land plants. In this study, we used a biogeochemical model to investigate the distribution of land plants on potentially habitable planets around M dwarfs driven by climate data produced in a general circulation model (GCM). When considering the effects of clouds, the observation time needed for VRE detection on nearby p = 1 exoplanets around nearby M dwarfs is on the order of days using a 25 m2 telescope if a large continent faces Earth during observations. For p = 1.5 exoplanets, the detection time could be similar if land plants developed the capability to endure a dark/cold environment for extended periods of time and the continent configuration favors observations. Our analysis suggests that hypothetical exovegetation VRE features are easier to detect than Earth vegetation and that VRE detection is possible for nearby exoplanets even under cloudy conditions.

  5. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    NASA Astrophysics Data System (ADS)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  6. Probing the TRAPPIST-1 System with K2, JWST, and Beyond

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric; TRAPPIST-1 Collaboration

    2018-01-01

    I will discuss recent work I have done to characterize TRAPPIST-1, a nearby exoplanet system hosting seven terrestrial-size planets, three of which are in the habitable zone. In the first part of this talk, I will report on my efforts to constrain the orbital properties of the smallest and farthest out planet in the system, TRAPPIST-1h, from K2 data de-trended with my systematics correction pipeline, EVEREST. I will further discuss how the detection of TRAPPIST-1h with K2 confirmed the intricate resonant structure of the system, whose planets are all linked to their neighbors via three-body Laplace resonances. This is the longest known chain in any exoplanet system and holds important clues for the formation and migration of the TRAPPIST-1 planets. In the second part of this talk, I will discuss ongoing work to characterize the TRAPPIST-1 system via planet-planet occultations (PPOs), events during which one planet occults the disk of another, imparting a small photometric signal as its thermal or reflected light is blocked. Because of the extreme coplanarity of the system, PPOs should occur on average 1 - 2 times per day in TRAPPIST-1. I will discuss how the upcoming James Webb Space Telescope (JWST) will likely be able to detect PPOs in this system in the mid-infrared, and how these can be used to place exquisite constraints on the masses, eccentricities, and mutual inclinations of its planets. I will also show how photodynamical modeling of these events can eventually be used to reveal a planet's day/night temperature contrast, infer various atmospheric properties, and construct crude two-dimensional surface maps of alien worlds.

  7. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    PubMed

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  8. Kepler-444 Planetary System Artist Concept

    NASA Image and Video Library

    2015-01-28

    The tightly packed system, named Kepler-444, is home to five small planets in very compact orbits. The planets were detected from the dimming that occurs when they transit the disk of their parent star, as shown in this artist conception.

  9. A detailed study of lithium in 107 CHEPS dwarf stars

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.; Jenkins, J. S.; Ivanyuk, O. M.; Jones, H. R. A.; Kaminsky, B. M.; Lyubchik, Yu. P.; Yakovina, L. A.

    2018-03-01

    Context. We report results from lithium abundance determinations using high resolution spectral analysis of the 107 metal-rich stars from the Calan-Hertfordshire Extrasolar Planet Search programme. Aims: We aim to set out to understand the lithium distribution of the population of stars taken from this survey. Methods: The lithium abundance taking account of non-local thermodynamical equilibrium effects was determined from the fits to the Li I 6708 Å resonance doublet profiles in the observed spectra. Results: We find that a) fast rotators tend to have higher lithium abundances; b) log N(Li) is higher in more massive and hot stars; c) log N(Li) is higher in stars of lower log g; d) stars with the metallicities >0.25 dex do not show the lithium lines in their spectra; e) most of our planet hosts rotate slower; and f) a lower limit of lithium isotopic ratio is 7Li/6Li > 10 in the atmospheres of two stars with planets (SWP) and two non-SWP stars. Conclusions: Measurable lithium abundances were found in the atmospheres of 45 stars located at distances of 20-170 pc from the Sun, for the other 62 stars the upper limits of log N(Li) were computed. We found well defined dependences of lithium abundances on Teff, V sin i, and less pronounced for the log g. In case of V sin i we see two sequences of stars: with measurable lithium and with the upper limit of log N(Li). About 10% of our targets are known to host planets. Only two SWP have notable lithium abundances, so we found a lower proportion of stars with detectable Li among known planet hosts than among stars without planets. However, given the small sample size of our planet-host sample, our analysis does not show any statistically significant differences in the lithium abundance between SWP and stars without known planets.

  10. Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; den Hartog, R.; Hanot, C.; Stark, C.

    2010-01-01

    Context. Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path toward the definition of instruments able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on the amount of exozodiacal dust in the habitable zone of the target stars. Aims: We assess the impact of exozodiacal clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. The first part of the study is dedicated to the effect of the disc brightness on the number of targets that can be surveyed and studied by spectroscopy during the mission lifetime. In the second part, we address the impact of asymmetric structures in the discs such as clumps and offset which can potentially mimic the planetary signal. Methods: We use the DarwinSIM software which was designed and validated to study the performance of space-based nulling interferometers. The software has been adapted to handle images of exozodiacal discs and to compute the corresponding demodulated signal. Results: For the nominal mission architecture with 2-m aperture telescopes, centrally symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that this tolerable dust density goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. Conclusions: Whereas the disc brightness only affects the integration time, the presence of clumps or offset is more problematic and can hamper the planet detection. Based on the worst-case scenario for debris disc structures, the upper limit on the tolerable exozodiacal dust density is approximately 15 times the density of the solar zodiacal cloud. This gives the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions. FNRS Postdoctoral Researcher

  11. K2-111 b - a short period super-Earth transiting a metal poor, evolved old star

    NASA Astrophysics Data System (ADS)

    Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent

    2017-07-01

    Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more massive object (planet, brown dwarf, or star) has been detected in the radial velocity signature. With an age of ≳10 Gyr this system is one of the oldest where planets are hitherto detected. Further studies of this planetary system are important since it contains information about the planetary formation process during a very early epoch of the history of our Galaxy.

  12. Robo-AO Kepler Planetary Candidate Survey. III. Adaptive Optics Imaging of 1629 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Atkinson, Dani; Baker, Anna; Roberts, Sarah; Ciardi, David R.

    2017-02-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results of our search for stars nearby 1629 Kepler planet candidate hosts. With survey sensitivity to objects as close as ˜0.″15, and magnitude differences Δm ≤slant 6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not been previously imaged in high resolution. We measure an overall nearby-star probability for Kepler planet candidates of 12.6 % +/- 0.9 % at separations between 0.″15 and 4.″0. Particularly interesting KOI systems are discussed, including 26 stars with detected companions that host rocky, habitable zone candidates and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity, using the combined data set of Baranec et al. and this paper. Our previous 2σ result of a low detected nearby star fraction of KOIs hosting close-in giant planets is less apparent in this larger data set. We also find a significant correlation between detected nearby star fraction and KOI number, suggesting possible variation between early and late Kepler data releases.

  13. Dysonian SETI as a "Shortcut" to Detecting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2016-12-01

    The search for habitable planets is ultimately motivated by the search for inhabited planets. On Earth, the most telling signature of life is that of humanity's technology. The Search for Extraterrestrial Intelligence (SETI) is thus the "ultimate" search for habitable planets.In 1960 two seminal papers in SETI were published, providing two visions for SETI. Giuseppe Cocconi and Philip Morrison's proposed detecting deliberate radio signals ("communication SETI"), while Freeman Dyson ("artifact SETI"), proposed detecting the inevitable effects of massive energy supplies and artifacts on their surroundings. While communication SETI has now had many career-long practitioners and major efforts, artifact SETI has, until recently, not been a vibrant field of study. The launch of the Kepler and WISE satellites have greatly renewed interest in the field, however, and the recent Breakthrough Listen Initiative has provided new motivation for finding good targets for communication SETI. I will discuss the progress of the Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies, including its justification and motivation, waste heat search strategy and first results, and the framework for a search for megastructures via transit light curves. The last of these led to the identification of KIC 8462852 (a.k.a. "Tabby's Star") as a candidate ETI host. This star, discovered by Boyajian and the Zooniverse Planet Hunters, exhibits several apparently unique and so-far unexplained photometric properties, and continues to confound natural explanation.

  14. HUNTING FOR PLANETS IN THE HL TAU DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testi, L.; Skemer, A.; Bailey, V.

    2015-10-20

    Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unstable disk. To test this scenario, we searched for young planets by means of direct imaging in the L′ band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ∼70 AU (∼0.″5) from the central star, we reach a contrast level of ∼7.5 mag. We did notmore » detect any point sources at the location of the rings. Using evolutionary models we derive upper limits of ∼10–15 M{sub Jup} at ≤0.5–1 Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at millimeter wavelengths could be gaps in the distributions of large grains on the disk midplane caused by planets not massive enough to fully open the gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.« less

  15. Microlensing observations rapid search for exoplanets: MORSE code for GPUs

    NASA Astrophysics Data System (ADS)

    McDougall, Alistair; Albrow, Michael D.

    2016-02-01

    The rapid analysis of ongoing gravitational microlensing events has been integral to the successful detection and characterization of cool planets orbiting low-mass stars in the Galaxy. In this paper, we present an implementation of search and fit techniques on graphical processing unit (GPU) hardware. The method allows for the rapid identification of candidate planetary microlensing events and their subsequent follow-up for detailed characterization.

  16. An Analytical Method To Compute Comet Cloud Formation Efficiency And Its Application

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Duncan, M. J.

    2007-07-01

    A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e_p < 0.2). A method to calculate the fraction of comets that stay under the control of each planet is also presented. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelihood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to lower values of Tisserand parameter within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar system, as well as a diffusion scheme based on the energy kick distribution of Everhart (1968). Results agree well with analytical predictions.

  17. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  18. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  19. A Direct Path to Finding Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  20. The occurrence of Jovian planets and the habitability of planetary systems

    PubMed Central

    Lunine, Jonathan I.

    2001-01-01

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets. PMID:11158551

Top