NASA Astrophysics Data System (ADS)
Anderson, O. L.
1982-07-01
The temperature profile of planetary interiors is an important item of information, because many thermodynamic or geodynamic investigations of a planet's interior require an estimate of the temperature profile. Modeling studies of the thermal history or convective processes focus in detail on the thermal profile of the planet. A description is presented of results which show how the present (or equilibrium) interior temperature profile is related to certain constraints placed on the planet, especially the physical properties of the mantle material. These properties depend upon a priori assumptions of chemical composition. The investigation is mainly concerned with experimental and theoretical data appropriate to mantle minerals, in order to justify the use of a simple equation-of-state for planet interiors. It is found that anharmonicity does not seem to be required for calculations of interior properties of the terrestrial planets.
Interior phase transformations and mass-radius relationships of silicon-carbon planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Hugh F.; Militzer, Burkhard, E-mail: hughfw@gmail.com
2014-09-20
Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure,more » and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.« less
Hot-start Giant Planets Form with Radiative Interiors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berardo, David; Cumming, Andrew, E-mail: david.berardo@mcgill.ca, E-mail: andrew.cumming@mcgill.ca
In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S {sub min} below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropymore » material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.« less
How can we constrain the amount of heat producing elements in the interior of Mars?
NASA Astrophysics Data System (ADS)
Grott, M.; Plesa, A.; Breuer, D.
2013-12-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to be launched in 2016 will study Mars' deep interior and help improving our knowledge about the interior structure and the thermal evolution of the planet - the latter is also directly linked to its volcanic history and atmospheric evolution. Measurements planned with the two main instruments, SEIS (Seismic Experiment for Interior Structure) and HP3 (Heat Flow and Physical Properties Package) aim to constrain the main structure of the planet, i.e. core, mantle and crust as well as the rate at which the planet loses the interior heat over its surface. Since the surface heat flow depends on the amount of radiogenic heat elements (HPE) present in the interior, it offers a measurable quantity which could constrain the heat budget. Being the principal agent regulating the heat budget which in turn influences partial melting in the interior, crustal and atmospheric evolution, the heat producing elements have a major impact on the entire the present temperature thermal history of the planet. To constrain the radiogenic heat elements of the planet from the surface heat flow is possible assuming that the urey number of the planet, which describes the contribution of internal heat production to the surface heat loss, is known. We have tested this assumption by calculating the thermal evolution of the planet with fully dynamical numerical simulations and by comparing the obtained present-day urey number for a set of different models/parameters (Fig. 1). For one-plate planets like Mars, numerical models show - in contrast to models for the Earth, where plate tectonics play a major role adding more complexity to the system - that the urey ratio is mainly sensitive to two effects: the efficiency of cooling due to the temperature-dependence of the viscosity and the mean half-life time of the long lived radiogenic isotopes. The temperature-dependence of the viscosity results in the so-called thermostat effect regulating the interior temperature such that the present-day temperatures are independent of the initial temperature distribution. If the thermostat effect is efficient as we show for the assumed Martian mantle rheology, and if the system is not dominated by radioactive isotopes like Thorium with a half-life much longer than the age of the planet as in the model of [3], all numerical simulations show similar today's values for the urey number (Fig. 1). Knowing the surface heat loss from the upcoming heat flow measurements planned for the InSight mission, one can distinguish then between different radiogenic heat source models [1, 2, 3, 4]. REFERENCES [1] Wänke et al., 94; [2] Lodders & Fegley, 97; [3] Morgan & Anders, 79; [4] Treiman et al., 86 Fig. 1: a) the influence of the reference viscosity and initial upper thermal boundary layer (TBL) on the urey ratio using HPE density from [1]; b) different models for HPE density; c) the urey ratio for different HPE models and 1e22 Pa s reference viscosity.
Modeling Approaches in Planetary Seismology
NASA Technical Reports Server (NTRS)
Weber, Renee; Knapmeyer, Martin; Panning, Mark; Schmerr, Nick
2014-01-01
Of the many geophysical means that can be used to probe a planet's interior, seismology remains the most direct. Given that the seismic data gathered on the Moon over 40 years ago revolutionized our understanding of the Moon and are still being used today to produce new insight into the state of the lunar interior, it is no wonder that many future missions, both real and conceptual, plan to take seismometers to other planets. To best facilitate the return of high-quality data from these instruments, as well as to further our understanding of the dynamic processes that modify a planet's interior, various modeling approaches are used to quantify parameters such as the amount and distribution of seismicity, tidal deformation, and seismic structure on and of the terrestrial planets. In addition, recent advances in wavefield modeling have permitted a renewed look at seismic energy transmission and the effects of attenuation and scattering, as well as the presence and effect of a core, on recorded seismograms. In this chapter, we will review these approaches.
DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed
Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less
Interior structures and tidal heating in the TRAPPIST-1 planets
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Dobos, Vera; Kiss, László L.
2018-05-01
Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.
A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier, E-mail: Nikku.Madhusudhan@yale.edu
Terrestrial planets in the solar system, such as the Earth, are oxygen-rich, with silicates and iron being the most common minerals in their interiors. However, the true chemical diversity of rocky planets orbiting other stars is yet unknown. Mass and radius measurements are used to constrain the interior compositions of super-Earths (exoplanets with masses of 1-10 M{sub Circled-Plus }), and are typically interpreted with planetary interior models that assume Earth-centric oxygen-rich compositions. Using such models, the super-Earth 55 Cancri e (mass 8 M{sub Circled-Plus }, radius 2 R{sub Circled-Plus }) has been suggested to bear an interior composition consisting ofmore » Fe, silicates, and an envelope ({approx}> 10% by mass) of supercritical water. We report that the mass and radius of 55 Cancri e can also be explained by a carbon-rich solid interior made of Fe, C, SiC, and/or silicates and without a volatile envelope. While the data allow Fe mass fractions of up to 40%, a wide range of C, SiC, and/or silicate mass fractions are possible. A carbon-rich 55 Cancri e is also plausible if its protoplanetary disk bore the same composition as its host star, which has been reported to be carbon-rich. However, more precise estimates of the stellar elemental abundances and observations of the planetary atmosphere are required to further constrain its interior composition. The possibility of a C-rich interior in 55 Cancri e opens a new regime of geochemistry and geophysics in extraterrestrial rocky planets, compared to terrestrial planets in the solar system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plavchan, Peter; Bilinski, Christopher
The discovery of ''hot Jupiters'' very close to their parent stars confirmed that Jovian planets migrate inward via several potential mechanisms. We present empirical constraints on planet migration halting mechanisms. We compute model density functions of close-in exoplanets in the orbital semi-major axis-stellar mass plane to represent planet migration that is halted via several mechanisms, including the interior 1:2 resonance with the magnetospheric disk truncation radius, the interior 1:2 resonance with the dust sublimation radius, and several scenarios for tidal halting. The models differ in the predicted power-law dependence of the exoplanet orbital semi-major axis as a function of stellarmore » mass, and thus we also include a power-law model with the exponent as a free parameter. We use a Bayesian analysis to assess the model success in reproducing empirical distributions of confirmed exoplanets and Kepler candidates that orbit interior to 0.1 AU. Our results confirm a correlation of the halting distance with stellar mass. Tidal halting provides the best fit to the empirical distribution of confirmed Jovian exoplanets at a statistically robust level, consistent with the Kozai mechanism and the spin-orbit misalignment of a substantial fraction of hot Jupiters. We can rule out migration halting at the interior 1:2 resonances with the magnetospheric disk truncation radius and the interior 1:2 resonance with the dust disk sublimation radius, a uniform random distribution, and a distribution with no dependence on stellar mass. Note that our results do not rule out Type-II migration, but rather eliminate the role of a circumstellar disk in stopping exoplanet migration. For Kepler candidates, which have a more restricted range in stellar mass compared to confirmed planets, we are unable to discern between the tidal dissipation and magnetospheric disk truncation braking mechanisms at a statistically significant level. The power-law model favors exponents in the range of 0.38-0.9. This is larger than that predicted for tidal halting (0.23-0.33), which suggests that additional physics may be missing in the tidal halting theory.« less
Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.
NASA Astrophysics Data System (ADS)
Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.
2018-04-01
In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.
Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138
NASA Astrophysics Data System (ADS)
Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.
2018-07-01
In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of 2 more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138b and Kepler-138 d have significantly thick volatile layers and that the gas layer of Kepler-138b is likely enriched. On the other hand, Kepler-138c can be purely rocky.
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
2007-01-01
The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1977-01-01
The thermal evolutions of the Moon, Mars, Venus, and Mercury were calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical, and geophysical data were used to constrain both the present day temperature and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history.
Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body
NASA Astrophysics Data System (ADS)
Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.
2018-02-01
Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.
Constraining the interior density profile of a Jovian planet from precision gravity field data
NASA Astrophysics Data System (ADS)
Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele
2017-10-01
The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them.We demonstrate this approach with a sample of Jupiter interior models based on recent Juno data and discuss prospects for Saturn.
The isotopic and chemical evolution of planets: Mars as a missing link
NASA Technical Reports Server (NTRS)
Depaolo, D. J.
1988-01-01
The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.
Survival of habitable planets in unstable planetary systems
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders
2016-12-01
Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with a present-day eccentricity of 0.2 and semimajor axis of 5 au orbiting a Sun-like star, 50 per cent of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.
Water-rich planets: How habitable is a water layer deeper than on Earth?
NASA Astrophysics Data System (ADS)
Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.
2016-10-01
Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.
NASA Technical Reports Server (NTRS)
Stevenson, David J.
1991-01-01
The following subject areas are covered: (1) the mass distribution; (2) interior models; (3) atmospheric compositions and their implications; (4) heat flows and their implications; (5) satellite systems; (6) temperatures in the solar nebula; and (7) giant planet formation.
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1974-01-01
The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.
Outgassing on stagnant-lid super-Earths
NASA Astrophysics Data System (ADS)
Dorn, C.; Noack, L.; Rozel, A. B.
2018-06-01
Aims: We explore volcanic CO2-outgassing on purely rocky, stagnant-lid exoplanets of different interior structures, compositions, thermal states, and age. We focus on planets in the mass range of 1-8 M⊕ (Earth masses). We derive scaling laws to quantify first- and second-order influences of these parameters on volcanic outgassing after 4.5 Gyr of evolution. Methods: Given commonly observed astrophysical data of super-Earths, we identify a range of possible interior structures and compositions by employing Bayesian inference modeling. The astrophysical data comprise mass, radius, and bulk compositional constraints; ratios of refractory element abundances are assumed to be similar to stellar ratios. The identified interiors are subsequently used as input for two-dimensional (2D) convection models to study partial melting, depletion, and outgassing rates of CO2. Results: In total, we model depletion and outgassing for an extensive set of more than 2300 different super-Earth cases. We find that there is a mass range for which outgassing is most efficient ( 2-3 M⊕, depending on thermal state) and an upper mass where outgassing becomes very inefficient ( 5-7 M⊕, depending on thermal state). At small masses (below 2-3 M⊕) outgassing positively correlates with planet mass, since it is controlled by mantle volume. At higher masses (above 2-3 M⊕), outgassing decreases with planet mass, which is due to the increasing pressure gradient that limits melting to shallower depths. In summary, depletion and outgassing are mainly influenced by planet mass and thermal state. Interior structure and composition only moderately affect outgassing rates. The majority of outgassing occurs before 4.5 Gyr, especially for planets below 3 M⊕. Conclusions: We conclude that for stagnant-lid planets, (1) compositional and structural properties have secondary influence on outgassing compared to planet mass and thermal state, and (2) confirm that there is a mass range for which outgassing is most efficient and an upper mass limit, above which no significant outgassing can occur. Our predicted trend of CO2-atmospheric masses can be observationally tested for exoplanets. These findings and our provided scaling laws are an important step in order to provide interpretative means for upcoming missions such as JWST and E-ELT, that aim at characterizing exoplanet atmospheres.
NASA Technical Reports Server (NTRS)
Dewitt, H. E.; Hubbard, W. B.
1976-01-01
A large quantity of data on the thermodynamic properties of hydrogen-helium metallic liquids have been obtained in extended computer calculations in which a Monte Carlo code essentially identical to that described by Hubbard (1972) was used. A model free energy for metallic hydrogen with a relatively small mass fraction of helium is discussed, taking into account the definition of variables, a procedure for choosing the free energy, values for the fitting parameters, and the evaluation of the entropy constants. Possibilities concerning a use of the obtained data in studies of the interiors of the outer planets are briefly considered.
NASA Astrophysics Data System (ADS)
Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.
2017-12-01
About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water-Rock Interaction (Brantley et al., eds.), Springer, New York.[4] Edson et al. (2012) Astrobiology 12, 562-571.[5] Parkhurst & Appelo (2013) USGS Techniques and Methods 6-A43.[6] Palandri & Kharaka (2008) USGS Report 2004-1068.[7] Kite et al. (2009) ApJ 700, 1732-1749.
Modeling of exoplanets interiors in the framework of future space missions
NASA Astrophysics Data System (ADS)
Brugger, B.; Mousis, O.; Deleuil, M.
2017-12-01
Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.
Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.
2017-01-01
Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.
Planetary Magnetic Fields: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team
2016-06-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for Space Studies for their hospitality and attention to detail, such that the Study participants could turn their attention to focused discussions and innovative ideas. We also thank Charles ("Chuck") Carter of Eagre Games, Inc., for his assistance with graphics.
Structure and evolution of Uranus and Neptune
NASA Technical Reports Server (NTRS)
Hubbard, W. B.; Macfarlane, J. J.
1980-01-01
Three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium are presented. The models incorporate a new H2O equation of state based on experimental data which is considerably 'softer' than previous H2O equations of state. Corrections for interior temperatures approximately 5000 K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. It is found that the evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock'. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small approximately 1-2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approximately 15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.
Constraining the volatile fraction of planets from transit observations
NASA Astrophysics Data System (ADS)
Alibert, Y.
2016-06-01
Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of gas, the measured mass and radius imply at least 20% of volatiles in the interior. For planets at larger distances, we show that the observation of transiting planets at different evolutionary ages can be used to set statistical constraints on the volatile content of planets. Conclusions: These results can be used in the context of future missions like PLATO to better understand the internal composition of planets, and based on this, their formation process and potential habitability.
On volcanism and thermal tectonics on one-plate planets
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1978-01-01
For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.
Uranus and Neptune: internal heat flow
NASA Astrophysics Data System (ADS)
Hofstadter, M. D.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A. G., Jr.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Hofstadter, M. D.; Sayanagi, K. M.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Nettelmann, N.; Scheibe, L.; Redmer, R.
2017-12-01
Uranus and Neptune offer unique possibilities to study the behavior of gas-ice-rock mixtures at high pressures, the formation of planets, planetary magnetic field generation [1], and planetary atmospheres. While Uranus and Neptune interior models have been constructed that satisfy some of the observational constraints, so far there are no physically motivated models that are consistent with all of them. Especially the observed intrinsic heat fluxes pose challenges [2]. Here I present the thermal boundary layer approach [3] to explain both the extraordinary low heat flux of Uranus and the high heat flux of Neptune, and discuss implications. In particular, current models suggest miscibility of ices with rocks at P>1 Mbar and super-solar ice-to-rock ratios, for Uranus an irradiated exoplanet-like evolution in equilibrium with the stellar incident flux, and fully convective deep interiors. The Figure illustrates such an ice giant interior model.[1] Soderlund K.M., Heimpel, M.H., King E.M. Aurnou J.M. (2013), Icarus 224, 97 [2] Guillot T. (2005), Annu. Rev. Earth Planet. Sci. 33, 493 [3] Nettelmann N., Wang K., Fortney J.J. et al (2016), Icarus 275, 107
Spitzer Secondary Eclipses of HAT-P-13b
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.
2013-10-01
HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.
RE-INFLATED WARM JUPITERS AROUND RED GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Eric D.; Fortney, Jonathan J.
2016-02-10
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiativemore » cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.« less
On the Role of Dissolved Gases in the Atmosphere Retention of Low-mass Low-density Planets
NASA Astrophysics Data System (ADS)
Chachan, Yayaati; Stevenson, David J.
2018-02-01
Low-mass low-density planets discovered by Kepler in the super-Earth mass regime typically have large radii for their inferred masses, implying the presence of H2–He atmospheres. These planets are vulnerable to atmospheric mass loss due to heating by the parent star’s XUV flux. Models coupling atmospheric mass loss with thermal evolution predicted a bimodal distribution of planetary radii, which has gained observational support. However, a key component that has been ignored in previous studies is the dissolution of these gases into the molten core of rock and iron that constitute most of their mass. Such planets have high temperatures (>2000 K) and pressures (∼kbars) at the core-envelope boundary, ensuring a molten surface and a subsurface reservoir of hydrogen that can be 5–10 times larger than the atmosphere. This study bridges this gap by coupling the thermal evolution of the planet and the mass loss of the atmosphere with the thermodynamic equilibrium between the dissolved H2 and the atmospheric H2 (Henry’s law). Dissolution in the interior allows a planet to build a larger hydrogen repository during the planet formation stage. We show that the dissolved hydrogen outgasses to buffer atmospheric mass loss. The slow cooling of the planet also leads to outgassing because solubility decreases with decreasing temperature. Dissolution of hydrogen in the interior therefore increases the atmosphere retention ability of super-Earths. The study highlights the importance of including the temperature- and pressure-dependent solubility of gases in magma oceans and coupling outgassing to planetary evolution models.
Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune
NASA Astrophysics Data System (ADS)
Gaulme, Patrick
2017-10-01
For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are the clear detection of the well-known differential rotation of Neptune, measured for the first time through the rotational modulation of its photometry, and the detection of the Sun's oscillations, for the first time in an indirect way in intensity measurements.
THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubiran, François; Militzer, Burkhard
The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixturesmore » has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.« less
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.
2017-12-01
The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them. We apply this approach to produce a sample of Saturn interior models based on gravity data from Grand Finale orbits and discuss their implications.
The Evolution of Gas Giant Entropy During Formation by Runaway Accretion
NASA Astrophysics Data System (ADS)
Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique
2017-01-01
We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .
Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics
NASA Astrophysics Data System (ADS)
Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim
2016-04-01
Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. Hüttig, C. and Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids, PEPI, Vol 171, pp. 137-146, 2008. Noack, L. et al.: Constraints for planetary habitability from interior modeling, PSS, Vol. 98, pp. 14-29, 2014.
Chemical differentiation on one-plate planets: Predictions and geologic observations for Venus
NASA Technical Reports Server (NTRS)
Head, James W., III; Parmentier, E. M.; Hess, P. C.
1992-01-01
Recent studies have examined the partial melting of planetary interiors on one-plate planets and the implications for the formation and evolution of basaltic crust and the complementary residual mantle layer. In contrast to the Earth, where the crust and residual layer move laterally and are returned to the interior following subduction, one-plate planets such as Venus are characterized by vertical accretion of the crust and residual layer. The residual mantle layer is depleted and compositionally buoyant, being less dense than undepleted mantle due to its reduced Fe/Mg and dense Al-bearing minerals; its melting temperature is also increased. As the crust and depleted mantle layer grow vertically during the thermal evolution of the planet, several stages develop. As a step in the investigation and testing of these theoretical treatments of crustal development on Venus, we investigate the predictions deriving from two of these stages (a stable thick crust and depleted layer, and a thick unstable depleted layer) and compare these to geologic and geophysical observations, speculating on how these might be interpreted in the context of the vertical crustal accretion models. In each case, we conclude with an outline of further tests and observations of these models.
NASA Astrophysics Data System (ADS)
Kaspi, Yohai
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior. We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nettelmann, N.; Fortney, J. J.; Kramm, U.
The planet GJ 1214b is the second known super-Earth with a measured mass and radius. Orbiting a quiet M star, it receives considerably less mass-loss driving X-ray and UV radiation than CoRoT-7b, so that the interior may be quite dissimilar in composition, including the possibility of a large fraction of water. We model the interior of GJ 1214b assuming a two-layer (envelope+rock core) structure where the envelope material is either H/He, pure water, or a mixture of H/He and H{sub 2}O. Within this framework, we perform models of the thermal evolution and contraction of the planet. We discuss possible compositionsmore » that are consistent with M{sub p} = 6.55 M{sub +}, R{sub p} = 2.678 R{sub +}, an age {tau} = 3-10 Gyr, and the irradiation level of the atmosphere. These conditions require that if water exists in the interior, it must remain in a fluid state, with important consequences for magnetic field generation. These conditions also require the atmosphere to have a deep isothermal region extending down to 80-800 bar, depending on composition. Our results bolster the suggestion of a metal-enriched H/He atmosphere for the planet, as we find water-world models that lack an H/He atmosphere to require an implausibly large water-to-rock ratio of more than 6:1. We instead favor an H/He/H{sub 2}O envelope with high water mass fraction ({approx}0.5-0.85), similar to recent models of the deep envelope of Uranus and Neptune. Even with these high water mass fractions in the H/He envelope, generally the bulk composition of the planet can have subsolar water:rock ratios. Dry, water-enriched, and pure water envelope models differ to an observationally significant level in their tidal Love numbers k{sub 2} of, respectively, {approx}0.018, {approx}0.15, and {approx}0.7.« less
Planetary Evolution, Habitability and Life
NASA Astrophysics Data System (ADS)
Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz
A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.
Layered semi-convection and tides in giant planet interiors. I. Propagation of internal waves
NASA Astrophysics Data System (ADS)
André, Q.; Barker, A. J.; Mathis, S.
2017-09-01
Context. Layered semi-convection is a possible candidate to explain Saturn's luminosity excess and the abnormally large radius of some hot Jupiters. In giant planet interiors, it could lead to the creation of density staircases, which are convective layers separated by thin stably stratified interfaces. These are also observed on Earth in some lakes and in the Arctic Ocean. Aims: We aim to study the propagation of internal waves in a region of layered semi-convection, with the aim to predict energy transport by internal waves incident upon a density staircase. The goal is then to understand the resulting tidal dissipation when these waves are excited by other bodies such as moons in giant planets systems. Methods: We used a local Cartesian analytical model, taking into account the complete Coriolis acceleration at any latitude, thus generalising previous works. We used a model in which stably stratified interfaces are infinitesimally thin, before relaxing this assumption with a second model that assumes a piecewise linear stratification. Results: We find transmission of incident internal waves to be strongly affected by the presence of a density staircase, even if these waves are initially pure inertial waves (which are restored by the Coriolis acceleration). In particular, low-frequency waves of all wavelengths are perfectly transmitted near the critical latitude, defined by θc = sin-1(ω/ 2Ω), where ω is the wave's frequency and Ω is the rotation rate of the planet. Otherwise, short-wavelength waves are only efficiently transmitted if they are resonant with a free mode (interfacial gravity wave or short-wavelength inertial mode) of the staircase. In all other cases, waves are primarily reflected unless their wavelengths are longer than the vertical extent of the entire staircase (not just a single step). Conclusions: We expect incident internal waves to be strongly affected by the presence of a density staircase in a frequency-, latitude- and wavelength-dependent manner. First, this could lead to new criteria to probe the interior of giant planets by seismology; and second, this may have important consequences for tidal dissipation and our understanding of the evolution of giant planet systems.
The Interiors of Jupiter and Saturn
NASA Astrophysics Data System (ADS)
Helled, Ravit
2018-05-01
Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium. It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories. The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler. Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy elements. The fact that the behavior of hydrogen at high pressures and temperatures in not perfectly known, and that helium separates from hydrogen at the deep interior add sources of uncertainties to the interior model. Today, with accurate measurements of the gravitational fields of Jupiter and Saturn from the Juno and Cassini missions, structure models can be further constrained. At the same time, these measurements introduce new challenges and open question for planetary modelers.
Stabilization of ammonia-rich hydrate inside icy planets.
Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas
2017-08-22
The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.
NASA Astrophysics Data System (ADS)
Renaud, J. P.; Henning, W. G.
2017-11-01
We find that an exomoon or exoplanet in an eccentric orbit will produce increased tidal dissipation compared to prior models, in certain temperature and frequency domains, when its interior is modeled with realistic rheologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
Righter, K; O'Brien, D P
2011-11-29
Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.
Righter, K.; O’Brien, D. P.
2011-01-01
Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256
Electron capture decay in Jovian planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zito, R.R.; Schiferl, D.
1987-12-01
Following the commonly acknowledged fact that the decay of K-40 substantially contributes to the heating of planetary interiors, an examination is made of the possibility that interior heat in the Jovian planets and stars, where interior pressures may exceed 45 Mbar, may be generated by the pressure-accelerated electron capture decay of a variety of isotopes. The isotopes considered encompass K-40, V-50, Te-123, La-138, Al-26, and Cl-36. 19 references.
NASA Technical Reports Server (NTRS)
Ioannou, Petros J.; Lindzen, Richard S.
1993-01-01
Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars
NASA Astrophysics Data System (ADS)
Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.
2015-12-01
The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.
Detection of the Magnetospheric Emissions from Extrasolar Planets
NASA Astrophysics Data System (ADS)
Lazio, J.
2014-12-01
Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.
2012-12-01
The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.
NASA Astrophysics Data System (ADS)
Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.
2016-12-01
The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"
2018-05-05
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
NASA Astrophysics Data System (ADS)
Ormel, C. W.; Liu, B.; Schoonenberg, D.
2017-09-01
We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.
InSight: Single Station Broadband Seismology for Probing Mars' Interior
NASA Technical Reports Server (NTRS)
Panning, Mark P.; Banerdt, W. Bruce; Beucler, Eric; Boschi, Lapo; Johnson, Catherine; Lognonne, Philippe; Mocquet, Antoine; Weber, Renee C.
2012-01-01
InSight is a proposed Discovery mission which will deliver a lander containing geophysical instrumentation, including a heat flow probe and a seismometer package, to Mars. The aim of this mission is to perform, for the first time, an in-situ investigation of the interior of a truly Earth- like planet other than our own, with the goal of understanding the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars.
Plate tectonics, habitability and life
NASA Astrophysics Data System (ADS)
Spohn, Tilman; Breuer, Doris
2016-04-01
The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate weathering of possible land surfaces and a biosphere could set up a CO2 sink that would further stabilize the temperature. As long as the planet keeps degassing CO2 at a sufficient rate, CO2 recycling through the mantle may not be required. However, this would require a sufficiently oxidized planet early on. If not sufficiently oxidized during accretion and core formation, oxidization of the planet would require cycling of matter between surface and interior reservoirs. Oxidization of an initially reduced Earth interior with the help of plate tectonics has been cited as a possible mechanism to allow the building up of oxygen in the terrestrial atmosphere around 2.3Ga b.p. (e.g., Catling and Claire, 2005), a pre-requisite for more evolved eukaryotic life. The oxidization would diminish a sink in the oxygen budget of the atmosphere by lowering the rate of outgassing of chemically reducing gases from the interior. Clearly, plate tectonics is a mechanism more potent of keeping a planet habitable and allow evolution of the biosphere than alternative concepts such as crust delamination. Catling, DC, Claire DW (2005), EPSL, 237, 1-20 Elkins-Tanton, L (2015) AGU Fall Meeting Abstract Tosi, N et al. (2016) EGU Abstract
Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?
NASA Technical Reports Server (NTRS)
Holme, Richard; Ingersoll, Andrew P.
1994-01-01
We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg
2017-05-01
The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
VizieR Online Data Catalog: Behavior of heavy elements in H-He-Z mixtures (Soubiran+, 2016)
NASA Astrophysics Data System (ADS)
Soubiran, F.; Militzer, B.
2016-11-01
The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H-He envelope. Late planetesimal accretion and core erosion could potentially enrich the H-He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter's atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z, in various proportions. However, their effect on the equation of state of the hydrogen-helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H-He-Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO2, we show that the behavior of heavy elements in H-He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature-pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter's interior by only 80K. (3 data files).
Constraining Mass Anomalies Using Trans-dimensional Gravity Inversions
NASA Astrophysics Data System (ADS)
Izquierdo, K.; Montesi, L.; Lekic, V.
2016-12-01
The density structure of planetary interiors constitutes a key constraint on their composition, temperature, and dynamics. This has motivated the development of non-invasive methods to infer 3D distribution of density anomalies within a planet's interior using gravity observations made from the surface or orbit. On Earth, this information can be supplemented by seismic and electromagnetic observations, but such data are generally not available on other planets and inferences must be made from gravity observations alone. Unfortunately, inferences of density anomalies from gravity are non-unique and even the dimensionality of the problem - i.e., the number of density anomalies detectable in the planetary interior - is unknown. In this project, we use the Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm to approach gravity inversions in a trans-dimensional way, that is, considering the magnitude of the mass, the latitude, longitude, depth and number of anomalies itself as unknowns to be constrained by the observed gravity field at the surface of a planet. Our approach builds upon previous work using trans-dimensional gravity inversions in which the density contrast between the anomaly and the surrounding material is known. We validate the algorithm by analyzing a synthetic gravity field produced by a known density structure and comparing the retrieved and input density structures. We find excellent agreement between the input and retrieved structure when working in 1D and 2D domains. However, in 3D domains, comprehensive exploration of the much larger space of possible models makes search efficiency a key ingredient in successful gravity inversion. We find that upon a sufficiently long RJMCMC run, it is possible to use statistical information to recover a predicted model that matches the real model. We argue that even more complex problems, such as those involving real gravity acceleration data of a planet as the constraint, our trans-dimensional gravity inversion algorithm provides a good option to overcome the problem of non-uniqueness while achieving parsimony in gravity inversions.
The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations
NASA Astrophysics Data System (ADS)
Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.
2018-04-01
Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.
The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations
NASA Astrophysics Data System (ADS)
Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.
2018-07-01
Gas giants' early (≲5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether the stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲2 MJ planets interior to 5 au in the FUV scenario, a sharp concentration of ≲3 MJ planets between ≈1.5-2 au in the EUV case and a relative abundance of ≈2-3.5 MJ giants interior to 0.5 au in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, although our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.
ERIC Educational Resources Information Center
Science News, 1979
1979-01-01
New findings about the planet, Saturn and its environs, as collected by Pioneer 11 are detailed. Topics discussed include: the composition of the planet's interior, the search for new satellites, and the planet's magnetic field. (BT)
"Isocrater" impacts: Conditions and mantle dynamical responses for different impactor types
NASA Astrophysics Data System (ADS)
Ruedas, Thomas; Breuer, Doris
2018-05-01
Impactors of different types and sizes can produce a final crater of the same diameter on a planet under certain conditions. We derive the condition for such "isocrater impacts" from scaling laws, as well as relations that describe how the different impactors affect the interior of the target planet; these relations are also valid for impacts that are too small to affect the mantle. The analysis reveals that in a given isocrater impact, asteroidal impactors produce anomalies in the interior of smaller spatial extent than cometary or similar impactors. The differences in the interior could be useful for characterizing the projectile that formed a given crater on the basis of geophysical observations and potentially offer a possibility to help constrain the demographics of the ancient impactor population. A series of numerical models of basin-forming impacts on Mercury, Venus, the Moon, and Mars illustrates the dynamical effects of the different impactor types on different planets. It shows that the signature of large impacts may be preserved to the present in Mars, the Moon, and Mercury, where convection is less vigorous and much of the anomaly merges with the growing lid. On the other hand, their signature will long have been destroyed in Venus, whose vigorous convection and recurring lithospheric instabilities obliterate larger coherent anomalies.
No One's Home: the Fate of Carbon on Lifeless Earths
NASA Astrophysics Data System (ADS)
Neveu, Marc
Although several thousands of exoplanets are now known, including many terrestrial planets, their possible geology and climates remain poorly understood and understudied. Yet, understanding how elements such as carbon are cycled between a planet's interior, surface, and atmosphere is crucial to predict how lifeless planets operate and, by contrast, be able to detect deviations from abiotic backgrounds due to biology, the holy grail of exoplanet science. As a first, feasible step towards the difficult, long-term goal of understanding how key reactive elements (H, C, N, O, S) are cycled in the atmospheres, surfaces, and interiors of terrestrial exoplanets through time, we propose to carry out a self-consistent theoretical study of the fate of carbon in the atmospheres and at the surfaces of Earth-like, lifeless exoplanets. We will: 1. Model the near-surface geochemistry and geophysics of the carbon cycle to determine net carbon gas fluxes as a function of terrestrial planet size and redox conditions; 2. Model the atmospheric fate of carbon species as a function of stellar input; 3. Perform simulations that self-consistently combine geological and atmospheric processes; 4. Convert resulting atmospheric compositions to spectra to be archived as a public database for use by observers. We will track the abiotic fate of carbon and its atmospheric expression on Earth-like planets as a function of three key parameters: planet size, surface and atmospheric redox conditions, and stellar irradiation. To do so, we will further develop and use state-of-theart planetary geological ("Geo") and atmospheric ("Atmos") models. We have previously developed a code that couples geophysical evolution and water-rock geochemistry (Neveu et al. 2015, GRL 42, 10197). Using this code, we will calculate the speciation of carbon species versus depth in subaerial oceans, their possible incorporation into the crust by water-rock interaction at the seafloor or by subduction of sediments, and outgassing as a function of temperature, pressure, and fluid/rock composition. We will expand this code with benchmarked parameterizations of land and seafloor weathering and outgassing rates. This modeling will result in detailed boundary conditions to be implemented into an existing atmospheric photochemical-climate model (DomagalGoldman et al. 2014, ApJ 792, 90). The atmospheric model will be used to predict species mixing ratios from net surface fluxes, given planetary and stellar parameters. The models will be benchmarked against what is known of the surfaces and atmospheres of the Earth (present and prior to atmospheric oxygenation) and Titan. Atmospheric model outputs will be fed back into the geological model in combined simulations of carbon cycling. We will investigate in detail the mutual feedbacks between geological and atmospheric processes, so far understudied for terrestrial exoplanets. The resulting atmospheric compositions will be converted to predicted exoplanet spectra using the Spectral Mapping Atmospheric Radiative Transfer model (SMART; Meadows & Crisp 1996, JGR 101, 4595). This grid of spectra will be made freely available to the exoplanet community. This proposal is relevant to the Exoplanets Research Program (E.3) objectives, as it "supports directly the scientific goals of advancing our knowledge and understanding of exoplanetary systems." It involves the "characterization of exoplanets (including their surfaces, interiors, and atmospheres) [...] including the determination of their compositions, dynamics, energetics, and chemical behaviors." This investigation will also advance "understanding the chemical and physical processes of exoplanets (including the state and evolution of their surfaces, interiors, and atmospheres)." Furthermore, this proposal is not "aimed at investigating the habitability of an exoplanet" and therefore not relevant to the Habitable Worlds program element (E.4).
Tidal Response of Preliminary Jupiter Model
NASA Astrophysics Data System (ADS)
Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard
2016-11-01
In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.
THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman
2012-03-20
We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less
Anelastic tidal dissipation in multi-layer planets
NASA Astrophysics Data System (ADS)
Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.
2012-09-01
Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.
On the Interior of Carbon-Rich Exoplanets: New Insight from Si-C System at Ultra High Pressure
NASA Astrophysics Data System (ADS)
Miozzi Ferrini, F.; Morard, G.; Antonangeli, D.; Clark, A. N.; Edmund, E.; Fiquet, G.; Mezouar, M.
2017-12-01
The variability in the mass/radius ratio of the more than 3200 exoplanets discovered so far, is a direct consequence of the large diversity of their internal composition. Exoplanets with a mass between 1 and 10 times the mass of the Earth are typically referred to as super-Earths, and their mineralogical composition depends on that of the protoplanetary disk. The key variable in determining the chemical makeup of such planets is the C/O ratio. Values of C/O ratio smaller than 0.8 correspond to an interior dominated by silicates (e.g. terrestrial planets), whereas for C/O ratios > 0.8 the interior is enriched in carbon. In these C-rich planets, Si may form carbides instead of silicates (Duffy et al., 2015). The detection of planet 55 Cancri e, with a particularly high C/O ratio, has increased the interest in carbon-rich planets. 55 Cancri e has been modelled as a layered structure made by different assemblages of carbon, silicon and iron (Madhusudan et al., 2012). However, the accuracy of such type of models suffers the lack of experimental data on the Si - C system at extreme conditions of pressure and temperature. Experimental equations of state are limited to 80 GPa (Nisr et al., 2017) and little is known about subsolidus relation, with only one theoretical study from Wilson and Militzer (2004) at multi-megabar pressures. Here we present experiments on SiC samples by synchrotron X-ray diffraction, in laser heated diamond anvil cell between 30-200 GPa and 300-3500 K. The results show evidences of coexistence of SiC with Si or C, without the appearance of intermediate compounds. Moreover, between 60 and 75 GPa, SiC undergoes a phase transition from the zinc blend structure (B3), to the rock salt structure (B1). This phase transition, also reported in previous literature work (e.g. Daviau and Lee, 2017), corresponds to a change in the atoms coordination, and is accompanied by an important volume reduction. Acknowledgements: This work was supported by the ERC PlanetDive advanced grant 670787. ReferencesDuffy T. 2015. Mineralogy of Super-Earth Planets. Treatise on Geophysics. Volume 2. Elsevier Daviau K. & Lee K.K.M. 2017. Physical Review B, 95(13), 134108 Madhusudhan N. et al., 2012. Astrophys. J. 759, L40. Nisr C. et al., 2017. J. Geophys. Res. Planets., 122, 124-133. Wilson H.F. & Militzer B. 2004. Astrophys. J. 793, 34.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat-Lohinger, E.; Bazsó, A.; Funk, B.
Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture.more » As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.« less
HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.
Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit aremore » shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.« less
Modeling of Mercury tides for recovery of gravity field and interior properties
NASA Astrophysics Data System (ADS)
Padovan, S.; Margot, J.; Hauck, S. A.; Lemoine, F. G.; Mazarico, E.; Peale, S. J.; Solomon, S. C.
2011-12-01
The radio science experiment on the MESSENGER mission allows the determination of the gravitational field of Mercury. In order to secure the best possible gravity-field recovery, it is important to model all the forces acting on the spacecraft. Here we study the perturbations induced on the spacecraft by the tides raised on Mercury by the Sun. The manner by which the tides affect the orbit of MESSENGER depends on the response of the planet to the tide-raising potential. This response is directly connected to the interior properties of Mercury, and its study can help improve our understanding of the physical and chemical properties of the planet. The standard approach of modeling the strongest tidal effect on the gravitational field is by introducing a time-varying component in the degree-two harmonic coefficients of the gravity field. The amplitude of these variations depends on known quantities (mass of the Sun and Mercury, radius of Mercury and its position and relative orientation with respect to the Sun) and on the Love number k2. The value of this parameter is sensitive (among other things) to the state of the core and to the rigidity of the mantle (which in turn depends on its chemical composition). An accurate value of k2 determined from orbit perturbations can be compared to values obtained with forward modeling of the interior of Mercury. The orbital geometry and physical environment of MESSENGER make the identification of the tidal perturbation difficult. Nevertheless, recent work has shown that in the case of Mars, careful study of the effect of tides on the spacecraft trajectory can help identify which orbital and observational geometries exhibit stronger tidal signatures and are apt to provide the best possible determination of k2. Our long-term goal is to evaluate k2 for a suite of interior models and to evaluate the sensitivity of k2 to key interior properties. We will describe the orbital geometry and the tidal perturbations acting on the spacecraft trajectory with both numerical and analytical approaches, and we will report on the status of the interior modeling efforts.
The rotation of the Uranian system
NASA Technical Reports Server (NTRS)
Podolak, M.
1984-01-01
The rotation of Uranus is examined for clues as to the origin of the Solar System. Both theories based on the formation of planets through the accretion of small planetesimals, and theories based on the formation of giant gaseous protoplanets through a gravitational instability in the primitive solar nebula allow for qualitative explanations of the large tilt of Uranus's equator to the orbital plane, and the fact that its satellites lie in the equatorial plane. Models of the planetary interior show that the mass ratio of ice-forming materials to rock in Uranus's interior must be more than about three if the rotation period is about 16 h. Such a large ratio seems to exclude those accretional theories that require most of the nebular gas to be heated to relatively high temperatures before being accreted into the planet.
A suppression of differential rotation in Jupiter’s deep interior
NASA Astrophysics Data System (ADS)
Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.
NASA Astrophysics Data System (ADS)
Hinkel, Natalie R.; Unterborn, Cayman T.
2018-01-01
The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.
MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubiran, François; Militzer, Burkhard
2015-06-20
We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that amore » substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.« less
The elastic energy and character of quakes in solid stars and planets
NASA Technical Reports Server (NTRS)
Pines, D.; Shaham, J.
1972-01-01
The quadrupolar mechanical energy of a rotating axially symmetric solid planet (with or without a liquid interior) is calculated using methods previously developed for neutron stars in which an elastic reference tensor is introduced to describe the build-up of elastic energy in the star. The basic parameters of the theory (the gravitational energy A and elastic energy B) depend upon the internal structure of the planet and may be calculated from specific planetary models. Explicit expressions are obtained for the Love numbers, and for the planetary wobble frequency. The theory provides a simple relationship between changes in shape or axis of figure of the planet and elastic energy release. The theory is extended to describe the Earth by taking into account isostasy, triaxiality and the observed lithospheric configuration.
Formation of the giant planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2006-01-01
The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions planets with small cores/total heavy element abundances can accrete gaseous envelopes within the lifetimes of gaseous protoplanetary disks.
Shock Wave Propagation in Layered Planetary Interiors: Revisited
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Monteux, J.
2017-12-01
The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock pressure in the core decreases following a second power law. In this study, we express the output obtained from iSALE hydrocodes by scaling laws to illustrate the influence of the ray angle relative to the axis of symmetry, the target rheology, the impactor size and the impact velocity. We use these shock-pressure scaling laws to determine the impact heating of terrestrial planets.
Spin-Orbit Misalignment of Two-Planet-System KOI-89 Via Gravity Darkening
NASA Astrophysics Data System (ADS)
Ahlers, Jonathon; Barnes, Jason W.; Barnes, Rory
2015-12-01
We investigate the potential causes of spin-orbit misalignment in multiplanetary systems via two-planet-system KOI-89. We focus on this system because it can experimentally constrain the outstanding hypotheses that have been proposed to cause misalignments. Using gravity darkening, we constrain both the spin-orbit angles and the angle between the planes of the orbits. Our best-fit model shows that the 85-day-orbit and 208-day-orbit planets are misaligned from the host star's rotation axis by 72° ± 3° and 73° (+11 -5°), respectively. From these results, we limit KOI-89's potential causes of spin-orbit misalignment based on three criteria: agreement with KOI-89's fundamental parameters, the capability to cause extreme misalignment, and conformance with mutually aligned planets. Our results disfavor planet-embryo collisions, chaotic evolution of stellar spin, magnetic torquing, coplanar high-eccentricity migration, and inclination resonance, limiting possible causes to star-disk binary interactions, disk warping via planet-disk interactions, Kozai resonance, planet-planet scattering, or internal gravity waves in the convective interior of the star.
The gravity field and orientation of Mercury after the MESSENGER mission
NASA Astrophysics Data System (ADS)
Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.; Solomon, S. C.
2015-12-01
After more than four years in orbit about Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft impacted the planet's surface north of Shakespeare crater (54.44° N, 210.12° E,) on 30 April 2015. One of the main goals of the mission was to determine the gravity field of Mercury in order to learn about Mercury's interior. Together with ground-based radar measurements of the obliquity and forced librations, MESSENGER-derived gravity models helped revise models of Mercury's interior. Nevertheless, the refinement of Mercury's orientation with the latest data from MESSENGER can further improve the interior modeling of the planet. The last eight months of the mission provided a special opportunity to conduct low-altitude measurements, with extensive radio tracking coverage below 200 km altitude north of ~30°N. MESSENGER's Mercury Laser Altimeter (MLA) mapped the topography of Mercury's northern hemisphere with a sub-meter vertical precision, an along-track sampling of ~500 m, and a longitudinal resolution (~0.1°) limited by the number of spacecraft orbits (~4,000). The combination of gravity and topography helps determine crustal thickness and interior properties. Altimetric ranges provide geodetic constraints to improve the spacecraft orbit determination, and thus the gravity field model. In particular, whereas the MESSENGER spacecraft was not tracked at each periapsis passage, MLA operated nearly continuously (outside of thermally challenging periods). From an analysis of the entire radiometric and altimetric datasets acquired by MESSENGER, a new gravity field to degree and order 100 has been obtained, resolving features down to ~75 km horizontal scale. The altimetric data help reduce the uncertainties in the determination of the pole position. A reanalysis of the Mercury flybys also constrains the spin rate over the longest available time span.
Present-day Mars' Seismicity Predicted from 3-D Thermal Evolution Models of Interior Dynamics
NASA Astrophysics Data System (ADS)
Knapmeyer, M.; Plesa, A. C.; Golombek, M.
2016-12-01
The InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission, to be launched in 2018, will carry the first in-situ seismic and heat flow instruments as well as a precision tracking on Mars. This Discovery-class mission will perform the most comprehensive geophysical investigation of the planet and provide an important baseline to constrain the present-day interior structure and heat budget of the planet, and, in turn, the thermal and chemical evolution of its interior. As the InSight lander will perform the measurements at a single location, numerical simulations of planetary interiors will greatly help to interpret the data in a global context. In this study we have used a series of numerical models of thermal evolution in a 3-D spherical geometry to assess the magnitude of present-day Mars seismicity. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data, that is enriched in radiogenic heat sources according to the surface abundances inferred from gamma-ray measurements. We test a diversity of parameters by varying the mantle reference viscosity as well as the depth-dependence of the viscosity, considering constant and variable thermal expansivity, varying the crustal thermal conductivity and the size of the core [1]. Our results predict an annual moment release between 1.60 x 1016 Nm and 5.46 x 1018 Nm similar to the values presented previously in [2] and [3]. However, while [2] used a mapping of tectonic surface faults to predict the spatial distribution of epicenters, we derive the distribution from the thermal evolution. Besides the Null-Hypothesis of a uniform distribution and the model of [2], this provides a new, self-consistent, competing hypothesis for both the amount and distribution of seismicity on Mars. [1] Plesa et al., LPSC, 2016 [2] Knapmeyer et al., JGR, 2006 [3] Golombek et al., Science 1992; LPSC 2002
Orbits and Interiors of Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2012-05-01
The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Wilson, H. F.
2013-12-01
First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.
Thermal Structure and Mantle Dynamics of Rocky Exoplanets
NASA Astrophysics Data System (ADS)
Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.
2011-12-01
The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across the whole mantle and cold downwellings (slabs) disperse in the mid-mantle. This may have a significant effect on thermal evolution, magnetic field generation, and the propensity of plate tectonics on rocky super-Earths. Model calculations also indicate that modest radiogenic heating through the decay of long-lived radioactive elements such as U, Th, and K has a negligible effect on the interior structure of rocky exoplanets. However, the calculated body tide Love numbers strongly scale with planetary mass suggesting that in resonant and sufficiently eccentric orbits the dissipation of tidal energy would substantially affect present thermal state and orbital evolution. Therefore, tidal heating provides a viable present-day heat source for close-in exoplanets such as CoRoT-7b and Kepler-10b.
Origin and evolution of the Saturn system
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Consolmagno, G.
1983-01-01
A review is provided of current concepts concerning the formation of the Saturn system and the subsequent history of the planet, its satellites, and rings. Emphasis is placed upon numerical models of Saturn's evolution and interior models of its satellites. Alternative theories are presented and assessed for the origins of the Saturn system, the rings of Saturn, and the atmosphere of Titan.
2018-03-03
A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
NASA Technical Reports Server (NTRS)
Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.;
2010-01-01
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
NASA Astrophysics Data System (ADS)
Spohn, Tilman
2013-04-01
Convection in the interiors of planetesimals (asteroids), planets, and satellites is driving the thermal and chemical evolution of these bodies including the generation of possible magnetic fields. The wide size range induces a wide of range of time scales from hundreds of thousands of years for small planetesimals to a few tens of Gigayears for massive super-Earths. Evolution calculations are often based on energy (and entropy) balances parameterizing the transport properties of the interior in suitable ways. These thereby allow incorporating (in parameterized forms) interesting physical processes that depend in one way or another on the transport properties of the interior. The interior will usually be chemically layered in mantles and cores and include ice layers if icy satellites are considered. In addition to magnetic field generation calculated via energy balances of the core and using semi-empirical dynamo strength relations, processes that can be considered include sintering and compaction for small bodies and mantle (or ice) melting, differentiation and even continental growth for full-scaled terrestrial planets. The rheology of the interior is considered temperature and pressure dependent and the concentration of volatiles can be important. For super-Earths, probably the most critical consideration is how the mantle rheology would vary with pressure and thus with depth. It is possible that the increasing pressure will frustrate deep mantle convection thereby reducing the vigor of mantle convection. Possibly, the generation of a magnetic field in a putative iron-rich core will be impossible, if super-Earths at all have earth-like cores. On a much smaller scale, the decay of short-lived radioactives suffices to heat and melt planetesimals, the melting being helped by the low thermal conductivity of the initially porous body. This allows planets to form from pre-differentiated planetesimals thus helping to differentiate and form cores rapidly. On active planets - like the Earth - the volatile budget matters for the interior evolution. With plate tectonics, large-scale volatile cycles are invoked. On the Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. A model is presented that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The biosphere enters the model through its effect on continental erosion and through a reduction of the activation barrier to metamorphic reactions (e.g., Kim et al., 2004) in sediment layers. An abiotic world is found to have a much drier mantle than the present Earth but may have a similar surface coverage by continents. The reduced rate of continental crust production on the abiotic world would be balanced by a reduced rate of continent erosion. Through the effect of water on the mantle rheology, the biotic world would tend to be tectonically more active and have a more rapid long-term carbon-silicate cycle. J. Kim, H. Dong, J. Seabaugh, S. W. Newell, D. D. Eberl, Science 303, 830-832, 2004 N. H. Sleep, D. K. Bird, E. Pope, Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 M. T. Rosing, D. K. Bird, N. H. Sleep, W. Glassley, F. Albarede, Paleo3 232, 90-113, 2006
Interior Studies with BepiColombo's MPO
NASA Astrophysics Data System (ADS)
Benkhoff, Johannes; Zender, Joe
2017-04-01
NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between ESA and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. The MPO scientific payload comprises eleven instruments/instrument packages; several of them dedicated to the study of the interior. Together, these instruments will perform measurements to enhance our knowledge of the planets figure and internal structure and composition. Expected results will provide further clues to the origin and evolution of a planet close to its parent star. In this presentation we will give an overview on the expected science return of BepiColombo with respect to the interior. In addition we give a brief update on the latest development status of the mission. All scientific instruments have been integrated into the spacecraft and both spacecraft are now under final acceptance testing.
Exotic Earths: forming habitable worlds with giant planet migration.
Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn
2006-09-08
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.
2018-03-29
In the Astrotech facility at Vandenberg Air Force Base in California, the heatshield is lifted for placement on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-03-29
In the Astrotech facility at Vandenberg Air Force Base in California, the heatshield is placed on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-16
In the Astrotech facility at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is encapsulated in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-16
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers encapsulate NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
Encapsulated in its payload fairing, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-20
In the gantry at Space Launch Complex 3 at Vandenberg Air Force Base in California, a technician prepares batteries for installation in NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading
NASA Astrophysics Data System (ADS)
Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.
2014-12-01
H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p.109-138. 2S. P. Lyon and J. D. Johnson, Los Alamos Technical Report No. LA-UR-92-3407, 1992. 3F. H. Ree, Lawrence Livemore Laboratory Technical Report No. UCRL-52190, 1976. 4M. French et al., Phys. Rev. B 79, 054107 (2009). 5M. D. Knudson et al., Phys. Rev. Lett. 108, 091102 (2012). 6 R. Redmer et al., Icarus 211, 798 (2011). 7T. Kimura et al., J. Chem. Phys. 140, 074501 (2014).
InSight Atlas V Centaur Lift & Mate
2018-03-06
A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft arrives at the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
2018-03-03
A crane lifts a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars arrives at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
Construction of Martian Interior Model
NASA Astrophysics Data System (ADS)
Zharkov, V. N.; Gudkova, T. V.
2005-09-01
We present the results of extensive numerical modeling of the Martian interior. Yoder et al. in 2003 reported a mean moment of inertia of Mars that was somewhat smaller than the previously used value and the Love number k 2 obtained from observations of solar tides on Mars. These values of k 2 and the mean moment of inertia impose a strong new constraint on the model of the planet. The models of the Martian interior are elastic, while k 2 contains both elastic and inelastic components. We thoroughly examined the problem of partitioning the Love number k 2 into elastic and inelastic components. The information necessary to construct models of the planet (observation data, choice of a chemical model, and the cosmogonic aspect of the problem) are discussed in the introduction. The model of the planet comprises four submodels—a model of the outer porous layer, a model of the consolidated crust, a model of the silicate mantle, and a core model. We estimated the possible content of hydrogen in the core of Mars. The following parameters were varied while constructing the models: the ferric number of the mantle (Fe#) and the sulfur and hydrogen content in the core. We used experimental data concerning the pressure and temperature dependence of elastic properties of minerals and the information about the behavior of Fe(γ-Fe ), FeS, FeH, and their mixtures at high P and T. The model density, pressure, temperature, and compressional and shear velocities are given as functions of the planetary radius. The trial model M13 has the following parameters: Fe#=0.20; 14 wt % of sulfur in the core; 50 mol % of hydrogen in the core; the core mass is 20.9 wt %; the core radius is 1699 km; the pressure at the mantle-core boundary is 20.4 GPa; the crust thickness is 50 km; Fe is 25.6 wt %; the Fe/Si weight ratio is 1.58, and there is no perovskite layer. The model gives a radius of the Martian core within 1600 1820 km while ≥30 mol % of hydrogen is incorporated into the core. When the inelasticity of the Martian interior is taken into account, the Love number k 2 increases by several thousandths; therefore, the model radius of the planetary core increases as well. The prognostic value of the Chandler period of Mars is 199.5 days, including one day due to inelasticity. Finally, we calculated parameters of the equilibrium figure of Mars for the M13 model: J
Self-consistent formation of continents on early Earth
NASA Astrophysics Data System (ADS)
Noack, Lena; Van Hoolst, Tim; Breuer, Doris; Dehant, Véronique
2013-04-01
In our study we want to understand how Earth evolved with time and examine the initiation of plate tectonics and the possible formation of continents on Earth. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life [1], and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), and may also depend on the biosphere. Earth is the only terrestrial planet (i.e. with a rocky mantle and iron core) in the solar system where long-term plate tectonics evolved. Knowing the factors that have a strong influence on the occurrence of plate tectonics allows for prognoses about plate tectonics on terrestrial exoplanets that have been detected in the past decade, and about the likelihood of these planets to harbour Earth-like life. For this purpose, planetary interior and surface processes are coupled via 'particles' as computational tracers in the 3D code GAIA [2,3]. These particles are dispersed in the mantle and crust of the modelled planet and can track the relevant rock properties (e.g. density or water content) over time. During the thermal evolution of the planet, the particles are advected due to mantle convection and along melt paths towards the surface and help to gain information about the thermo-chemical system. This way basaltic crust that is subducted into the silicate mantle is traced in our model. It is treated differently than mantle silicates when re-molten, such that granitic (felsic) crust is produced (similar to the evolution of continental crust on early Earth [4]), which is stored in the particle properties. We apply a pseudo-plastic rheology and use small friction coefficients (since an increased reference viscosity is used in our model). We obtain initiation of plate tectonics and self-consistent formation of pre-continents after a few Myr up to several Gyr - depending on the initial conditions and applied rheology. Furthermore, our first results indicate that continents can stabilize plate tectonics, analogous to the results obtained by [5]. The model will be further developed to treat hydration and dehydration of oceanic crust as well as subduction of carbonates to allow for a self-consistent 3D model of early Earth including a direct link between interior and atmosphere via both outgassing [6] and regassing. References [1] Ward, P.D. and Brownlee, D. (2000), Rare Earth, Springer. [2] Hüttig, C. and Stemmer, K. (2008), PEPI, 171(1-4):137-146. [3] Plesa, A.-C., Tosi, N. and Hüttig, C. (2013), in: Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences, IGI Global, 302-323. [4] Arndt, N.T. and Nisbet, E.G. (2012), Annu. Rev. Earth Planet. Sci., 40:521-549. [5] Rolf, T. and Tackley, P.J. (2011), GRL, 38:L18301. [6] Noack, L., Breuer, D. and Spohn, T. (2012), Icarus, 217(2):484-498.
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
Water Content of Earth's Continental Mantle Is Controlled by the Circulation of Fluids or Melts
NASA Technical Reports Server (NTRS)
Peslier, Anne; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.
2014-01-01
A key mission of the ARES Directorate at JSC is to constrain models of the formation and geological history of terrestrial planets. Water is a crucial parameter to be measured with the aim to determine its amount and distribution in the interior of Earth, Mars, and the Moon. Most of that "water" is not liquid water per se, but rather hydrogen dissolved as a trace element in the minerals of the rocks at depth. Even so, the middle layer of differentiated planets, the mantle, occupies such a large volume and mass of each planet that when it is added at the planetary scale, oceans worth of water could be stored in its interior. The mantle is where magmas originate. Moreover, on Earth, the mantle is where the boundary between tectonic plates and the underlying asthenosphere is located. Even if mantle rocks in Earth typically contain less than 200 ppm H2O, such small quantities have tremendous influence on how easily they melt (i.e., the more water there is, the more magma is produced) and deform (the more water there is, the less viscous they are). These two properties alone emphasize that to understand the distribution of volcanism and the mechanism of plate tectonics, the water content of the mantle must be determined - Earth being a template to which all other terrestrial planets can be compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk
2016-02-10
Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of thesemore » elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.« less
2015-12-15
A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
Insight Fairing Offload and Unbagging
2018-01-30
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift and Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-03-03
A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars has just arrived at the Astrotech facility at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster departs building 7525 at Vandenberg Air Force Base in California on its way to Space Launch Complex 3. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is transported to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
After a U.S. Air Force C-17 aircraft arrived at Vandenberg Air Force Base in California, ground crews offload NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is uncrated inside the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
2018-03-03
Technicians, engineers and U.S. Air Force personnel prepare to support erection of a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
A U.S. Air Force C-17 aircraft arrives at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers mate a United Launch Alliance Centaur upper stage atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Prep for Transport
2018-03-01
A United Launch Alliance Atlas V booster is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will be positioned on the pad to launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan
We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less
Mercury's Thermal Evolution, Dynamical Topography and Geoid
NASA Astrophysics Data System (ADS)
Ziethe, Ruth; Benkhoff, Johannes
Among the terrestrial planets Mercury is not only the smallest, but also the densest (after correction for self-compression). To explain Mercury's high density it is considered likely that the planet's mantle was removed during a giant impact event, when proto-Mercury was already differentiated into an iron core and a silicate mantle. Beside the damage to the planet's mantle the vaporization would cause a significant loss of volatile elements, leaving the remaining planet molten and dominated by extremely refractory material.Since the arrival of a spacecraft at the enigmatic planet is not to be expected before 2011 (Messenger) or 2019 (BepiColombo) we might already prepare ourselves for the upcoming results and perform tests that allow some anticipation of the measured data. The hermean mantle is modelled as an internally and bottom heated, isochemical fluid in a spherical shell. The principle of this convection model is widely accepted and is used for various models of thermal evolution of terrestrial planets, e.g., the Earth, Mars or the Moon. We are solving the hydrodynamical equations, derived from the conservation of mass, momentum and energy. A program originally written by S. Zhang is used to solve the temperature field which employs a combination of a spectral and a finite difference method. Beside the large core as a heat source 'from below' the decay of radioactive isotopes provides internal heating of the hermean mantle. The viscosity of the mantel material depends exponentially on the inverse temperature. The model results show the typical behaviour of a one-plate-planet, meaning the surface is not broken into several tectonic plates but the outside is a single rigid shell. The thermal evolution is generally charaterized by the growth of a massive lithosphere on top of the convecting mantle. The lower mantle and core cool comparatively little and stay at temperatures between 1900K and 2000K until about 2.0Ga after the simulation was started. The stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc) numerous models are required to understand the importance and influence of the mentioned variables. The models variety is huge and more investigations of the results on initial parameters are yet to be performed. The special interior structure of Mercury compared to the other terrestrial planets makes his thermal history very unique. Future work will cope with the thorough investigation of several parameters and their influence on the model outcome. Eventually observables like topography can be measured with spacecrafts in orbit (e.g. BepiColombo) and then allow conclusions on the interior dynamics of Mercury.
InSight Final Flight Installation of Heatshield
2018-04-12
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers place the heatshield on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander prior to encapsulation in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-05-05
A United Launch Alliance Atlas V rocket lifts off at 4:05 a.m. PDT (7:05 a.m. EDT) from Space Launch Complex 3 at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is positioned atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-05-05
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers position NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers position NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander has been mated atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
At Space l Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-23
At Space Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
2018-04-20
In the gantry at Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers prepare batteries for installation in NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp
The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending onmore » the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.« less
Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating
NASA Astrophysics Data System (ADS)
Ginzburg, Sivan; Sari, Re'em
2016-03-01
The observed radii of many giant exoplanets in close orbits exceed theoretical predictions. One suggested origin for this discrepancy is heat deposited deep inside the atmospheres of these “hot Jupiters”. Here, we study extended power sources that distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized “point sources”. We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (I.e., cooling rate) of the planet drops below the heat deposited in the planet’s convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources that do not extend to the planet’s center. We estimate the ohmic dissipation resulting from the interaction between the atmospheric winds and the planet’s magnetic field, and apply our analytical model to ohmically heated planets. Our model can account for the observed radii of most inflated planets, which have equilibrium temperatures of ≈1500-2500 K and are inflated to a radius of ≈ 1.6{R}J. However, some extremely inflated planets remain unexplained by our model. We also argue that ohmically inflated planets have already reached their equilibrium phase, and no longer contract. Following Wu & Lithwick, who argued that ohmic heating could only suspend and not reverse contraction, we calculate the time it takes ohmic heating to re-inflate a cold planet to its equilibrium configuration. We find that while it is possible to re-inflate a cold planet, the re-inflation timescales are longer by a factor of ≈ 30 than the cooling time.
The Habitability of a Stagnant-Lid Earth
NASA Astrophysics Data System (ADS)
Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, L.; Höning, D.; Nikolaou, A.; Plesa, A. C.; Breuer, D.; Spohn, T.
2017-12-01
Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.
CoRoT-2b: a Tidally Inflated, Young Exoplanet?
NASA Astrophysics Data System (ADS)
Guillot, Tristan; Havel, M.
2009-09-01
CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.
Toward a mineral physics reference model for the Moon's core.
Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei
2015-03-31
The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.
Shock Temperatures of Major Silicates in Rocky Planets
NASA Astrophysics Data System (ADS)
Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.
2016-12-01
Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Unterborn, Cayman T.
2018-01-01
A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.
The Primordial Entropy of Jupiter
NASA Astrophysics Data System (ADS)
Cumming, Andrew; Helled, Ravit; Venturini, Julia
2018-04-01
The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modeling Jupiter's evolution and internal structure.
The primordial entropy of Jupiter
NASA Astrophysics Data System (ADS)
Cumming, Andrew; Helled, Ravit; Venturini, Julia
2018-07-01
The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modelling Jupiter's evolution and internal structure.
InSight Spacecraft Lift to Spin Table & Pre-Spin Processing
2018-03-28
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers inspect NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft after it was placed on a spin table during preflight processing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
InSight Lift/Mate to PLA with SC to GTV
2018-04-11
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers monitor progress as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is prepared for encapsulation in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.
InSight Atlas V Centaur Stage Offload
2018-01-31
Inside Building B7525 at Vandenberg Air Force Base in California, the Centaur upper stage for a United Launch Alliance Atlas V rocket is offloaded from a transport truck. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V ASA and Nozzle Arrival/Unload
2018-02-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and nozzle for a United Launch Alliance Atlas V rocket is removed from its shipping container. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Fairing Rotate to Vertical
2018-02-07
In the Astrotech facility at Vandenberg Air Force Base in California, the payload fairing for the United Launch Alliance (ULA) Atlas V for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars is lifted to the vertical position. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers inspect the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft has been removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V ASA to ISA Installation
2018-02-06
Inside Building B7525 at Vandenberg Air Force Base in California, the aft stub adapter (ASA) is installed to the interstage adapter (ISA) for a United Launch Alliance Atlas V rocket. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers prepare a United Launch Alliance Centaur upper stage for lifting and mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is prepared for transport to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.
Questionable inheritance: What Processes on Planetesimals Mean for the Bulk Composition of the Earth
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.
2015-12-01
Interrogating Earth's interior is limited to indirect means, such as seismic or magnetic fields, and relies heavily on modeling. A large body of literature either attempts to constrain the composition of the deep mantle by mass balancing the Earth with a chondritic composition, or to demonstrate that the Earth does not have a chondritic composition. These models provide predictions for the composition and density of the ultra-low shear wave provinces and for the D" layer, among others, and compare their results to structures resulting from seismic studies. The bulk composition of the Earth, however, remains an open question. We now know that the planets accreted from embryos that were already differentiated. The complexity of processes that occurred on planetesimals and planetary embryos are just beginning to come to light. Heating by radiogenic 26Al likely produced waves of hydration and dehydration in planetesimals. These free fluids may have carried a wide range of volatiles, moving them from the interior to the lid, or even losing them to space. Simultaneously, the first free fluids may have reacted with metals, producing oxides or sulfides. Further heating is required to reduce these to metals and made core formation possible; or perhaps the earliest cores are not fully metallic. These planetesimals and the embryos they were growing into were subjected to a series of impacts. As the work of Asphaug and his group have demonstrated, some of these are accretionary impacts, and some are hit-and-run, or destructive impacts. These destructive impacts may have reduced the thickness of Mercury's mantle, and stripped the mantle off the metal asteroid Psyche. Where, then would the shattered silicates from such collisions go? Asphuag suggests that at least in part they are added to the growing terrestrial planets. If the planetesimals and planetary embryos were compositionally heterogeneous because of interior fluid and magma movement, then the silicates blown off them by impacts would not have a bulk chondritic composition. The growing planets would not then have a bulk chondritic composition. This talk will discuss the possible ramifications of this model and its application to bulk Earth models.
Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph
2018-06-01
Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Efficient cooling of rocky planets by intrusive magmatism
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.
2018-05-01
The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.
The origin of CO in the stratosphere of Uranus
NASA Astrophysics Data System (ADS)
Cavalié, Thibault; Moreno, R.; Lellouch, E.; Hartogh, P.; Venot, O.; Orton, G. S.; Jarchow, C.; Encrenaz, T.; Selsis, F.; Hersant, F.; Fletcher, L. N.
2013-10-01
Oxygen-rich deep interiors of the Giant Planets cannot explain the discovery of H2O and CO2 in the stratospheres of the Giant Planets by Feuchtgruber et al. (1997) because these species are trapped by condensation around their tropopause levels (except CO2 in Jupiter and Saturn). Therefore, several sources in the direct or far environment of the Giant Planets have been proposed: icy rings and/or satellites, interplanetary dust particles and large comet impacts. CO does not condense at the tropopauses of Giant Planets, so that oxygen-rich interiors are a valid source. An internal component has indeed been observed in the vertical profile of CO in Jupiter (Bézard et al., 2002) and in Neptune (Lellouch et al., 2005), while an upper limit has been set on its magnitude by for Saturn (Cavalié et al., 2009). In addition to interiors, large comets seem to be the dominant external source, as shown by various studies: Bézard et al. (2002) for Jupiter, Cavalié et al. (2010) for Saturn and Lellouch et al. (2005) for Neptune. The first detection of CO in Uranus was obtained by Encrenaz et al. (2004) from fluorescent emission at 4.7 microns. Assuming a uniform distribution, a mixing ratio of 2x10-8 was derived. Despite this first detection almost a decade ago, the situation has remained unclear ever since. In this paper, we will present the first submillimeter detection of CO in Uranus, carried out with Herschel in 2011-2012. Using a simple diffusion model, we review the various possible sources of CO (internal and external). We show that CO is mostly external. We also derive an upper limit for the internal source. And with the thermochemical model of Venot et al. (2012), adapted to the interior of Uranus, we derive an upper limit on its deep O/H ratio from it. Acknowledgments T. Cavalié acknowledges support from CNES and the European Research Council (Starting Grant 209622: E3ARTHs). References Bézard et al., 2002. Icarus, 159, 95-111. Cavalié et al., 2009. Icarus, 203, 531-540. Cavalié et al., 2010. A&A, 510, A88. Encrenaz et al., 2004. A&A, 413, L5-L9. Feuchtgruber et al., 1997. Nature, 389, 159-162. Lellouch et al., 2005. A&A, 430, L37-L40. Venot et al., 2012. A&A, 546, A43.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, W. B.; Militzer, B.
In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second-more » and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.« less
Saturn PRobe Interior and aTmosphere Explorer (SPRITE)
NASA Technical Reports Server (NTRS)
Simon, Amy; Banfield, D.; Atkinson, D.; Atreya, S.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L.; Guillot, T.; Hofstadter, M.;
2016-01-01
The Vision and Voyages Planetary Decadal Survey identified a Saturn Probe mission as one of the high priority New Frontiers mission targets[1]. Many aspects of the Saturn system will not have been fully investigated at the end of the Cassini mission, because of limitations in its implementation and science instrumentation. Fundamental measurements of the interior structure and noble gas abundances of Saturn are needed to better constrain models of Solar System formation, as well as to provide an improved context for exoplanet systems. The SPRITE mission will fulfill the scientific goals of the Decadal Survey Saturn probe mission. It will also provide ground truth for quantities constrained by Cassini and conduct new investigations that improve our understanding of Saturn's interior structure and composition, and by proxy, those of extrasolar giant planets.
Interior of Mars from spacecraft and complementary data.
NASA Astrophysics Data System (ADS)
Dehant, Veronique
2015-04-01
Mars, as Earth, Venus and Mercury is a terrestrial planet having, in addition to the mantle and lithosphere, a core composed of an iron alloy. This core might be completely liquid, completely solid or may contain a solid part (the inner core) and a liquid part. The existence of a magnetic field around a planet is mainly explained by the presence of motions in the liquid part in the core. The absence of a magnetic field does not help in constraining the state of the core as it might be completely solid or completely liquid but the motion (convection) might not be sufficient to maintain it, or even contain a growing inner core inside a liquid core composed of iron or Nickel and a percentage of light element corresponding to the eutectic composition (no precipitation). The planet Mars is smaller than Earth. It has evolved differently. We know for the Earth that the core is liquid and that the inner core is forming by precipitation of iron. For Mars spacecraft observation of the gravity field and its time variation allow us to obtain the effect of mass repartition, and in particular those induced by the solid tides. These tidal deformation of the planet are larger for a planet with a liquid core than for a completely solid planet. Recent spacecraft orbiting around Mars (MGS, Mars Odyssey, MRO, Mars Express) have allowed to obtain the k2 tidal Love numbers. This measurement is rather at the limit of what the observation can tell us but seems to indicate that Mars has a liquid core. The absence of a present-day global magnetic field places Mars in the situation where the inner core is not yet forming or has reached the eutectic. Physical observation of the planet other than tides also allow us to obtain information about the interior of Mars: its rotation and orientation changes. Planetary rotation can be separated into the rotation speed around an axis and the orientation of this axis (or another axis of the planet) in space. Most of us know that the rotation of a boiled egg noticeably differs from that of a raw egg. This simple observation shows that information on the inside of an object can be obtained from its rotation. The same idea applies to the rotation of celestial bodies. Their rotation changes and orientation changes provide information on the interior. For Mars, as for the Earth, it is mainly the changes in the orientation that are important to characterize their interiors, the length-of-day variations being mostly related to atmospheric angular moment transfer to the solid planet. The orientation changes are called precession, the long-term change, and nutation, the periodic wiggly short-term changes that are the most interesting to obtain information about the core. Nutations have up to now only been unambiguously observed for the Earth, but the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission to be launched in 2016, will carry out an X-band transponder enabling us to do Doppler measurements on the motion of Mars with respect to Earth, and therewith to determine the nutations and the interior structure of Mars.
Evolution and structure of Mercury's interior from MESSENGER observations
NASA Astrophysics Data System (ADS)
Tosi, Nicola
2015-04-01
During the past four years, the MESSENGER mission (MErcury Surface, Space Environment, GEochemistry and Ranging) has delivered a wealth of information that has been dramatically advancing the understanding of the geological, chemical, and physical state of Mercury. Taking into account the latest constraints on the interior structure, surface composition, volcanic and tectonic history, we employed numerical models to simulate the thermo-chemical evolution of the planet's interior [1]. Typical evolution scenarios that allow the observational constraints to be satisfied consist of an initial phase of mantle heating accompanied by planetary expansion and the production of a substantial amount of partial melt. The evolution subsequent to 2 Ga is characterised by secular cooling that proceeds approximately at a constant rate and implies that contraction should be still ongoing. Most of the models also predict mantle convection to cease after 3-4 Ga, indicating that Mercury may be no longer dynamically active. In addition, the topography, measured by laser altimetry and the gravity field, obtained from radio-tracking, represent fundamental observations that can be interpreted in terms of the chemical and mechanical structure of the interior. The observed geoid-to-topography ratios at intermediate wavelengths are well explained by the isostatic compensation of the topography associated with lateral variations of the crustal thickness, whose mean value can be estimated to be ~35 km, broadly confirming the predictions of the evolution simulations [2]. Finally, we will show that the degree-2 and 4 of the topography and geoid spectra can be explained in terms of the long-wavelength deformation of the lithosphere resulting from deep thermal anomalies caused by the large latitudinal and longitudinal variations in temperature experienced by Mercury's surface. [1] Tosi N., M. Grott, A.-C. Plesa and D. Breuer (2013). Thermo-chemical evolution of Mercury's interior. Journal of Geophysical Research - Planets, 118, 2474-2487. [2] Padovan S., M. Wieczorek, J.-L. Margot, N. Tosi, and S. Solomon (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophysical Research Letters. In press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.
Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less
NASA Astrophysics Data System (ADS)
Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.
2012-04-01
Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the expected number of potentially habitable exoplanets in the universe.
Bringing "The Moth" to light: A planet-sculpting scenario for the HD 61005 debris disk
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; ...
2016-09-16
Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less
NASA Astrophysics Data System (ADS)
Morley, Caroline V.; Knutson, Heather; Line, Michael; Fortney, Jonathan J.; Thorngren, Daniel; Marley, Mark S.; Teal, Dillon; Lupu, Roxana
2017-02-01
The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b’s thermal emission at 3.6 and 4.5 μm, which reduce uncertainties in estimates of GJ 436b’s flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ˜ 300-350 K, we find a dissipation factor Q‧ ˜ 2 × 105-106, larger than Neptune’s Q‧, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.
A first-order model for impact crater degradation on Venus
NASA Technical Reports Server (NTRS)
Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.
1993-01-01
A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher
We present new radial velocity (RV) measurements of HAT-P-13, a star with two previously known companions: a transiting giant planet 'b' with an orbital period of 3 days and a more massive object 'c' on a 1.2 yr, highly eccentric orbit. For this system, dynamical considerations would lead to constraints on planet b's interior structure, if it could be shown that the orbits are coplanar and apsidally locked. By modeling the Rossiter-McLaughlin effect, we show that planet b's orbital angular momentum vector and the stellar spin vector are well aligned on the sky ({lambda} = 1.9 {+-} 8.6 deg). Themore » refined orbital solution favors a slightly eccentric orbit for planet b (e = 0.0133 {+-} 0.0041), although it is not clear whether it is apsidally locked with c's orbit ({Delta}{omega} = 36{sup +27}{sub -36} deg). We find a long-term trend in the star's RV and interpret it as evidence for an additional body 'd', which may be another planet or a low-mass star. Predictions are given for the next few inferior conjunctions of c, when transits may happen.« less
2018-05-04
At Vandenberg Air Force Base in California, the gantry rolls back at Space Launch Complex 3 in preparation for the liftoff of NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. The United Launch Alliance Atlas V rocket now is poised to boost the spacecraft with liftoff scheduled for 4:05 a.m. PDT (7:05 a.m. EDT). InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions
Barnes, R.
2015-01-01
Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shang-Fei; Hori, Yasunori; Lin, D. N. C.
Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptivemore » regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super-Earths and mini-Neptunes (at least to some extent)« less
Physical properties of the planet Mercury
NASA Technical Reports Server (NTRS)
Clark, Pamela E.
1988-01-01
The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.
InSight Atlas V Boattail Halves Arrival, Offload, Mate
2018-02-19
At Vandenberg Air Force Base in California, the boattail adaptor interface that will connect the Centaur upper stage to the payload fairing is offloaded for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight will liftoff atop a United Launch Alliance Atlas V rocket to send the spacecraft on the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V Centaur Stage Prep for Transport
2018-02-27
At Vandenberg Air Force Base in California, a cover is installed on a Centaur upper stage in preparation for its transport to Space Launch Complex 3. The Centaur will be mounted atop a United Launch Alliance Atlas V rocket to boost NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Rotate to Vertical
2018-02-07
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers inspect the payload fairing for the United Launch Alliance (ULA) Atlas V for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars after it was lifted to the vertical position. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Boattail Halves Arrival, Offload, Mate
2018-02-19
At Vandenberg Air Force Base in California, the boattail adaptor interface that will connect the Centaur upper stage to the payload fairing arrives for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight will liftoff atop a United Launch Alliance Atlas V rocket to send the spacecraft on the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers use a crane to move the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for further testing. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
Toward a mineral physics reference model for the Moon’s core
Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C.; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei
2015-01-01
The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth’s core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon’s inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon’s core. PMID:25775531
Uncertainties in tidal theory: Implications for bloated hot Jupiters
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Chabrier, Gilles; Baraffe, Isabelle
2011-11-01
Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:•downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),•enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),•ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),•(inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),•Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.
Planetary Interiors: Parametric Modeling of Global Geophysical Properties
NASA Astrophysics Data System (ADS)
Montgomery, W.; Jeanloz, R.
2004-12-01
Taking into account a realistic form of equation of state, we parameterize the degree to which bulk geophysical properties of planets are sensitive to gravitational self-compression. For example, the normalized moment of mass of a uniform-composition planet is C/Ma2 = 0.40 only in the limit of zero planetary size or incompressible material, and decreases toward 0.32 for finite compressibility as the planetary radius increases toward a = 104 km (M is planetary mass). Central density correspondingly increases from ρ 0, the surface density, toward 10 * ρ 0. Our calculations, based on the Eulerian finite-strain equation of state, make it possible to distinguish the effects of self-compression from the effects of non-uniformity (due either to changes in bulk composition or in phase with depth) as these influence planetary mass and moment of inertia relative to size. As observations of extra-solar planets can provide estimates of their mass and diameter (hence mean density), our formulation can account for the effects of compression in modeling the internal constitution and evolution of these objects. The effects of compression are especially important for giant and super-giant planets, such as the majority that have been observed to date.
NASA Astrophysics Data System (ADS)
Militzer, Burkhard
2013-06-01
This presentation will review three recent applications of first-principles computer simulation techniques to study matter at extreme temperature-pressure conditions that are of relevance to astrophysics. First we report a recent methodological advance in all-electron path integral Monte Carlo (PIMC) that allowed us to extend this method beyond hydrogen and helium to elements with core electrons [1]. We combine results from PIMC and with density functional molecular dynamics (DFT-MD) simulations and derive a coherent equation of state (EOS) for water and carbon plasmas in the regime from 1-50 Mbar and 104-109 K that can be compared to laboratory shock wave experiments. Second we apply DFT-MD simulations to characterize superionic water in the interiors of Uranus and Neptune. By adopting a thermodynamic integration technique, we derive the Gibbs free energy in order to demonstrate the existence of a phase transformation from body-centered cubic to face-centered cubic superionic water [2]. Finally we again use DFT-MD to study the interiors of gas giant planets. We determine the EOS for hydrogen-helium mixtures spanning density-temperature conditions in the deep interiors of giant planets, 0.2-9.0 g/cc and 1000-80000 K [3]. We compare the simulation results with the semi-analytical EOS model by Saumon and Chabrier. We present a revision to the mass-radius relationship which makes the hottest exoplanets increase in radius by ~0.2 Jupiter radii at fixed entropy and for masses greater than 0.5 Jupiter masses. This change is large enough to have possible implications for some discrepant inflated giant exoplanets. We conclude by demonstrating that all materials in the cores of giant planets, ices, MgO, SiO2, and iron, will all dissolve into metallic hydrogen. This implies the cores of Jupiter and Saturn have been at least partially eroded. [1] K. P. Driver, B. Militzer, Phys. Rev. Lett. 108 (2012) 115502. [2] H. F. Wilson, M. L. Wong, B. Militzer, http://arxiv.org/abs/1211.6482. [3] B. Militzer, Phys. Rev. B 87 (2013) 014202; http://arxiv.org/abs/1302.4691. [4] H. F. Wilson, B. Militzer, Astrophys. J. Lett. 745 (2011) 54; Phys. Rev. Lett. 108 (2012) 111101.
What is Neptune's D/H ratio really telling us about its water abundance?
NASA Astrophysics Data System (ADS)
Ali-Dib, Mohamad; Lakhlani, Gunjan
2018-05-01
We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.
Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2008-01-01
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M⊕. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M⊕ prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
Bayesian Analysis of Hot-Jupiter Radius Anomalies: Evidence for Ohmic Dissipation?
NASA Astrophysics Data System (ADS)
Thorngren, Daniel P.; Fortney, Jonathan J.
2018-05-01
The cause of hot-Jupiter radius inflation, where giant planets with {T}eq} > 1000 K are significantly larger than expected, is an open question and the subject of many proposed explanations. Many of these hypotheses postulate an additional anomalous power that heats planets’ convective interiors, leading to larger radii. Rather than examine these proposed models individually, we determine what anomalous powers are needed to explain the observed population’s radii, and consider which models are most consistent with this. We examine 281 giant planets with well-determined masses and radii and apply thermal evolution and Bayesian statistical models to infer the anomalous power as a fraction of (and varying with) incident flux ɛ(F) that best reproduces the observed radii. First, we observe that the inflation of planets below about M = 0.5 M J appears very different than their higher-mass counterparts, perhaps as the result of mass loss or an inefficient heating mechanism. As such, we exclude planets below this threshold. Next, we show with strong significance that ɛ(F) increases with {T}eq} toward a maximum of ∼2.5% at T eq ≈ 1500 K, and then decreases as temperatures increase further, falling to ∼0.2% at T eff = 2500 K. This high-flux decrease in inflation efficiency was predicted by the Ohmic dissipation model of giant planet inflation but not other models. We also show that the thermal tides model predicts far more variance in radii than is observed. Thus, our results provide evidence for the Ohmic dissipation model and a functional form for ɛ(F) that any future theories of hot-Jupiter radii can be tested against.
Messages from the Reversing Layer: Clues to Planet Formation in Spectral Abundances
NASA Astrophysics Data System (ADS)
Brewer, John Michael; Fischer, Debra; Basu, Sarbani
2017-01-01
The abundances of elements in the protoplanetary disk evolve over time, but stellar abundances will reflect the initial chemical composition of the disk and this can provide constraints on the range of possible outcomes for planet interiors. Rocky planet habitability depends not just on the availability of liquid water, but also on volcansim and plate tectonics that can stabilize the climate on long timescales. The slow evolution of abundances in stellar photospheres, particularly abundance ratios between elements, makes them ideal laboratories to study primordial disk compositions.In my thesis work, I developed a new spectroscopic analysis procedure that derives gravities consistent with asteroseismology to within 0.05 dex as well as abundances for 15 elements. Using this procedure, we analyzed and published a catalog of accurate stellar parameters and precise abundances for more than 1600 stars and used those to investigate questions of planet formation. The C/O and Mg/Si ratios in the solar neighborhood could affect rocky planet habitability. For lucky cases where planet atmosphereic abundances can be measured, the stellar host C/O and [O/H] ratios carry information about the formation site and migration of hot Jupiters. I will present results on both rocky planet compositions and hot Jupiter migration and discuss how they can help us identify potentially habitable systems and discriminate between different planet formation models.
Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³
Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...
2012-02-27
Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less
Statistical and dynamical remastering of classic exoplanet systems
NASA Astrophysics Data System (ADS)
Nelson, Benjamin Earl
The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. In this dissertation, I will review our efforts to improve the statistical analyses of radial velocity (RV) data and their applications to some renown, dynamically complex exoplanet system. In the first project (Chapters 2 and 4), we develop a differential evolution Markov chain Monte Carlo (RUN DMC) algorithm to tackle the aforementioned difficult aspects of data analysis. We test the robustness of the algorithm in regards to the number of modeled planets (model dimensionality) and increasing dynamical strength. We apply RUN DMC to a couple classic multi-planet systems and one highly debated system from radial velocity surveys. In the second project (Chapter 5), we analyze RV data of 55 Cancri, a wide binary system known to harbor five planetary orbiting the primary. We find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet to enter the stellar photosphere through its periastron passage. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50+/-6 10 degrees), but they are not orbiting in a mean-motion resonance. In the third project (Chapters 3, 4, 6), we analyze RV data of Gliese 876, a four planet system with three participating in a multi-body resonance, i.e. a Laplace resonance. From a combined observational and statistical analysis computing Bayes factors, we find a four-planet model is favored over one with three-planets. Conditioned on this preferred model, we meaningfully constrain the three-dimensional orbital architecture of all the planets orbiting Gliese 876 based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations phi so they must be roughly coplanar (phicb = 1.41(+/-0.62/0.57) degrees and phibe = 3.87(+/-1.99/1.86 degrees). The three-dimensional Laplace argument librates chaotically with an amplitude of 50.5(+/-7.9/10.0) degrees, indicating significant past disk migration and ensuring long-term stability. In the final project (Chapter 7), we analyze the RV data for nu Octantis, a closely separated binary with an alleged planet orbiting interior and retrograde to the binary. Preliminary results place very tight constraints on the planet-binary mutual inclination but no model is dynamically stable beyond 105 years. These empirically derived models motivate the need for more sophisticated algorithms to analyze exoplanet data and will provide new challenges for planet formation models.
The geology and geophysics of Mars
NASA Technical Reports Server (NTRS)
Saunders, R. S.
1976-01-01
The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.
Insights into Mercury's interior structure from geodesy measurements and global contraction
NASA Astrophysics Data System (ADS)
Rivoldini, A.; Van Hoolst, T.
2014-04-01
The measurements of the gravitational field of Mercury by MESSENGER [6] and improved measurements of the spin state of Mercury [3] provide important insights on its interior structure. In particular, these data give strong constraints on the radius and density of Mercury's core [5, 2]. However, present geodesy data do not provide strong constraints on the radius of the inner core. The data allow for models with a fully molten liquid core to models which have an inner core radius that is smaller than about 1760km [5], if it is assumed that sulfur is the only light element in the core. Models without an inner core are, however, at odds with the observed internally generated magnetic field of Mercury since Mercury's dynamo cannot operate by secular cooling alone at present. The present radius of the inner core depends mainly on Mercury's thermal state and light elements inside the core. Because of the secular cooling of the planet,the temperature inside the core drops below the liquidus temperature of the core material somewhere in the core and leads to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends on the temperature decrease, on the thermal expansion of the materials inside the planet, and on the volume of crystallized liquid core alloy. In this study we use geodesy data, the recent estimate about the radial contraction of Mercury [1], and thermo-chemical evolution calculations in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface [4] indicate that Mercury formed under reducing conditions we consider models that have sulfur and silicon as light elements inside their core. Unlike sulfur, which does almost not partition into solid iron under Mercury's core pressure and temperature conditions, silicon partitions virtually equally between solid and liquid iron. As a consequence, the density difference between the liquid and the crystallized material is smaller than for sulfur as only light element inside the core and therefore, for a given inner core radius the contraction of the planet is likely smaller.
Artist Concept of InSight Lander on Mars
2014-03-26
This artist's concept depicts the stationary NASA Mars lander known by the acronym InSight at work studying the interior of Mars. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in March 2016 and land on Mars six months later. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. InSight will deploy two instruments to the ground using a robotic arm: a seismometer (contributed by the French space agency Centre National d'Etudes Spatiales, or CNES) to measure the microscopic ground motions from distant marsquakes, providing detailed information about the interior structure of Mars; and a heat-flow probe (contributed by the German Aerospace Center, or DLR) designed to hammer itself 3 to 5 meters (about 16 feet) deep and monitor heat coming from the planet's interior. The mission will also track the lander's radio to measure wobbles in the planet's rotation that relate to the size of its core and will include a camera and a suite of environmental sensors to monitor the weather and variations in the magnetic field. Lockheed Martin Space Systems, Denver, is building the spacecraft. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17358
Horizontal stress in planetary lithospheres from vertical processes
NASA Technical Reports Server (NTRS)
Banerdt, W. B.
1991-01-01
Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.
A HARDCORE model for constraining an exoplanet's core size
NASA Astrophysics Data System (ADS)
Suissa, Gabrielle; Chen, Jingjing; Kipping, David
2018-05-01
The interior structure of an exoplanet is hidden from direct view yet likely plays a crucial role in influencing the habitability of the Earth analogues. Inferences of the interior structure are impeded by a fundamental degeneracy that exists between any model comprising more than two layers and observations constraining just two bulk parameters: mass and radius. In this work, we show that although the inverse problem is indeed degenerate, there exists two boundary conditions that enables one to infer the minimum and maximum core radius fraction, CRFmin and CRFmax. These hold true even for planets with light volatile envelopes, but require the planet to be fully differentiated and that layers denser than iron are forbidden. With both bounds in hand, a marginal CRF can also be inferred by sampling in-between. After validating on the Earth, we apply our method to Kepler-36b and measure CRFmin = (0.50 ± 0.07), CRFmax = (0.78 ± 0.02), and CRFmarg = (0.64 ± 0.11), broadly consistent with the Earth's true CRF value of 0.55. We apply our method to a suite of hypothetical measurements of synthetic planets to serve as a sensitivity analysis. We find that CRFmin and CRFmax have recovered uncertainties proportional to the relative error on the planetary density, but CRFmarg saturates to between 0.03 and 0.16 once (Δρ/ρ) drops below 1-2 per cent. This implies that mass and radius alone cannot provide any better constraints on internal composition once bulk density constraints hit around a per cent, providing a clear target for observers.
Empirical models of Jupiter's interior from Juno data. Moment of inertia and tidal Love number k2
NASA Astrophysics Data System (ADS)
Ni, Dongdong
2018-05-01
Context. The Juno spacecraft has significantly improved the accuracy of gravitational harmonic coefficients J4, J6 and J8 during its first two perijoves. However, there are still differences in the interior model predictions of core mass and envelope metallicity because of the uncertainties in the hydrogen-helium equations of state. New theoretical approaches or observational data are hence required in order to further constrain the interior models of Jupiter. A well constrained interior model of Jupiter is helpful for understanding not only the dynamic flows in the interior, but also the formation history of giant planets. Aims: We present the radial density profiles of Jupiter fitted to the Juno gravity field observations. Also, we aim to investigate our ability to constrain the core properties of Jupiter using its moment of inertia and tidal Love number k2 which could be accessible by the Juno spacecraft. Methods: In this work, the radial density profile was constrained by the Juno gravity field data within the empirical two-layer model in which the equations of state are not needed as an input model parameter. Different two-layer models are constructed in terms of core properties. The dependence of the calculated moment of inertia and tidal Love number k2 on the core properties was investigated in order to discern their abilities to further constrain the internal structure of Jupiter. Results: The calculated normalized moment of inertia (NMOI) ranges from 0.2749 to 0.2762, in reasonable agreement with the other predictions. There is a good correlation between the NMOI value and the core properties including masses and radii. Therefore, measurements of NMOI by Juno can be used to constrain both the core mass and size of Jupiter's two-layer interior models. For the tidal Love number k2, the degeneracy of k2 is found and analyzed within the two-layer interior model. In spite of this, measurements of k2 can still be used to further constrain the core mass and size of Jupiter's two-layer interior models.
NASA Astrophysics Data System (ADS)
Pechernikova, G. V.; Ruskol, E. L.
2017-05-01
An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.
The Linear Mixing Approximation for Planetary Ices
NASA Astrophysics Data System (ADS)
Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.
2017-12-01
We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less
2008-06-01
exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane , where the colum- nar interior is therefore represented by a...116 5.4 The evolution of the ’it’ field in the weakly nonlinear run ........ .. 117 5.5 The zonal mean zonal velocity on the equatorial plane in...turbulence on a 8 plane . These two approaches have been in debate ever since. 1.3.1 Shallow Models The first to apply the "shallow" approach to
NASA Astrophysics Data System (ADS)
Stamenkovic, V.
2017-12-01
We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are suggested to be statistically more common around young stars in the outer disk of the Milky Way. Rocky super-Earths, undifferentiated planets, and still hypothetical carbon planets have the lowest plate yielding efficiencies found in our study. This work aids exoplanet characterization and helps explore the fundamental drivers of plate tectonics.
Entry Probe Missions to the Giant Planets
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.
2009-12-01
The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition, returning to Jupiter with a follow-on probe mission, possibly with technological advances allowing a multiple-probe mission, would make use of data from the Juno mission to guide entry location and measurement suite selection. This poster summarizes a white paper prepared for the Space Studies Board’s 2013-2022 Planetary Science Decadal Survey. It discusses specific measurements to be made by planetary probes at the giant planets, rationales and priorities for those measurements, and locations within the destination atmospheres where the measurements are best made.
Finding a planet's heartbeat: surprising results from patient Mars
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Ward, Lewis; Fischer, Woodward; Russell, Michael J.
2016-10-01
We explore, from a 3D time-dependent perspective, the evolution of oxidizing and reducing planetary niches and how they form a planetary-scale redox network - from a planet's deep interior to its atmosphere. Such redox networks are similar to the circulatory system of animals, but instead of pressure gradients redox gradients drive the flow of electrons and create hotspots for nutrients and metabolic activity.Using time-dependent geodynamic and atmospheric models, we compute for Mars the time-dependent 3D distribution of 1) hydrogen- and methane-rich reducing subsurface environments, driven by serpentinization and radiolysis of water, and 2) oxygen-rich oases as a product of atmosphere-brine interactions governed by climate and surface chemistry.This is only a first step towards our greater goal to globally model the evolution of local redox environments through time for rocky planets. However, already now our preliminary results show where on Mars oxidizing and reducing oases might have existed and might still exist today. This opens the window to search for extinct and extant life on Mars from a probabilistic global 3D perspective.
Optimal Planet Properties For Plate Tectonics Through Time And Space
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Seager, Sara
2014-11-01
Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Li; Jacobsen, Stein B., E-mail: astrozeng@gmail.com, E-mail: jacobsen@neodymium.harvard.edu
In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equationsmore » into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.« less
Scientific Value of a Saturn Atmospheric Probe Mission
NASA Technical Reports Server (NTRS)
Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.
2012-01-01
Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].
Artist Concept of InSight Lander on Mars
2015-08-18
This artist's concept from August 2015 depicts NASA's InSight Mars lander fully deployed for studying the deep interior of Mars. This illustration updates the correct placement and look of Insight's main instruments. For an earlier artist rendition, see PIA17358. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate processes that formed and shaped Mars. Its findings will improve understanding about the evolution of our inner solar system's rocky planets, including Earth. The lander will be the first mission to permanently deploy instruments directly onto Martian ground using a robotic arm. The two instruments to be placed into a work area in front of the lander are a seismometer (contributed by the French space agency Centre National d'Études Spatiales, or CNES) to measure the microscopic ground motions from distant marsquakes providing information about the interior structure of Mars, and a heat-flow probe (contributed by the German Aerospace Center, or DLR) designed to hammer itself 3 to 5 meters (about 16 feet) deep and monitor heat coming from the planet's interior. The mission will also track the lander's radio to measure wobbles in the planet's rotation that relate to the size of its core and a suite of environmental sensors to monitor the weather and variations in the magnetic field. Two cameras will aid in instrument deployment and monitoring the local environment. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19811
InSight Atlas V ISA-ASA Lift and Mate
2018-03-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V arrives at Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V ISA-ASA Transport
2018-03-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V arrive at Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V ISA-ASA Transport
2018-03-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket are transported to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.
We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn
2017-06-01
Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.
Habitability of the TRAPPIST-1 System
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
The recent discovery of seven Earth-sized, terrestrial planets around an M dwarf star was met with excitement and optimism. But how habitable are these planets actually likely to be? A recent study of these planets likely climates may provide an answer to this question.An Optimistic OutlookIn February of this year, the TRAPPIST-1 system was announced: seven roughly Earth-sized, transiting, terrestrial planets all orbiting their host ultracool dwarf star within a distance the size of Mercurys orbit. Three of the planets were initially declared to be in the stars habitable zone and scientists speculated that even those outside the habitable zone could potentially still harbor liquid water making the system especially exciting.In Wolfs simulations, the surface temperature (solid lines) of TRAPPIST-1d grows to more than 380K in just 40 years. [Adapted from Wolf 2017]The planets were labeled as temperate because all seven have equilibrium temperatures that are under 400K. Since liquid water requires a surface temperature of 273-373K, this certainly seems promising!Finding Realistic TemperaturesBut theres a catch: equilibrium temperatures are not actual measurements of the planets surface temperature, theyre just very rudimentary estimates based on how much light the planet receives. To get a better estimate of the real temperature of the planet and therefore assess its habitability you need advanced climate modeling of the planet that include factors like the greenhouse effect and planetary albedo.In Wolfs simulations, the surface temperature of TRAPPIST-1f plummets rapidly even when modeled with dense carbon dioxide atmosphere (purple line). The bottom panel shows the corresponding rapid growth of sea-ice on the surface oceans for the different atmospheric models. [Wolf 2017]To that end, scientist Eric Wolf (University of Colorado Boulder) has conducted state-of-the-art 3D climate calculations for the three center-most planets planets d, e, and f in the TRAPPIST-1 system. Wolf assumed traditional terrestrial-planet atmospheres composed of nitrogen, carbon dioxide, and water, and he examined what would happen if these planets had large water supplies in the form of surface oceans.Runaway and Snowball PlanetsWolfs climate model indicates that the closest-in of the three planets, planet d, would undergo thermal runaway even in the best case scenario. In just 40 years of the simulation, the planets surface temperature exceeds 380K, suggesting it couldnt continue to sustain liquid water. Wolf argues that planet d and the two planets interior to it, b and c, all lie inside of the traditional liquid water habitable zone they are hot, dry, and uninhabitable.Next, Wolf models the outermost of the three center planets, planet f. Even when planet f is modeled with a dense carbon dioxide atmosphere, it cant avoid its fate of becoming completely ice-covered within roughly 60 years. Wolf concludes that planets f, g and h all lie outside of the traditional habitable zone defined by the maximum carbon dioxide greenhouse limit.Equilibrium solutions for TRAPPIST-1e with various atmospheric conditions. Top panel: mean surface temperature. Middle panel: sea-ice coverage. Bottom panel: habitable surface area. [Wolf 2017]Goldilocks?Lastly, Wolf turns to planet e, the central planet in the system. This planet, he finds, is the most viable candidate for a robustly habitable world. The simulations show that planet e can maintain habitable surface conditions for a variety of atmospheric compositions.While astrobiologists eyeing TRAPPIST-1 may be disappointed that at second glance the planets are not quite as inhabitable as they first seemed, it is promising to see that the habitability of the central planet holds up reasonably well to some more realistic testing. Either way, future examinations of all seven of these planets should help us learn more about terrestrial, Earth-sized planets.CitationEric T. Wolf 2017 ApJL 839 L1. doi:10.3847/2041-8213/aa693a
NASA Astrophysics Data System (ADS)
Professor Khachay, Yurie
2015-04-01
Two characteristic times are significant for evolution the interior of the homogeneous proto-planetary cloud: the time of bodies free fall towards the clouds mass center and the time of sound distribution through the cloud. With the beginning of proto-planetary disk fragmentation and accumulation of the proto-planets from the bodies and particles there are formed matter content heterogeneities of the finite dimension, heterogeneities of temperature, density and values of kinetic coefficients. The system became more and more complicated with interior interconnections. By the growing of the bodies the difference between the values of the characteristic times and dimensions become larger. The dynamical evolution of the system we could observe with use the numerical modeling of the Earth and Moon formation into the 3-D model [1,2]. The fact, that the linear dimensions of the objects during the accumulation process change from the centimeter and meter dimensions to some thousands of kilometers significantly prevent the mathematical description of these processes. The corresponding values of the no dimensional similarity criterions, which are included into the systems of differential equations, which describe the proto-planetary growing, the conditions for entropy and mass on the growing surface, the equations of the impulse balance, energy and mass into the interior parts of the planet change on an orders of values. Therefore we used very detailed space and time grids for solution the problem using the method of finite differences. The additional complications occur according to necessity to take into account the nonlinear dependence of matter viscosity from the temperature, pressure and chemical matter content. At last we took into account the principal random distribution of heterogeneities, stipulated by bodies and particles falling. Only progression towards that direction and constructing corresponding systems of observation and interpretation allow to hope receiving more and more realistic models of self organizing structures and to understand the laws of their reconstruction during the complicated process of planetary accumulation. The work is fulfilled by partly support of RFBR (grant N13-05-00138). References. 1. Y. Khachay , V. Anfilogov , and A. Antipin (2014) Numerical Results of 3-D Modeling of Moon Accumulation // Geophysical Research Abstracts, Vol. 16, EGU2014-1011 2. Y.Khachay, A.Antipin and V.Anfilogov (2014)Numerical modeling of temperature distribution on the stage of Earth's accumulation in a frame of 3-D model and peculiarities of its initial minerageny. Ural geophysical bulletin 1: 81-85.
Magnetic Coupling in the Disks around Young Gas Giant Planets
NASA Astrophysics Data System (ADS)
Turner, N. J.; Lee, Man Hoi; Sano, T.
2014-03-01
We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk. (1) The dusty minimum-mass models have internal conductivities low enough to prevent angular momentum transfer by magnetic forces, as required for the material to remain in place while the satellites form. (2) The gas-starved models have magnetically active surface layers and a decoupled interior "dead zone." Similar active layers in the solar nebula yield accretion stresses in the range assumed in constructing the circumjovian gas-starved models. Our results also point to aspects of both classes of models that can be further developed. Non-turbulent minimum-mass models will lose dust from their atmospheres by settling, enabling gas to accrete through a thin surface layer. For the gas-starved models it is crucial to learn whether enough stellar X-ray and ultraviolet photons reach the circumjovian disk. Additionally, the stress-to-pressure ratio ought to increase with distance from the planet, likely leading to episodic accretion outbursts.
Seeking How Rocky Planets Form
2018-01-25
This is an artist's rendition of the InSight lander. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. InSight is a Mars mission, but it's more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22229
Phase Variations, Transits and Eclipses of the Misfit CoRoT-2b
NASA Astrophysics Data System (ADS)
Cowan, Nicolas; Deming, Drake; Gillon, Michael; Knutson, Heather; Madhusudhan, Nikku; Rauscher, Emily
2011-05-01
We propose to observe the nearby transiting hot Jupiter CoRoT-2b for a little over one planetary orbit on two occasions, yielding two secondary eclipses, a transit, and a full phase curve in each of the 3.6 and 4.5 micron channels. These data will help resolve the unique nature of this bloated planet: CoRoT-2b is the only hot Jupiter that is poorly fit by either inverted or non-inverted spectral models (Deming et al. 2011). Two hypotheses have been proposed to explain the peculiar mid-IR colors of CoRoT-2b, and thermal phase measurements with Spitzer's continuous, high-precision photometry will be able to distinguish between them: the planet has a non-inverted atmosphere but is losing mass to its host star, or the planet has a peculiar kind of temperature inversion due to mysterious atmospheric scatterers. CoRoT-2b is also among the most inflated hot Jupiters and, because of its relatively large mass, cannot be reconciled with interior evolution models, despite a small but non-zero eccentricity. A recent planetary collision may be necessary to explain the planet's youthful radius (Guillot & Havel 2011). Finally, the planet's extremely young host star, CoRoT-2, is the most chromospherically active of all transit hosts. This appears to be a common thread connecting all of its planet's peculiarities: the high UV flux of the star will drive mass loss, as well as photochemistry. Most importantly, the radius measurement of the planet at optical wavelengths may be contaminated by star spots. Mid-IR transit measurements from Spitzer will help resolve the mystery of CoRoT-2b's inflated radius.
NASA Technical Reports Server (NTRS)
Pappalardo, R. T.
2004-01-01
When the twin Voyager spacecraft cruised past Jupiter in 1979, they did more than rewrite the textbooks on the giant planet. Their cameras also unveiled the astounding diversity of the four planet-size moons of ice and stone known as the Galilean satellites. The Voyagers revealed the cratered countenance of Callisto, the valleys and ridges of Ganymede, the cracked face of Europa, and the spewing volcanoes of Io. But it would take a spacecraft named for Italian scientist Galileo, who discovered the moons in 1610, to reveal the true complexity of these worlds and to begin to divulge their interior secrets. Incredibly, the Galileo data strongly suggest that Jupiter's three large icy moons (all but rocky Io) hide interior oceans.
Hot super-Earths and giant planet cores from different migration histories
NASA Astrophysics Data System (ADS)
Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud
2014-09-01
Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.
An integrated model for Jupiter's dynamo action and mean jet dynamics
NASA Astrophysics Data System (ADS)
Gastine, Thomas; Wicht, Johannes; Duarte, Lucia; Heimpel, Moritz
2014-05-01
Data from various space crafts revealed that Jupiter's large scale interior magnetic field is very Earth-like. This is surprising since numerical simulations have demonstrated that, for example, the radial dependence of density, electrical conductivity and other physical properties, which is only mild in the iron cores of terrestrial planets but very drastic in gas planets, can significantly affect the interior dynamics. Jupiter's dynamo action is thought to take place in the deeper envelope where hydrogen, the main constituent of Jupiter's atmosphere, assumes metallic properties. The potential interaction between the observed zonal jets and the deeper dynamo region is an unresolved problem with important consequences for the magnetic field generation. Here we present the first numerical simulation that is based on recent interior models and covers 99% of the planetary radius (below the 1 bar level). A steep decease in the electrical conductivity over the outer 10% in radius allowed us to model both the deeper metallic region and the outer molecular layer in an integrated approach. The magnetic field very closely reproduces Jupiter's known large scale field. A strong equatorial zonal jet remains constrained to the molecular layer while higher latitude jets are suppressed by Lorentz forces. This suggests that Jupiter's higher latitude jets remain shallow and are driven by an additional effect not captured in our deep convection model. The dynamo action of the equatorial jet produces a band of magnetic field located around the equator. The unprecedented magnetic field resolution expected from the Juno mission will allow to resolve this feature allowing a direct detection of the equatorial jet dynamics at depth. Typical secular variation times scales amount to around 750 yr for the dipole contribution but decrease to about 5 yr at the expected Juno resolution (spherical harmonic degree 20). At a nominal mission duration of one year Juno should therefore be able to directly detect secular variation effects in the higher field harmonics.
Possible Habitability of Ocean Worlds
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Bredehöft, Jan H.; Lammer, Helmut
2014-05-01
In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. The Astrophysical Journal 693, 722-733. Wagner, F.W., Sohl, F., Hussmann, H., Grott, M., and Rauer, H. (2011). Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214, 366-376. Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, J.L., and Rauer, H. (2009). What makes a planet habitable? Astron Astrophys Rev 17, 181-249.
NASA Astrophysics Data System (ADS)
Christensen, Ulrich R.
2017-06-01
The Earth's magnetic field has been known for centuries. Since the mid-20th century space missions carrying vector magnetometers showed that most, but not all, solar system planets have a global magnetic field of internal origin. They also revealed a surprising diversity in terms of field strength and morphology. While Jupiter's field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet's spin axis, with multipole components being subordinate but not negligible, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn und Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (1) They provide ground truth for dynamo theory, which is a fundamental and not completely solved physical problem; (2) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind; and (3) the existence (or nonexistence) and the properties of the field allow us to draw inferences on the constitution, dynamics, and thermal evolution of the planet's interior. For example, the lack of global magnetic fields at Mars and Venus can be explained if their iron cores, although liquid, are stably stratified. Numerical simulations of the geodynamo—in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents and the associated magnetic field—have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and, tentatively, their morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets, and it is debatable whether they truly capture the correct physics of planetary dynamo processes. Nonetheless, such models have been adapted to test concepts for explaining magnetic field properties of other planets. For example, they show that a stable stratified conducting layer above the dynamo region is a plausible cause for the strongly axisymmetric magnetic fields of Mercury or Saturn.
NASA Technical Reports Server (NTRS)
Wells, R. A.
1979-01-01
A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
NASA Technical Reports Server (NTRS)
Jones, D. W.
1971-01-01
The navigation and guidance process for the Jupiter, Saturn and Uranus planetary encounter phases of the 1977 Grand Tour interior mission was simulated. Reference approach navigation accuracies were defined and the relative information content of the various observation types were evaluated. Reference encounter guidance requirements were defined, sensitivities to assumed simulation model parameters were determined and the adequacy of the linear estimation theory was assessed. A linear sequential estimator was used to provide an estimate of the augmented state vector, consisting of the six state variables of position and velocity plus the three components of a planet position bias. The guidance process was simulated using a nonspherical model of the execution errors. Computation algorithms which simulate the navigation and guidance process were derived from theory and implemented into two research-oriented computer programs, written in FORTRAN.
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
The Whole Heliosphere Interval: Campaign Summaries and Early Results
NASA Technical Reports Server (NTRS)
Thompson, Barbara J.; Gibson, Sarah E.; Kozyra, Janet U.
2008-01-01
The Whole Heliosphere Interval (WHI) is an internationally coordinated observing and modeling effort to characterize the 3-dimensional interconnected solar-heliospheric-planetary system - a.k.a. the "heliophysical" system. The heart of the WHI campaign is the study of the interconnected 3-D heliophysical domain, from the interior of the Sun, to the Earth, outer planets, and into interstellar space. WHI observing campaigns began with the 3-0 solar structure from solar Carrington Rotation 2068, which ran from March 20 - April 16, 2008. Observations and models of the outer heliosphere and planetary impacts extended beyond those dates as necessary; for example, the solar wind transit time to outer planets can take months. WHI occurs during solar minimum, which optimizes our ability to characterize the 3-D heliosphere and trace the structure to the outer limits of the heliosphere. A summary of some of the key results from the WHI first workshop in August 2008 will be given.
Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury
NASA Astrophysics Data System (ADS)
Zhang, Zhou; Pommier, Anne
2017-12-01
We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.
Large Impact Features on Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Moore, J. M.; Schenk, P. M.; Korycansky, D. G.
2017-01-01
Impact crater morphology can be a very useful tool for probing planetary interiors, but nowhere in the solar system is a greater variety of crater morphologies observed (Fig. 1) than on the large icy Galilean satellites Ganymede and Callisto [e.g., 1- 3]. As on the rocky terrestrial planets, impact crater morphology becomes more complex with increasing size on these satellites. With increasing size, however, these same craters become less like their counterparts on the rocky planets. Several impact landforms and structures (multiring furrows, palimpsests, and central domes, for example), have no obvious analogs on any other planets. Further, several studies [e.g., 4-6] have drawn attention to impact landforms on Europa which are unusual, even by Galilean satellite standards. These radical differences in morphology suggest that impact into icy lithospheres that are mechanically distinct from silicate lithospheres may be responsible. As such, large impact structures may be important probes of the interiors of these bodies over time [e.g., 7]. The first goal of this work is to integrate and correlate the detailed morphologic and morphometric measurements and observations of craters on icy Galilean satellites [e.g., 4, 8-12] with new detailed mapping of these structures from Galileo high-resolution images. As a result, we put forward a revised crater taxonomy for Ganymede and Callisto in order to simplify the nonuniform impact crater nomenclature cluttering the literature. We develop and present an integrated model for the development of these unusual crater morphologies and their implications for the thermal evolution of these bodies.
Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets
NASA Astrophysics Data System (ADS)
Margalit, Ben; Metzger, Brian D.
2017-03-01
We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.
The Fuzziness of Giant Planets’ Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helled, Ravit; Stevenson, David
2017-05-01
Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not bemore » distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.« less
Equilibrium figures of dwarf planets
NASA Astrophysics Data System (ADS)
Rambaux, Nicolas; Chambat, Frederic; Castillo-Rogez, Julie; Baguet, Daniel
2016-10-01
Dwarf planets including transneptunian objects (TNO) and Ceres are >500 km large and display a spheroidal shape. These protoplanets are left over from the formation of the solar System about 4.6 billion years ago and their study could improve our knowledge of the early solar system. They could be formed in-situ or migrated to their current positions as a consequence of large-scale solar system dynamical evolution. Quantifying their internal composition would bring constraints on their accretion environment and migration history. That information may be inferred from studying their global shapes from stellar occultations or thermal infrared imaging. Here we model the equilibrium shapes of isolated dwarf planets under the assumption of hydrostatic equilibrium that forms the basis for interpreting shape data in terms of interior structure. Deviations from hydrostaticity can shed light on the thermal and geophysical history of the bodies. The dwarf planets are generally fast rotators spinning in few hours, so their shape modeling requires numerically integration with Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter, to reach an accuracy better than a few kilometers depending on the spin velocity and mean density. We also show that the difference between a 500-km radius homogeneous model described by a MacLaurin ellipsoid and a stratified model assuming silicate and ice layers can reach several kilometers in the long and short axes, which could be measurable. This type of modeling will be instrumental in assessing hydrostaticity and thus detecting large non-hydrostatic contributions in the observed shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauscher, Emily; Showman, Adam P., E-mail: rauscher@astro.princeton.edu
As a planet ages, it cools and its radius shrinks at a rate set by the efficiency with which heat is transported from the interior out to space. The bottleneck for this transport is at the boundary between the convective interior and the radiative atmosphere; the opacity there sets the global cooling rate. Models of planetary evolution are often one dimensional (1D), such that the radiative-convective boundary (RCB) is defined by a single temperature, pressure, and opacity. In reality the spatially inhomogeneous stellar heating pattern and circulation in the atmosphere could deform the RCB, allowing heat from the interior tomore » escape more efficiently through regions with lower opacity. We present an analysis of the degree to which the RCB could be deformed and the resultant change in the evolutionary cooling rate. In this initial work we calculate the upper limit for this effect by comparing an atmospheric structure in local radiative equilibrium to its 1D equivalent. We find that the cooling through an uneven RCB could be enhanced over cooling through a uniform RCB by as much as 10%-50%. We also show that the deformation of the RCB (and the enhancement of the cooling rate) increases with a greater incident stellar flux or a lower inner entropy. Our results indicate that this mechanism could significantly change a planet's thermal evolution, causing it to cool and shrink more quickly than would otherwise be expected. This may exacerbate the well-known difficulty in explaining the very large radii observed for some hot Jupiters.« less
Interior Structure and Habitability of Ocean Worlds
NASA Astrophysics Data System (ADS)
Vance, S.; Bills, B. G.; Cammarano, F.; Panning, M. P.; Stähler, S. C.
2016-12-01
Earth's habitability depends critically on its interior structure and dynamics. Global redox cycles rely on Earth's mantle for continued flux of reduced materials (e.g., Hayes and Waldbauer 2006). Similarly, the habitability of ocean worlds must be understood in terms of their interior structure and evolution (Zolotov and Shock 2004, Hand et al. 2009, Nimmo and Pappalardo 2016, Vance et al. 2016). Combined seismology, gravity, and magnetic investigations may be able to distinguish between a hot active interior and a cold dead one. To evaluate such investigations, we are developing detailed models of interior density, elastic and anelastic structure, and associated seismic sources and signatures, building on prior work (Cammarano et al. 2006). We will present self-consistent 1-D structural models for ocean world interiors that use available thermodynamic data for fluids, ices, and rocks. Cammarano, F., V. Lekic, M. Manga, M. Panning, and B. Romanowicz (2006). Long-period seismology on Europa: 1. Physically consistent interior models. Journal of Geophysical Research, E12009:doi:10.1029/2006JE002710. Hand, K. P., C. Chyba, J. Priscu, R. Carlson, and K. Nealson (2009). Astrobiology and the Potential for Life on Europa, page 589. Arizona University Press. Hayes, J. M. and J. R. Waldbauer (2006). The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470):931-950. Nimmo, F. and R. T. Pappalardo (2016). Ocean Worlds in the Outer Solar System. Journal of Geophysical Research, doi:10.1002/2016JE005081 Vance, S. D., K. P. Hand, and R. T. Pappalardo (2016). Geophysical controls of chemical disequilibria in Europa. Geophysical Research Letters, doi:10.1002/2016GL068547. Zolotov, M. Y. and E. L. Shock (2004). A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. Journal of Geophysical Research-Planets, 109(E6):E06003.
Water cycling between ocean and mantle: Super-earths need not be waterworlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Nicolas B.; Abbot, Dorian S., E-mail: n-cowan@northwestern.edu
2014-01-20
Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridgesmore » and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.« less
NASA Astrophysics Data System (ADS)
Simakov, M. B.
At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer
InSight Atlas V ISA-ASA Transport
2018-03-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket is prepared for transport from Building 7525 to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V ISA-ASA Lift and Mate
2018-03-05
At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers mate the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V to a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V ISA-ASA Transport
2018-03-05
At Space Launch Complex 3 at Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V are lifted by crane for mating atop a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V ISA-ASA Lift and Mate
2018-03-05
At Space Launch Complex 3 at Vandenberg Air Force Base in California, a technician assists as the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V is lifted by crane for mating atop a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, A.; Winter, O. C.; Haghighipour, N.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less
NASA Astrophysics Data System (ADS)
Panning, Mark Paul; Stähler, Simon; Kedar, Sharon; van Driel, Martin; Nissen-Meyer, Tarje; Vance, Steve
2016-10-01
Seismology is one of our best tools for detailing interior structure of planetary bodies, and seismometers are likely to be considered for future lander missions to other planetary bodies after the planned landing of InSight on Mars in 2018. In order to guide instrument design and mission requirements, however, it is essential to model likely seismic signals in advance to determine the most promising data needed to meet science goals. Seismic data for multiple planetary bodies can now be simulated rapidly for arbitrary source-receiver configurations to frequencies of 1 Hz and above using the numerical wave propagation codes AxiSEM and Instaseis (van Driel et al., 2015) using 1D models derived from thermodynamic constraints (e.g. Cammarano et al., 2006). We present simulations for terrestrial planets and icy worlds to demonstrate the types of seismic signals we may expect to retrieve. We also show an application that takes advantage of the computational strengths of this method to construct a model of the thermal cracking noise environment for Europa under a range of assumptions of activity levels and elastic and anelastic structure.M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a broadband waveform database," Solid Earth, 6, 701-717, doi: 10.5194/se-6-701-2015.F. Cammarano, V. Lekic, M. Manga, M.P. Panning, and B.A. Romanowicz (2006), "Long-period seismology on Europa: 1. Physically consistent interior models," J. Geophys. Res., 111, E12009, doi: 10.1029/2006JE002710.
The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Roberge, Aki
2018-01-01
JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.
2006-01-01
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Caroline V.; Knutson, Heather; Line, Michael
The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b’s thermal emission at 3.6 and 4.5 μ m, which reduce uncertainties in estimates of GJ 436b’s flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modelingmore » approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T {sub int} ∼ 300–350 K, we find a dissipation factor Q ′ ∼ 2 × 10{sup 5}–10{sup 6}, larger than Neptune’s Q ′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.« less
Exo-geneology: Stellar Abundances in Solar-like Stars with Planets
NASA Astrophysics Data System (ADS)
Teske, Johanna; SDSS-IV APOGEE-2
2018-01-01
Through the process of star and planet formation, we think that the chemical abundances, or ``genes’’, of host stars are passed on to their orbiting planets. One prominent example of this is the giant planet-metallicity (iron abundance) correlation, but could other stellar ``genes’’ help explain the growing menagerie of exoplanets? Particularly interesting is the relative importance of C, O, Mg, and Si – for instance, are giant planet cores dominated by ice-forming or rock-forming elements? The ratios of these elements in terrestrial planets also control their interior structure and mineralogy, and can thus affect their similarity (or not) to Earth. In this talk I will discuss how high resolution spectroscopic studies of host stars have been and are being used to investigate how/to what extent planet properties are dependent on host star properties, focusing on solar-like (FGK) stars. I will also highlight the role that upcoming facilities can play in understanding the diversity of planets in the Galaxy.
Studies of the Gas Tori of Titan and Triton
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.
1997-01-01
A model for the spatial distribution of hydrogen in the Saturn system including a Titan source, an interior source for the rings and inner icy satellites, and a Saturn source has been applied to the best available Voyager 1 and 2 UVS Lyman-alpha observations presented by Shemansky and Hall. Although the model-data comparison is limited by the quality of the observational data, source rates for a Titan source of 3.3 - 4.8 x 10(exp 27) H atoms/s and, for the first time, source rates larger by about a factor of four for the interior source of 1.4 - 1.9 x 10(exp 27) H atoms/s were determined. Outside the immediate location of the planet, the Saturn source is only a minor contribution of hydrogen. A paper describing this research in more detail has been submitted to The Astrophysical Journal for publication and is included in the Appendix. Limited progress in the development of a model for the collisional gas tori of Triton is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com
We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total massmore » of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.« less
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Libration and obliquity of Mercury from the BepiColombo radio science and camera experiments
NASA Astrophysics Data System (ADS)
Pfyffer, G.; van Hoolst, T.; Dehant, V.
2008-12-01
Mercury is the most enigmatic among the terrestrial planets, but the space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the 88-day forced libration, the obliquity and the degree-two coefficients of the gravity field of Mercury. Of those quantities, the libration is the most difficult to measure and will hence be a limiting factor We report here on aspects of the observational strategy to determine the libration amplitude and obliquity, taking into account the space and ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission. We simulated these measurements in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet, as a function of the amount of measurements made, the number of different targets considered and their locations on the surface of the planet. From this study, we determine criteria for the distribution and number of target positions to maximize the accuracy on the orientation and rotation determination, from which the obliquity and libration are extracted. We take into account the errors arising from the relative positions of the spacecraft, Mercury and the Earth. We consider various error sources such as the solar thermal influence on the spacecraft bus and the Earth based tracking constraint near solar conjunctions of Mercury. The accuracy on the retrieved parameters is then interpreted in terms of accuracy on the constraints on the interior structure of the planet. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will be sufficient to constrain Mercury interior structure models, if the orbiter follows the ESA baseline mission scenario and at least 50 landmarks are imaged at least twice over the mission duration, the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of 3 arcsec or better, which is sufficient to constrain the size and physical state of the planetary core.
NASA Technical Reports Server (NTRS)
Hillman, E.; Barlow, N. G.
2005-01-01
Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.
Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets
NASA Astrophysics Data System (ADS)
Rogers, Leslie A.; Price, Ellen
2015-12-01
The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.
NASA Astrophysics Data System (ADS)
Johnson, Catherine L.; Hauck, , Steven A.
2016-11-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.
Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet
NASA Astrophysics Data System (ADS)
Taylor, Fredric W.; Svedhem, Håkan; Head, James W.
2018-02-01
This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.
Cooling of the magma ocean due to accretional disruption of the surface insulating layer
NASA Technical Reports Server (NTRS)
Sasaki, Sho
1992-01-01
Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.
Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution
NASA Astrophysics Data System (ADS)
Smrekar, S. E.; Hensley, S.; Helbert, J.
2013-12-01
As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.
2018-03-22
At Space Launch Complex 3 at Vandenberg Air Force Base in California, the gantry is rolled back on the United Launch Alliance (ULA) Atlas V to a Centaur upper stage aft stub adapter (ASA) and interstage adapter (ISA) for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. The next step will be arrival of InSight encapsulated in its payload faring for mating atop the rocket. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
Constraining Mercury's interior structure with geodesy data and its present thermal state
NASA Astrophysics Data System (ADS)
Rivoldini, Attilio; Van Hoolst, Tim; Noack, Lena
2015-04-01
Recent measurements of Mercury's spin state and gravitational field supplemented by the assumption that the planet's core is made of iron and sulfur give strong constraints on its interior structure. In particular, they allow a precise determination of Mercury's core size and average mantle density. Present geodesy data do, however, almost not constrain the size of the inner core. Interior structure models with a fully molten liquid core as well as models with an inner core almost as large as the core agree with the observations. Additionally, the observed internally generated magnetic field of Mercury does not preclude the absence of an inner core, since remelting of iron snow inside the core could produce a sufficient buoyancy flux to drive magnetic field generation by compositional convection. Although sulfur is ubiquitously invoked as being the principal candidate light element in terrestrial planet's cores its abundance in the core depends on the redox conditions during planetary formation. Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, substantial amounts of other light elements like for example silicon and carbon could be present together with sulfur inside Mercury's core. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions, silicon partitions almost equally well between solid and liquid iron whereas a few percent of carbon can partition into solid iron. Therefore, compared to a pure iron-sulfur core, if silicon and carbon are present in the core the density jump at the inner-core outer-core boundary could be smaller and induce a large enough change in the inner-core flattening to alter Mercury's libration amplitude. Moreover, the presence of carbon together with sulfur further reduces the core solidus temperature, potentially delaying the onset of inner core formation. Finally, if both silicon and sulfur are present in sufficient quantities a thin layer much enriched in sulfur and depleted in silicon could form at the top of the core as a consequence of a large immiscibility region in liquid Fe-S-Si at Mercury's core conditions. The present radius of an inner core depends mainly on Mercury's thermal state and concentration of light elements inside the core. Because of the secular cooling of the planet, at a time in Mercury's evolution the temperature inside the core drops below the core liquidus temperature somewhere in the core, which can lead to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends mainly on the temperature decrease, on the thermal expansion of the materials inside the planet, on the volume of crystallized iron-rich core liquid, and on the volume of crystallized crust. In this study we use geodesy data (88 day libration amplitude, polar moment of inertia, and tidal Love number), the recent estimate about the radial contraction of Mercury, and thermo-chemical evolution calculations taking into account the formation of the crust, a growing inner core, and modeling the formation of iron-rich snow in the core in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface indicate that Mercury formed under reducing conditions we consider models that have sulfur, silicon, and carbon as light elements inside their core.
Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology
NASA Technical Reports Server (NTRS)
Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.
2008-01-01
Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) < 3M(sub J), an orbital semimajor axis a(sub pl) > 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean-motion resonances with Fom b; these empty resonances are akin to the Kirkwood gaps opened by Jupiter. The belt contains at least 3M(sub Earth) of solids that are grinding down to dust, their velocity dispersions stirred so strongly by Fom b that collisions are destructive. Such a large mass in solids is consistent with Fom b having formed in situ.
Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y
2016-12-01
The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.
Volatile inventory and early evolution of the planetary atmospheres
NASA Astrophysics Data System (ADS)
Marov, Mikhail Ya.; Ipatov, Sergei I.
Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.
2016-01-20
Joel Steinkraus, lead mechanical engineer for the MarCO (Mars Cube One) CubeSat spacecraft, adjusts a model of one of the two spacecraft. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20344
Face-Centred Cubic Iron: Ab Initio Calculations of Sound Velocities in the Lunar Core
NASA Astrophysics Data System (ADS)
Wood, M. C.; Wood, I. G.; Vočadlo, L.
2017-12-01
Studies, such as the reanalysis of the Apollo lunar seismograms [1], have shown that the Moon has undergone differentiation and possesses a small core. The composition of the lunar core is not well constrained, and many compositional models have been suggested including combinations of iron, nickel, and light elements such as sulphur and carbon [e.g. 1, 2, 3, 4], and other more exotic compositions [5]. Additional constraints are crucial to our understanding of the Moon, including its formation, the dynamics of its interior, and a lunar dynamo. We use ab initio molecular dynamics simulations to calculate elastic constants of face-centred cubic (fcc) iron and iron alloys and hence sound velocities at lunar core conditions, at 5-6 GPa and 1,300-1,900 K [3]. The results from these simulations will then be compared with the data from the Apollo seismograms and experimental data to help form a description of the lunar interior. [1] Weber et al. (2011) Science 331, 309-312. [2] Dasgupta et al. (2009) Geochim. Cosmochim. Acta 73, 6678-6692. [3] Antonangeli et al. (2015) Proc. Natl. Acad. Sci. U.S.A. 112, 3916-3919. [4] Righter et al. (2017) Earth Planet. Sci. Lett. 463, 323-332. [5] Wieczorek & Zuber (2002) Lunar Planet. Sci. 33, abstract 1384.
NASA Astrophysics Data System (ADS)
Wuennemann, K.; Manske, L.; Zhu, M.; Nakajima, M.; Breuer, D.; Schwinger, S.; Plesa, A. C.
2017-12-01
Large collisions and giant impact events play an important role in the thermo-chemical evolution of planets during their early and late accretion phases. Besides material that is delivered by differentiated and primitive projectiles a significant amount of the kinetic impact energy is transferred to the planets interior resulting in heating and widespread melting of matter. As a consequence, giant impacts are thought to form global magma oceans. The amount and distribution of impact-induced heating and melting has been previously estimated by scaling laws derived from small-scale impact simulations and experiments, simple theoretical considerations, and observations at terrestrial craters. We carried out a suite of numerical models using the iSALE shock physics code and an SPH code combined with the ANEOS package to investigate the melt production in giant impacts and planetary collision events as a function of impactor size and velocity, and the target temperature. Our results are consistent with previously derived scaling laws only for smaller impactors (<10 km in diameter), but significantly deviate for larger impactors: (1) for hot planets, where the temperature below the lithosphere lies close to the solidus temperature, the melt production is significantly increased for impactors comparable in the size to the depth of the lithosphere. The resulting crater structures would drown in their own melt and only large igneous provinces (local magma oceans) would remain visible at the surface;(2) even bigger impacts (planetary collisions) generate global magma oceans; (3) impacts into a completely solidified (cold) target result in more localized heating in comparison to impacts into a magma ocean, where the impact-induced heating is distributed over a larger volume. In addition, we investigate the influence of impacts on a cooling and crystallization of magma oceans and use the lunar magma ocean as an example.
Formation of planetesimals in the Solar Nebula
NASA Astrophysics Data System (ADS)
Hueso, R.; Guillot, T.
2001-11-01
We study the evolution of protoplanetary disks with gas and embedded particles using a classical alpha-disk model. Solid matter entrained in the gas is incorporated following the formalism of Stepinski and Valageas (A&A, 1996, 1997). Dust grains coagulate into larger particles until they eventually decouple from the gas. The coagulation process is modulated by the evaporation and condensation of dust in the disk. We simultaneously consider grains of ices and rock, which allows us to study the amount of different solid material available to form the different planets. In particular, we present consequences for the development of planetesimals in the Uranus and Neptune region. This is interesting in the light of interior models of these planets, which naturally tend to predict a low rock to ice ratio. We will also discuss the consequences of these results on the standard core-accretion formation scenario. Acknowledgements: This work has been supported by Programme National du Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.
2018-04-06
NASA's InSight to Mars undergoes final preparations at Vandenberg Air Force Base in Central California, ahead of its launch, expected as early as May 5, 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22254
NASA Astrophysics Data System (ADS)
Buczkowski, D.; Iyer, K.; Raymond, C. A.; Wyrick, D. Y.; Kahn, E.; Nathues, A.; Gaskell, R. W.; Roatsch, T.; Preusker, F.; Russell, C. T.
2012-12-01
Linear structures have been identified in a concentric orientation around impact craters on several asteroids (e.g. Ida [1], Eros [2], Lutetia [3]) and their formation tied to the impact event [1,2]. Images of Vesta taken by the Dawn spacecraft reveal large-scale linear structural features in a similar orientation around the Rheasilvia and Veneneia basins [4]. However, the dimensions and shape of these features suggest that they are graben similar to those observed on terrestrial planets, not fractures or grooves such as are found on Ida, Eros and Lutetia [5]. Although the fault plane analysis [4] implies that impact may have been responsible for triggering the formation of these features as on the smaller asteroids, we suggest the significantly different morphology implies that some other component must also have been involved in their development. It has been established that Vesta is a differentiated body with a core [6]. This differentiated interior could be a factor in the troughs' resemblance to planetary faults rather than asteroidal fractures, as it is predicted that the stresses resultant from impact would be amplified and reoriented compared to a similar impact on an undifferentiated body. Preliminary CTH hydrocode [7] models of a 530 km sphere composed of a basalt analog with a 220 km iron core [6] show that the impact of a 50 km object results in different patterns of tensile stress and pressure compared to an undifferentiated sphere of the same material and diameter. While these first-order models have yet to fully mimic the observations we've made on Vesta, they do demonstrate that the density contrast in Vesta's differentiated interior affects the stresses resulting from the Rheasilivia and Veneneia impacts. It is this impedance mismatch that we suggest is responsible for the development of Vesta's planet-like troughs. Thus, future identification of planetary-style tectonic features on small solar system bodies may then imply a differentiated interior like Vesta's. The authors gratefully acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work was funded by the Dawn at Vesta Participating Science Program. [1] Asphaug et al. 1996, Icarus, 120, 158-184. [2] Buczkowski et al. 2008, Icarus, 193, 39-52. [3] Thomas et al. 2011, Planet. Space Sci., doi:10.1016/j.pss.2011.10.003. [4] Jaumann et al. 2012, Science 336, 687-690. [5] Buczkowski et al. 2012, GRL, submitted. [6] Russell et al. 2012, Science 336, 684-686. [7] McGlaun et al. 1990, Int. J. Impact Eng., 10(1-40), 351-360.
Comparative Climatology of Terrestrial Planets
NASA Astrophysics Data System (ADS)
Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.
Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most sessions served to build connections between planetary, solar, astrophysics, and Earth climate scientists. These presentations and discussions allowed broadening of the author teams and tuning of the material in each chapter. Comparative Climatology of Terrestrial Planets is the 38th book in the University of Arizona Press Space Sciences Series. The support and guidance from General Editor Richard Binzel has been critical in timely production of a quality volume. Renée Dotson of the Lunar and Planetary Institute, with support from Elizabeth Cunningham and Katy Buckaloo, provided outstanding help in the management of the book project and especially in the preparation of the chapters for publication. Her quiet reminders and attention to detail are critical in making the Space Science Series such an asset for the planetary science community. As for so many other books in this series, William Hartmann used his artistic skills to masterfully capture the book's theme. Much gratitude is owed to Adriana Ocampo of NASA Headquarters for her support of both the conference and book projects and her shepherding of the NASA contributions from the diverse groups within the Science Mission Directorate. Equally, James Green and Jonathan Rall of NASA Headquarters provided the financial resources and corporate oversight that helped make this book project such a success.
Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.
2017-12-01
Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.
NASA Astrophysics Data System (ADS)
Izquierdo, K.; Lekic, V.; Montesi, L.
2017-12-01
Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there is no other geophysical data available.
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.; Miller, R. L.
1986-01-01
A rotating and adiabatic inviscid fluid planet possesses low frequency motions that are barotropic, quasi-geostrophic and quasi-columnar. The limiting curvature at which flow becomes unstable upon projection onto the planetary surface is negative, with an amplitude that is 3-4 times that for thin atmospheres, in planets in which density linearly decreases to zero at the surface. This result is shown to hold for all quasi-columnar perturbations. Both the phase speed of the normal mode oscillations and the barotropic stability criterion have features in common with Saturn and Jupiter oscillations.
NASA Social and Media Briefing on Next Mars Mission
2018-05-03
News media and social media participants gathered at Vandenberg Air Force Base in Central California Thursday, May 3 to hear from NASA and its partners about the agency’s mission to study the interior of the Red Planet. NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) is scheduled to launch May 5 on a United Launch Alliance Atlas V rocket, from Space Launch Complex 3 at Vandenberg.
2012-08-20
Artist rendition of the formation of rocky bodies in the solar system -- how they form and differentiate and evolve into terrestrial planets. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA16078
Recent planetary physics and chemistry
NASA Technical Reports Server (NTRS)
Smoluchowski, R.
1980-01-01
During the past few years considerable progress has been made in the knowledge and understanding of the origin of planets and of the structure of their interiors and atmospheres. Some of these advances, including Venera and Viking results, are reviewed for all the planets (except earth) with emphasis on those data that seem amenable to theoretical analysis. Results of the 1978-79 Mariner-Venus Orbiter, Pioneer 11, and Voyager 1 and 2 missions as well as other observations are briefly summarized.
2004-07-21
KENNEDY SPACE CENTER, FLA. - MESSENGER, a NASA Discovery mission. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission is a scientific investigation of the planet Mercury. MESSENGER will be launched in the summer of 2004 and will enter Mercury orbit in March of 2011, after one Earth flyby, two flybys of Venus, and three of Mercury along the way. The flyby and orbital phases of the mission will provide global mapping and detailed characterization of the planet's surface, interior, atmosphere and magnetosphere.
The Saturn Probe Interior and aTmosphere Explorer (SPRITE) Mission
NASA Astrophysics Data System (ADS)
Simon, Amy; Banfield, Donald; Atkinson, David; SPRITE Science Team
2018-01-01
A key question in planetary science is how the planets formed in our Solar System, and, by extension, in exoplanet systems. The abundances of the noble gases (He, Ne, Ar, Kr, Xe), heavy elements (C, N, O, S), and their isotopes provide important forensic clues as to location and time of formation in the early Solar System. Jupiter and Saturn contain most of the planetary mass in our solar system, and their chemical fingerprints will distinguish between competing models of the formation of all the planets. After the end of the Cassini mission, some of these elements have only ambiguous values above the cloud tops, while others (particularly the noble gases) have not been measured at all. Resolving this requires direct in situ measurements. The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission delivers an instrumented entry probe from a carrier relay spacecraft that also provides context imaging. The powerful probe instrument suite is comprised of a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer, and an Atmospheric Structure Instrument including a Doppler Wind Experiment and a simple backscatter nephelometer. These instruments measure the elemental and isotopic abundances of helium, the heavier noble gases, and the major elements, as well as constraining cloud properties, 3-D atmospheric dynamics, and disequilibrium chemistry to at least 10 bars in Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE will provide a significantly improved context for interpreting the results from the Galileo probe, Juno, and Cassini missions. SPRITE will revolutionize our understanding of the formation and evolution of the gas giant planets, and ultimately the present-day structure of the Solar System.
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Tajika, E.; Kadoya, S.
2017-12-01
Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.
The long-period librations of large synchronous icy moons
NASA Astrophysics Data System (ADS)
Yseboodt, Marie; Van Hoolst, Tim
2014-11-01
A moon in synchronous rotation has longitudinal librations because of its non-spherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of the Galilean satellites and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not keplerian and has other periodicities than the main period of orbital motion around Jupiter or Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies. For Titan we also take into account the large atmospheric torque at the semi-annual period of Saturn around the Sun.We numerically evaluate the amplitude and phase of the long-period librations for many interior structure models of the icy moons constrained by the mass, radius and gravity field.
High pressure cosmochemistry applied to major planetary interiors: Experimental studies
NASA Technical Reports Server (NTRS)
Nicol, M. F.; Johnson, M.; Koumvakalis, A. S.
1984-01-01
Progress is reported on a project to determine the properties and boundaries of high pressure phases of the H2-He-H2O-NH3-CH4 system that are needed to constrain theoretical models of the interiors of the major planets. This project is one of the first attempts to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes. Adiabats of these materials are also measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Initial efforts involve the NH3-H2O binary. This system is especially relevant to models for surface reconstruction of the icy satellites of Jupiter and Saturn. Thermal analysis experiments were completed for the P-X space, p4GPa:0 or = 0.50, near room temperature. The cryostat, sample handling equipment, and optics needed to extend the optical P-T-X work below room temperature was completed.
Tidal dissipation in a viscoelastic planet
NASA Technical Reports Server (NTRS)
Ross, M.; Schubert, G.
1986-01-01
Tidal dissipation is examined using Maxwell standard liner solid (SLS), and Kelvin-Voigt models, and viscosity parameters are derived from the models that yield the amount of dissipation previously calculated for a moon model with QW = 100 in a hypothetical orbit closer to the earth. The relevance of these models is then assessed for simulating planetary tidal responses. Viscosities of 10 exp 14 and 10 ex 18 Pa s for the Kelvin-Voigt and Maxwell rheologies, respectively, are needed to match the dissipation rate calculated using the Q approach with a quality factor = 100. The SLS model requires a short time viscosity of 3 x 10 exp 17 Pa s to match the Q = 100 dissipation rate independent of the model's relaxation strength. Since Q = 100 is considered a representative value for the interiors of terrestrial planets, it is proposed that derived viscosities should characterize planetary materials. However, it is shown that neither the Kelvin-Voigt nor the SLS models simulate the behavior of real planetary materials on long time scales. The Maxwell model, by contrast, behaves realistically on both long and short time scales. The inferred Maxwell viscosity, corresponding to the time scale of days, is several times smaller than the longer time scale (greater than or equal to 10 exp 14 years) viscosity of the earth's mantle.
PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Wiethoff, Tobias
2016-04-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the Geosciences.
PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Wiethoff, T.
2014-12-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the geosciences.
On the Terminal Rotation Rates of Giant Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2018-04-01
Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.
2018-01-25
An artist's rendition of how a rocky planet forms. As a rocky planet forms, the planet-forming material gathers in a process known as "accretion." It grows larger in size, and increases in temperature, along with the pressure at its core. The energy from this initial planet forming process causes the planet's elements to heat up and melt. Upon melting, layers form and separate. The heavier elements sink to the bottom, the lighter ones float to the top. This material then separates into layers as it cools, which is known as "differentiation." A fully formed planet slowly emerges, with an upper layer known as the crust, the mantle in the middle, and a solid iron core. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. The InSight mission will help answer key questions about how the rocky planets of the solar system, as well as how rocky exoplanets, formed. So while InSight is a Mars mission, it's also more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22233
ON THE TIDAL ORIGIN OF HOT JUPITER STELLAR OBLIQUITY TRENDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I., E-mail: rdawson@berkeley.edu
It is debated whether the two hot Jupiter populations—those on orbits misaligned from their host star's spin axis and those well-aligned—result from two migration channels or from two tidal realignment regimes. Here I demonstrate that equilibrium tides raised by a planet on its star can account for three observed spin-orbit alignment trends: the aligned orbits of hot Jupiters orbiting cool stars, the planetary mass cut-off for retrograde planets, and the stratification by planet mass of cool host stars' rotation frequencies. The first trend can be caused by strong versus weak magnetic braking (the Kraft break), rather than realignment of themore » star's convective envelope versus the entire star. The second trend can result from a small effective stellar moment of inertia participating in the tidal realignment in hot stars, enabling massive retrograde planets to partially realign to become prograde. The third trend is attributable to higher-mass planets more effectively counteracting braking to spin up their stars. Both hot and cool stars require a small effective stellar moment of inertia participating in the tidal realignment, e.g., an outer layer weakly coupled to the interior. I demonstrate via Monte Carlo that this model can match the observed trends and distributions of sky-projected misalignments and stellar rotation frequencies. I discuss implications for inferring hot Jupiter migration mechanisms from obliquities, emphasizing that even hot stars do not constitute a pristine sample.« less
NASA Astrophysics Data System (ADS)
Hubbard, W. B.
2013-12-01
The so-called theory of figures (TOF) uses potential theory to solve for the structure of highly distorted rotating liquid planets in hydrostatic equilibrium. TOF is noteworthy both for its antiquity (Maclaurin 1742) and its mathematical complexity. Planned high-precision gravity measurements near the surfaces of Jupiter and Saturn (possibly detecting signals ~ microgal) will place unprecedented requirements on TOF, not because one expects hydrostatic equilibrium to that level, but because nonhydrostatic components in the surface gravity, at expected levels ~ 1 milligal, must be referenced to precise hydrostatic-equilibrium models. The Maclaurin spheroid is both a useful test of numerical TOF codes (Hubbard 2012, ApJ Lett 756:L15), and an approach to an efficient TOF code for arbitrary barotropes of variable density (Hubbard 2013, ApJ 768:43). For the latter, one trades off vertical resolution by replacing a continuous barotropic pressure-density relation with a stairstep relation, corresponding to N concentric Maclaurin spheroids (CMS), each of constant density. The benefit of this trade-off is that two-dimensional integrals over the mass distributions at each interface are reduced to one-dimensional integrals, quickly and accurately evaluated by Gaussian quadrature. The shapes of the spheroids comprise N level surfaces within the planet and at its surface, are gravitationally coupled to each other, and are found by self-consistent iteration, relaxing to a final configuration to within the computer's precision limits. The angular and radial variation of external gravity (using the usual geophysical expansion in multipole moments) can be found to the limit of typical floating point precision (~ 1.e-14), much better than the expected noise/signal for either the Juno or Cassini gravity experiments. The stairstep barotrope can be adjusted to fit a prescribed continuous or discontinuous interior barotrope, and can be made to approximate it to any required precision by increasing N. One can insert a higher density of CMSs toward the surface of an interior model in order to more accurately model high-order gravitational moments. The magnitude of high-order moments predicted by TOF declines geometrically with order number, and falls below the magnitude of expected non-hydrostatic terms produced by interior dynamics at ~ order 10 and above. Juno's sensitivity is enough to detect tidal gravity signals from Galilean satellites. The CMS method can be generalized to predict tidal zonal and tesseral terms consistent with an interior model fitted to measured zonal harmonics. For this purpose, two-dimensional Gaussian quadrature is necessary at each CMS interface. However, once the model is relaxed to equilibrium, one need not refit the model to the average zonal harmonics because of the smallness of the tidal terms. I will describe how the CMS method has been validated through comparisons with standard TOF models for which fully or partially analytic solutions exist, as well as through consistency checks. At this stage in software development in preparation for Jupiter orbit, we are focused on increasing the speed of the code in order to more efficiently search the parameter space of acceptable Jupiter interior models, as well as to interface it with advanced hydrogen-helium equations of state.
Revised Masses and Densities of the Planets around Kepler-10
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin; Lissauer, Jack; Howard, Andrew; Clark Fabrycky, Daniel
2015-12-01
Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 new precise RVs from Keck-HIRES, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (Rp = 1.47 R⊕) has mass 3.70 ± 0.43 M⊕ and density 6.44 ± 0.73 g cm-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c (Rp = 2.35 R⊕) we measure mass 13.32 ± 1.65 M⊕and density 5.67 ± 0.70 g cm-3, significantly lower than the mass in Dumusque et al. (2014, 17.2±1.9 M⊕). Kepler-10c is not sufficiently dense to have a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of either hydrogen-helium (0.0027 ± 0.0015 of the mass, 0.172±0.037 of the radius) or super-ionic water (0.309±0.11 of the mass, 0.305±0.075 of the radius). Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, 82, or 101 days, and a mass from 1-7 M⊕.
CHIC - Coupling Habitability, Interior and Crust
NASA Astrophysics Data System (ADS)
Noack, Lena; Labbe, Francois; Boiveau, Thomas; Rivoldini, Attilio; Van Hoolst, Tim
2014-05-01
We present a new code developed for simulating convection in terrestrial planets and icy moons. The code CHIC is written in Fortran and employs the finite volume method and finite difference method for solving energy, mass and momentum equations in either silicate or icy mantles. The code uses either Cartesian (2D and 3D box) or spherical coordinates (2D cylinder or annulus). It furthermore contains a 1D parametrised model to obtain temperature profiles in specific regions, for example in the iron core or in the silicate mantle (solving only the energy equation). The 2D/3D convection model uses the same input parameters as the 1D model, which allows for comparison of the different models and adaptation of the 1D model, if needed. The code has already been benchmarked for the following aspects: - viscosity-dependent rheology (Blankenbach et al., 1989) - pseudo-plastic deformation (Tosi et al., in preparation phase) - subduction mechanism and plastic deformation (Quinquis et al., in preparation phase) New features that are currently developed and benchmarked include: - compressibility (following King et al., 2009 and Leng and Zhong, 2008) - different melt modules (Plesa et al., in preparation phase) - freezing of an inner core (comparison with GAIA code, Huettig and Stemmer, 2008) - build-up of oceanic and continental crust (Noack et al., in preparation phase) The code represents a useful tool to couple the interior with the surface of a planet (e.g. via build-up and erosion of crust) and it's atmosphere (via outgassing on the one hand and subduction of hydrated crust and carbonates back into the mantle). It will be applied to investigate several factors that might influence the habitability of a terrestrial planet, and will also be used to simulate icy bodies with high-pressure ice phases. References: Blankenbach et al. (1989). A benchmark comparison for mantle convection codes. GJI 98, 23-38. Huettig and Stemmer (2008). Finite volume discretization for dynamic viscosities on Voronoi grids. PEPI 171(1-4), 137-146. King et al. (2009). A Community Benchmark for 2D Cartesian Compressible Convection in the Earth's Mantle. GJI 179, 1-11. Leng and Zhong (2008). Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection. GJI 173, 693-702.
Precise masses for the transiting planetary system HD 106315 with HARPS
NASA Astrophysics Data System (ADS)
Barros, S. C. C.; Gosselin, H.; Lillo-Box, J.; Bayliss, D.; Delgado Mena, E.; Brugger, B.; Santerne, A.; Armstrong, D. J.; Adibekyan, V.; Armstrong, J. D.; Barrado, D.; Bento, J.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Cochran, W. D.; Collier Cameron, A.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Ehrenreich, D.; Espinoza, N.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Hébrard, G.; Hojjatpanah, S.; Jackman, J.; Lendl, M.; Ligi, R.; Lovis, C.; Melo, C.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pollacco, D.; Santos, N. C.; Sefako, R.; Shporer, A.; Sousa, S. G.; Triaud, A. H. M. J.; Udry, S.; Vigan, A.; Wyttenbach, A.
2017-12-01
Context. The multi-planetary system HD 106315 was recently found in K2 data. The planets have periods of Pb 9.55 and Pc 21.06 days, and radii of rb = 2.44 ± 0.17 R⊕ and rc = 4.35 ± 0.23 R⊕ . The brightness of the host star (V = 9.0 mag) makes it an excellent target for transmission spectroscopy. However, to interpret transmission spectra it is crucial to measure the planetary masses. Aims: We obtained high precision radial velocities for HD 106315 to determine the mass of the two transiting planets discovered with Kepler K2. Our successful observation strategy was carefully tailored to mitigate the effect of stellar variability. Methods: We modelled the new radial velocity data together with the K2 transit photometry and a new ground-based partial transit of HD 106315c to derive system parameters. Results: We estimate the mass of HD 106315b to be 12.6 ± 3.2 M⊕ and the density to be 4.7 ± 1.7 g cm-3, while for HD 106315c we estimate a mass of 15.2 ± 3.7 M⊕ and a density of 1.01 ± 0.29 g cm-3. Hence, despite planet c having a radius almost twice as large as planet b, their masses are consistent with one another. Conclusions: We conclude that HD 106315c has a thick hydrogen-helium gaseous envelope. A detailed investigation of HD 106315b using a planetary interior model constrains the core mass fraction to be 5-29%, and the water mass fraction to be 10-50%. An alternative, not considered by our model, is that HD 106315b is composed of a large rocky core with a thick H-He envelope. Transmission spectroscopy of these planets will give insight into their atmospheric compositions and also help constrain their core compositions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Jason W.; Linscott, Ethan; Shporer, Avi, E-mail: jwbarnes@uidaho.edu
We model the asymmetry of the KOI-13.01 transit lightcurve assuming a gravity-darkened rapidly rotating host star in order to constrain the system's spin-orbit alignment and transit parameters. We find that our model can reproduce the Kepler lightcurve for KOI-13.01 with a sky-projected alignment of {lambda} = 23 Degree-Sign {+-} 4 Degree-Sign and with the star's north pole tilted away from the observer by 48 Degree-Sign {+-} 4 Degree-Sign (assuming M{sub *} = 2.05 M{sub Sun }). With both these determinations, we calculate that the net misalignment between this planet's orbit normal and its star's rotational pole is 56 Degree-Sign {+-}more » 4 Degree-Sign . Degeneracies in our geometric interpretation also allow a retrograde spin-orbit angle of 124 Degree-Sign {+-} 4 Degree-Sign . This is the first spin-orbit measurement to come from gravity darkening and is one of only a few measurements of the full (not just the sky-projected) spin-orbit misalignment of an extrasolar planet. We also measure accurate transit parameters incorporating stellar oblateness and gravity darkening: R{sub *} 1.756 {+-} 0.014 R{sub Sun }, R{sub p} = 1.445 {+-} 0.016 R{sub Jup}, and i = 85.{sup 0}9 {+-} 0.{sup 0}4. The new lower planetary radius falls within the planetary mass regime for plausible interior models for the transiting body. A simple initial calculation shows that KOI-13.01's circular orbit is apparently inconsistent with the Kozai mechanism having driven its spin-orbit misalignment; planet-planet scattering and stellar spin migration remain viable mechanisms. Future Kepler data will improve the precision of the KOI-13.01 transit lightcurve, allowing more precise determination of transit parameters and the opportunity to use the Photometric Rossiter-McLaughlin effect to resolve the prograde/retrograde orbit determination degeneracy.« less
Adjustment of Jacobs' formulation to the case of Mercury
NASA Astrophysics Data System (ADS)
Chiappini, M.; de Santis, A.
1991-04-01
Magnetic investigations play an important role in studies on the constitution of planetary interiors. One of these techniques (the so-called Jacobs' formulation), appropriately modified, has been applied to the case of Mercury. According to the results found, the planet, supposed to be divided internally as the earth (crust-mantle-core), would have a core/planet volume ratio of 28 percent, much greater than the earth's core percentage (16 percent). This result is in agreement with previous work which used other independent methods.
NASA Astrophysics Data System (ADS)
Komacek, T. D.; Abbot, D. S.
2016-12-01
Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.
Exoplanet's Figure and Its Interior
NASA Astrophysics Data System (ADS)
Mian, Zhang; Cheng-li, Huang
2018-01-01
Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Andreas; Lorenzen, Winfried; Schöttler, Manuel
2015-01-01
We present new equations of state (EOSs) for hydrogen and helium covering a wide range of temperatures from 60 K to 10{sup 7} K and densities from 10{sup –10} g cm{sup –3} to 10{sup 3} g cm{sup –3}. They include an extended set of ab initio EOS data for the strongly correlated quantum regime with an accurate connection to data derived from other approaches for the neighboring regions. We compare linear mixing isotherms based on our EOS tables with available real mixture data. A first important astrophysical application of this new EOS data is the calculation of interior models formore » Jupiter and comparison with recent results. Second, mass-radius relations are calculated for Brown Dwarfs (BDs) which we compare with predictions derived from the widely used EOS of Saumon, Chabrier, and van Horn. Furthermore, we calculate interior models for typical BDs with different masses, namely, Corot-3b, Gliese-229b, and Corot-15b, and the giant planet KOI-889b. The predictions for the central pressures and densities differ by up to 10% dependent on the EOS used. Our EOS tables are made available in the supplemental material of this paper.« less
Europa's Compositional Evolution and Ocean Salinity
NASA Astrophysics Data System (ADS)
Vance, S.; Glein, C.; Bouquet, A.; Cammarano, F.; McKinnon, W. B.
2017-12-01
Europa's ocean depth and composition have likely evolved through time, in step with the temperature of its mantle, and in concert with the loss of water and hydrogen to space and accretion of water and other chemical species from comets, dust, and Io's volcanism. A key aspect to understanding the consequences of these processes is combining internal structure models with detailed calculations of ocean composition, which to date has not been done. This owes in part to the unavailability of suitable thermodynamic databases for aqueous chemistry above 0.5 GPa. Recent advances in high pressure aqueous chemistry and water-rock interactions allow us to compute the equilibrium ionic conditions and pH everywhere in Europa's interior. In this work, we develop radial structure and composition models for Europa that include self-consistent thermodynamics of all materials, developed using the PlanetProfile software. We will describe the potential hydration states and porosity of the rocky interior, and the partitioning of primordial sulfur between this layer, an underlying metallic core, and the ocean above. We will use these results to compute the ocean's salinity by extraction from the upper part of the rocky layer. In this context, we will also consider the fluxes of reductants from Europa's interior due to high-temperature hydrothermalism, serpentinization, and endogenic radiolysis.
Mantle dynamics and seismic tomography
Tanimoto, Toshiro; Lay, Thorne
2000-01-01
Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784
Exploring the hidden interior of the Earth with directional neutrino measurements.
Leyton, Michael; Dye, Stephen; Monroe, Jocelyn
2017-07-10
Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.
C/O Ratios in Exoplanetary Atmospheres
NASA Astrophysics Data System (ADS)
Madhusudhan, N.
2012-04-01
Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Elemental abundance ratios, such as the C/O ratio, of planetary atmospheres provide important constraints on planetary interior compositions and formation conditions, and on the chemical and dynamical processes in the atmospheres. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.
C/O Ratios In Exoplanetary Atmospheres - New Results And Major Implications
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku
2012-01-01
Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of giant exoplanetary atmospheres. Atmospheric C/O ratios provide important constraints on chemical and dynamical processes in the atmospheres, and on the planetary interior compositions and formation scenarios. In addition, for super-Earths, the potential availability of water and oxygen, and hence the notion of `habitability', is contingent on the C/O ratio assumed. Typically, an oxygen-rich composition, motivated by the solar nebula C/O of 0.5, is assumed in models of exoplanetary formation, interiors, and atmospheres. However, recent observations of exoplanetary atmospheres are suggesting the possibility of C/O ratios of 1.0 or higher, motivating the new class of Carbon-rich Planets (CRPs). In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets and discuss their implications on the various aspects of exoplanetary characterization described above. Motivated by these results, we propose a two-dimensional classification scheme for irradiated giant exoplanets in which the incident irradiation and the atmospheric C/O ratio are the two dimensions. We demonstrate that some of the extreme anomalies reported in the literature for hot Jupiter atmospheres can be explained based on this 2-D scheme. An overview of new theoretical avenues and observational efforts underway for chemical characterization of extrasolar planets, from hot Jupiters to super-Earths, will be presented.
Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Christensen, U. R.
2009-04-01
Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts correctly not only the magnetic field strength of planets with sufficiently simple dynamos (Earth and Jupiter), but also that of rapidly rotating stars.
Revised Masses and Densities of the Planets around Kepler-10
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin J.; Lissauer, Jack J.; Howard, Andrew W.; Fabrycky, Daniel
2016-03-01
Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014 to 2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b ({R}{{p}}=1.47 {R}\\oplus ) has mass 3.72\\quad +/- \\quad 0.42\\quad {M}\\oplus and density 6.46\\quad +/- \\quad 0.73\\quad {{g}} {{cm}}-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c ({R}{{p}}=2.35 {R}\\oplus ) we measure mass 13.98\\quad +/- \\quad 1.79\\quad {M}\\oplus and density 5.94\\quad +/- \\quad 0.76\\quad {{g}} {{cm}}-3, significantly lower than the mass computed in Dumusque et al. (17.2+/- 1.9 {M}\\oplus ). Our mass measurement of Kepler-10c rules out a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium (0.2% of the mass, 16% of the radius) or super-ionic water (28% of the mass, 29% of the radius). However, we note that analysis of only HIRES data yields a higher mass for planet b and a lower mass for planet c than does analysis of the HARPS-N data alone, with the mass estimates for Kepler-10 c being formally inconsistent at the 3σ level. Moreover, dividing the data for each instrument into two parts also leads to somewhat inconsistent measurements for the mass of planet c derived from each observatory. Together, this suggests that time-correlated noise is present and that the uncertainties in the masses of the planets (especially planet c) likely exceed our formal estimates. Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, or 101 days, and a mass from 1 to 7 {M}\\oplus . W.M.O. Keck Observatory.
NASA Astrophysics Data System (ADS)
Crida, Aurélien; Ligi, Roxanne; Dorn, Caroline; Lebreton, Yveline
2018-06-01
The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass–radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is 0.08+/- 0.05{R}p. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.
InSight MARCO Installation Cubesats
2018-03-17
At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
InSight Atlas V MARCO Cubesats Installation
2018-03-17
At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are prepared for installation on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for laun
InSight Atlas V MARCO Cubesats Installation
2018-03-17
At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
REVIEWS OF TOPICAL PROBLEMS: Magnetospheres of planets with an intrinsic magnetic field
NASA Astrophysics Data System (ADS)
Belenkaya, Elena S.
2009-08-01
This review presents modern views on the physics of magnetospheres of Solar System planets having an intrinsic magnetic field, and on the structure of magnetospheric magnetic fields. Magnetic fields are generated in the interiors of Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune via the dynamo mechanism. These fields are so strong that they serve as obstacles for the plasma stream of the solar wind. A magnetosphere surrounding a planet forms as the result of interaction between the solar wind and the planetary magnetic field. The dynamics of magnetospheres are primary enforced by solar wind variations. Each magnetosphere is unique. The review considers common and individual sources of magnetic fields and the properties of planetary magnetospheres.
How Many Exoplanets Does it Take to Constrain the Origin of Mercury?
NASA Astrophysics Data System (ADS)
Rogers, Leslie
2016-01-01
The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury (Rappaport et al. 2013). In contrast, Dressing et al. (2015) have noted that, to date, all confirmed transiting small (< 1.5 Earth-radius) exoplanets with masses measured to better than 20% precision have mean densities that are consistent with Earth-like bulk compositions, though significant compositional dispersion is also admitted within the observational uncertainties. This presentation will describe the application of hierarchical Bayesian models to constrain the underlying distribution of rocky exoplanet iron contents from a sample of noisy mass-radius measurements coupled to rocky planet interior structure models. In addition to deriving constraints on the distribution of iron-enhanced exo-Mercuries from the exoplanet mass-radius measurements in hand, we also apply this approach to simulated data sets to predict how the constraints should improve as increasing numbers of exoplanets are characterized. The work outlines an observational pathway toward using exoplanets to place Mercury into context.
DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier
We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields amore » geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.« less
NASA Technical Reports Server (NTRS)
Grady, Carol A; Kuchner, Marc; Woodgate, Bruce E.
2012-01-01
We present new imaging results from a well-selected sample of II circumstellar debris disks, all with HST pedigree, using STIS visible-light 6-roll PSF-template subtracted coronagraphy (PSFTSC). These new observations, pushing HST to its highest levels of coronagraphic performance, simultaneously probe both the interior regions of these debris systems, with inner working distances < app 8 AU for half the stars in this sample (corresponding to the giant planet and Kuiper belt regions within our own solar system), and the exterior regions far beyond. These new images enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System: These observations also permit us, for the first time, to characterize material in these regions at high spatial resolution and identify disk sub-structures that are signposts of planet formation and evolution; in particular, asymmetries and non-uniform debris structures that signal the presence of co-orbiting perturbing planets, and dynamical interactions (e.g., resulting in posited small grain stripping and disk "pollution") with the ISM. We focus here on recently acquired and reduced images of he circumstellar debris systems about: AU Mic (edge-on, and @ 10 pc the closest star in our sample), HD 61005, HD 32297 and HD 15115 (all with morphologies strongly suggestive of ISM wind interactions), HD 181327 & HDI07146 (close to face-on with respectively narrow and broad debris rings), and MP Mus (a "mature" proto-planetary disk hosted by a cTTS). All of our objects were previously observed in the near-IR with inferior spatial resolution and imaging efficacy, but with NICMOS r = 0.3" inner working angle (IWA) comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging can strongly constrain the dust properties, thus enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the approximately 10 My epoch of gas depletion, a time in our solar system when giant planets were migrating and terrestrial planets were forming, and directly test theoretical models of these processes. These observations lmiquely probe both into the interior regions of these systems and are sensitive to and spatially resolve low surface-brightness (SB) material at large stellocentric distances with spatial resolution comparable to ACS and with augmenting NICMOS near-IR disk photometry in hand.
Laboratory Simulations of Ammonia-Rich Oceans in Icy Worlds
NASA Technical Reports Server (NTRS)
Vance, S. D.; Brown, J. M.
2011-01-01
Improved equations of state for ammonia-water solutions are important for properly understanding the interiors of large icy satellites hosting deep interior oceans. Titan is the primary example of such a world, but water-rich dwarf planets Measurements of solution density are now possible at relevant pressures (above approx. 250 megapascals) using the Simulator for Icy World Interiors. Analysis of sound velocity measurements in aqueous magnesium sulfate obtained in our laboratory, shows a correction on the order of 5% to 700 megapascals (7 kilobar) from -20 to 100 C and to 3 m (approx. 30 percentage by weight) concentration. Accurate prediction of density as a function of pressure, temperature, and ammonia concentration are needed for interpretation of remote observations to address questions of interior liquid layer depth, composition, and fluid dynamics.
2018-02-28
After arrival at Vandenberg Air Force Base in California, ground crews prepare NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for transportation to the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the deep interior of Mars. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
Un-Earth-like interiors of the Earth-like planets
NASA Astrophysics Data System (ADS)
Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.
2015-12-01
A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.
Geophysical Monitoring Station (GEMS)
NASA Astrophysics Data System (ADS)
Banerdt, B.; Dehant, V. M.; Lognonne, P.; Smrekar, S. E.; Spohn, T.; GEMS Mission Team
2011-12-01
GEMS (GEophysical Monitoring Station) is one of three missions undergoing Phase A development for possible selection by NASA's Discovery Program. If selected, GEMS will perform the first comprehensive surface-based geophysical investigation of Mars, filling a longstanding gap in the scientific exploration of the solar system. It will illuminate the fundamental processes of terrestrial planet formation and evolution, providing unique and critical information about the initial accretion of the planet, the formation and differentiation of the core and crust, and the subsequent evolution of the interior. The scientific goals of GEMS are to understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars and to determine its present level of tectonic activity and impact flux. A straightforward set of scientific objectives address these goals: 1) Determine the size, composition and physical state of the core; 2) Determine the thickness and structure of the crust; 3) Determine the composition and structure of the mantle; 4) Determine the thermal state of the interior; 5) Measure the rate and distribution of internal seismic activity; and 6) Measure the rate of impacts on the surface. To accomplish these objectives, GEMS carries a tightly-focused payload consisting of 3 investigations: 1) SEIS, a 6-component, very-broad-band seismometer, with careful thermal compensation/control and a sensitivity comparable to the best terrestrial instruments across a frequency range of 1 mHz to 50 Hz; 2) HP3 (Heat Flow and Physical Properties Package), an instrumented self-penetrating mole system that trails a string of temperature sensors to measure the thermal gradient and conductivity of the upper several meters, and thus the planetary heat flux; and 3) RISE (Rotation and Interior Structure Experiment), which would use the spacecraft X-band communication system to provide precision tracking for planetary dynamical studies. The two instruments are moved from the lander deck to the martian surface by an Instrument Deployment Arm, with an appropriate location identified using an Instrument Deployment Camera. In order to ensure low risk within the tight Discovery cost limits, GEMS reuses the successful Lockheed Martin Phoenix spacecraft design, with a cruise and EDL system that has demonstrated capability for safe landing on Mars with well-understood costs. To take full advantage of this approach, all science requirements (such as instrument mass and power, landing site, and downlinked data volume) strictly conform to existing, demonstrated capabilities of the spacecraft and mission system. It is widely believed that multiple landers making simultaneous measurements (a network) are required to address the objectives for understanding terrestrial planet interiors. Nonetheless, comprehensive measurements from a single geophysical station are extremely valuable, because observations constraining the structure and processes of the deep interior of Mars are virtually nonexistent. GEMS would utilize sophisticated analysis techniques specific to single-station measurements to determine crustal thickness, mantle structure, core state and size, and heat flow, providing our first real look deep beneath the surface of Mars.
Electromagnetic heating of minor planets in the early solar system
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.
1979-01-01
Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.
Could Ultracool Dwarfs Have Sun-Like Activity?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with emission primarily polarized in a single direction. The dwarfs flares in late 2013, however, all showed polarization in the opposite direction. Could this be an indication that J1047+21 has a stable, global dipolar field that flipped polarity in between the two sets of observations? If so, this could mean that the star has a magnetic cycle similar to the Suns.Artists impression showing the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter [Credit: NASA/IPAC/R. Hurt (SSC)]Inspired by this possibility, Route conducted an investigation of the long-term magnetic behavior of all known radio-flaring ultracool dwarfs, a list of 14 stars. Using polarized radio emission measurements, he found that many of his targets exhibited similar polarity flips, which he argues is evidence that these dwarfs are undergoing magnetic field reversals on roughly decade-long timescales, analogous to those reversals that occur in the Sun.If this is indeed true, then we need to examine our models of how magnetic fields are generated in stars: the interface between the radiative and convective layers may not be necessary to produce large-scale magnetic fields. Understanding this process is certainly an important step in interpreting the potential habitability of planets around ultracool dwarfs.CitationMatthew Route 2016 ApJL 830 L27. doi:10.3847/2041-8205/830/2/L27
Discovery of a transiting planet near the snow-line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, D. M.; Torres, G.; Buchhave, L. A.
2014-11-01
In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σmore » confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.« less
Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures
NASA Astrophysics Data System (ADS)
McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.
2004-12-01
Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).
NASA Astrophysics Data System (ADS)
Basu Sarkar, D.; Moore, W. B.
2016-12-01
A multitude of factors including the distance from the host star and the stage of planetary evolution affect planetary climate and habitability. The complex interactions between the atmosphere and dynamics of the deep interior of the planets along with stellar fluxes present a formidable challenge. This work employs simplified approaches to address these complex issues in a systematic way. To be specific, we are investigating the coupled evolution of atmosphere and mantle dynamics. The overarching goal here is to simulate the evolutionary history of the terrestrial planets, for example Venus, Earth and Mars. This research also aims at deciphering the history of Venus-like runaway greenhouse and thus explore the possibility of cataclysmic shifts in climate of Earth-like planets. We focus on volatile cycling within the solid planets to understand the role of carbon/water in climatic and tectonic outcomes of such planets. In doing so, we are considering the feedbacks in the coupled mantle-atmosphere system. The primary feedback between the atmosphere and mantle is the surface temperature established by the greenhouse effect, which regulates the temperature gradient that drives the mantle convection and controls the rate at which volatiles are exchanged through weathering. We start our models with different initial assumptions to determine the final climate outcomes within a reasonable parameter space. Currently, there are very few planetary examples, to sample the climate outcomes, however this will soon change as exoplanets are discovered and examined. Therefore, we will be able to work with a significant number of potential candidates to answer questions like this one: For every Earth is there one Venus? ten? a thousand?
Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets
NASA Astrophysics Data System (ADS)
Hammel, Heidi B.
1996-09-01
Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.
A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars
NASA Astrophysics Data System (ADS)
Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel
2018-04-01
We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host < 1 M ⊙ criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is ∼3–10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.
Regional tectonic analysis of Venus as part of the Pioneer Venus guest investigator project
NASA Technical Reports Server (NTRS)
Williams, David R.
1991-01-01
Over the past year, much of the tectonic analysis of Venus we have done has centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. We have developed convection models of the Earth and Venus. These models assume whole mantle internally-heated convection. The viscosity is temperature, volatile-content, and stress dependent. An initial temperature and volatile content is assumed, and the thermal evolution is tracked for 4.6 billion years. During this time, heating occurs by decay of radiogenic elements in the mantle, and degassing and regassing of volatiles takes place at the surface. For a model assuming plate tectonics as the primary heat loss mechanism, representing the Earth through most of it's history and perhaps Venus' earlier history, degassing of the mantle was found to occur rapidly (approximately 200 My) over a large range of parameters. Even for parameters chosen to represent extreme cases of an initially cool planet, low radiogenic heating, and large initial volatile complement, the mantle water content was degassed to an equilibrium value in about 2 By. These values may be applicable to the early Venus, if a large, Moon-forming impact on Earth resulted in efficient heating and loss of water, leaving Venus with a comparably greater volatile budget and less vigorous early convection. It may therefore be impossible to retain large amounts of water in the interior of Venus until the planet cools down enough for the 'cold-trap' effect to take place. This effect traps crust forming melts within the mantle due to a cusp in the solidus, causing these melts to refreeze at depth into a dense eclogite phase, which will inhibit ascent of this material to the surface. This effect, however, requires a hydrous mantle, so early loss of water might prevent it from taking place. Since without plate tectonics there is no mechanism for regassing volatiles into the mantle, as occurs on Earth at subduction zones, this means the interior of Venus would at present be almost completely dry. We have also calculated argon degassing, and mantle flow velocities. viscosities, and cooling rates in these models, and these values can provide constraints on present day mantle dynamics.
NASA Astrophysics Data System (ADS)
Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.
2018-05-01
The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.
Terrestrial planet formation in the presence of migrating super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com
Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effectmore » on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.
We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We findmore » that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.« less
Very high-density planets: a possible remnant of gas giants.
Mocquet, A; Grasset, O; Sotin, C
2014-04-28
Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.
Discoveries about Jupiter. Results for Pioneers 10 and 11 combined with earth-based findings
NASA Technical Reports Server (NTRS)
1976-01-01
Included in this discussion of findings regarding the planet Jupiter are atmospheric characteristics, weather, the magnetosphere, radiation belts, radio emission, natural satellites, possible origins, the Great Red Spot, the interior and the possibility of life.
A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silburt, Ari; Wu, Yanqin; Gaidos, Eric
2015-02-01
Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lowermore » numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of themore » planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.« less
Proceedings of the 39th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2008-01-01
Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.
Tidal Heating in Multilayered Terrestrial Exoplanets
NASA Technical Reports Server (NTRS)
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
The changing phases of extrasolar planet CoRoT-1b.
Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon
2009-05-28
Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.
Atmospheres of the Giant Planets
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.
2002-01-01
The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.
On the habitability of a stagnant-lid Earth
NASA Astrophysics Data System (ADS)
Tosi, Nicola; Stracke, Barbara; Godolt, Mareike; Ruedas, Thomas; Grenfell, John Lee; Höning, Dennis; Nikolaou, Athanasia; Plesa, Ana-Catalina; Breuer, Doris; Spohn, Tilman
2016-04-01
Whether plate tectonics is a recurrent feature of terrestrial bodies orbiting other stars or is unique to the Earth is unknown. The stagnant-lid may rather be the most common tectonic mode through which terrestrial bodies operate. Here we model the thermal history of the mantle, the outgassing evolution of H2O and CO2, and the resulting climate of a hypothetical planet with the same mass, radius, and composition as the Earth, but lacking plate tectonics. We employ a 1-D model of parameterized stagnant-lid convection to simulate the evolution of melt generation, crust production, and volatile extraction over a timespan of 4.5 Gyr, focusing on the effects of three key mantle parameters: the initial temperature, which controls the overall volume of partial melt produced; the initial water content, which affects the mantle rheology and solidus temperature; and the oxygen fugacity, which is employed in a model of redox melting to determine the amount of carbon stored in partial melts. We assume that the planet lost its primordial atmosphere and use the H2O and CO2 outgassed from the interior to build up a secondary atmosphere over time. Furthermore, we assume that the planet may possess an Earth-like ocean. We calculate the atmospheric pressure based on the solubility of H2O and CO2 in basaltic magmas at the evolving surface pressure conditions. We then employ a 1-D radiative-convective, cloud-free stationary atmospheric model to calculate the resulting atmospheric temperature, pressure and water content, and the corresponding boundaries of the habitable zone (HZ) accounting for the evolution of the Sun's luminosity with time but neglecting escape processes. The interior evolution is characterized by a large initial production of partial melt accompanied by the formation of crust that rapidly grows until its thickness matches that of the stagnant lid so that the convecting sublithospheric mantle prevents further crustal growth. Even for initial water concentrations in excess of thousands of ppm, the high solubility of water in surface magmas limits the maximal partial pressure of atmospheric H2O to a few tens of bars, which places de facto an upper bound on the amount of water that can be delivered to the surface and atmosphere from the interior. The relatively low solubility of CO2 causes instead most of the carbon contained in surface melts to be outgassed. As a consequence, the partial pressure of atmospheric CO2 is largely controlled by the redox state of the mantle, with values that range from a few up to tens of bars for oxygen fugacities between the iron-wüstite buffer and one log-unit above it. At 1 AU and for most cases, liquid water on the surface is possible, hence the planets considered would be regarded as habitable although the atmospheric temperature may be well above the temperature limits for terrestrial life. The inner edge of the HZ depends on the amount of outgassed H2O and is located further away from the star if no initial water ocean is assumed. The outer edge of the HZ is controlled by the amount of outgassed CO2, hence by the assumed redox state of the mantle and its initial temperature.
Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets
NASA Astrophysics Data System (ADS)
Simakov, M. B.
2017-05-01
All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.
Seismic Wave Propagation in Icy Ocean Worlds
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon
2018-01-01
Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Hakim, Ammar; Wang, Liang; Bhattacharjee, Amitava; Germaschewski, Kai; Dibraccio, Gina
2017-10-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event.
Millot, M; Dubrovinskaia, N; Černok, A; Blaha, S; Dubrovinsky, L; Braun, D G; Celliers, P M; Collins, G W; Eggert, J H; Jeanloz, R
2015-01-23
Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets. Copyright © 2015, American Association for the Advancement of Science.
Space physics and policy for contemporary society
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.
2017-04-01
Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.
2018-05-05
NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) was launched May 5 on a United Launch Alliance Atlas V rocket, from Vandenberg Air Force Base in Central California. NASA also flew a technology demonstration called Mars Cube One (MarCO) on the Atlas V to separately go to Mars. NASA has a long and successful track record at Mars. InSight will drill into the Red Planet to study the crust, mantle and core of Mars. It will help scientists understand the formation and early evolution of all rocky planets, including Earth.
Perovskite in Earth’s deep interior
NASA Astrophysics Data System (ADS)
Hirose, Kei; Sinmyo, Ryosuke; Hernlund, John
2017-11-01
Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.
Future Lunar Sampling Missions: Big Returns on Small Samples
NASA Astrophysics Data System (ADS)
Shearer, C. K.; Borg, L.
2002-01-01
The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2012-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission
Bow Shock Leads the Way for a Speeding Hot Jupiter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-09-01
As hot Jupiters whip around their host stars, their speeds can exceed the speed of sound in the surrounding material, theoretically causing a shock to form ahead of them. Now, a study has reported the detection of such a shock ahead of transiting exoplanet HD 189733b, providing a potential indicator of the remarkably strong magnetic field of the planet.Rushing PlanetsDue to their proximity to their hosts, hot Jupiters move very quickly through the stellar wind and corona surrounding the star. When this motion is supersonic, the material ahead of the planet can be compressed by a bow shock and for a transiting hot Jupiter, this shock will cross the face of the host star in advance of the planets transit.In a recent study, a team of researchers by Wilson Cauley of Wesleyan University report evidence of just such a pre-transit. The teams target is exoplanet HD 189733b, one of the closest hot Jupiters to our solar system. When the authors examined high-resolution transmission spectra of this system, they found that prior to the optical transit of the planet, there was a large dip in the transmission of the first three hydrogen Balmer lines. This could well be the absorption of an optically-thick bow shock as it moves past the face of the star.Tremendous MagnetismOperating under this assumption, the authors create a model of the absorption expected from a hot Jupiter transiting with a bow shock ahead of it. Using this model, they show that a shock leading the planet at a distance of 12.75 times the planets radius reproduces the key features of the transmission spectrum.This stand-off distance is surprisingly large. Assuming that the location of the bow shock is set by the point where the planets magnetospheric pressure balances the pressure of the stellar wind or corona that it passes through, the planetary magnetic field would have to be at least 28 Gauss. This is seven times the strength of Jupiters magnetic field!Understanding the magnetic fields of exoplanets is important for modeling their interiors, their mass loss rates, and their interactions with their host stars. Current models of exoplanets often assume low-value fields similar to those of planets within our solar system. But if the field strength estimated for HD 189733bs field is common for hot Jupiters, it may be time to update our models!BonusCheck out this video from Cauleys website, which provides an action view of the transit data for HD 189733b and the possible bow shock leading it. The upper panel shows the transit as viewed from the side, the right panel shows a top-down view of the orbit, and the plot shows the transmission data (points) and model (solid lines) for the three hydrogen lines monitored. All sizes and distances are to scale.http://aasnova.org/wp-content/uploads/2015/09/tran_movie_final.m4vCitationP. Wilson Cauley et al 2015 ApJ 810 13. doi:10.1088/0004-637X/810/1/13
The magnetic field inside a protoplanetary disc gap opened by planets of different masses
NASA Astrophysics Data System (ADS)
Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.
2017-12-01
We perform magnetohydrodynamic simulations of protoplanetary disc gaps opened by planets of various masses, with the aim of calculating the strength of the vertical magnetic field threading such gaps. We introduce a gravitational potential at the centre of a shearing box to compute the tidal interaction between the planets and the disc gas, which is turbulent due to the magnetorotational instability. Two types of simulations are executed: 1) In type 'Z', the initial magnetic field has only a uniform, vertical component, and ten planet masses between 0.66 and 6.64 thermal masses are used; 2) In type 'YZ', the initial magnetic field has both toroidal and vertical components, and five planet masses covering the same mass range are used. Our results show that, for low planet masses, higher values of the vertical magnetic field occur inside the gaps than outside, in agreement with the previous work. However, for massive planets, we find that the radial profiles of the field show dips near the gap centre. The interior of the Hill sphere of the most massive planet in the Z runs contains more low-plasma β values (i.e. high magnetic pressure) compared to lower-mass planets. Values of β at a distance of one Hill radius from each planet show a moderate decrease with planet mass. These results are relevant for the magnetic structure of circumplanetary discs and their possible outflows, and may be refined to aid future observational efforts to infer planet masses from high-resolution polarimetric observations of discs with gaps.
2018-04-05
NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars.
NASA Astrophysics Data System (ADS)
Dehant, Veronique; Le Maistre, Sebastien; Yseboodt, Marie; Peters, Marie-Julie; Karatekin, Ozgur; Van Hove, Bart; Rivoldini, Attilio; Baland, Rose-Marie; Van Hoolst, Tim
2017-04-01
The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The instrument life time is thus almost twice the one Earth year of nominal mission duration. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other ExoMars experiments, in order to retrieve a maximum amount of information on the interior of Mars. Specifically, combining LaRa's Doppler measurements with similar data from the Viking landers, Mars Pathfinder, Mars Exploration Rovers landers, and the forthcoming InSight-RISE lander missions, will allow us to improve our knowledge on the interior of Mars with unprecedented accuracy, hereby providing crucial information on the formation and evolution of the red planet.
The Ice Cap Zone: A Unique Habitable Zone for Ocean Worlds
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.; Levi, Amit
2018-03-01
Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al (2017) have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally-dependent non-grey energy balance and single-column radiative-convective models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M-stars (Teff = 2,600-5,800 K), extending from ˜1.23 - 1.65, 0.69 - 0.873, 0.38-0.528 AU, 0.219-0.308 AU, 0.146-0.206 AU, and 0.0428-0.0617 AU for G2, K3, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally-locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the JWST mission.
The ice cap zone: a unique habitable zone for ocean worlds
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.; Levi, Amit
2018-07-01
Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al. have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally dependent non-grey energy balance and single-column radiative-convective climate models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M stars (Teff = 2600-5800 K), extending from ˜1.23-1.65, 0.69-0.954, 0.38-0.528, 0.219-0.308 , 0.146-0.206, and 0.0428-0.0617 au for G2, K2, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the James Webb Space Telescope mission.
NASA Technical Reports Server (NTRS)
1988-01-01
A unified program is outlined for studying the Earth, from its deep interior to its fluid envelopes. A system is proposed for measuring devices involving both space-based and in-situ observations that can accommodate simultaneously a large range of scientific needs. The scientific objectices served by this integrated infrastructure are cased into a framework of four grand themes. In summary these are: to determine the composition, structure, dynamics, and evolution of the Earth's crust and deeper interior; to establish and understand the structure, dynamics, and chemistry of the oceans, atmosphere, and cryosphere, and their interaction with the solid Earth; to characterize the history and dynamics of living organisms and their interaction with the environment; and to monitor and understand the interaction of human activities with the natural environment. A focus on these grand themes will help to understand the origin and fate of the planet, and to place it in the context of the solar system.
Improved Bounds on Nonluminous Matter in Solar Orbit
NASA Technical Reports Server (NTRS)
Anderson, John D.; Lau, Eunice L.; Krisher, Timothy P.; Dicus, Duane A.; Rosenbaum, Doris C.; Teplitz, Vigdor L.
1995-01-01
We improve, using a larger set of observations including Voyager 2 Neptune flyby data, previous bounds on the amount of dark matter (DM) trapped in a spherically symmetric distribution about the Sun. We bound DM by noting that such a distribution would increase the effective mass of the Sun as seen by the outer planets and by finding the uncertainty in that effective mass for Uranus and Neptune in fits to the JPL developmental ephemeris residuals, including optical data and those two planets' Voyager 2 flybys. We extend our previous procedure by fitting more parameters of the developmental ephamerides. In addition, we present here the values for Pioneer 10, Pioneer 11, Voyager 1, and Voyager 2 Jupiter-ranging normal points (and incorporate these data as well). Our principal result is to limit DM in spherically symmetric distributions in orbit about the Sun interior to Neptune's orbit to less than Earth mass and interior to Uranus's orbit to about 1/6 of Earth's mass.
2018-05-03
Members of the media and social media participants attended the NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, prelaunch briefing at Vandenberg Air Force Base in California. The presentation focused on InSight Mars lander. InSight is scheduled for liftoff May 5, 2018, atop a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex 3 at Vandenberg. The spacecraft will be the first mission to look deep beneath the Martian surface studying the planet's interior by measuring its heat output and listen for marsquakes.
2018-05-03
During a prelaunch briefing at Vandenberg Air Force Base in California, Stephanie Smith, NASA Communications, speaks to members of the media. The presentation focused on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight is scheduled for liftoff May 5, 2018, atop a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex 3 at Vandenberg. The spacecraft will be the first mission to look deep beneath the Martian surface studying the planet's interior by measuring its heat output and listen for marsquakes.
Testing for Instrument Deployment by InSight Robotic Arm
2015-03-04
In the weeks after NASA's InSight mission reaches Mars in September 2016, the lander's arm will lift two key science instruments off the deck and place them onto the ground. This image shows testing of InSight's robotic arm inside a clean room at NASA's Jet Propulsion Laboratory, Pasadena, California, about two years before it will perform these tasks on Mars. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will launch in March 2016. It will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. One key instrument that the arm will deploy is the Seismic Experiment for Interior Structure, or SEIS. It is from France's national space agency (CNES), with components from Germany, Switzerland, the United Kingdom and the United States. In this scene, the arm has just deployed a test model of a protective covering for SEIS, the instrument's wind and thermal shield. The shield's purpose is to lessen disturbances that weather would cause to readings from the sensitive seismometer. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19144
NASA Astrophysics Data System (ADS)
Knudson, Marcus
2013-06-01
The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp
2014-08-01
Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowballmore » climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.« less
Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still
NASA Technical Reports Server (NTRS)
1979-01-01
Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Izidoro, Andre
2017-11-01
There is a long-standing debate regarding the origin of the terrestrial planets' water as well as the hydrated C-type asteroids. Here we show that the inner Solar System's water is a simple byproduct of the giant planets' formation. Giant planet cores accrete gas slowly until the conditions are met for a rapid phase of runaway growth. As a gas giant's mass rapidly increases, the orbits of nearby planetesimals are destabilized and gravitationally scattered in all directions. Under the action of aerodynamic gas drag, a fraction of scattered planetesimals are deposited onto stable orbits interior to Jupiter's. This process is effective in populating the outer main belt with C-type asteroids that originated from a broad (5-20 AU-wide) region of the disk. As the disk starts to dissipate, scattered planetesimals reach sufficiently eccentric orbits to cross the terrestrial planet region and deliver water to the growing Earth. This mechanism does not depend strongly on the giant planets' orbital migration history and is generic: whenever a giant planet forms it invariably pollutes its inner planetary system with water-rich bodies.
On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Wang, Songhu; Laughlin, Gregory
2016-05-01
We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.
Transit detection of a `starshade' at the inner lagrange point of an exoplanet
NASA Astrophysics Data System (ADS)
Gaidos, E.
2017-08-01
All water-covered rocky planets in the inner habitable zones of solar-type stars will inevitably experience a catastrophic runaway climate due to increasing stellar luminosity and limits to outgoing infrared radiation from wet greenhouse atmospheres. Reflectors or scatterers placed near Earth's inner Lagrange point (L_1) have been proposed as a "geoengineering' solution to anthropogenic climate change and an advanced version of this could modulate incident irradiation over many Gyr or `rescue' a planet from the interior of the habitable zone. The distance of the starshade from the planet that minimizes its mass is 1.6 times the Earth-L_1 distance. Such a starshade would have to be similar in size to the planet and the mutual occultations during planetary transits could produce a characteristic maximum at mid-transit in the light curve. Because of a fortuitous ratio of densities, Earth-size planets around G dwarf stars present the best opportunity to detect such an artefact. The signal would be persistent and is potentially detectable by a future space photometry mission to characterize transiting planets. The signal could be distinguished from natural phenomenon, I.e. starspots or cometary dust clouds, by its shape, persistence and transmission spectrum.
Induction heating of planetary interiors
NASA Astrophysics Data System (ADS)
Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.
2017-09-01
We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.
Experimental study of planetary gases with applications to planetary interior models
NASA Technical Reports Server (NTRS)
Bell, Peter M.; Mao, Ho-Kwang
1988-01-01
High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.
The European Robotic Exploration of the Planet Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
2010-05-01
The ESA Mars Express mission was launched in June 2003 and has been orbiting Mars for over six years providing data with an unprecedented spatial and spectral resolution on the surface, subsurface, atmosphere and ionosphere of the red planet. The main theme of the mission is the search for water in its various states everywhere on the planet by all instruments using different techniques. The mission is still a huge success, helping rewrite new pages in our understanding of Mars. Mars Express will be followed by ESA's new Exploration Programme, starting in 2016 with an Orbiter focusing on atmospheric trace gases and in particular methane. The ExoMars rover will follow in 2018 to perform geochemical and exobiological measurements on the surface and the subsurface. Then in 2020, a Network of 3-6 surface stations will be launched (possibly together with an orbiter), in order to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. All these Mars Exploration missions will be carried out jointly with NASA. Such network-orbiter combination represents a unique tool to perform new investigations of Mars, which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns, opacity and chemical composition; ii) a detailed map of the crustal magnetic anomalies from lower orbit (150 km); iii) study of these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics, geodesy and meteorology) coupled to an orbiter. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans go to Mars one day.
1979-01-24
Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)
Exploring the hidden interior of the Earth with directional neutrino measurements
Leyton, Michael; Dye, Stephen; Monroe, Jocelyn
2017-07-10
Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less
Convection without eddy viscosity: An attempt to model the interiors of giant planets
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1986-01-01
In the theory of hydrostatic quasi-geostrophic flow in the Earth's atmosphere the principal results do not depend on the eddy viscosity. This contrasts with published theories of convection in deep rotating fluid spheres, where the wavelength of the fastest growing disturbance varies as E sup 1/3, where E, the Ekman number, is proportional to the eddy viscosity. A new theory of quasi-columnar motions in stably stratified fluid spheres attempts to capture the luck of the meteorologists. The theory allows one to investigate the stability of barotropic and baroclinic zonal flows that extend into the planetary interior. It is hypothesized that the internal heat Jupiter and Saturn comes out not radially but on sloping surfaces defined by the internal entropy distribution. To test the hypothesis one searches for basic states in which the wavelength of the fastest-growing disturbance remains finite as E tends to zero, and is which the heat flux vector is radially outward and poleward.
Exploring the hidden interior of the Earth with directional neutrino measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyton, Michael; Dye, Stephen; Monroe, Jocelyn
Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less
Exploring the hidden interior of the Earth with directional neutrino measurements
Leyton, Michael; Dye, Stephen; Monroe, Jocelyn
2017-01-01
Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700
Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths
NASA Astrophysics Data System (ADS)
Komacek, Thaddeus D.; Abbot, Dorian S.
2016-11-01
Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.
Planetary environments and the conditions of life
NASA Technical Reports Server (NTRS)
Chang, S.
1988-01-01
Geophysical models of the first 600 Ma ofthe earth's history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment, the passage of energy from the earth's interior and from the sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures ranging from bubbles at the sea-air interface to tectonic plates. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite to the origin and sustenance of life. The application of this criterion to Mars argues against the origin of Martian life.
Evidence for a basalt-free surface on Mercury and implications for internal heat.
Jeanloz, R; Mitchell, D L; Sprague, A L; de Pater, I
1995-06-09
Microwave and mid-infrared observations reveal that Mercury's surface contains less FeO + TiO2 and at least as much feldspar as the lunar highlands. The results are compatible with the high albedo (brightness) of Mercury's surface at visible wavelengths in suggesting a rock and soil composition that is devoid of basalt, the primary differentiate of terrestrial mantles. The occurrence of a basalt-free, highly differentiated crust is in accord with recent models of the planet's thermal evolution and suggests that Mercury has retained a hot interior as a result of a combination of inefficient mantle convection and minimal volcanic heat loss.
Magnetic dynamo action at low magnetic Prandtl numbers.
Malyshkin, Leonid M; Boldyrev, Stanislav
2010-11-19
Amplification of magnetic field due to kinematic turbulent dynamo action is studied in the regime of small magnetic Prandtl numbers. Such a regime is relevant for planets and stars interiors, as well as for liquid-metal laboratory experiments. A comprehensive analysis based on the Kazantsev-Kraichnan model is reported, which establishes the dynamo threshold and the dynamo growth rates for varying kinetic helicity of turbulent fluctuations. It is proposed that in contrast with the case of large magnetic Prandtl numbers, the kinematic dynamo action at small magnetic Prandtl numbers is significantly affected by kinetic helicity, and it can be made quite efficient with an appropriate choice of the helicity spectrum.
Kepler-432: A Red Giant Interacting with One of its Two Long-period Giant Planets
NASA Astrophysics Data System (ADS)
Quinn, Samuel N.; White, Timothy. R.; Latham, David W.; Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Kipping, David M.; Payne, Matthew J.; Jiang, Chen; Silva Aguirre, Victor; Stello, Dennis; Sliski, David H.; Ciardi, David R.; Buchhave, Lars A.; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Everett, Mark E.; Howell, Steve B.; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P.; Karoff, Christoffer; Kawaler, Steven D.; Lund, Mikkel N.; Lundkvist, Mia; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry
2015-04-01
We report the discovery of Kepler-432b, a giant planet ({{M}b}=5.41-0.18+0.32 {{M}Jup}, {{R}b}=1.145-0.039+0.036 {{R}Jup}) transiting an evolved star ({{M}\\star }=1.32-0.07+0.10 {{M}⊙ },{{R}\\star }=4.06-0.08+0.12 {{R}⊙ }) with an orbital period of {{P}b}=52.501129-0.000053+0.000067 days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134-0.0089+0.0098, which we also measure independently with asterodensity profiling (AP; e=0.507-0.114+0.039), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; {{M}c}sin {{i}c}=2.43-0.24+0.22 {{M}Jup}, {{P}c}=406.2-2.5+3.9 days), and adaptive optics imaging revealed a nearby (0\\buildrel{\\prime\\prime}\\over{.} 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.
Solar wind alpha particle capture at Mars and Venus
NASA Astrophysics Data System (ADS)
Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats
Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.
Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.
Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David
2006-07-07
Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.
A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations
NASA Technical Reports Server (NTRS)
Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.
2005-01-01
Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.
Tides and the evolution of planetary habitability.
Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard
2008-06-01
Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.
Indexing of exoplanets in search for potential habitability: application to Mars-like worlds
NASA Astrophysics Data System (ADS)
Kashyap Jagadeesh, Madhu; Gudennavar, Shivappa B.; Doshi, Urmi; Safonova, Margarita
2017-08-01
Study of exoplanets is one of the main goals of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth—the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets. ESI is a first step in determining potential exo-habitability that may not be very similar to a terrestrial life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life. MSI is defined in the range between 1 (present Mars) and 0 (dissimilar to present Mars) and uses the same physical parameters as ESI. We are interested in Mars-like planets to search for planets that may host the extreme life forms, such as the ones living in extreme environments on Earth; for example, methane on Mars may be a product of the methane-specific extremophile life form metabolism.
Deep Internal Structure of Mars and the Geophysical Package of Netlander
NASA Technical Reports Server (NTRS)
Lognonne, P.; Giardini, D.; Banerdt, B.; Dehant, V.; Barriot, J. P.; Musmann, G.; Menvielle, M.
2000-01-01
Our present understanding of the interior structure of Mars is mostly based on the interpretation of gravity and rotation data, the chemistry of the SNC (shergottites, nakhlites, chassignites) meteoroids, and a comparison with the much better-known interior structure of the Earth. However geophysical information from previous missions have been insufficient to determine the deep internal structure of the planet. Therefore the state and size of the core and the depth and type of mantle discontinuities are unknown. Most previous seismic experiments have indeed failed, either due to a launch failure (as for the Optimism seismometer onboard the small surface stations of Mars 96) or after failure on Mars (as for the Viking 1 seismometer). The remaining Viking 2 seismometer did not produce a convincing marsquake detection, basically due to too strong wind sensitivity and too low resolution in the teleseismic frequency band. After almost a decade of continuous activity and proposals, the first network mission to Mars, NetLander (NL), is expected to be launched between 2005 and 2007. One of the main scientific objectives of this four-lander network mission will be the determination of the internal structure of the planet using a geophysical package. This package will have a seismometer, a magnetometer, and a geodetic experiment, allowing a complementary approach that will yield many new constraints on the mineralogy and temperature of the mantle and core of the planet.
Krasnopolsky, V A; Bowyer, S; Chakrabarti, S; Gladstone, G R; McDonald, J S
1994-06-01
108 +/- 11 photons of the martian He 584-angstroms airglow detected by the Extreme Ultraviolet Explorer satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He+ by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(5), 3 x 10(4), and 7 x 10(3) cm-2 sec-1, respectively. The lifetime of helium on Mars is 5 x 10(4) years. The He outgassing rate, coupled with the 40Ar atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances of K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta (0)(t(0)/t)1/2 with delta (0) = 0/1, 0.04, and 0.0125 Byr-1 for Earth, Venus, and Mars, respectively. After a R2 correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassium is depleted by a factor of 2 in Venus and Mars. Mass ratios of helium and argon are close to 5 x 10(-9) and 2 x 10(-8) g/g in the interiors of all three planets. The implications of these results are discussed.
Fluid helium at conditions of giant planetary interiors
Stixrude, Lars; Jeanloz, Raymond
2008-01-01
As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.
Seeding life on the moons of the outer planets via lithopanspermia.
Worth, R J; Sigurdsson, Steinn; House, Christopher H
2013-12-01
Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.
Before Biology: Geologic Habitability and Setting the Chemical and Physical Foundations for Life
NASA Astrophysics Data System (ADS)
Unterborn, Cayman Thomas
The Earth is a habitable, dynamic planet, with plate tectonics creating a deep water and carbon cycle. These cycles regulate surface and atmospheric C and water abundances, and therefore long-term climate, which is vital to Earths habitability. The driving force behind plate tectonics is the convection of the mantle. The fact that the Earth transports its interior heat via convection instead of conduction is a result of a confluence of factors that include the internal energy budget as well as mantle size and composition. Relative to the Sun stars that host extrasolar planets vary in their refractory rock-building element proportions relative to Si by an order of magnitude. This variation will create terrestrial planets with unique mineralogies and dynamical behavior. How similar these planets are to Earth, chemically and physically, is the focus of this proposal with the end goal being to answer: "What variation in planetary chemical composition is capable of supporting the geochemical cycles necessary for life?".
Reorientation Histories of the Terrestrial Planets
NASA Astrophysics Data System (ADS)
Keane, J. T.; Matsuyama, I.
2016-12-01
The nature of how a planet spins is controlled by the planet's inertia tensor. In a minimum energy rotation state, planets spin about the maximum principal axis of inertia. Yet, the orientation of this axis is not often constant with time. The redistribution of mass within a planet due to both interior processes (e.g. convection, intrusive volcanism) and surface processes (e.g. extrusive volcanism, impacts) can significantly alter the planet's inertia tensor, resulting in the reorientation of the planet. This form of reorientation is also known as true polar wander. Reorientation can directly alter the topography and gravity field of a planet, generate tectonic stresses, change the insolation geometry (affecting climate and volatile stability), and modify the orientation of the planet's magnetic field. Yet, despite its significance, the reorientation histories of many planets is not well constrained. In this work, we present a new technique for using spacecraft-derived, orbital gravity measurements to directly quantify how individual large geologic features reoriented Mercury, Venus, the Moon, and Mars. When coupled with the geologic record for these respective planets, this enables us to determine the reorientation history for each planet. These mark the first comprehensive, multi-episode reorientation chronologies for these planets. The reorientation histories for the Moon and Mercury are similar; the orientation of both planets is strongly controlled by the presence of large remnant bulges (tidal/rotational for the Moon, and likely thermal for Mercury), but significantly modulated by subsequent, large impacts and volcanic events—resulting in 15° of total reorientation after their formation. Mars experienced larger reorientation due to the formation of the Tharsis rise, punctuated by smaller reorientation events from large impacts. Lastly, Venus's diminutive remnant figure and large volcanic edifices result in the largest possible reorientation events, but the exact reorientation chronology is clouded by the uncertainties of Venus's geologic record. The methodology presented here is completely general, and can be applied to any future global gravity maps of other planets or planetary satellites.
Formation of Ice Giant Satellites During Thommes Model Mirgration
NASA Astrophysics Data System (ADS)
Fuse, Christopher; Spiegelberg, Josephine
2018-01-01
Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).
C-17 Shipping InSight Mars Spacecraft to Vandenberg Air Force Base
2018-02-28
A C-17 cargo aircraft carrying NASA's InSight spacecraft flew from Buckley Air Force Base, Denver, to Vandenberg Air Force Base, California, on February 28, 2018. The spacecraft was being shipped from Lockheed Martin Space, Denver, where InSight was built and tested. Its launch period opens May 5, 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22251
The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Peron, Roberto
We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.
The ODINUS Mission Concept: a Mission to the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe
2014-05-01
We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.
2018-04-05
NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at right. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
2018-04-05
NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, at right, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at left. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
2018-04-05
NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at left. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.
Planning Bepicolombo MPO Science Operations to study Mercury Interior
NASA Astrophysics Data System (ADS)
De La Fuente, Sara; Carasa, Angela; Ortiz, Iñaki; Rodriguez, Pedro; Casale, Mauro; Benkhoff, Johannes; Zender, Joe
2017-04-01
BepiColombo is an Interdisciplinary Cornerstone ESA-JAXA Mission to Mercury, with two orbiters, the ESA Mercury Planetary Orbiter (MPO) and the JAXA Mercury Magnetospheric Orbiter (MMO) dedicated to study of the planet and its magnetosphere. The MPO, is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit, providing excellent spatial resolution over the entire planet surface. The MPO's scientific payload comprises 11 instrument packages, including laser altimeter, cameras and the radio science experiment that will be dedicated to the study of Mercury's interior: structure, composition, formation and evolution. The planning of the science operations to be carried out by the Mercury's interior scientific instruments will be done by the SGS located at the European Space Astronomy Centre (ESAC), in conjunction with the scientific instrument teams. The process will always consider the complete nominal mission duration, such that the contribution of the scheduled science operations to the science objectives, the total data volume generated, and the seasonal interdependency, can be tracked. The heart of the science operations planning process is the Observations Catalogue (OC), a web-accessed database to collect and analyse all science operations requests. From the OC, the SGS will first determine all science opportunity windows compatible with the spacecraft operational constraints. Secondly, only those compatible with the resources (power and data volume) and pointing constraints will be chosen, including slew feasibility.
Solar-Array Deployment Test for InSight
2015-05-27
Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA's InSight lander in this April 30, 2015 image. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19665
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20346
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, C.; Hakim, A.; Wang, L.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.
2017-12-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event. This study has the potential to enhance the science returns of both the MESSENGER mission and the upcoming BepiColombo mission (to be launched to Mercury in 2018).
InSight Probes the 'Inner Space' of Mars
2018-01-25
An artist's impression of the InSight lander on Mars. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is designed to give the Red Planet its first thorough check up since it formed 4.5 billion years ago. It is scheduled to launch from Vandenberg Air Force Base on the California coast between May 5 through June 8, 2018, and land on Mars six months later. InSight will look for tectonic activity and meteorite impacts, study how much heat is still flowing through the planet, and track Mars' wobble as it orbits the sun. While InSight is a Mars mission, it's more than a Mars mission. InSight will help answer key questions about the formation of the rocky planets of the solar system. https://photojournal.jpl.nasa.gov/catalog/PIA22226
Mpo - the Bepicolombo Mercury Planetary Orbiter.
NASA Astrophysics Data System (ADS)
Benkhoff, J.
2008-09-01
Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed so far. BepiColombo will also contribute to the understanding of the history and formation of the inner planets of the Solar System in general, including the Earth. The 'Mercury Planetary Orbiter' (MPO), under ESA's responsibility, will study the surface and the internal composition of the planet at different wavelengths and with different techniques. The Mercury Magnetospheric Orbiter (MMO), under the responsibility of the Japan Aerospace Exploration Agency (ISAS/JAXA), will study the magnetosphere, that is the region of space around the planet that is dominated by its magnetic field. Objectives BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In particular, the mission objectives are: • markedly higher than that of all other terrestrial planets, Moon included • to understand if the core of Mercury is liquid or solid, and if the planet is still tectonically active today • to understand why such a small planet possesses an intrinsic magnetic field, while Venus, Mars and the Moon do not have any, and investigate if Mercury's magnetised environment is characterised by features reminiscent of the aurorae, radiation belts and magnetospheric substorms observed at Earth • to understand why spectroscopic observations not reveal the presence of any iron, while this element is supposedly the major constituent of the planet • to investigate if the permanently shadowed craters of the polar regions contain sulphur or water ice • to observe the yet unseen hemisphere of Mercury • to study the production mechanisms of the exosphere and to understand the interaction between planetary magnetic field and the solar wind in the absence of a ionosphere • to obtain new clues about the composition of the primordial solar nebula and about the formation of the solar system • to test general relativity with improved accuracy, taking advantage of the proximity of the Sun Since and considering that the advance Mercury's perihelion was explained in terms of relativistic spacetime curvature. MPO Scientific Instruments BepiColombo Mercury Planetary Orbiter's and Mercury Magnetospheric Orbiter's instruments were selected in November 2004, by ESA and JAXA respectively. The MPO will carry a highly sophisticated suit of eleven scientific instruments, ten of which will be provided by Principal Investigators through national funding by ESA Member States and one from Russia: BepiColombo Laser Altimeter (BELA) will characterise the topography and surface morphology of Mercury. It will also provide a digital terrain model that, compared with the data from the MORE instrument, will allow to obtain information about the internal structure, the geology, the tectonics, and the age of the planet's surface. The objectives of the Italian Spring Accelerometer (ISA) are strongly connected with those of the MORE experiment. Together the experiments can give information on Mercury's interior structure as well as test Einstein's theory of the General Relativity. Mercury Magnetometer (MPO-MAG) will provide measurements that will lead to the detailed description of Mercury's planetary magnetic field and its source, to better understand the origin, evolution and current state of the planetary interior , as well as the interaction between Mercury's magnetosphere with the planet's itself and with the solar wind. Mercury Thermal Infrared Spectrometer (MERTIS) will provide detailed information about the mineralogical composition of Mercury's surface layer with a high spectral resolution, crucial for selecting the valid model for origin and evolution of the planet. Mercury Gamma ray and Neutron Spectrometer (MGNS) will determine the elemental compositions of the surface and subsurface of Mercury, and will determine the regional distribution of volatile depositions on the polar areas which are permanently shadowed from the Sun. Mercury Imaging X-ray Spectrometer (MIXS) will use the `X-ray fluorescence' analysis method to produce a global map of the surface atomic composition at high spatial resolution. This technique has been also used by the D-CIXS instrument on ESA's SMART-1 mission to the Moon. Mercury Orbiter Radio science Experiment (MORE) will help to determine the gravity field of Mercury as well as the size and physical state of its core. It will provide crucial experimental constraints to models of the planet's internal structure and test theories of gravity with unprecedented accuracy. The Probing of Hermean Exosphere by Ultraviolet Spectroscopy (PHEBUS) spectrometer is devoted to the characterisation of Mercury's exosphere composition and dynamics. It will also search for surface ice layers in permanently shadowed regions of high-latitude craters. Search for Exosphere Refilling and Emitted Neutral Abundances (Neutral and ionised particle analyser) ( SERENA) will study the gaseaous interaction between surface, exosphere, magnetosphere and solar wind. Spectrometers and Imagers for MPO Bepi- Colombo Integrated Observatory System (SYMBIO-SYS) will examine (also in stereo and colour) the surface geology, volcanism, global tectonics, surface age and composition, and geophysics. Solar Intensity X-ray Spectrometer (SIXS will perform measurements of X-rays and particles of solar origin at high time resolution and a very wide field of view.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team
2011-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
NASA Astrophysics Data System (ADS)
Schlaufman, Kevin C.; Winn, Joshua N.
2016-07-01
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P orb ≥ 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.
An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Kim, Stacy
2011-01-01
Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.
Reports of Planetary Geology and Geophysics Program, 1984
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler); Watters, T. R. (Compiler)
1985-01-01
Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.
The Performance of Ultra-stable Oscillators for the Gravity Recovery and Interior Laboratory (GRAIL)
2010-11-01
the mid-2000s for JHU/APL’s exploration mission of Pluto and the Kuiper belt . Fig. 1. Timeline of USO mission legacy with history of...determination at remote bodies far from Earth extends the possibility of measuring other moons, planets, and asteroids in future science mission concepts
Facilitating Comprehension, Connection and Commitment to Environmentally Responsible Design
ERIC Educational Resources Information Center
Boehm, Sarah
2015-01-01
Given the increased awareness of the negative effects the building industry has on the environment, designs produced without considering sustainability of the planet can no longer be accepted. Although the concepts of sustainability and environmental responsibility are not new to the field of interior design, a review of the literature reveals…
The Attraction of Gravity (Jean Dominique Cassini Medal Lecture)
NASA Astrophysics Data System (ADS)
Iess, Luciano
2017-04-01
The motion of planetary bodies, their interior structure, their shape, and ultimately their landscape, are all determined, more or less directly, by gravity. It is therefore not surprising that by measuring the orbital motion and the gravity field of planets and satellites we have been able to gather crucial information on the interior structure and evolution of those bodies, and at the same time to put the laws of gravity to the test. Planetary geodesy is now a fully developed discipline that uses methods and observable quantities adopted also in other fields, such as space navigation and telecommunications. Thanks to this winning synergy between science and engineering, we can now measure spacecraft velocities to 10-6 m/s and accelerations to 10-9 m/s2 over time scales as short as 1000 s, everywhere in the solar system. The past ten years have seen outstanding results in the scientific exploration of the deep space, with gravity investigations contributing to the success of many missions. Thanks to gravity measurements, MESSENGER was able to unveil the main features of Mercury's interior structure. GRAIL, the first planetary mission entirely devoted to gravity, recovered the structure of the lunar gravity anomalies to a spatial resolution and accuracy unmatched even for the Earth. The discovery and characterization of habitable environments in the Saturnian system, on Enceladus and Titan, were possible also by the radio science investigations of the mission Cassini. Thanks to a carefully designed orbit, with a pericenter just 3000 km above the cloud level, the spacecraft Juno is now carrying out precise gravity measurements at Jupiter to unveil the interior structure of the planet and the depth of its winds. With Cassini providing similar information at Saturn in the Grand Finale orbits, just before the final plunge into the planet, we will soon be able to reveal how similar or different the two gas giants are. But the interior structure of many planetary bodies remains elusive, and much remains to be explored. New missions and new tools are needed. In the next five years the planetary community will see the launch of BepiColombo and JUICE, two spacecraft equipped with a powerful suite of instruments devoted to the tomography of Mercury and Ganymede. Innovative instrumentation and probes are being conceived and designed. The Cassini Medal Lecture will review the past successes and future trends of planetary geodesy and radio science, from the peculiar perspective of someone whose attraction for gravity kept him at the ill-defined boundary between science and engineering, measuring angles, distances and velocities in the solar system.
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-04-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
Water and the Interior Structure of Terrestrial Planets and Icy Bodies
NASA Astrophysics Data System (ADS)
Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.
2018-02-01
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-06-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full expected lifetime). The two newly discovered hot Jupiters with inflated radii, for instance, are orbiting stars that are roughly 84% and 83% through their life spans and are approaching the main-sequence turnoff point.Late-Life ReinflationFractional age of the host stars of close-in transiting exoplanets vs. the planets radius. There is a statistically significant correlation between age and planet radius. [Adapted from Hartman et al. 2016]Hartman and collaborators propose that the data support the following scenario: as host stars evolve and become more luminous toward the ends of their main-sequence lifetimes, they deposit more energy deep into the interiors of the planets closely orbiting them. These close-in planets then increase their equilibrium temperatures and their radii reinflate as a result.Based on these results, we would expect to continue to find hot Jupiters with inflated radii primarily orbiting closely around older stars. Conversely, close-in giant planets around younger stars should primarily have non-inflated radii. As we continue to build our observational sample of transiting hot Jupiters in the future, we will be able to see how this model holds up.CitationJ. D. Hartman et al 2016 AJ 152 182. doi:10.3847/0004-6256/152/6/182
Research in astrophysical processes
NASA Technical Reports Server (NTRS)
Ruderman, Malvin A.
1994-01-01
Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.
Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.
Out of the Dust, A Planet is Born Artist Concept
2004-05-27
In this artist's conception, a possible newfound planet spins through a clearing in a nearby star's dusty, planet-forming disc. This clearing was detected around the star CoKu Tau 4 by NASA's Spitzer Space Telescope. Astronomers believe that an orbiting massive body, like a planet, may have swept away the star's disc material, leaving a central hole. The possible planet is theorized to be at least as massive as Jupiter, and may have a similar appearance to what the giant planets in our own solar system looked like billions of years ago. A graceful ring, much like Saturn's, spins high above the planet's cloudy atmosphere. The ring is formed from countless small orbiting particles of dust and ice, leftovers from the initial gravitational collapse that formed the possible giant planet. If we were to visit a planet like this, we would have a very different view of the universe. The sky, instead of being the familiar dark expanse lit by distant stars, would be dominated by the thick disc of dust that fills this young planetary system. The view looking toward CoKu Tau 4 would be relatively clear, as the dust in the interior of the disc has fallen into the accreting star. A bright band would seem to surround the central star, caused by light scattered back by the dust in the disc. Looking away from CoKu Tau 4, the dusty disc would appear dark, blotting out light from all the stars in the sky except those which lie well above the plane of the disc. http://photojournal.jpl.nasa.gov/catalog/PIA05988
Scientific Rationale of a Saturn Probe Mission
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Fletcher, Leigh N.; Lebreton, Jean-Pierre; Wurz, Peter; Cavalié, Thibault; Coustenis, Athena; Atkinson, Dave H.; Atreya, Sushil; Gautier, Daniel; Guillot, Tristan; Lunine, Jonathan I.; Marty, Bernard; Morse, Andrew D.; Rey, Kim R.; Simon-Miller, Amy; Spilker, Thomas R.; Waite, Jack Hunter
2014-05-01
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the unicity of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by future in situ exploration of Saturn. Planet formation: To understand the formation of giant planets and the origin of our Solar System, statistical data obtained from the observation of exoplanetary systems must be supplemented by direct measurements of the composition of the planets in our solar system. A giant planet's bulk composition depends on the timing and location of planet formation, subsequent migration and the delivery mechanisms for the heavier elements. By measuring a giant planet's chemical inventory, and contrasting these with measurements of (i) other giant planets, (ii) primitive materials found in small bodies, and (iii) the composition of our parent star and the local interstellar medium, much can be revealed about the conditions at work during the formation of our planetary system [1]. To date, the Galileo probe at Jupiter (1995) remains our only data point for interpreting the bulk composi-tion of the giant planets. Galileo found that Jupiter exhibited an enrichment in C, N, S, Ar, Kr and Xe compared to the solar photospheric abundances, with some notable exceptions - water was found depleted, possibly due to meteorological processes at the probe entry site; and neon was also found depleted, possibly due to rain-out to deeper levels [2]. Explaining the high abundance of noble gases requires either condensing these elements directly at low-temperature in the form of amorphous ices [3], trapping them as clathrates [4-7] or photoevaporating the hydrogen and helium in the protoplanetary disk during the planet's formation [8]. The in situ Galileo measurements at Jupiter also include a highly precise determination of the planet's helium abundance, crucial for studies of the structure and evolution of the planet. Because of the lack of in situ measurements, Saturn noble gas abundances are unknown and their determi-nation is missing to properly understand its formation conditions. There is however some indication for a non-uniform enrichment in C, N and S. [5] suggests that observations are well fitted if the atmospheric C and N of the planet were initially mainly in reduced forms at 10 AU in the protosolar nebula. Alternatively, [6] finds that it is possible to account for these enrich-ments in a way consistent with those measured at Jupi-ter if the building blocks of the two planets shared a common origin. As in Jupiter, the missing piece of the puzzle remains the measurement of the oxygen abundance. Precisely measuring in situ the He/H2 ratio in Saturn is also needed for properly modeling its interior and thermal evolution. Planetary Atmospheric Processes: Saturn's complex and cloud-dominated weather-layer is our principle gateway to the processes at work within the deep interior of this giant planet. We must extrapolate from this thin, dynamic region over many orders of magnitude in pressure, temperature and density to infer the planetary properties deep below the clouds [1]. Remote sensing provides insights into the complexity of the transitional zone between the external environment and the fluid interior, but there is much that we still do not under-stand. In situ measurements are the only method providing ground-truth to connect the remote sensing inferences with physical reality, and yet this has only been achieved twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ studies provide access to atmospheric regions that are beyond the reach of remote sensing, enabling us to study the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks. Two crucial questions in this theme remain i) the nature of the processes at work in planetary atmospheres, shaping the dynamics and circulation from the thermosphere to the deep troposphere (e.g., [9]) , and ii) the chemical properties and conditions for cloud formation as a function of depth and temperature in planetary atmospheres (e.g., [10]). References: [1] Mousis O. et al. (2014) PSS, submit-ted. [2] Niemann H. B. et al. (1998) JGR, 103, 22831-22846. [3] Owen T. et al. (1999) Nature, 402, 269-270. [4] Gautier D. et al. (2001) ApJ, 550, L227-L230. [5] Hersant F. et al. (2008) PSS, 56, 1103-1111. [6] Mousis O. et al. (2009) ApJ, 696, 1348-1354. [7] Mousis et al. (2012) ApJ, 751, L7. [8] Guillot T. and Hueso R. (2006) MNRAS, 367, L47-L51. [9] Del Gen-io et al., (2009) Saturn after Cassini-Huygens, Ch. 6, pp. 113-159. [10] West et al., (2009), Saturn after Cas-sini-Huygens, Ch. 7, pp. 161-179. [11] Seiff et al., (1998), JGR, 103, 22857-22890 [12] Atkinson et al., JGR, 103, 22911-22928 (1998). [13] Wong et al., (2004), Icarus 171, 153-170. [14] Fouchet et al., Sat-urn after Cassini-Huygens, Ch. 5, pp. 83-112 (2009).
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, D. J.; Tackley, P. J.
2014-12-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics.
The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures
NASA Astrophysics Data System (ADS)
Knutson, Heather
2016-06-01
Over the past two decades ongoing radial velocity and transit surveys have been astoundingly successful in detecting thousands of new planetary systems around nearby stars. These systems include apparently single gas giant planets on short period orbits, closely packed systems of up to 5-6 “super-Earths”, and relatively empty systems with either one or no small planets interior to 0.5 AU. Despite our success in cataloguing the diverse properties of these systems, we are still struggling to develop narratives that can explain their apparently divergent formation and migration histories. This is in large part due to our lack of knowledge about the potential presence of massive outer companions in these systems, which can play a pivotal role in the shaping the final properties of the inner planets. In my talk I will discuss current efforts to complete the census for known planetary systems by searching for outer gas giant planets with long term radial velocity monitoring and wide separation stellar companions with high contrast imaging and spectroscopy. I will then demonstrate how statistical constraints on this population of outer companions can be used to test current theories for planet formation and migration.
GJ 832c: A Super-Earth in the Habitable Zone
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Tuomi, Mikko; Butler, R. P.; Jones, H. R. A.; Anglada-Escudé, Guillem; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Carter, B. D.; Bailey, J.; Salter, G. S.; O'Toole, S. J.; Wright, D.; Crane, J. D.; Schectman, S. A.; Arriagada, P.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.
2014-08-01
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a "super-Venus," featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.
Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?
NASA Astrophysics Data System (ADS)
Quarles, B.; Satyal, S.; Kostov, V.; Kaib, N.; Haghighipour, N.
2018-04-01
The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.
Magnetic fields in Earth-like exoplanets and implications for habitability around M-dwarfs.
López-Morales, Mercedes; Gómez-Pérez, Natalia; Ruedas, Thomas
2011-12-01
We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (EPS Lett 250:561-571, 2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M ⊕, for at least part of the planets' lifetime. For slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M [symbol in text]. Applying our calculations to confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~18, 15 and 13 M [symbol in text], respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on rotation rate, but also on their formation history, thermal state, age, composition, and the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of planets in the Habitable Zone of M-dwarfs.
Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon
NASA Technical Reports Server (NTRS)
Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.
2011-01-01
The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.
WASP-12b and Its Possible Fiery Demise
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Jupiter-like planets on orbits close to their hosts are predicted to spiral ever closer to their hosts until they meet their eventual demise and yet weve never observed orbital decay. Could WASP-12b provide the first evidence?Undetected PredictionsSince the discovery of the first hot Jupiter more than 20 years ago, weve studied a number of these peculiar exoplanets. Despite our many observations, two phenomena predicted of hot Jupiters have not yet been detected, due to the long timescales needed to identify them:Tidal orbital decayTidal forces should cause a hot Jupiters orbit to shrink over time, causing the planet to eventually spiral into its host star. This phenomenon would explain a number of statistical properties of observed star-planet systems (for instance, the scarcity of gas giants with periods less than a day).An illustration of apsidal precession. [Mpfiz]Apsidal precessionThe orbits of hot Jupiters should be apsidally precessing on timescales of decades, as long as they are at least slightly eccentric. Since the precession rate depends on the planets tidally deformed mass distribution, measuring this would allow us to probe the interior of the planet.A team of scientists led by Kishore Patra (Massachusetts Institute of Technology) think that the hot Jupiter WASP-12b may be our first chance to study one of these two phenomena. The question is, which one?WASP-12bWASP-12b has orbital period of 1.09 days one of the shortest periods observed for a giant planet and weve monitored it for a decade, making it a great target to test for both of these long-term effects.Timing residuals for WASP-12b. Squares show the new data points, circles show previous data from the past decade. The data are better fit by the decay model than the precession model, but both are still consistent. [Patra et al. 2017]Patra and collaborators made transit observations with the 1.2-m telescope at the Fred Lawrence Whipple Observatory in Arizona and occultation observations with the Spitzer Space Telescope. These two new sets of observations, combined with the decade of previous observations, allowed the authors to fit models to WASP-12bs orbit over time.The results show that a constant period for WASP-12b is firmly ruled out this planets orbit is definitely changing over time. The observations are best fit by a model in which the planets orbit is tidally decaying, but a 14-year apsidal precession cycle cant be definitively ruled out.Future ProspectsPossible futures for WASP-12bs orbit, based on the decay model (red) and the precession model (blue). We should be able to differentiate between these models with a few more years of observations. [Patra et al. 2017]If the planets orbit is decaying, then the authors show that its period will shrink to zero within 3.2 million years, suggesting that were currently witnessing the last 0.2% of the planets lifetime. Supporting the orbital-decay hypothesis are independent observations that suggest WASP-12b is approaching a point of tidal disruption it appears to have an extended and escaping exosphere, for instance.While we cant yet state for certain that WASP-12bs orbit is decaying, the authors argue that we should be able to tell conclusively with a few more years of observations. Either of the two outcomes above orbital decay or apsidal precession would have exciting scientific implications, however: if WASP-12bs orbit is decaying, we can measure the tidal dissipation rate of the star. If its orbit is apsidally precessing, we may be able to measure the tidal deformability of an exoplanet. Future observations of this hot Jupiter should prove interesting!CitationKishore C. Patra et al 2017 AJ 154 4. doi:10.3847/1538-3881/aa6d75
To melt is not enough: Retention of volatile species through internal processing in icy bodies
NASA Astrophysics Data System (ADS)
Sarid, G.; Stewart-Mukhopadhyay, S.
2014-07-01
The outer Solar System hosts a vast population of small icy bodies, considered to be primitive remnants from the planet-formation epoch. Early thermal and collisional processes affected such planetesimals to varying degrees depending on the time scale and dynamics of early planet growth. Recent observations have revealed that many large (>˜1000 km in diameter) transneptunian objects (TNOs) exhibit features of crystalline water ice in their surface spectra [1], as well as spectral features of more volatile ices, such as methane or hydrated ammonia [2]. These telltale observations should be accounted for when considering the alteration history and bulk processing of dwarf planets and their icy progeny. We will discuss preliminary calculations of early evolution scenarios for small icy-rocky bodies formed beyond the water-ice snow line. Such objects should also contain non-negligible fractions of pre-organic volatile compounds. The volatile composition and interior structure of these objects may change considerably due to internal heating and/or collisional modification prior to settling in their current (relatively quiescent) dynamical niches. Our initial model for the objects in question is that of a porous aggregate of various volatile compounds (as ices or trapped gases) and refractory silicate-metal solid grains, comprising the bulk matrix [3]. Chemical compositions for these objects are taken from existing simulations of chemical and dynamical evolution of disk material [4]. The key volatile species (e.g., H_2O, CO, CO_2, NH_3, CH_4, and CH_3OH) are also the most commonly observed in comets [5], which are remnants of such an early planetesimal population. Thermal and chemical internal evolution is examined self-consistently, as the abundances and locations of all species evolve, and we record mass ratios, temperatures, pressures, and porosity variations. The presence of volatile species in the interior can affect the overall heat balance and accompanied phase transitions [6,7]. Another important factor involving volatiles, mostly water ice, is the effect of shock- induced melting and vaporization on the fragmentation and flow regimes within the body, during massive collision events [8]. To explore the effects of collisions on the internal distributions of volatiles, we conduct 3D numerical simulations of collisions between porous icy bodies using the CTH shock-physics code [9]. The spatially heterogeneous effects of shock-induced heating, pore compaction, and bulk brecciation and redistribution of materials are used to estimate the post-impact re-equilibration of internal volatiles following collisions between similarly-sized bodies. We follow a long-term thermal evolution calculation (> 700 Myr), through the bulk alteration of temperature, porosity and composition for icy dwarf planets (>1000 km in diameter). Some initial configurations result in a complex, differentiated structure, where the deep interior holds a few percent of water melt fraction, while there are shallower layers that can retain conditions for volatile-ice preservation (CO_2 and HCN, for this specific model). There exists a distinct separation between the warmer interior, which is much more compacted and hydrous, and the colder exterior, which is much more porous and stratified. If an evolved object, such as this, is subject to a massive collision, the effects of partial melting and porosity quenching may actually serve to trap more volatile species. We show that for massive collisions of icy bodies, the effect of melting may be grossly over-estimated, if extrapolated from that of cratering events. Interestingly, oblique impacts (> 45 deg) will result in less than half of the volume experiencing pressures corresponding to water-ice melting. This means that the deep interior will not necessarily experience extreme alteration. Such an effect could even be more pronounced for porous or partially-differentiated objects. We focus on understanding the effects of different collision regimes (e.g., merging, disruption, hit-and-run, and graze-and-merge) on early volatile preservation. These regimes include potential moon-forming collisions between large TNOs. In the future, such results can be used to estimate the cumulative effects of multiple impacts. For that purpose, we need to understand the survival of water and more volatile species, as a function of their initial phases, objects' size and density (porosity), and the relative timing of collisional and thermo-chemical evolution.
Implications of Large Elastic Thicknesses for the Composition and Current Thermal State of Mars
NASA Astrophysics Data System (ADS)
Grott, M.; Breuer, D.
2008-12-01
The elastic lithosphere thickness at the Martian north polar cap has recently been constrained using radar sounding data obtained by SHARAD, the shallow radar onboard the Mars Reconnaissance Orbiter. Analysis of the SHARAD radargrams showed that the amount of deflection caused by ice loading at the polar caps is negligible - less than 100 m. Quantitative analysis yielded a lower bound on the elastic lithosphere thickness Te of 300 km, a value twice as large as previous estimates from theoretical considerations and flexure studies. Such large elastic thicknesses are only compatible with the planet's thermal evolution if the planetary interior is relatively cold and this could have direct bearing on the admissible amount of radioactive elements in the Martian interior. On the other hand, if the concentration of heat producing elements in the Martian interior is indeed reduced, the resulting low interior temperatures could possibly inhibit partial mantle melting and magmatism. However, geological evidence suggests that Mars has been volcanically active in the recent past. We have investigated the Martian thermal evolution and identified models which are consistent with a present day elastic thickness in excess of 300 km. We find that a wet mantle rheology is best compatible with the observed elastic thicknesses, but in this case the bulk concentration of heat producing elements in the silicate fraction cannot exceed 50 % of the chondritic concentration if 50 % of the radioacitve elements are concentrated in the crust. Furthermore, due to the efficient cooling of the planet for a wet mantle rheology, recent volcanism can only be explained by hydrous mantle melting. This requires the mantle water content to exceed 1500 ppm and although this is within the range reported for the shergottite parent magmas, it is certainly on the boundary of the plausible parameter range. If a dry mantle rheology is assumed, bulk Mars does not need to be sub-chondritic, but at least 70 % of the radiogenic elements need to be concentrated in the crust to be consistent with the large elastic thicknesses. For a dry mantle, recent volcanism could be driven by decompression melting in the heads of strong mantle plumes which are present in numerical simulations of mantle convection if the viscosity is strongly pressure dependent or endothermic phase transitions are present near the core-mantle boundary.
Lunar Global Heat Flow: Predictions and Constraints
NASA Astrophysics Data System (ADS)
Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.
2017-12-01
The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Schultz, G.; Yan, D.; Guevara, S.; Randol, S.
2010-08-01
Magnetic fields and charged particles are difficult for school children, the general public, and scientists alike to visualize. But studies of planetary magnetospheres and ionospheres have broad implications for planetary evolution, from the deep interior to the ancient climate, that are important to communicate to each of these audiences. This presentation will highlight the visualization materials that we are developing to educate audiences on the magnetic fields of planets and how they affect the atmosphere. The visualization materials that we are developing consist of simplified data sets that can be displayed on spherical projection systems and portable 3-D rigid models of planetary magnetic fields.
Saturn's Internal Structure: A View through its Natural Seismograph
NASA Astrophysics Data System (ADS)
Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor
2017-10-01
Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.
PLANETarium - Visualizing Earth Sciences in the Planetarium
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.
2013-12-01
In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more informative as revealing the complexity and beauty of our planet. In addition to e.g. climate change and natural hazards, themes of interest may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the generation and sustainment of the magnetic field as well as of habitable conditions in the atmosphere and oceans. We believe that high-quality tax-funded science visualizations should not exclusively be used to facilitate communication amoung scientists, but also be directly recycled to raise the public's awareness and appreciation of geosciences.
The non-hydrostatic figures of the terrestrial planets
NASA Technical Reports Server (NTRS)
Runcorn, S. K.
1985-01-01
Solid state creep being exponentially dependent on temperature must dominate the mechanical behavior of the mantles of terrestrial planets beneath their lithospheres. General arguments suggest that the lithospheres of the Moon and Mars are about 200 km thick; the Earth, Venus and Mercury much less. Short wavelength gravity anomalies are explained by the finite strength of the lithosphere: the lunar mascons being an example. The good correlation of the Venus and Mars gravity anomalies with topography up to spherical harmonics of degrees 10-15 is in striking contrast to the lack of correlation between the long wavelength components of the geoid and the continent-ocean distribution or even the plates. Attempts have been made to explain the former correlations by isostatic models but the depths of compensation seem implausible. Low degree harmonics of the gravity fields of the terrestrial planets as is certainly the case in the Earth must arise from the density variations driving solid state convection. In the case of Venus the less dense differentiated materials of the highlands seems to be positioned over the singular points of the convection pattern. Thus the correlated gravity field does not arise from the highlands but from the density difference in the convecting interior. In the Earth lack of correlation seems to arise from the fact that the plates have moved relative to the convection pattern the last 100 M yr.
Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D.
We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on themore » metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.« less
NASA Technical Reports Server (NTRS)
Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee
1987-01-01
Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.
2016-01-20
One of the two MarCO (Mars Cube One) CubeSat spacecraft, with its insides displayed, is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20345
Mantle updrafts and mechanisms of oceanic volcanism.
Anderson, Don L; Natland, James H
2014-10-14
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.
Mantle updrafts and mechanisms of oceanic volcanism
NASA Astrophysics Data System (ADS)
Anderson, Don L.; Natland, James H.
2014-10-01
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.
Mantle updrafts and mechanisms of oceanic volcanism
Anderson, Don L.; Natland, James H.
2014-01-01
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts—consequences of Archimedes’ principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism. PMID:25201992
The Search for Life in the Solar System*
Gurnett, Donald A.
2009-01-01
In this presentation I give an overview of the long struggle to answer the age old question, does life exist anywhere else? The focus will be specifically on the search for life in the solar system, since this is the only region currently accessible to direct investigation. A hundred years ago many people believed that life, possibly even intelligent life, existed at the nearby planets Venus and Mars, and possibly elsewhere. The space age exploration of the planets has radically altered that view. We now know that Venus is a very hostile place, with no possibility for life, and that Mars is almost completely barren and very cold, with little prospect for life. The only remaining possibility appears to be in the interior of some of the moons of the outer planets where, due to an unlikely combination of factors, the conditions may be suitable for life. PMID:19768185
The search for life in the solar system.
Gurnett, Donald A
2009-01-01
In this presentation I give an overview of the long struggle to answer the age old question, does life exist anywhere else? The focus will be specifically on the search for life in the solar system, since this is the only region currently accessible to direct investigation. A hundred years ago many people believed that life, possibly even intelligent life, existed at the nearby planets Venus and Mars, and possibly elsewhere. The space age exploration of the planets has radically altered that view. We now know that Venus is a very hostile place, with no possibility for life, and that Mars is almost completely barren and very cold, with little prospect for life. The only remaining possibility appears to be in the interior of some of the moons of the outer planets where, due to an unlikely combination of factors, the conditions may be suitable for life.
Shock compression of stishovite and melting of silica at planetary interior conditions
NASA Astrophysics Data System (ADS)
Millot, M.; Dubrovinskaia, N.; Černok, A.; Blaha, S.; Dubrovinsky, L.; Braun, D. G.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Jeanloz, R.
2015-01-01
Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet’s internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.
Juno Arrival at Jupiter Artist Concept
2015-07-07
This artist's rendering shows NASA's Juno spacecraft making one of its close passes over Jupiter. Launched in 2011, the Juno spacecraft will arrive at Jupiter in 2016 to study the giant planet from an elliptical, polar orbit. Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, traveling from pole to pole in about an hour, and coming within 5,000 kilometers (about 3,000 miles) of the cloud tops at closest approach. Juno's primary goal is to improve our understanding of Jupiter's formation and evolution. The spacecraft will spend a little over a year investigating the planet's origins, interior structure, deep atmosphere and magnetosphere. Juno's study of Jupiter will help us to understand the history of our own solar system and provide new insight into how planetary systems form and develop in our galaxy and beyond. http://photojournal.jpl.nasa.gov/catalog/PIA19639
Shipping InSight Mars Spacecraft to Buckley Air Force Base
2018-02-28
A truck carrying NASA s InSight spacecraft leaves Lockheed Martin Space, Denver, where the spacecraft was built and tested, on February 28, 2018. InSight was driven to Buckley Air Force Base, where it was loaded into a C-17 cargo aircraft and flown to Vandenberg Air Force Base, California. There, it will be prepared for a May launch. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22225
Shipping InSight Mars Spacecraft to California for Launch
2018-02-28
Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22220
Shipping InSight Mars Spacecraft to California for Launch
2018-02-28
Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22252
Shipping InSight Mars Spacecraft to California for Launch
2018-02-28
Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22253
Seeding Life on the Moons of the Outer Planets via Lithopanspermia
Sigurdsson, Steinn; House, Christopher H.
2013-01-01
Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459
NASA Astrophysics Data System (ADS)
Wahl, Sean; Hubbard, William B.; Militzer, Burkhard
2016-10-01
The Juno gravity science system promises to provide observational data from Jupiter's gravitational field at an unprecedented precision. Meanwhile, recent ab-initio simulations on mixtures of hydrogen and helium allow for the construction of realistic interior models. The concentric Maclaurin spheroid (CMS) numerical method has been developed for efficient, non-perturbative, self-consistent calculations of shape and gravitational field of a rotating liquid body to this desired precision. Here we present a generalization of the CMS method to three dimensions and included the effect of tides from a satellite. We have identified a number of unexpected features of the static tidal response in the case where a planet's shape is dominated by the rotational bulge. In the general case, there is state mixing of the spherical-harmonic components of the response to the corresponding components of the rotational and tidal excitations. This breaks the degeneracy of the tidal love numbers knm with m, and introduces a dependence of knm on the orbital distance of the satellite. Notably for Jupiter and Saturn, the predicted value of k2 is significantly higher when the planet's high rotation rates are taken into account: k2=0.413 for Saturn and k2=0.590 for Jupiter, accounting for an ~13% and 10% increase over the non-rotating case respectively. We have also done preliminary estimates for the off-resonance dynamic response, which may lead to an additional significant increase in k2. Accurate models of tidal response will be essential for interpreting gravity observations from Juno and future studies, particularly for when filtering for signals from interior dynamics in the observed field. This work was supported by NASA's Juno project. Sean Wahl and Burkhard Militzer acknowledge the support of the National Science Foundation (astronomy and astrophysics research grant 1412646).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, David; Cumming, Andrew; Turner, Neal J., E-mail: dtsang@physics.mcgill.ca
2014-02-20
We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this featuremore » in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.« less
Dual technique magnetometer experiment for the Cassini Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Southwood, D. J.; Balogh, A.; Smith, E. J.
1992-01-01
The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.
Neutrinos from Hell: the Dawn of Neutrino Geophysics
Gratta, Giorgio
2018-02-26
Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only. I will discuss the results of these new measurements and put them in the context of the Earth Sciences.
NASA Technical Reports Server (NTRS)
Krasnopolsky, V. A.; Bowyer, S.; Chakrabarti, S.; Gladstone, G. R.; Mcdonald, J. S.
1994-01-01
108 +/- 11 photons of the martian He 584-A airglow detected by the Extreme Ultraviolet Explorer (EUVE) satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh (Ra). Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He(+) by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(exp 5), 3 x 10(exp 4), and 7 x 10(exp 3)/sq cm/s, respectively. The lifetime of helium on Mars is 5 x 10(exp 4) years. the He outgassing rate, coupled with the Ar-40 atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances if K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta(sub 0) x (t(sub 0)/t)(exp 1/2) with delta(sub 0) = 0.1, 0.04, and 0.0125 Byr for Earth, Venus, and Mars, respectively. After a R(exp 2) correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassiumis depleted by a factor of 2 in Venus and Mars. Mass ratio of helium and argon are close to 5 x 10(exp -9) and 2 x 10(exp -8) g/g in the interiors of all three planets. The implications of these results are discussed.
NASA Astrophysics Data System (ADS)
Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.
2015-12-01
Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and infrasound sensors will offer a unique confirmation in 2016-2017. We conclude with the seismic/infrasounds coupling on Venus which make the detection from space of seismic waves possible through the perturbation of the infrared airglow by infrassounds. Detection threshold as low as Magnitude 5.5 can be reached with existing technologies.
3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology
NASA Astrophysics Data System (ADS)
Robertson, S. D.; King, S. D.
2016-12-01
Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave Stegman (SIO/UCSD).
Shipping InSight Mars Spacecraft to California for Launch
2015-12-17
Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space Systems, was shipped Dec. 16, 2015, in preparation for launch from Vandenberg in March 2016. InSight, for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20278
NASA InSight Lander in Spacecraft Back Shell
2015-08-18
In this photo, NASA's InSight Mars lander is stowed inside the inverted back shell of the spacecraft's protective aeroshell. It was taken on July 13, 2015, in a clean room of spacecraft assembly and test facilities at Lockheed Martin Space Systems, Denver, during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19813
InSight Lander in Mars-Surface Configuration
2015-05-27
The solar arrays on NASA's InSight lander are deployed in this test inside a clean room at Lockheed Martin Space Systems, Denver. This configuration is how the spacecraft will look on the surface of Mars. The image was taken on April 30, 2015. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19664
Preparing NASA InSight Spacecraft for Vibration Test
2015-08-18
Spacecraft specialists at Lockheed Martin Space Systems, Denver, prepare NASA's InSight spacecraft for vibration testing as part of assuring that it is ready for the rigors of launch from Earth and flight to Mars. The spacecraft is oriented with its heat shield facing up in this July 13, 2015, photograph. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19815
Model of Mars-Bound MarCO CubeSat
2015-06-12
Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. MarCO is the first interplanetary mission using CubeSat technologies for small spacecraft. The briefcase-size MarCO twins will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration mission to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19389
Size Contrast for Mars CubeSat
2015-06-12
The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer at NASA's Jet Propulsion Laboratory, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her. MarCO, short for Mars Cube One, is the first interplanetary use of CubeSat technologies for small spacecraft. JPL is preparing two MarCO twins for launch in March 2016. They will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. MarCO is a technology demonstration aspect of the InSight mission. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19671
The Comet Radar Explorer Mission
NASA Astrophysics Data System (ADS)
Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul
2014-11-01
Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and texture, probing surface materials attainable by future robotic excavation missions. Thermal images will reveal areas of sublimation cooling around vents and pits, and the secular response of the outer meters as the nucleus moves farther from the Sun.
Shock compression response of forsterite above 250 GPa
Sekine, Toshimori; Ozaki, Norimasa; Miyanishi, Kohei; Asaumi, Yuto; Kimura, Tomoaki; Albertazzi, Bruno; Sato, Yuya; Sakawa, Youichi; Sano, Takayoshi; Sugita, Seiji; Matsui, Takafumi; Kodama, Ryosuke
2016-01-01
Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems. PMID:27493993
Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model
NASA Astrophysics Data System (ADS)
Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.
2011-12-01
One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the convective cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal 'hydrothermal salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.
NASA Astrophysics Data System (ADS)
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L. A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D. A.; Li, J.-Y.; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B. E.; Buczkowski, D. L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffmann, M.; Raymond, C. A.; Russell, C. T.
2016-09-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids
NASA Astrophysics Data System (ADS)
Ware, Lucas Andrew
2015-01-01
Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.
Remote Sensing Information Applied to Geological Study of Planets
NASA Technical Reports Server (NTRS)
Pieters, Carle M.
2004-01-01
The Planetary Geology and Geophysics tasks under this grant have concentrated on the development and testing of tools for remote compositional analyses for the Moon and other airless bodies (especially asteroids). The grant has supported the PI and her students. Detailed analyses of space-weathering analogs were undertaken. Lunar research included development of models for regolith evolution and redistribution of materials across the Moon, with particular emphasis on the interior of South Pole-Aitken Basin. Lunar compositional analyses identified general rock types using Clementine data and mapped their distribution globally and locally based on the type of mafic mineralogy present (or lack thereof). Progress in these areas has been extensively discussed in the literature and in proposals submitted to the PGG program in 2003 and 2004.
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D.A.; Li, Jian-Yang; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B.E.; Buczkowski, D.L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffman, M.; Raymond, C.A.; Russell, C.T.
2016-01-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery using Dawn Framing Camera images of a landform on dwarf planet Ceres, which we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
Martian Igneous Geochemistry: The Nature of the Martian Mantle
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.
2012-01-01
Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).
Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2005-01-01
Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.
Modelling the inner debris disc of HR 8799
NASA Astrophysics Data System (ADS)
Contro, B.; Horner, J.; Wittenmyer, R. A.; Marshall, J. P.; Hinse, T. C.
2016-11-01
In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km s-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km s-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.
Reduced gas accretion on super-Earths and ice giants
NASA Astrophysics Data System (ADS)
Lambrechts, M.; Lega, E.
2017-10-01
A large fraction of giant planets have gaseous envelopes that are limited to about 10% of their total mass budget. Such planets are present in the solar system (Uranus, Neptune) and are frequently observed in short periods around other stars (the so-called super-Earths). In contrast to these observations, theoretical calculations based on the evolution of hydrostatic envelopes argue that such low-mass envelopes cannot be maintained around cores exceeding five Earth masses. Instead, under nominal disk conditions, these planets would acquire massive envelopes through runaway gas accretion within the lifetime of the protoplanetary disk. In this work we show that planetary envelopes are not in hydrostatic balance, which slows down envelope growth. A series of 3D global, radiative hydrodynamical simulations reveal a steady-state gas flow, which enters through the poles and exits in the disk midplane. Gas is pushed through the outer envelope in about ten orbital timescales. In regions of the disk that are not significantly dust-depleted, envelope accretion onto cores of about five Earth masses can get stalled as the gas flow enters the deep interior. Accreted solids sublimate deep in the convective interior, but small opacity-providing grains are trapped in the flow and do not settle, which further prevents rapid envelope accretion. The transition to runaway gas accretion can however be reached when cores grow larger than typical super-Earths, beyond 15 Earth masses, and preferably when disk opacities are below κ = 1 cm2/g. These findings offer an explanation for the typical low-mass envelopes around the cores of super-Earths.
NASA Technical Reports Server (NTRS)
Macfarlane, J. J.
1984-01-01
A model free energy is developed for hydrogen-helium mixtures based on solid-state Thomas-Fermi-Dirac calculations at pressures relevant to the interiors of giant planets. Using a model potential similar to that for a two-component plasma, effective charges for the nuclei (which are in general smaller than the actual charges because of screening effects) are parameterized, being constrained by calculations at a number of densities, compositions, and lattice structures. These model potentials are then used to compute the equilibrium properties of H-He fluids using a charged hard-sphere model. The results find critical temperatures of about 0 K, 500 K, and 1500 K, for pressures of 10, 100, and 1000 Mbar, respectively. These phase separation temperatures are considerably lower (approximately 6,000-10,000 K) than those found from calculations using free electron perturbation theory, and suggest that H-He solutions should be stable against phase separation in the metallic zones of Jupiter and Saturn.
Cockell, C S; Bush, T; Bryce, C; Direito, S; Fox-Powell, M; Harrison, J P; Lammer, H; Landenmark, H; Martin-Torres, J; Nicholson, N; Noack, L; O'Malley-James, J; Payler, S J; Rushby, A; Samuels, T; Schwendner, P; Wadsworth, J; Zorzano, M P
2016-01-01
Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.
NASA Astrophysics Data System (ADS)
Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.
2018-06-01
The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' that provides incoming radiation, and atmospheric chemicals have either an albedo or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.
NASA Astrophysics Data System (ADS)
Cao, Hao
Understanding the interior structure and dynamics of a planet is a key step towards understanding the formation and evolution of a planet. In this thesis, I combine field observation and dynamo modeling to understand planetary interiors. Focus has been put on planets Saturn and Mercury. The Cassini spacecraft has been taking continuous measurements in the Saturnian system since the Saturn orbital insertion in June 2004. Since the Mercury orbital insertion in March 2011, the MESSENGER spacecraft has been examining planet Mercury. After analyzing the close-in portion of the in-situ Cassini magnetometer measurements around Saturn, I find that Saturn's magnetic field features several surprising characteristics. First, Saturn's magnetic field is extremely axisymmetric. We cannot find any consistent departure from axisymmetry, and have put an extremely tight upper bound on the dipole tilt of Saturn: the dipole tilt of Saturn has to be smaller than 0.06 degrees. Second, we find that Saturn's magnetic field is extremely stable with time. Third, we estimated the magnetic moments of Saturn up to degree 5. This is the first magnetic field model for Saturn which goes beyond degree 3. We find that not only Saturn's intrinsic magnetic field is dominated by the axial moments; among these axial moments the odd degree ones dominate. In addition, the first three odd degree axial moments all take the same sign. This sign pattern of Saturn's magnetic moments is in contrast to that of the Earth's magnetic moments which takes alternative signs for the past century. The contrast between the geometries of Saturn's magnetic field and the Earth's magnetic field lead us to propose a dynamo hypothesis which speculates that such differences are caused by structural and dynamical differences inside these two planets. Our dynamo hypothesis for Saturn has two essential ingredients. The first concerns about the existence and size of a central core inside Saturn and its influence on Saturn's dynamo action. The second concerns about the possible heterogeneous heat transfer efficiency in the outer envelope of Saturn and its influence on Saturn's dynamo action. We then carried out numerical convective dynamo simulations using the community dynamo code MagIC version 3.44 to test our dynamo hypothesis. In our numerical dynamo experiments, the central core sizes and the outer boundary heat flow heterogeneities are both varied. We find that the central core size is an important factor that can strongly influence the geometry of the dynamo generated magnetic field. Such influence is rendered through the tangent cylinder, which is an imaginary cylinder with its axis parallel to the spin axis of the planet and is tangent to the central core at the equator. We find that both the convective motion and the magnetic field generation efficiency, represented by kinetic helicity, are weaker inside the tangent cylinder than those outside the tangent cylinder. As a result, the magnetic fields inside the tangent cylinder are consistently weaker than those outside the tangent cylinder. Thus the lack of a polar field minimum region at Saturn could be indicative of the absence or a small central core inside Saturn. MESSENGER observations revealed that Mercury's magnetic field is more unusual than previously thought. In particular, Mercury's magnetic field is strongly north-south asymmetric: the magnetic field strength in the northern hemisphere is three times as strong as that in the southern hemisphere. Yet, there is no evidence for any such north-south asymmetry in the basic properties of Mercury that could possibly influence the present-day dynamo action. Here we propose a mechanism to break the equatorial symmetry of Mercury's magnetic field within the framework of convective dynamos. The essence of our mechanism is the mutual excitation of two fundamental modes of columnar convection in rapidly rotating spherical shells. Such mutual excitation results in equatorially asymmetric kinetic helicity, which then leads to equatorially asymmetric magnetic field. With numerical dynamo experiments, we find two necessary conditions to reproduce the equatorial symmetry breaking of Mercury's magnetic field with equatorially symmetric core-mantle boundary (CMB) heat flows. The first is that buoyancy sources need to be distributed within an extended volume of the outer core rather than being concentrated near the inner boundary. The second is an equatorially peaked CMB heat flow. From this study, we conclude that 1) Mercury's core dynamo is likely powered by distributed buoyancy sources and thus is different from the present-day geodynamo which is predominantly powered by bottom-up inner core growth; 2) Mercury's mantle structure and dynamics could be favoring higher heat flow from the equatorial region of Mercury's core. (Abstract shortened by UMI.)
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, Diogo; Tackley, Paul J.
2016-04-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Lourenço, Diogo; Tackley, Paul
2015-04-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We will present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
Evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Louro Lourenço, D. J.; Tackley, P.
2016-12-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower crystallization, large-scale overturn well before full solidification, the formation and subduction of an early crust while a partially-molten upper mantle is still present, transitioning to mostly-solid-state long-term mantle convection and plate tectonics or an episodic-lid regime.
2015-04-08
Lessing crater can be seen in the lower left of this image. Instead of the typical central peak found in a complex crater on Mercury, Lessing sports a central pit, likely formed by volcanic activity. A large tectonic scarp that formed when the planet's interior cooled and contracted can be seen running through a crater near the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA19276
Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program
NASA Astrophysics Data System (ADS)
Crisp, D.
The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.
Exploration of Venus' Deep Atmosphere and Surface Environment
NASA Technical Reports Server (NTRS)
Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.
2017-01-01
Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.
Kuiper Prize Lecture: Stan Peale's Legacy
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc
2016-10-01
Stan Peale's career in planetary science spanned over five decades and yielded an impressive record of high-impact results. His contributions include the prediction of widespread volcanism on Jupiter's moon Io, the derivation of a general theoretical framework that governs the rotational states of bodies subject to tides, the study of the origin and evolution of natural satellites, advances in our understanding of exoplanet dynamics, and the promotion of microlensing searches for exoplanets. Stan also developed an ingenious procedure to determine the size and state of Mercury's core. Because of this work, we know more about the core of Mercury than that of any planet other than Earth. Stan left us an enduring legacy that exemplifies the power of physics to probe the interiors of planets.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.
2018-01-01
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...
2018-04-25
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Thermal structure and heat balance of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.
1989-01-01
Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Mercury. [Mariner 10 observations and planetary properties
NASA Technical Reports Server (NTRS)
Gault, D. E.; Cassen, P.; Burns, J. A.; Strom, R. G.
1977-01-01
Information about Mercury obtained with the Mariner 10 spacecraft is summarized together with results of theoretical studies and ground-based observations. It is shown that Mercury is very likely a differentiated body, probably contains a large earthlike iron-rich core, and displays a surface similar to the moon's, which suggests a similar evolutionary history. The size and mass of Mercury are discussed along with its orbit, rotation, atmosphere, magnetic field, and magnetosphere. Surface features of Mercury are described on the basis of Mariner 10 pictures, with detailed attention given to the major physiographic provinces, the structure of the Caloris basin, the tectonic framework of the planet, crater morphology, the planet's optical and thermal properties, and cartography. The composition and structure of the interior are examined, and the thermal history of Mercury is considered. The planet's geologic history is divided into five stages or epochs: (1) accretion and differentiation, (2) terminal heavy bombardment, (3) Caloris basin formation, (4) basin flooding, and (5) postfilling lighter bombardment.
Resolving the inconsistency between the ice giants and cometary D/H ratios
NASA Astrophysics Data System (ADS)
Ali-Dib, M.; Mousis, O.; Petit, J.-M.; Lunine, J. I.
2014-12-01
The properties and chemical compositions of giant planets strongly depend on their formation locations. The formation mechanisms of the ice giants Uranus and Neptune, and their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation within a timescale consistent with the presence of the gaseous protoplanetary disk, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline location, namely the region where this gas condensates in the protosolar nebula. This outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value observed in Uranus and Neptune with the cometary value.
Design Aspects of the Rayleigh Convection Code
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean
2016-01-01
Dropping objects into a tunnel bored through Earth has been used to visualize simple harmonic motion for many years, and even imagined for use as rapid transport systems. Unlike previous studies that assumed a constant density Earth, here we calculate the fall-through time of polytropes, models of Earth's interior where the pressure varies as a power of the density. This means the fall-through time can be calculated as the central condensation varies from one to large within the family of polytropes. Having a family of models, rather than a single model, helps to explore the properties of planets and stars. Comparing the family of phase space solutions shows that the fall-through time and velocity approach the limit of radial free-fall onto a point mass as the central condensation increases. More condensed models give higher maximum velocities but do not have the right global properties for Earth. The angular distance one can travel along the surface is calculated as a brachistochrone (path of least time) tunnel that is a function of the depth to which the tunnel is bored. We also show that completely degenerate objects, simple models of white dwarf stars supported by completely degenerate electrons, have sizes similar to Earth but their much higher masses mean a much larger gravitational strength and a shorter fall-through time. Numerical integrations of the equations describing polytropes and completely degenerate objects are used to generate the initial models. Analytic solutions and numerical integration of the equations of motion are used to calculate the fall-through time for each model, and numerical integrations with analytic approximations at the boundaries are used to calculate the brachistochrones in the polytropes. Scaling relationships are provided to help use these results in other planets and stars.
Hydrodynamical processes in planet-forming accretion disks
NASA Astrophysics Data System (ADS)
Lin, Min-Kai
Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk thermodynamics, dust dynamics, disk self-gravity and three-dimensional effects. By including these effects, we go wellbeyond previous works based on idealized disk models. This effort is necessary to understand how these instabilities operate and interact in realistic protoplanetary disks. This will enable us to provide a unified picture of how various hydrodynamic activities fit together to drive global disk evolution. We will address key questions including the strength of the resulting hydrodynamic turbulence, the lifetime of large-scale vortices under realistic disk conditions, and their impact on the evolution of solids within the disk. Inclusion of these additional physics will likely uncover new, yet-unknown hydrodynamic processes. Our generalized models enables a direct link between theory and observations. For example, a self-consistent incorporation of dust dynamics into the theory of hydrodynamic instabilities is particularly important, since it is the dust component that is usually observed. We will also establish the connection between the properties of large-scale, observable structures such as vortices, to the underlying disk properties, such as disk mass, and vertical structure, which are difficult to infer directly from observations. We also propose to study, for the first time, the dynamical interaction between hydrodynamic turbulence and proto-planets, as well as the influence of largescale vortices on disk-planet interaction. This is necessary towards a realistic modeling of the orbital evolution of proto planets, and thus in predicting the final architecture of planetary systems. The proposal team's expertise and experience, ranging from mathematical analyses to state-of the-art numerical simulations in astrophysical fluid dynamics, provides a multi-method approach to these problems. This is necessary towards establishing a rigorous understanding of these fundamental hydrodynamical processes in protoplanetary accretion disks.
NASA Astrophysics Data System (ADS)
Aggarwal, Y. P.
2016-12-01
We present a highly correlated and significant relationship between a planet's rock mass of solids/heavy elements and its orbital radius found by non-linear regression analysis using existing data for all 8 planets except Mars. On its basis, we define the area A(r) of a planet's accretionary zone (AZ) and the surface density of solids σ(r) in Sun's disk that differs markedly from the commonly used minimum-mass solar nebula (MMSN) profile, and unlike MMSN is well constrained and does not produce contradictory results. A(r) ≈ π (1.59 r2 ̶ 0.16); and σ(r) = (5.95±0.1) (r - 6.4)- α where r is the heliocentric distance in astronomical units (AU), A(r) in AU², σ(r) in gm/cm², and α=0 for r ≤7.4AU, and α=1.39±0.04 for r ˃7.4AU. Using these relationships we determine the isolation masses of planetary embryos, define each planet's AZ, and analyze the size and spatial distribution of protoplanets within the AZ of terrestrial planets assuming typical protoplanet separations of 7-10 mutual Hill radii. The results: 1) show that Mars mass matches (±1%) with the isolation mass of its embryo and that its orbit at 1.52AU lies within its predicted AZ (1.47-1.54AU), establishing that Mars is a planetary embryo that formed in situ; 2) reveal that Mars failed to grow fully because there were not enough solids interior to Mars orbit to fully form all four terrestrial planets and because Jupiter accreted planetary embryos and planetesimals from the Mars-asteroid region, essentially depleting it; 3) imply that asteroids are remnant planetesimals that escaped accretion by Jupiter; 4) indicate that despite its small mass, Mercury is not a planetary embryo and that it probably completed its formation much earlier than Earth; and 5) suggest that Theia, the protoplanet thought to have impacted proto-Earth forming the Moon, originated near 1.45 AU with a mass and possibly composition similar to that of Mars. Notably, the results do not support the Grand Tack model or the Viscously Stirred Pebble-Accretion model for the structure of the Mars-asteroid region; nor do they support the hypothesis that the high iron content of Mercury's core is the result of an impact with a large planetesimal that stripped away much of Mercury's crust and mantle.
Observationally Constraining Gas Giant Composition via Their Host Star Abundances
NASA Astrophysics Data System (ADS)
Teske, Johanna; Thorngren, Daniel; Fortney, Jonathan
2018-01-01
While the photospheric abundances of the Sun match many rock-forming elemental abundances in the Earth to within 10 mol%, as well as in Mars, the Moon, and meteorites, the Solar System giant planets are of distinctly non-stellar composition — Jupiter's bulk metallicity (inferred from its bulk density, measured from spacecraft data) is ∼ x5-10 solar, and Saturn is ∼ x10-20 solar. This knowledge has led to dramatic advances in understanding models of core accretion, which now match the heavy element enrichment of each of the Solar System's giant planets. However, we have thus far lacked similar data for exoplanets to use as a check for formation and composition models over a much larger parameter space. Here we present a study of the host stars of a sample of cool transiting gas giants with measured bulk metal fractions (as in Thorngren et al. 2016) to better constrain the relation Zplanet/Zstar — giant exoplanet metal enrichment relative to the host star. We add a new dimension of chemical variation, measuring C, O, Mg, Si, Ni, and well as Fe (on which previous Zplanet/Zstar calculations were based). Our analysis provides the best constraints to date on giant exoplanet interior composition and how this relates to formation environment, and make testable predictions for JWST observations of exoplanet atmospheres.
Three Temperate Neptunes Orbiting Nearby Stars
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.
2016-10-01
We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.
Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Abe, Yutaka
2003-07-01
When a giant impact occurs, atmosphere loss may occur due to global ground motion excited by a strong shock wave traveling in the planetary interior. Here, the relations between the ground motion and the amount of the lost atmosphere are systematically investigated through calculations of a spherically one-dimensional atmospheric motion for various initial atmospheric conditions. The fraction of the lost atmosphere to the total mass of the atmosphere is found to be controlled only by the ground velocity and, insensitive to the initial atmospheric conditions. Unlike the previous studies (Ahrens, 1990, Origin of the Earth, H.E. Newson, J.H. Jones (Eds.), pp. 211-227; Ahrens, 1993, Annu. Rev. Earth Planet. Sci. 21, 525-555; Chen and Ahrens, 1997, Phys. Earth Planet. Inter. 100, 21-26); the estimated loss fraction for the giant impact is only 20%. Significant escape occurs only when the ground velocity is close to the escape velocity. Thus, most of the atmosphere should survive the giant impact. The cause of the difference from previous estimates is discussed from energetic and dynamic points of view. Moreover, if our estimates are applied to the atmosphere of the impactor planet, a significant fraction of it is carried to the target planet. Survival of the proto-atmosphere has very important effects on the origin and evolution of the terrestrial planets' volatile budget.