Sample records for planetary dunes workshop

  1. Interdisciplinary research produces results in understanding planetary dunes

    USGS Publications Warehouse

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  2. Summary of the Second International Planetary Dunes Workshop: Planetary Analogs - Integrating Models, Remote Sensing, and Field Data, Alamosa, Colorado, USA, May 18-21, 2010

    USGS Publications Warehouse

    Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.

    2010-01-01

    The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.

  3. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    USGS Publications Warehouse

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  4. Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12-15, 2012

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H. N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Le Gall, Alice; Michaels, Timothy I.; Neakrase, Lynn D. V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-03-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12-15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  5. Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Telfer, Matt W.

    2017-06-01

    The Fourth International Planetary Dunes Workshop: Integrating Models, Remote Sensing, and Field Data was held May 19-22, 2015 in Boise, Idaho (see Final Announcement). More than 60 researchers and students participated in two and a half days of presentations and lively discussion, plus a full day field trip to Bruneau Dunes State Park. The workshop focused on the many landforms and deposits created by the dynamic interactions between granular material and airflow (aeolian processes). These processes are known to occur on several planetary bodies, including Earth, Mars, Titan, Venus, and possibly, cometary surfaces. The overarching purpose of this workshop was to provide a forum for discussion and the exchange of new ideas and approaches to gaining new insights into planetary aeolian processes. Meeting programs, abstracts, and E-Posters are all available at the workshop website (http://www.hou.usra.edu/meetings/dunes2015/)

  6. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  7. Planetary dune workshop expands to include subaqueous processes

    USGS Publications Warehouse

    Titus, Timothy N.; Bryant, Gerald; Rubin, David M.

    2018-01-01

    Dune-like structures appear in the depths of Earth’s oceans, across its landscapes, and in the extremities of the solar system beyond. Dunes rise up under the thick dense atmosphere of Venus, and they have been found under the almost unimaginably ephemeral atmosphere of a comet.

  8. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus

    USGS Publications Warehouse

    Neakrase, Lynn D.V.; Klose, Martina; Titus, Timothy N.

    2017-01-01

    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  9. Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds

    NASA Astrophysics Data System (ADS)

    Diniega, Serina; Kreslavsky, Mikhail; Radebaugh, Jani; Silvestro, Simone; Telfer, Matt; Tirsch, Daniela

    2017-06-01

    Dunes, dune fields, and ripples are unique and useful records of the interaction between wind and granular materials - finding such features on a planetary surface immediately suggests certain information about climate and surface conditions (at least during the dunes' formation and evolution). Additionally, studies of dune characteristics under non-Earth conditions allow for ;tests; of aeolian process models based primarily on observations of terrestrial features and dynamics, and refinement of the models to include consideration of a wider range of environmental and planetary conditions. To-date, the planetary aeolian community has found and studied dune fields on Mars, Venus, and the Saturnian moon Titan. Additionally, we have observed candidate ;aeolian bedforms; on Comet 67P/Churyumov-Gerasimenko, the Jovian moon Io, and - most recently - Pluto. In this paper, we hypothesize that the progression of investigations of aeolian bedforms and processes on a particular planetary body follows a consistent sequence - primarily set by the acquisition of data of particular types and resolutions, and by the maturation of knowledge about that planetary body. We define that sequence of generated knowledge and new questions (within seven investigation phases) and discuss examples from all of the studied bodies. The aim of such a sequence is to better define our past and current state of understanding about the aeolian bedforms of a particular body, to highlight the related assumptions that require re-analysis with data acquired during later investigations, and to use lessons learned from planetary and terrestrial aeolian studies to predict what types of investigations could be most fruitful in the future.

  10. The importance of dunes on a variety of planetary surfaces

    USGS Publications Warehouse

    Titus, Timothy N.; Zimbelman, James R.; Radebaugh, Jani

    2015-01-01

    Scientists observe aeolian bed forms, or dune-like structures, throughout the solar system in a range of locations, from bodies with only transient atmospheres, such as comets, to places with thick atmospheres, such as Venus and the Earth’s ocean floor. Determining the source of sand and the different dune formations that result are thus important to understanding solar system and planetary evolution.

  11. First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars

    NASA Astrophysics Data System (ADS)

    Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Gao, Xin; Spiga, Aymeric; Narteau, Clément

    2018-05-01

    Dunes provide unique information about wind regimes on planetary bodies where there is no direct meteorological data. At the eastern margin of Olympia Undae on Mars, dune orientation is measured from satellite imagery and sediment cover is estimated using the high contrast between the dune material and substrate. The analysis of these data provide the first quantification of relationship between sediment availability and dune orientation. Abrupt and smooth dune reorientations are associated with inward and outward dynamics of dunes approaching and ejecting from major sedimentary bodies, respectively. These reorientation patterns along sediment transport pathways are interpreted using a new generation dune model based on the coexistence of two dune growth mechanisms. This model also permits solving of the inverse problem of predicting the wind regime from dune orientation. For bidirectional wind regimes, solutions of this inverse problem show substantial differences in the distributions of sediment flux orientation, which can be attributed to atmospheric flow variations induced by changes in albedo at the boundaries of major dune fields. Then, we conclude that relationships between sediment cover and dune orientation can be used to constrain wind regime and dune field development on Mars and other planetary surfaces.

  12. A Comparison of Methods Used to Estimate the Height of Sand Dunes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Beyer, R. A.; Williams, K. K.; Zimbelman, J.

    2006-01-01

    The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. Thc utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.

  13. Seismic and acoustic emissions of a booming dune. [in lunar, planetary and terrestrial sand motion

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Lindsay, J. F.; Reasoner, D. L.

    1975-01-01

    Acoustic and seismic spectra of booming sand dunes that emit low-frequency musical resonances when the dunes slump or undergo forced shearing are analyzed and described. Previous studies of booming, squeaking, screeching, and roaring sands with pure outputs resembling those of musical instruments, or more turbulent acoustic outputs such as the sound of low-flying propeller aircraft, are reviewed. The possibility of similar phenomena on the moon (thermal moonquakes) or nearby planets (Mars, Venus) is considered on the basis of planetary topography, soil mechanics, and atmosphere.

  14. A gradient-based approach for automated crest-line detection and analysis of sand dune patterns on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; LeBlanc, D.; Bebis, G.; Nicolescu, M.

    2015-12-01

    Dune-field patterns are believed to behave as self-organizing systems, but what causes the patterns to form is still poorly understood. The most obvious (and in many cases the most significant) aspect of a dune system is the pattern of dune crest lines. Extracting meaningful features such as crest length, orientation, spacing, bifurcations, and merging of crests from image data can reveal important information about the specific dune-field morphological properties, development, and response to changes in boundary conditions, but manual methods are labor-intensive and time-consuming. We are developing the capability to recognize and characterize patterns of sand dunes on planetary surfaces. Our goal is to develop a robust methodology and the necessary algorithms for automated or semi-automated extraction of dune morphometric information from image data. Our main approach uses image processing methods to extract gradient information from satellite images of dune fields. Typically, the gradients have a dominant magnitude and orientation. In many cases, the images have two major dominant gradient orientations, for the sunny and shaded side of the dunes. A histogram of the gradient orientations is used to determine the dominant orientation. A threshold is applied to the image based on gradient orientations which agree with the dominant orientation. The contours of the binary image can then be used to determine the dune crest-lines, based on pixel intensity values. Once the crest-lines have been extracted, the morphological properties can be computed. We have tested our approach on a variety of images of linear and crescentic (transverse) dunes and compared dune detection algorithms with manually-digitized dune crest lines, achieving true positive values of 0.57-0.99; and false positives values of 0.30-0.67, indicating that out approach is generally robust.

  15. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  16. Report of the December 2009 Titan Planetary Protection workshop

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale

    The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are associated to this presentation.

  17. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  18. Crater Floor Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

    Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Holden Crater Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

    Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Isolated Northern Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 81 degrees North latitude during Northern spring. In this region, the dunes are isolated from each other. The dunes are just starting to emerge from the winter frost covering appearing dark with bright crests. These dunes are located on top of ice.

    Image information: VIS instrument. Latitude 82.1, Longitude 191.3 East (168.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Dune management challenges on developed coasts

    USGS Publications Warehouse

    Elko, Nicole A.; Brodie, Kate; Stockdon, Hilary F.; Nordstrom, Karl F.; Houser, Chris; McKenna, Kim; Moore, Laura; Rosati, Julie D.; Ruggiero, Peter; Thuman, Roberta; Walker, Ian J.

    2015-01-01

    From October 26-28, 2015, nearly 100 members of the coastal management and research communities met in Kitty Hawk, NC, USA to bridge the apparent gap between the coastal dune research of scientists and engineers and the needs of coastal management practitioners. The workshop aimed to identify the challenges involved in building and managing dunes on developed coasts, assess the extent to which scientific knowledge can be applied to the management community, and identify approaches to provide means to bridge the gap between needs and potential solutions.

  3. Ethical Considerations for Planetary Protection in Space Exploration: A Workshop

    PubMed Central

    Rummel, J.D.; Horneck, G.

    2012-01-01

    Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023. PMID:23095097

  4. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  5. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    NASA Technical Reports Server (NTRS)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  6. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  7. Nili Patera Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image shows a dune field within Nili Patera, the northern caldera of a large volcanic complex in Syrtis Major.

    Image information: VIS instrument. Latitude 9, Longitude 67 East (293 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Ethical considerations for planetary protection in space exploration: a workshop.

    PubMed

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  9. Morphodynamics of Planetary Deserts: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Courrech Du Pont, S.; Rodriguez, S.

    2014-12-01

    Earth deserts show a rich variety of dune shapes from transverse to barchan, star and linear dunes depending on the history of wind regimes (strength and variability) and sand availability [1]. In desert, exposed to one wind direction, dunes perpendicular to the wind direction are found to be transverse or barchans, only sand availability plays a key role on their formation and evolution. However, the evolution time scale of such structures (several years) limits our investigation of their morphodynamics understanding. We use here, a laboratory experiment able to considerably reduce space and time scales by reproducing millimeter to centimeter subaqueous dunes by controlling environmental parameters such as type of wind (multi-winds, bimodal, quasi-bimodal or unidirectional wind) and amount of sediment [2,3]. This set up allows us to characterize more precisely the different modes of dune formation and long-term evolution, and to constrain the physics behind the morphogenesis and dynamics of dunes. Indeed, the formation, evolution and transition between the different dune modes are better understood and quantified thanks to a new setting experiment able to give a remote sediment source in continuous (closer to what happens in terrestrial desert): a sand distributor that controls the input sand flow. Firstly, in a one wind direction conditions, we managed to follow and quantify the growth of the instability of transverse dunes that break into barchans when the sand supply is low and reversely when the sand supply is higher, barchan fields evolve to bars dunes ending to form transverse. The next step will be to perform experiments under two winds conditions in order to better constrain the formation mode of linear dunes, depending also only on the input sand flux. Previous experiments shown that linear "finger" dunes can be triggered by the break of transverse dunes and then the elongating of one barchan's arm [4]. These studies can farther explain more precisely in different wind history and sand supply, these patterns state that should emerge and, by applying the relevant scale law, to apply this laboratory work to terrestrial and planetary (Mars and Titan) desert dynamics. [1] Bagnold R.A. (1941). [2] Hersen P. (2004). [3] Reffet E. (2010). [4] Courrech Du Pont S. et al. (2014).

  10. Northern Sand Sea

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes.

    Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Dune Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final look at the north polar erg was taken at 80 degrees North latitude during Northern summer. This image is of lower resolution than the previous images, but covers a much larger area. The dunes have very little remaining frost cover. Note the large extent of coverage, and the different dune forms.

    Image information: VIS instrument. Latitude 80.8, Longitude 184.6 East (175.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    NASA Astrophysics Data System (ADS)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  13. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  14. Frost-free Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

    These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

    Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  16. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 81 degrees North latitude during Northern spring. This region of the north polar erg is dominated by a different form of dunes than yesterday's image.

    Image information: VIS instrument. Latitude 81.4, Longitude 121.9 East (238.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Report on the COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions

    NASA Astrophysics Data System (ADS)

    Spry, James Andrew; Rummel, John; Conley, Catharine; Race, Margaret; Kminek, Gerhard; Siegel, Bette

    2016-07-01

    A human mission to Mars has been the driving long-term goal for the development of the Global Exploration Roadmap by the International Space Exploration Coordination Group. Additionally, multiple national space agencies and commercial organizations have published similar plans and aspirations for human missions beyond LEO. The current COSPAR planetary protection "Guidelines for Human Missions to Mars" were developed in a series of workshops in the early 2000s and adopted into COSPAR policy at the Montreal Assembly in 2008. With changes and maturation in mission architecture concepts and hardware capabilities, the holding of a workshop provided an opportunity for timely review of these guidelines and their interpretation within current frameworks provided by ISECG and others. The COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions was held in the US in spring 2016 to evaluate recent efforts and activities in the context of current COSPAR policy, as well as collect inputs from the various organizations considering crewed exploration missions to Mars and precursor robotic missions focused on surface material properties and environmental challenges. The workshop also considered potential updates to the COSPAR policy for human missions across a range of planetary destinations. This paper will report on those deliberations.

  18. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  19. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. North Polar Erg

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. As with yesterday's image, the dunes are still partially frost covered. This region is part of the north polar erg (sand sea), note the complexity and regional coverage of the dunes.

    Image information: VIS instrument. Latitude 81.2, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Proctor Crater Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Spreading the passion for scientifically useful planetary observations

    NASA Astrophysics Data System (ADS)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.

    2015-10-01

    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  3. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    NASA Astrophysics Data System (ADS)

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  4. A unified model of bedforms in water, Earth and other planetary bodies

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Claudin, P.; Winter, C.; Andreotti, B.

    2017-12-01

    The emergence of bedforms as result of the coupling between a fluid flow and sediment transport is a remarkable example of self-organized natural patterns. Subaqueous bedforms generated by unidirectional water flows, like ripples, dunes or compound bedforms, have been shown to depend on grain size, water depth and flow velocity. However, this variety of morphologies, empirically classified according to their size, is still not understood in terms of mechanical and hydrodynamical mechanisms. We present a process-based model that simultaneously explain the scaling of bedforms for Water, Air, Mars and Venus, and can be potentially applied to other planetary bodies such as Titan or Pluto. The model couples hydrodynamics over a modulated bed to sediment transport and relaxation laws, and resolves pattern coarsening from initial to mature bedforms. We find two fundamental types of bedforms, called `laminar' and `turbulent' and analogous to water ripples and dunes, and the conditions leading to their formation. By relating morphology to hydrodynamic and sediment transport details, our model opens the way to extract hydrodynamic information from the stratigraphy record and shed a light to past and current planetary conditions.

  5. A Physics Workshop in Hispaniola.

    ERIC Educational Resources Information Center

    Little, R. N.

    1983-01-01

    Describes two workshops for physics teachers in Hispaniola. Workshops demonstrated how mechanics could be developed from planetary motions and how basic mechanics concepts could be introduced through a guided discovery approach. Comments on workshop activities, organization, participant attitudes, and physics curriculum/instruction in Hispaniola…

  6. The History of Planetary Exploration Using Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  7. Summary and abstracts of the Planetary Data Workshop, June 2012

    USGS Publications Warehouse

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers and missions were represented. Presentations (some in video format) and tutorials are posted on the meeting site (http://astrogeology.usgs.gov/groups/Planetary-Data-Workshop).

  8. The OpenPlanetary initiative

    NASA Astrophysics Data System (ADS)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS Software Node, bit.ly/PDS_SN. [5] Zinzi et al. (2016), dx.doi.org/10.1016/j.ascom.2016.02.006. [6] Open Universe initiave, bit.ly/OpenUniverse, [7] Manaud N. et al. (2016), LPSC47-1387. [8] bit.ly/PlanetaryDataWorkshops

  9. Galle Cr. Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03637 Galle Cr. Dunes

    These dunes are located on the floor of Galle Crater.

    Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Workshop Report on Ares V Solar System Science

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie; Spilker, Tom; Martin, Gary; Sullivan, Greg

    2008-01-01

    The workshop blended three major themes: (1) How can elements of the Constellation program, and specifically, the planned Ares-V heavy-launch vehicle, benefit the planetary community by enabling the launch of large planetary payloads that cannot be launched on existing vehicles, and how can the capabilities of an Ares V allow the planetary community to redesign missions to achieve lower risk, and perhaps lower cost on these missions? (2) What are some of the planetary missions that either can be significantly enhanced or enabled by an Ares-V launch vehicle? What constraints do these mission concepts place on the payload environment of the Ares V? (3) Technology challenges that need to be addressed for launching large planetary payloads. Presentations varied in length from 15-40 minutes. Ample time was provided for discussion.

  11. Dune growth under multidirectional wind regimes

    NASA Astrophysics Data System (ADS)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.

    2017-12-01

    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  12. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal dune crestlines, with slipfaces on the primary crests, wind ripples, coarse-grained ripples and deflated interdune areas with exposed dune stratigraphy. Wind transport directions interpreted from wind ripple orientations show that the interaction between dune topography and wind flow on Mars are largely the same as on Earth giving rise to basic types of lee-slope processes - grain flow, grain fall and wind ripples. Using wind flow reconstruction and pattern analysis the pattern is interpreted as complex in which a younger pattern superposes a larger, older pattern. The younger pattern may have emerged with the development of the retreat of the Cavi reentrant into the Cavi Unit and ice cap, which acted to channel katabatic winds and inject a new sediment source into Olympia Undae. The similarity of the Olympia Undae dune-field pattern to dune-field patterns on other planets shows the robustness of pattern formation across different planetary boundary conditions and the applicability of pattern-analysis methods for paleoenvironmental reconstruction. The aeolian source-to-sink system of Mars' north polar region demonstrates how the stratigraphic and geomorphic principles of aeolian systems may differ because of different planetary boundary conditions and provides a framework for analysis of aeolian systems on other worlds.

  13. An assessment of ground-based techniques for detecting other planetary systems. Volume 1: An overview. [workshop conclusions

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor); Brunk, W. E. (Editor)

    1980-01-01

    The feasibility and limitations of ground-based techniques for detecting other planetary systems are discussed as well as the level of accuracy at which these limitations would occur and the extent to which they can be overcome by new technology and instrumenation. Workshop conclusions and recommendations are summarized and a proposed high priority program is considered.

  14. Planetary Surface Instruments Workshop

    NASA Astrophysics Data System (ADS)

    Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,

    1996-01-01

    This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)

  15. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  16. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  17. Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration

    NASA Technical Reports Server (NTRS)

    Marshall, John (Editor); Weitz, Cathy (Editor)

    1999-01-01

    The Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration was held on October 2-4, 1999, at the Lunar and Planetary Institute in Houston, Texas. The workshop was sponsored by the Lunar and Planetary Institute, the Mars Program Office of the Jet Propulsion Laboratory, and the National Aeronautics and Space Administration. The three-day meeting was attended by 133 scientists whose purpose was to share results from recent missions, to share plans for the 2001 mission, and to come to an agreement on a landing site for this mission.

  18. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    NASA Astrophysics Data System (ADS)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.

  19. Dunes in Darwin Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03039 Dunes in Darwin Crater

    The dunes and sand deposits in this image are located on the floor of Darwin Crater.

    Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  1. Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.

    2014-02-01

    Planetary dune field properties and their bulk bedform morphologies relate to regional wind patterns, sediment supply, climate, and topography. On Mars, major occurrences of spatially contiguous low-albedo sand dunes are primarily found in three major topographic settings: impact craters, high-latitude basins, and linear troughs or valleys, the largest being the Valles Marineris (VM) rift system. As one of the primary present day martian sediment sinks, VM holds nearly a third of the non-polar dune area on Mars. Moreover, VM differs from other regions due to its unusual geologic, topographic, and atmospheric setting. Herein, we test the overarching hypothesis that VM dune fields are compositionally, morphologically, and thermophysically distinct from other low- and mid-latitude (50°N-50°S latitude) dune fields. Topographic measurements of dune fields and their underlying terrains indicate slopes, roughnesses, and reliefs to be notably greater for those in VM. Variable VM dune morphologies are shown with topographically-related duneforms (climbing, falling, and echo dunes) located among spur-and-gully wall, landslide, and chaotic terrains, contrasting most martian dunes found in more topographically benign locations (e.g., craters, basins). VM dune fields superposed on Late Amazonian landslides are constrained to have formed and/or migrated over >10s of kilometers in the last 50 My to 1 Gy. Diversity of detected dune sand compositions, including unaltered ultramafic minerals and glasses (e.g., high and low-calcium pyroxene, olivine, Fe-bearing glass), and alteration products (hydrated sulfates, weathered Fe-bearing glass), is more pronounced in VM. Observations show heterogeneous sand compositions exist at the regional-, basinal-, dune field-, and dune-scales. Although not substantially greater than elsewhere, unambiguous evidence for recent dune activity in VM is indicated from pairs of high-resolution images that include: dune deflation, dune migration, slip face modification (e.g., alcoves), and ripple modification or migration, at varying scales (10s-100s m2). We conclude that VM dune fields are qualitatively and quantitatively distinct from other low- and mid-latitude dune fields, most readily attributable to the rift's unusual setting. Moreover, results imply dune field properties and aeolian processes on Mars can be largely influenced by regional environment, which may have their own distinctive set of boundary conditions, rather than a globally homogenous collection of aeolian sediment and bedforms.

  2. Why do seif dunes meander?

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Seif dunes - which develop in the absence of vegetation and elongate in the resultant sand transport direction - are the prevailing dune type in many deserts of Earth and Mars and display a meandering shape that has challenged geomorphologists for decades. Understanding the factors controlling seif dune morphology may have impact for a broad range of scientific areas, in particular in the investigation of planetary wind regimes, as dune shape is primarily affected by wind directionality. Sand roses of areas hosting seif dunes display, in general, two main wind directions that form a divergence angle larger than 90˚ . Indeed, theory of dune formation predicts that longitudinal alignment of aeolian bedforms occurs under obtuse bimodal winds, a prediction that has been confirmed by field observations and numerical simulations of aeolian dunes, as well as by experiments on subaqueous bedforms. However, numerical simulations and water tank experiments performed under conditions of bimodal flows could never reproduce one of the most salient characteristics of the seif dune shape, which is its meandering. Instead, longitudinal dunes produced in such simulations and experiments display an unrealistic straight shape, which elongates into the resultant transport trend without developing the sinuous morphology of the seif dunes. Here we show, by means of morphodynamic modeling of aeolian sediment transport and dune formation under directionally varying flows, that the meandering shape of seif dunes can be explained by the action of subordinated sand-moving winds, which occur in addition to both main wind components of the bimodal wind. Because such subordinated winds - inherent to most measured sand roses of seif dune fields - are associated with transport rates much smaller than the sand flux values of the main bimodal wind components - they have been long thought to be negligible for dune shape. However, our simulations show that meandering may be caused by a single secondary wind component in the sand rose with transport rate of about 1/5 of the flux due to the bimodal wind components. To verify our model we calculate dune formation using the sand rose of the seif dune field in Bir Lahfan, Sinai, and find good quantitative agreement between the shape of seif dunes in this field and the dune morphology obtained in the simulations. Our simulations suggest that meandering seif dunes constitute a dune type produced by multimodal wind systems and cannot form under (strictly) bimodal wind regimes.

  3. Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M. (Editor); Banerdt, Bruce; Barmatz, M.; Chung, Sang; Chui, Talso; Hamell, R.; Israelsson, Ulf; Jerebets, Sergei; Le, Thanh; Litchen, Stephen

    2004-01-01

    The conference was held April 20-22, 2004, the NASA/JPL Workshop on Physics for Planetary Exploration focused on NASA's new concentration on sending crewed missions to the Moon by 2020 and then to Mars and beyond. However, our ground-based physics experiments are continuing to be funded, and it will be possible to compete for $80-90 million in new money from the NASA exploration programs. Papers presented at the workshop related how physics research can help NASA to prepare for and accomplish this grand scheme of exploration. From sensors for water on the Moon and Mars, to fundamental research on those bodies, and to aids for navigating precisely to landing sites on distant planets, diverse topics were addressed by the Workshop speakers.

  4. Predicting Martian dune shape and orientation from wind directional variability and sediment availability

    NASA Astrophysics Data System (ADS)

    Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Narteau, Clément; Spiga, Aymeric; Allemand, Pascal

    2016-04-01

    Dunes provide a unique set of information to constrain local climatic regimes on planetary bodies where there is no direct meteorological data. Wind directional variability and sediment availability are known to control the dune growth mechanism (i.e. the bed instability or fingering modes) and the subsequent dune shape and orientation (Courrech du Pont at al., 2014; Gao et al., 2015). Here we provide a quantitative analysis of these dependences on Mars using the output of the Martian General Circulation Models (GCM) and satellite imagery such as the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images, at a selection of places where there is a high contrast between the dune material and the non-erodible ground. Dunes, mostly composed of unweathered basaltic and andesitic grains, appear dark, whereas the non-erodible ground has a higher albedo. Such a systematic contrast permits to link dune morphology to the local sediment cover. Dune shape, crest orientation and local sediment cover are extracted from CTX images using an automatic linear segment detection method and the local distribution in albedo. In zones of high sediment supply, dune crest alignments are close to the orientation of the bed instability mode predicted from the local winds from the Martian Climate Database (MCD) where is stored the outputs of the IPSL-GCM for Mars (Millour et al., 2014). Using the same wind data, in zones of low sediment supply, the crest angle is close to the orientation of the fingering mode. In addition, there are continuous transitions in dune shape and orientation as the dunes migrate from zone of high to low sediment availability. These results indicate that the prediction of the IPSL-GCM are in good agreement with the present dune shapes and orientations and shed new light on the dynamics of complex dune fields along sand flow path.

  5. Planetary Protection Issues in the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  6. Planetary Protection Issues in the Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-06-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  7. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  8. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  9. Interrelationships among Circumstellar, Interstellar and Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III (Editor); Stencel, R. E. (Editor)

    1986-01-01

    Proceedings of a workshop held from February 27 to March 1, l985. The workshop was attended by 50 astronomers, astrophysicists, planetary scientists and meteoriticists; and emphasized the interdisciplinary nature of studies of cosmic dust.

  10. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  11. Pooh Bear rock and Mermaid Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  13. Assessing the Potential of Stratospheric Balloons for Planetary Science

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hibbitts, Karl; Young, Eliot; Landis, Robert; Noll, Keith; Baines, Kevin

    2013-01-01

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  14. Assessing the potential of stratospheric balloons for planetary science

    NASA Astrophysics Data System (ADS)

    Kremic, T.; Hibbitts, K.; Young, E.; Landis, R.; Noll, K.; Baines, K.

    Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.

  15. Proposing an International Collaboration on Lightweight Autonomous Vehicles to Conduct Scientific Traverses and Surveys over Antarctica and the Surrounding Sea Ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Behar, Alberto

    2004-01-01

    We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.

  16. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop

    NASA Astrophysics Data System (ADS)

    Johnson, Michael

    2015-04-01

    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  17. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  18. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  19. Continued monitoring of aeolian activity within Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  20. KSC-2014-2038

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  1. KSC-2014-2036

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2040

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Janet Petro, deputy director of NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  3. KSC-2014-2041

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Janet Petro, deputy director of NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  4. KSC-2014-2043

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Janet Petro, deputy director of NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  5. KSC-2014-2045

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Karen Thompson, NASA's chief technologist at the Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  6. KSC-2014-2042

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Janet Petro, deputy director of NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  7. KSC-2014-2037

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  8. KSC-2014-2044

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Karen Thompson, NASA's chief technologist at the Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  9. KSC-2014-2039

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., James Mantovani of the NASA Surface Systems Office at NASA's Kennedy Space Center, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  10. COSPAR Workshop on Planetary Protection for Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Raulin, F.; Ehrenfreund, P.

    2010-06-01

    During the deliberations of the COSPAR Workshop on Planetary Protection for Outer Planet Satellites and Small Solar System Bodies (Rummel et al., 2009), held in Vienna in April 2009, a number of bodies in the outer Solar System were identified as being potentially in the "II+" category consistent with the COSPAR categorization scheme, referring to a body that is of interest to chemical evolution and the origin of life, but whose potential to support living organisms is undecided, including at least Titan, Ganymede, Triton, and the Pluto-Charon system (see Appendix C). Of these objects, Titan is the highest priority target for a near-term robotic flagship mission and Ganymede is also the subject of flagship mission interest. To address the concerns that were raised in Vienna about the categorization of Titan and Ganymede (as "II+") required another dedicated workshop to concentrate on those two bodies, a meeting was planned and held jointly by NASA, ESA, and COSPAR during the winter of 2009- 2010. This workshop included additional experts on Titan and Ganymede who were not able to participate in the Vienna meeting, and allowed the attendees to inspect detailed information about the most recent Cassini-Huygens results as well as the most current interpretation of the data available for both Titan and Ganymede. The goal of this workshop was to resolve the mission category for Titan and Ganymede and to develop a consensus on the II versus II+ dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan system and on Ganymede - the two largest moons in our solar system. This report summarizes the findings and recommendations from the workshop. The document will be distributed to the COSPAR Planetary Protection panel for consideration prior to the next General Assembly meeting in Bremen (Germany) during July 2010. Results from the Titan/Ganymede study will also be coordinated in a larger evaluation of outer planet icy satellites that has been requested from the US National Research Council.

  11. ESTEC/GEOVUSIE/ILEWG Planetary Student Designer Workshop: a Teacher Training Perspective

    NASA Astrophysics Data System (ADS)

    Preusterink, J.; Foing, B. H.; Kaskes, P.

    2014-04-01

    An important role for education is to inform and create the right skills for people to develop their own vision, using their talents to the utmost and inspire others to learn to explore in the future. Great effort has been taken to prepare this interactive design workshop thoroughly. Three days in a row, starting with presentations of Artscience The Hague to ESA colleagues, followed by a Planetary research Symposium in Amsterdam and a student design workshop at the end complemented a rich environment with the focus on Planetary exploration. The design workshop was organised by GeoVUsie students, with ESTEC and ILEWG support for tutors and inviting regional and international students to participate in an interactive workshop to design 5 Planetary Missions, with experts sharing their expertise and knowhow on specific challenging items: 1. Mercury - Post BepiColombo (with Sebastien Besse, ESA) 2. Moon South Pole Mission (with Bernard Foing, ESA) 3. Post-ExoMars - In search for Life on Mars (with Jorge Vago, ESA) 4. Humans in Space - Mars One investigated(with Arno Wielders, Space Horizon) 5. Europa - life on the icy moon of Jupiter? (with Bert Vermeersen, TU Delft. Lectures were given for more than 150 geology students at the symposium "Moon, Mars and More" at VU university, Amsterdam (organized by GeoVUsie earth science students). All students were provided with information before and at start for designing their mission. After the morning session there was a visit to the exhibition at The Erasmus Facility - ESTEC to inspire them even more with real artifacts of earlier and future missions into space. After this visit they prepared their final presentations, with original results, with innovative ideas and a good start to work out further in the future. A telescope session for geology students had been organized indoor due to rain. A follow-up visit to the nearby public Copernicus observatory was planned for another clear sky occasion.

  12. Successfully Engaging Scientists in NASA Education and Public Outreach: Examples from a Teacher Professional Development Workshop Series and a Planetary Analog Festival

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.

    2014-12-01

    The Lunar Workshops for Educators are a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO). These workshops have been held across the country for the past five years, in places underserved with respect to NASA workshops and at LRO team member institutions. MarsFest is a planetary analog festival that has been held annually in Death Valley National Park since 2012, made possible with support from the Curiosity (primarily the Sample Analysis at Mars) Education and Public Outreach team, NASA's Ames Research Center, NASA's Goddard Space Flight Center, the SETI Institute, and Death Valley National Park. Both the Lunar Workshops for Educators and MarsFest rely strongly on scientist engagement for their success. In the Lunar Workshops, scientists and engineers give talks for workshop participants, support facility tours and field trips, and, where possible, have lunch with the teachers to interact with them in a less formal setting. Teachers have enthusiastically appreciated and benefited from all of these interactions, and the scientists and engineers also provide positive feedback about their involvement. In MarsFest, scientists and engineers give public presentations and take park visitors on field trips to planetary analog sites. The trips are led by scientists who do research at the field trip sites whenever possible. Surveys of festival participants indicate an appreciation for learning about scientific research being conducted in the park from the people involved in that research, and scientists and engineers report enjoying sharing their work with the public through this program. The key to effective scientist engagement in all of the workshops and festivals has been a close relationship and open communication between the scientists and engineers and the activity facilitators. I will provide more details about both of these programs, how scientists and engineers are involved in them, and offer suggestions for others who would like to engage scientists and engineers in similar activities.

  13. Deep learning for the detection of barchan dunes in satellite images

    NASA Astrophysics Data System (ADS)

    Azzaoui, A. M.; Adnani, M.; Elbelrhiti, H.; Chaouki, B. E. K.; Masmoudi, L.

    2017-12-01

    Barchan dunes are known to be the fastest moving sand dunes in deserts as they form under unidirectional winds and limited sand supply over a firm coherent basement (Elbelrhiti and Hargitai,2015). They were studied in the context of natural hazard monitoring as they could be a threat to human activities and infrastructures. Also, they were studied as a natural phenomenon occurring in other planetary landforms such as Mars or Venus (Bourke et al., 2010). Our region of interest was located in a desert region in the south of Morocco, in a barchan dunes corridor next to the town of Tarfaya. This region which is part of the Sahara desert contained thousands of barchans; which limits the number of dunes that could be studied during field missions. Therefore, we chose to monitor barchan dunes with satellite imagery, which can be seen as a complementary approach to field missions. We collected data from the Sentinel platform (https://scihub.copernicus.eu/dhus/); we used a machine learning method as a basis for the detection of barchan dunes positions in the satellite image. We trained a deep learning model on a mid-sized dataset that contained blocks representing images of barchan dunes, and images of other desert features, that we collected by cropping and annotating the source image. During testing, we browsed the satellite image with a gliding window that evaluated each block, and then produced a probability map. Finally, a threshold on the latter map exposed the location of barchan dunes. We used a subsample of data to train the model and we gradually incremented the size of the training set to get finer results and avoid over fitting. The positions of barchan dunes were successfully detected and deep learning was an effective method for this application. Sentinel-2 images were chosen for their availability and good temporal resolution, which will allow the tracking of barchan dunes in future work. While Sentinel images had sufficient spatial resolution for the detection of mid-size to large size barchans, we noted that it was relatively difficult to detect smaller barchan dunes. Overall, deep learning allowed us to achieve a high accuracy in the detection of barchan dunes. The tracking of hundreds of barchans using this detection method would provide an insight into the understanding of the dynamics of this natural phenomenon.

  14. Mars Sample Handling Protocol Workshop Series: Workshop 2a (Sterilization)

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Brunch, Carl W. (Editor); Setlow, Richard B. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The Space Studies Board of the National Research Council provided a series of recommendations to NASA on planetary protection requirements for future Mars sample return missions. One of the Board's key findings suggested, although current evidence of the martian surface suggests that life as we know it would not tolerate the planet's harsh environment, there remain 'plausible scenarios for extant microbial life on Mars.' Based on this conclusion, all samples returned from Mars should be considered potentially hazardous until it has been demonstrated that they are not. In response to the National Research Council's findings and recommendations, NASA has undertaken a series of workshops to address issues regarding NASA's proposed sample return missions. Work was previously undertaken at the Mars Sample Handling and Protocol Workshop 1 (March 2000) to formulate recommendations on effective methods for life detection and/or biohazard testing on returned samples. The NASA Planetary Protection Officer convened the Mars Sample Sterilization Workshop, the third in the Mars Sample Handling Protocol Workshop Series, on November 28-30, 2000 at the Holiday Inn Rosslyn Westpark, Arlington, Virginia. Because of the short timeframe between this Workshop and the second Workshop in the Series, which was convened in October 2000 in Bethesda, Maryland, they were developed in parallel, so the Sterilization Workshop and its report have therefore been designated as '2a'). The focus of Workshop 2a was to make recommendations for effective sterilization procedures for all phases of Mars sample return missions, and to answer the question of whether we can sterilize samples in such a way that the geological characteristics of the samples are not significantly altered.

  15. Computer Visualizations for K-8 Science Teachers: One Component of Professional Development Workshops at the Planetary Science Institute

    NASA Astrophysics Data System (ADS)

    Kortenkamp, S.; Baldridge, A. M.; Bleamaster, L. F.; Buxner, S.; Canizo, T.; Crown, D. A.; Lebofsky, L. A.

    2012-12-01

    The Planetary Science Institute (PSI), in partnership with the Tucson Regional Science Center, offers a series of professional development workshops targeting K-8 science teachers in southern Arizona. Using NASA data sets, research results, and a team of PSI scientists and educators, our workshops provide teachers with in-depth content knowledge of fundamental concepts in astronomy, geology, and planetary science. Current workshops are: The Earth-Moon System, Exploring the Terrestrial Planets, Impact Cratering, The Asteroid-Meteorite Connection, Volcanoes of the Solar System, Deserts of the Solar System, and Astrobiology and the Search for Extrasolar Planets. Several workshops incorporate customized computer visualizations developed at PSI. These visualizations are designed to help teachers overcome the common misconceptions students have in fundamental areas of space science. For example, the simple geometric relationship between the sun, the moon, and Earth is a concept that is rife with misconceptions. How can the arrangement of these objects account for the constantly changing phases of the moon as well as the occasional eclipses of the sun and moon? Students at all levels often struggle to understand the explanation for phases and eclipses even after repeated instruction over many years. Traditional classroom techniques have proven to be insufficient at rooting out entrenched misconceptions. One problem stems from the difficulty of developing an accurate mental picture of the Earth-Moon system in space when a student's perspective has always been firmly planted on the ground. To address this problem our visualizations take the viewers on a journey beyond Earth, giving them a so-called "god's eye" view of how the Earth-Moon system would look from a distance. To make this journey as realistic as possible we use ray-tracing software, incorporate NASA mission images, and accurately portray rotational and orbital motion. During a workshop our visualizations are used in conjunction with more traditional classroom techniques. This combination instills a greater confidence in teachers' understanding of the concepts and therefore increases their ability to teach their students. To date we have produced over 100 unique visualizations to demonstrate many different fundamental concepts in the Earth and space sciences. Participants in each workshop are provided with digital copies of the visualizations in a variety of file formats. They also receive Keynote and PowerPoint templates pre-embedded with the visualizations to facility straightforward use on Macs or PCs in their classrooms. A measure of the success of PSI's workshops is that nearly 50% of our teachers have attended multiple workshops, and teachers often cite the visualizations as one of the top benefits of their experience. Details of our workshops as well as downloadable examples of some visualizations can be found at: www.psi.edu/epo. This work is supported by NASA EPOESS award NNX10AE56G: Workshops in Science Education and Resources (WISER): Planetary Perspectives.

  16. Orographic forcing of dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Toon, O. B.; Friedson, A. J.

    2013-12-01

    Cassini has observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface [1,2]. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan [1,2,3]. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano [4,5], has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM [6], is unable to reproduce the fast westerlies, although it is possible we are not outputting frequently enough to catch them. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: [1], Lorenz, R. et al. 2006. Science, 312, 724-727. [2], Radebaugh, J. et al. 2008. Icarus, 194, 690-703. [3] Rubin, D. and Hesp, P. 2009. Nature Geoscience 2, 653-658. [4] Tokano, T. 2008. Icarus 194, 243-262. [5] Tokano, T. 2010. Aeolian Research 2, 113-127. [6] Friedson, J. et al. 2009. Planetary Space Science, 57, 1931-1949.

  17. Autonomous Trans-Antartic expeditions: an initiative for advancing planetary mobility system technology while addressing Earth science objectives in Antartica

    NASA Technical Reports Server (NTRS)

    Carsey, F.; Schenker, P.; Blamont, J.

    2001-01-01

    A workshop on Antartic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society in February to discuss scientific objectives and benefits of the use of rovers such as are being developed for use in planetary exploration.

  18. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-14

    This VIS image of Olympia Undae was collected during north polar summer. The dunes are now completely frost free and are dark in color due to being made of basaltic sand. The surface between the dunes, where visible, is a bright tone. In some regions of dense dunes, the bright material may be a deposit on the dunes rather than the underlying surface. The presence of gypsum has been suggested for Olympia Undae, gypsum is a lighter tone than basalt in this filter of the THEMIS VIS camera. This VIS image hightlights the density of dunes, the bottom third of the image has fewer dunes, spaced farther apart than the top two thirds of the image. The bottom of the image "looks" like lace, while the top with the dense dunes with aligned dune crests "looks" like waves in an ocean. The term used for dune fields on Mar is undae (unda singular). This term translates from Latin as water waves and is used to mean undulatory in planetary nomenclature. All non-Earth dune fields in the solar system are called unda/undae. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 13138 Latitude: 80.8321 Longitude: 178.781 Instrument: VIS Captured: 2004-11-30 03:49 https://photojournal.jpl.nasa.gov/catalog/PIA22295

  19. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  20. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joe

    1991-01-01

    Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.

  1. Preparing project managers for faster-better-cheaper robotic planetary missions

    NASA Technical Reports Server (NTRS)

    Gowler, P.; Atkins, K.

    2003-01-01

    The authors have developed and implemented a week-long workshop for Jet Propulsion Laboratory Project Managers, designed around the development phases of the JPL Project Life Cycle. The workshop emphasizes the specific activities and deliverables that pertain to JPL managers of NASA robotic space exploration and instrument development projects.

  2. Meroe Patera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is located in Meroe Patera (longitude: 292W/68E, latitude: 7.01), which is a small region within Syrtis Major Planitia. Syrtis Major is a low-relief shield volcano whose lava flows make up a plateau more than 1000 km across. These flows are of Hesperian age (Martian activity of intermediate age) and are believed to have originated from a series of volcanic depressions, called calderas. The caldera complex lies on extensions of the ring faults associated with the Isidis impact basin toward the northeast - thus Syrtis Major volcanism may be associated with post-impact adjustments of the Martian crust.

    The most striking feature in this image is the light streaks across the image that lead to dunes in the lower left region. Wind streaks are albedo markings interpreted to be formed by aeolian action on surface materials. Most are elongate and allow an interpretation of effective wind directions. Many streaks are time variable and thus provide information on seasonal or long-term changes in surface wind directions and strengths. The wind streaks in this image are lighter than their surroundings and are the most common type of wind streak found on Mars. These streaks are formed downwind from crater rims (as in this example), mesas, knobs, and other positive topographic features.

    The dune field in this image is a mixture of barchan dunes and transverse dunes. Dunes are among the most distinctive aeolian feature on Mars, and are similar in form to barchan and transverse dunes on Earth. This similarity is the best evidence to indicate that martian dunes are composed of sand-sized material, although the source and composition of the sand remain controversial. Both the observations of dunes and wind streaks indicate that this location has a windy environment - and these winds are persistent enough to product dunes, as sand-sized material accumulates in this region. These features also indicate that the winds in this region are originating from the right side of the image, and moving towards the left.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  4. Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor)

    2002-01-01

    Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

  5. The planetary data system

    USGS Publications Warehouse

    Acton, Charles; Slavney, Susan; Arvidson, Raymond E.; Gaddis, Lisa R.; Gordon, Mitchell; Lavoie, Susan

    2017-01-01

    In the early 1980s, the Space Science Board (SSB) of the National Research Council was concerned about the poor and inconsistent treatment of scientific information returned from NASA’s space science missions. The SSB formed a panel [The Committee on Data Management and Computation (CODMAC)] to assess the situation and make recommendations to NASA for improvements. The CODMAC panel issued a report [1,2] that led to a number of actions, one of which was the convening of a Planetary Data Workshop in November 1983 [3]. The key findings of that workshop were that (1) important datasets were being irretrievably lost, and (2) the use of planetary data by the wider community is constrained by inaccessibility and a lack of commonality in format and documentation. The report further stated, “Most participants felt the present system (of data archiving and access) is inadequate and immediate changes are necessary to insure retention of and access to these and future datasets.”

  6. Lunar Team Report from a Planetary Design Workshop at ESTEC

    NASA Astrophysics Data System (ADS)

    Gray, A.; MacArthur, J.; Foing, B. H.

    2014-04-01

    On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of educational backgrounds, i.e., both engineering and science students/professionals.

  7. Out of This World Science, Down to Earth Prices

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Hurford, Terry Anthony; Mandell, Avi; Arnold, Steven

    2015-01-01

    The National Aeronautics and Space Administration (NASA), along with the rest of government and the nation have become increasing cost conscious in recent years. This has resulted in renewed efforts at finding ways to do more with less. Planetary science is no exception. The 2013 Decadal Survey for Planetary Science made great efforts to understand the costs of proposed missions. The community has been asked to develop more affordable versions of mission concepts, especially in the flagship category. Many in the community continue to encourage NASA to prioritize lower cost missions at a more frequent cadence over fewer but larger missions. This presentation discusses a new tool in the planetary science arsenal to achieve a broad set of planetary science questions at costs that are lower, and in some cases dramatically lower, than other options in the past. Technology advances in pointing systems and the growing capabilities of stratospheric balloons, such as the ultra-long duration flights, have caught the attention of many in the planetary science community. A workshop was held in January 2012 to help planetary scientists and NASA better understand the capabilities of balloon borne platforms, along with their strengths and limitations. Perhaps most importantly, the workshop focused on the potential science that could be achieved. The science and engineering participants discussed what, if any, science can be achieved and why or how balloon platforms would offer an advantage. Since that first workshop, not only have further discussions and studies occurred within the community, but demonstration missions have been flown with compelling results. These balloon missions have shown that the science envisioned can indeed be achievable, that balloon platforms do offer some unique advantages; and that repeated flights can be implemented at relatively low cost. The presentation briefly summarizes the potential science and the characteristics of a balloon based observatory that make it desirable for some science investigations. The recent missions are described along with some of their challenges and achievements. Finally, a brief summary of options moving forward are considered.

  8. Workshop on Europa's Icy Shell: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Europa's Icy Shell: Past, Present, and Future, February 6-8,2004, Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  9. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattsson, Thomas Kjell Rene; Wootton, Alan James; Sinars, Daniel Brian

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF-more » relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.« less

  10. Gullies and Craters and Dunes, Oh My!

    NASA Image and Video Library

    2017-06-02

    This unnamed, approximately 30-kilometer diameter crater, formed in the Southern highlands of Mars. This image from NASA's Mars Reconnaissance Orbiter shows regions of geologic diversity within, making this an interesting spot for scientists to study how different Martian processes interact with each other. Gullies, or channels formed by fluids such as water or lava, cut into the rim and sides of this crater. The presence of gullies can reveal clues about the ancient history of Mars, such as the amount of flowing fluid needed to form them and roughly how long ago that happened. This crater may also host features actively changing on the surface of Mars known as "recurring slope lineae" (RSL). Manifesting as dark streaks on steep slopes such as the walls of craters, scientists posit briny flows of small volumes of water as a possible RSL formation method. Studying the behavior of RSL further may provide evidence for the presence of water on Mars today. Moving toward the crater floor, one can observe patterns indicative of dunes. Dunes arise from the breakdown of exposed rocks by wind and subsequent manipulation of the eroded sand particles into wave-like structures. The presence of dust devil tracks provides additional evidence for significant wind activity at this location. These dunes are very dusty and so likely haven't been active (moved) in some time. HiRISE also captured a small, relatively fresh crater on the floor near the dunes. One of the most ubiquitous processes in the solar system, impact cratering can drastically change the surface of a planetary body. As such, craters provide sources of comparison between planets, moons, and other bodies across the solar system. Impacts still occur today, helping scientists find relative ages of different areas of a planet and discover materials buried under the surface. All of these processes have altered the surface of Mars in the past and continue to do so today. Since gully formation, wind erosion, and impact cratering could have interacted with each other for many years, planetary scientists find it difficult to work backwards and make definitive statements about ancient Martian history. However, HiRISE imagery has aided in closing these gaps in our scientific knowledge. https://photojournal.jpl.nasa.gov/catalog/PIA21654

  11. Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution

    NASA Technical Reports Server (NTRS)

    Kargel, J. S. (Editor); Parker, T. J. (Editor); Moore, J. M. (Editor)

    1993-01-01

    The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

  12. Seafloor Dunes: Viability as an Analog to Venusian Dunes

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D.; Titus, T. N.

    2016-12-01

    Dune fields on Venus have been limited to two potential sites discovered during the analysis of Magellan Synthetic Aperture Radar (SAR) data acquired in the 1990s. Several other potential locations could also contain possible dunes but are indistinguishable from other bedforms in the SAR data. Exact morphologies of Venusian dunes are in part speculation due to radar resolution limits that in turn mask the exact formation conditions based on radar data alone. However, near surface winds measured by the Soviet Venera landers were similar to seafloor current speeds (1-2 m s-1) responsible for ripple and dune formation on the seafloor. This similarity suggests that there is a potential for material to be moved on the Venusian surface if present, though most likely for different shear stress conditions. We examine the viability of using terrestrial seafloor dunes and ripples as a possible analog to Venus by comparison of fluid properties of traditional aeolian dune formation with that of the Venusian near-surface atmosphere and seafloor ocean current conditions throughout the literature. Typical surface materials could range in density from 2600 to 3000+ kg m-3 for carbonates or silica (seafloor) to basaltic sands (Venus?) with particle sizes on the order of 100 µm. Similarity of the flow regimes rests heavily on the density/viscosity of the flow medium as shown in historic wind tunnel studies of ripple and dune formation across planetary environments on Earth, Mars, and Venus. Kinematic velocity values could vary from 1.5x10-5 m2 s-1 for Earth atmosphere to values approaching 10-6 m2 s-1 for subaqueous or 2.5x10-7 m2 s-1 for Venus (or Venus analog wind tunnel studies). These values lead to particle Reynolds numbers (Re = Dp*u*t / nu; Dp-particle diameter, u*t-friction velocity, nu-kinematic velocity of fluid) on order of 1.7 for Earth air, 5 for water, and 10 for Venus. We plan to explore how these values affect the drag forces for a range of conditions pertaining to the seafloor and the Venusian surface.

  13. Observations Regarding Small Eolian Dunes and Large Ripples on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are peppered with small impact craters, implying considerable age. These bedforms present a complicated record of the geologically-recent past, one that has involved changes in climate, sediment transport capabilities, and sediment sources and sinks over time.

  14. KSC-2014-2046

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  15. KSC-2014-2047

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. -- At the Marriott Courtyard Hotel in Cocoa Beach, Fla., Greg Clements, chief of Kennedy's Control and Data Systems Division and lead for the Engineering and Technology's Small Payload Integrated Testing Services, or SPLITS, line of business, speaks to participants in the 4th International Workshop on Lunar and Planetary Compact and Cryogenic Science and Technology Applications. Scientists, engineers and entrepreneurs interested in research on the moon and other planetary surfaces, recently participated in the Workshop. Taking place April 8-11, 2014, the event was designed to foster collaborative work among those interested in solving the challenges of building hardware, software and businesses interested in going back to the moon and exploring beyond. Photo credit: NASA/Daniel Casper

  16. Selecting and implementing scientific objectives. [for Voyager 1 and 2 planetary encounters

    NASA Technical Reports Server (NTRS)

    Miner, E. D.; Stembridge, C. H.; Doms, P. E.

    1985-01-01

    The procedures used to select and implement scientific objectives for the Voyager 1 and 2 planetary encounters are described. Attention is given to the scientific tradeoffs and engineering considerations must be addressed at various stages in the mission planning process, including: the limitations of ground and spacecraft communications systems, ageing of instruments in flight, and instrument calibration over long distances. The contribution of planetary science workshops to the definition of scientific objectives for deep space missions is emphasized.

  17. Workshop on the Tectonic Evolution of Greenstone Belts

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Workshop on the Tectonic Evolution of Greenstone Belts, which is part of the Universities Space Research Association, Lunar and Planetary Institute, of Houston, Texas, met there on Jan. 16-18, 1986. A number of plate tectonic hypotheses have been proposed to explain the origin of Archean and Phanerozoic greenstone/ophiolite terranes. These hypotheses are explored in the abstracts.

  18. Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters, July 11-14,2005, Laurel, Maryland. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  19. Impact Cratering: Bridging the Gap Between Modeling and Observations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Impact Cratering: Bridging the Gap Between Modeling and Observations, February 7-9, 2003, in Houston, Texas. Logistics, onsite administration, and publications for this workshop were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  20. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  1. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital frequency around its central body Saturn about 16 days occupies position before Mercury -πR/91 (Fig. 1). But Titan as a satellite has also another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (the wave with granule πR/91) creating two side frequencies. They are obtained by division and multiplication of the higher frequency by the lower one: the modulations give the sizes πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark near equatorial parts of the satellite (Fig. 4). Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization (2πR-structure). Often observed an essential difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies belonging to terrestrial rocky planets, giant gas planets, icy satellites (Fig.5, Titan) compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At equatorial zones (bulged also due to the rotation ellipsoid) the outer shell - crust tends to be destroyed, sunk, subsided and shrunk EPSC Abstracts, Vol. 3, EPSC2008-A-00029, 2008 European Planetary Science Congress, Author(s) 2008 as a consequence. At Titan this common planetary feature is expressed very clearly: subsiding dark plains at the equatorial region are not only widespread but also intensively warped (Fig. 2-4). This ubiquitous cross-cutting rippling in response to subsidence should not be confused with eolian forms [3]. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1, # 3, 700; [2] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, CD). [3] Kochemasov G.G. EUROPLANET-2006 Science Congress, Berlin, Germany, Sept. 22-26, 2006. Abstr. EPSC2006-A-00045 (CD-ROM).

  2. Sand Dunes of Nili Patera in 3-D

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The most exciting new aspect of the Mars Global Surveyor (MGS) Extended Mission is the opportunity to turn the spacecraft and point the Mars Orbiter Camera (MOC) at specific features of interest. Opportunities to point the spacecraft come about ten times a week. Throughout the Primary Mission (March 1999 - January 2001), nearly all MGS operations were conducted with the spacecraft pointing 'nadir'--that is, straight down. A search for the missing Mars Polar Lander in late 1999 and early 2000 demonstrated that pointing the spacecraft could allow opportunities for MOC to see things that simply had not entered its field of view during typical nadir-looking operations, and to target areas previously seen in a nadir view so that stereo ('3-D') pictures could be derived.

    One of the very first places photographed by the MOC at the start of the Mapping Mission in March 1999 was a field of dunes located in Nili Patera, a volcanic depression in central Syrtis Major. A portion of this dune field was shown in a media release on March 11, 1999, 'Sand Dunes of Nili Patera, Syrtis Major'. Subsequently, the image was archived with the NASA Planetary Data System, as shown in the Malin Space Science Systems MOC Gallery. On April 24, 2001, an opportunity arose in which the MGS could be pointed off-nadir to take a new picture of the same dune field. By combining the nadir view from March 1999 and the off-nadir view from April 2001, a stereoscopic image was created. The anaglyph shown here must be viewed with red (left-eye) and blue (right-eye) '3-D' glasses. The dunes and the local topography of the volcanic crater's floor stand out in sharp relief. The images, taken more than one Mars year apart, show no change in the shape or location of the dunes--that is, they do not seem to have moved at all since March 1999.

  3. Asteroid-Generated Tsunami and Impact Risk

    NASA Astrophysics Data System (ADS)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  4. Report of the Workshop for Life Detection in Samples from Mars

    NASA Technical Reports Server (NTRS)

    Kminek, Gerhard; Conley, Catherine; Allen, Carlton C.; Bartlett, Douglas H.; Beaty, David W.; Benning, Liane G.; Bhartia, Rohit; Boston, Penelope J.; Duchaine, Caroline; Farmer, Jack D.; hide

    2014-01-01

    The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed 'planetary protection', are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.

  5. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.; Proctor, A.

    2001-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed, and maintained at the University of Maryland, for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 91 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of the explosion, crater size, magnitude of the planetquake generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Planetary and Satellite Data Calculators: These tools allow the user to easily calculate physical data for all of the planets or satellites simultaneously, making comparison very easy. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by the National Science Foundation.

  6. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  7. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements identified as needed by the community, including examples of planetary data use in education, recommendations for program development, links to data providers, opportunities for collaboration, pertinent research, and a Web portal to access educational resources using planetary data on the DLESE Web site.

  8. Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls

    NASA Astrophysics Data System (ADS)

    Singh, H. A.; Twedt, J. R.

    2017-12-01

    In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.

  9. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results also show that there are no significant differences between modeled and laboratory-measured grain size values. Hyperspectral grain size modeling can help to determine dynamic processes shaping the formation of the dunes such as wind directions, and the relative strengths of winds through time. This has implications for studying such processes on other planetary landforms that have mineralogy with unique absorption bands in VNIR-SWIR hyperspectral data. ?? 2006 Elsevier B.V. All rights reserved.

  10. Space colonization.

    PubMed

    Parrish, Clyde F

    2003-12-01

    A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.

  11. Workshop summary: Space environmental effects

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Anspaugh, B. E.

    1991-01-01

    The workshop on Space Environmental Effects is summarized. The underlying concern of the group was related to the question of how well laboratory tests correlate with actual experience in space. The discussion ranged over topics pertaining to tests involving radiation, atomic oxygen, high voltage plasmas, contamination in low earth orbit, and new environmental effects that may have to be considered on arrays used for planetary surface power systems.

  12. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG workshops and in addition there were numerous smaller NA2 WG meetings during the conferences (EPSC, EGU, etc.) and other events. The total number of NA2 meetings and workshops was 37. There were three NA2 supported ISSI workshops within the Europlanet project. The first ISSI workshop "Comparison of the plasma-spheres of Mars, Venus, and Titan" organized by K. Szego was held in December 2009. The second workshop "Quantifying the Martian Geochemical Reservoirs" by M. Toplis was held in April 2011. The third one, themed "Giant Planet Magnetodiscs and Aurorae" by N. Krupp, N. Achilleos and C. Arridge, was in November 2012. All three ISSI workshops were selected by the ISSI scientific committee to be organized within the frame of ISSI/Europlanet agreement and held in Bern. The main objective of the Expert Exchange Program was to support the activities of Europlanet RI with experts whenever needed. The programme provided funding for short visits (up to one week) of expert with the goal of improving infrastructure facilities and services offered to the scientific community by the Europlanet RI participant (contractor) laboratories or institutes. Between July 2009 and September 2012 26 applications were selected. Acknowledgement: Europlanet RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. References: [1] http://www.europlanet-ri.eu/ [2] https://europlanet-scinet.fi/

  13. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Maindl, T. I.; Varvoglis, H.; Dvorak, R.

    2017-03-01

    Along the subject line of this workshop, the common topic of the submissions is the field of extrasolar planetary systems with its multitude of facets ? from orbital dynamics to mutually destructive collisions, from binary star systems to Trojan planets to exocomets, from captured free-floating objects to artificial satellites. Despite the comparatively small number of participants ? ranging from graduate student to senior professor level ? we are proud of the submitted papers covering this wide range of aspects. In order to work towards a consistent quality-level, each of the manuscripts went through an independent review process before being accepted as a paper contribution to this volume. We would like to cordially thank the referees for their timely response-cycles, which helped tremendously in keeping our ambitious schedule.

  14. Workshop on Atmospheric Transport on Mars

    NASA Technical Reports Server (NTRS)

    Barnes, J. R. (Editor); Haberle, R. M. (Editor)

    1993-01-01

    On June 28-30, 1993, the Workshop on Atmospheric Transport on Mars was held in Corvallis, Oregon. The workshop was organized under the auspices of the MSATT (Mars Surface and Atmosphere Through Time) Program of NASA, and was jointly sponsored by the Lunar and Planetary Institute, Oregon State University, and the Oregon Space Grant Consortium. More than 50 scientists attended the workshop, which was the first such meeting to focus upon circulation processes in the Mars atmosphere. The timing of the workshop placed it almost on the eve of the arrival of Mars Observer at Mars, so that the presented papers gave a picture of the 'state of the art' in Mars atmospheric science just prior to the expected arrival of new data. The workshop highlighted a host of recent advances in atmospheric modeling and analysis - advances that will be relevant to any future observations.

  15. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  16. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  17. Innovative approaches to exoplanet detection and characterization: Notes from the Nov 10-13 Keck Institute for Space Studies workshop

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Traub, Wesley; Unwin, Stephen; Stapelfeldt, Karl

    2010-05-01

    A four-day workshop was convened on November 10-13, 2009 by the Keck Institute for Space Studies and JPL to consider innovative approaches to detecting and characterizing exoplanets and planetary systems. The program and many of the presentations can be found online: . We present some of the observational strategies discussed in this workshop and summarize some of the issues associated with them. In particular, we will highlight some of the advantages and shortcomings of suborbital and orbital (e.g., ESPA rings) observing platforms in the context of exoplanet detection and characterization.

  18. Near-Earth Asteroid Sample Return Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.

  19. Dunes in the Solar System : New Perspectives, Analogs and Challenges

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2016-12-01

    These are exciting times for planetary Aeolian research. New paradigms opened up by numerical modeling backed by laboratory and field experimentation now permit a much higher-fidelity mapping of dune morphology to wind regime and sediment characteristics. The identification of the 'fingering mode' of bedform growth, and its association with limited sediment supply, now brings a systematic explanation of what was once bewildering complexity and opens the way to decoding more environmental detail from the landscape than was possible before. Much of this model work has been developed in parallel with, if not stimulated by, the discovery of vast fields of sand dunes on Titan a decade ago, and datasets of higher resolution and wider coverage on Mars and Earth. The pace of relevant discoveries has accelerated, with bedforms observed on comet 67P-Churyumov-Gerasimenko, periodic structures on Pluto's landscape, and a possibly new class of bedform discovered by the Curiosity rover's close inspection of the Bagnold dunes on Mars - all in the last two years! These features have all stimulated examination of transport physics at the particle and bedform scale, especially in rarified conditions.At the global scale, Titan's dune patterns have been broadly explained, and hint at Croll-Milankovich climate cycles. Yet the origin of the sand remains a mystery. Much work remains to understand regional transports on all worlds, which can be addressed with mesoscale and CFD models. Observationally, the greatest opportunity for progress will come with higher resolution views of the surfaces of Venus and Titan. Venus, a world on which aeolian transport was observed in only a couple of hours of surface observation, is in particular long overdue for further exploration. In all these cases, terrestrial analogs provide valuable insights.

  20. Wind, sand, and Mars - The 1990 tests of the Mars balloon and SNAKE

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.

    1991-02-01

    The observations of one member of the international team of Planetary Society members responsible for testing the Mars balloon and SNAKE are presented. The tests were held in the fall of 1990 in Indio, California, and concluded successfully. The test team was made up of scientists and technicians from CNES; observers from the Babakin Center; scientists from the Space Research Institute of the Soviet Academy of Sciences; engineers from the Jet Propulsion Laboratory; students from the University of Arizona, Utah State University, UCLA, and Caltech; and Planetary Society volunteers. The chosen sites of study in this desert area were selected to simulate as neary as possible Mars-like conditions and included smooth ancient lake beds, jagged frozen lava flows and gently rolling sand dunes.

  1. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.

  2. Abstracts of the annual meeting of Planetary Geologic Mappers: June 21-22, 2002, Tempe, Arizona

    USGS Publications Warehouse

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual meeting of planetary geologic mappers allows mappers the opportunity to exchange ideas, experiences, victories, and problems. In addition, presentations are reviewed by the Geologic Mapping Subcommittee (GEMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GEMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips that offer Earth analogs and parallels to planetary mapping problems or workshops that provide information and status of current missions. The 2002 meeting of planetary geologic mappers was held June 21-22 at the Mars Flight Facility, Arizona State University, Tempe, Arizona. Dr. Phil Christensen graciously offered the use of the newly renovated facility, and Ms. Kelly Bender not only proved to be a courteous hostess, but also arranged a short workshop on June 23 regarding TES and THEMIS data. Approximately 30 people attended each day of the 2-day meeting, although not the same 30—some attended only on Thursday and others only on Friday. On Thursday, eight mappers gave oral presentations of Mars mapping, and an additional two presentations were presented as posters only. Eight oral presentations on Venus mapping were given on Friday, and an additional four presentations were posters only. Twelve people attended the TES/THEMIS workshop. Presentations of Ganymede mapping and Europa mapping (the latter not yet financially sponsored by PG&G mapping program) were also given on Friday. Aside from the regular presentations of maps-in-progress, there were some additional talks. Lisa Gaddis (USGS) presented a proposal seeking support for a new lunar mapping program in light of all the new data available; she made a good case that the GEMS panel discussed. Jim Skinner (USGS) gave a short presentation on free (or nearly so) software available for 3D viewing of planetary surfaces. Healthy discussions focused on the review time for some maps and the use of different styles of correlation charts observed on the presented maps. Next year’s meeting will be held June 19-20 at Brown University, Providence, RI.

  3. Martian Chronology: Goals for Investigations from a Recent Multidisciplinary Workshop

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Doran, P. T.; Cerling, T. E.; Clifford, S. M.; Forman, S. L.; Papanastassiou, D. A.; Stewart, B. W.; Sturchio, N. C.; Swindle, T. D.

    2000-01-01

    The absolute chronology of Martian rocks and events is based mainly on crater statistics and remains highly uncertain. Martian chronology will be critical to building a time scale comparable to Earth's to address questions about the early evolution of the planets and their ecosystems. In order to address issues and strategies specific to Martian chronology, a workshop was held, 4-7 June 2000, with invited participants from the planetary, geochronology, geochemistry, and astrobiology communities. The workshop focused on identifying: a) key scientific questions of Martian chronology; b) chronological techniques applicable to Mars; c) unique processes on Mars that could be exploited to obtain rates, fluxes, ages; and d) sampling issues for these techniques. This is an overview of the workshop findings and recommendations.

  4. Earth Entry Requirements for Mars, Europa and Enceladus Sample Return Missions: A Thermal Protection System Perspective

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion

    2016-01-01

    This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.

  5. Planetary Data Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.

  6. Preparing Planetary Scientists to Engage Audiences

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  7. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Part 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W. (Editor); Papike, J. J. (Editor)

    1996-01-01

    This volume contains papers that have been accepted for presentation at the Workshop. Topics considered include: On the sample return from Vesta by low-thrust spacecraft; Astronomical evidence linking Vesta to the HED meteorites; Geologic mapping of Vesta with the Hubble Space Telescope; A space mission to Vesta; Asteroid spectroscopy; The thermal history of asteroid 4 Vesta, based on radionuclide and collision heating; Mineralogical records of early planetary processes on Vesta.

  8. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  9. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  10. Risk to civilization: A planetary science perspective

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature. Slovic shows that public fears of hazards are greatest for hazards that are uncontrollable, involuntary, fatal, dreadful, globally catastrophic, and which have consequences that seem inequitable, especially if they affect future generations.

  11. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are addressed in detail.

  12. Blue Polar Dunes In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small dunes in this image are 'bluer' than the rest of the layered ice/dust units to the left.

    Image information: VIS instrument. Latitude 84.5, Longitude 206.6 East (153.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and places constraints on results from numerical models and laboratory simulations.

  14. Mars Sample Handling Protocol Workshop Series: Workshop 4

    NASA Technical Reports Server (NTRS)

    Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)

    2001-01-01

    In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol, which was compiled from deliberations and recommendations from earlier Workshops in the Series, represents a consensus that emerged from the discussions of all the sub-groups assembled over the course of the five Workshops of the Series. These discussions converged on a conceptual approach to sample handling, as well as on specific analytical requirements. Discussions also identified important issues requiring attention, as well as research and development needed for protocol implementation.

  15. Achievable Human Exploration of Mars: Highlights from The Fourth Community Workshop (AM IV)

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Cassady, Joseph

    2017-01-01

    About a half decade ago, several professionals working mainly in industry on scenarios for initial human exploration of Mars together recognized that, under generally similar assumptions, there was a fair degree of similarity among these scenarios. Moreover, opportunities should be sought for greater community input into NASA's own scenario-building for the future of human space flight. A series of focused community workshops were considered to be effective to assess these scenarios and involve more directly the science community, including planetary protection, with industry. Four workshops to date each involve about sixty professional scientists, engineers, technologists, and strategists from NASA, academia, aerospace corporations, the National Academies, consulting organizations, and potential international partners.

  16. Workshop III: Future Directions for Thin Films Workshop at SPRAT XIX

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; McNatt, Jeremiah S.

    2007-01-01

    The SPRAT conference series at NASA Glenn Research Center has devoted a workshop to the topic of thin-film solar cell technology and potential aerospace applications. With the advent of aerospace applications requiring very-high, mass, specific power, there has been a renewed interest in thin film materials and solar cells. Aerospace applications such as station-keeping for high-altitude airships, space solar power, lunar and planetary surface power, and solar electric propulsion would be enhanced or enabled by the development of flexible, very-high, mass specific power thin film arrays. To initiate discussion, a series of questions were asked of the attendees. These questions, three generated by the group, and the attendees comments follow.

  17. Planetary geomorphology field studies: Iceland and Antarctica

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.

  18. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely thank them. The white dwarf community has been steadily growing since the first white dwarf workshop, held in Kiel (Germany) in 1974. Some of the participants in the first colloquium have already effectively retired; others - although officially retired - continue to attend successive workshops, Professor Weidemann, one of the first organizers, being a leading example. We hope we will be able to continue counting on them for many years. A very graphical view of the evolution of the field can be found in the homepage of Professor Detlev Koester, who has collected pictures of almost all the previous workshops:. Additionally, several astronomers coming from related fields have joined our (not so) small community. Most importantly, several generations of young scientists gave their first talks in these workshops. In summary our community is an active one, and we have close, durable and solid ties of friendship. We are optimistic and we foresee that the spirit of the previous workshops will continue in future editions. We would like to express our deepest gratitude to our sponsors: The Universitat Politècnica de Catalunya (UPC), the Institut de Ciències de l'Espai (CSIC), the Institute for Space Studies of Catalonia (IEEC), the Spanish Ministry of Education and Science, the Generalitat de Catalunya, the Ajuntament de Barcelona, the School of Civil Engineering of Barcelona and UPCnet. Finally, the IEEC staff and our graduate students have enthusiastically supported the organization of the workshop in every single detail; without them we would have not succeeded. We thank them especially. Also, we acknowledge the task of the Scientific Organizing Committee, which gave their full support in all the scientific tasks. Enrique García-Berro, UPC Margarida Hernanz, ICE (CSIC) Jordi Isern, ICE (CSIC) Santiago Torres, UPC Editors Conference photograph

  19. ESTEC/Geovusie/ILEWG planetary student design workshop: a teacher training perspective

    NASA Astrophysics Data System (ADS)

    Preusterink, Jolanda; Foing, Bernard H.; Kaskes, Pim

    An important role for education is to inform and create the right skills for people to develop their own vision, using their talents to the utmost and inspire others to learn to explore in the future. Great effort has been taken to prepare this interactive design workshop thoroughly. Three days in a row, starting with presentations of Artscience The Hague to ESA colleagues, followed by a Planetary research Symposium in Amsterdam and a student design workshop at the end complemented a rich environment with the focus on Planetary exploration. The design workshop was organised by GeoVUsie students, with ESTEC and ILEWG support for tutors and inviting regional and international students to participate in an interactive workshop to design 5 Planetary Missions, with experts sharing their expertise and knowhow on specific challenging items: 1. Mercury - Post BepiColombo (with Sébastien Besse, ESA) 2. Moon South Pole Mission (with Bernard Foing, ESA) 3. Post-ExoMars - In search for Life on Mars (with Jorge Vago, ESA) 4. Humans in Space - Mars One investigated(with Arno Wielders, Space Horizon) 5. Europa - life on the icy moon of Jupiter? (with Bert Vermeersen, TU Delft) Lectures were given for more than 150 geology students at the symposium “Moon, Mars and More” at VU university, Amsterdam (organized by GeoVUsie earth science students). All students were provided with information before and at start for designing their mission. After the morning session there was a visit to the exhibition at The Erasmus Facility - ESTEC to inspire them even more with real artifacts of earlier and future missions into space. After this visit they prepared their final presentations, with original results, with innovative ideas and a good start to work out further in the future. A telescope session for geology students had been organized indoor due to rain. A follow-up visit to the nearby public Copernicus observatory was planned for another clear sky occasion. The interactive character of this setting was inspirational and motivating. A good method with vision to modernize school education and bring innovation to educators: they are the key promoters and facilitators for change in the culture of education. Tutors and mentors are very important to pave the way with more modern interactive learning, including: 1. Social Media 2. Online Learning 3. Creator Society 4. Data-driven learning 5. Virtual Assistance The great importance of emerging technologies and their potential impact on and use in teaching, learning, and creative inquiry in pre-college education environments offer good prospects. The International Lunar Exploration Working Group (ILEWG) has given support to emphasize their vision, goal to "international cooperation towards a world strategy for the exploration and utilization of the Moon” by organizing and facilitating students, teachers, schools and universities with relevant material, ready to use in the classroom and inform the greater audience. This underlines the vision of the importance and responsibility to “draw in” education for primary, secondary and higher education on a more regular base and to implant space exploration on its widest scale and on a more sustainable way in the future. Developing and building a stronger network is crucial to gain technical personal for future Moon missions, samples return and research on other planets, moons or asteroids. This workshop helped to give more outreach about current space projects and will have a follow-up. The international and cooperative character was an innovative experience with enriching information and great promising students for more science and future space exploration. Acknowledgements: we thank the volunteer organiser students from VU GeoVUsie, the participants and the tutors. A video of highlights is available on " 2. Planetary Design student workshop organised by VU Amsterdam GeoVusie/ESTEC/ILEWG" http://www.youtube.com/watch?v=NJxvHKcNeKo

  20. Dealing with nuclear-related emotions: an investigation of the despair and empowerment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilly-Weber, J.M.

    1986-01-01

    The main goal of this study was to determine the short-term and follow-up effectiveness of despair and empowerment workshops. Such workshops are designed to encourage the expression of feelings related to the nuclear threat (as well as other planetary issues), and to generate a greater sense of personal powerfulness. Results were as follows. At pretest, experimental workshop participants reported a significantly lower level of nuclear-related denial, and were found to be significantly more politically active than control participants. When controlling for these pretest differences, no significant differences were found across conditions at post-test or follow-up. In addition, experimental workshop participantsmore » were found to report significantly more powerfulness than nonworkshop control participants at post-test, but no significant post-test differences were found between the two workshop conditions. Open ended evaluation questions, asked only of experimental workshop participants, suggested that most participants responded favorably to the despair and empowerment workshops - particularly in reference to being given the opportunity to express their nuclear-related concerns and to feel supported by others. In summary, this study provides some evidence, despite mixed results, of the effectiveness of despair and empowerment workshops.« less

  1. An Impact Cratering Interactive Website Used for Outreach and in Professional Development Workshops for Middle School Science Teachers

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pierazzo, E.; Canizo, T.; Lebofsky, L. A.

    2009-12-01

    Impact cratering is one of the fundamental geologic processes affecting all planetary and asteroidal bodies in the Solar System. With few exceptions, all bodies with solid surfaces explored so far show the presence of impact craters - from the less than 200 known craters on Earth to the many thousands seen on the Moon, Mercury, and other bodies. Indeed, the study of crater populations is one of the principal tools for understanding the geologic history of planetary surfaces. In recent years, impact cratering has gained public notoriety through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: “How often do impacts occur?” “How do scientists learn about impact cratering?” and “What information do impact craters provide in understanding the evolution planetary surfaces?” On our website: “Explorer’s Guide to Impact Craters,” we answer those questions in a fun, informative and interactive way. The website provides the interested public with an opportunity to: 1) experience how scientists explore known terrestrial craters through a virtual fieldtrips; 2) learn more about the dynamics of impact cratering using numerical simulations of various impacts; and 3) investigate how impact cratering affects rocks via images and descriptions of field samples of impact rocks. This learning tool has been a popular outreach endeavor (recently reaching 100,000 hits), and it has recently been incorporated in the Impact Cratering Workshop developed by scientists and EPO specialists at the Planetary Science Institute. The workshop provides middle school science teachers with an inquiry-based understanding of the process of impact cratering and how it affects the solar system. Participants are instructed via standards-based multimedia presentations, analysis of planetary images, hands-on experience with geologic samples from terrestrial impact craters, and first-hand experience forming impact craters. Through the “Explorer’s Guide to Impact Craters,” participants are able to virtually explore three terrestrial impact craters, while examining, first-hand, samples of rocks collected at the three impact sites by real field geologists. The rock samples are included in our Impact Rock Kits that are available for check-out by teachers desiring to involve their students in the study of impact craters.

  2. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.

  3. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  4. Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection

    NASA Astrophysics Data System (ADS)

    Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.

    2017-12-01

    There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop for future life detection exploration via fly-by missions, orbiters, and landers.

  5. A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.

    2002-01-01

    This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.

  6. Workshop on Using In Situ Resources for Construction of Planetary Outposts

    NASA Technical Reports Server (NTRS)

    Duke, Michael B. (Editor)

    1998-01-01

    The workshop examined the potential uses of indigenous materials on the Moon and Mars, other than those associated with the production of propellants for space transportation. The papers presented concerned the needs for construction, based on analysis of the current NASA Mars reference Mission and past studies studies of lunar outposts; the availability of materials on the Moon and Mars; construction techniques that make use of the natural environment; materials production and fabrication techniques based on indigenous materials; and new technologies that could promote the use of indigenous materials in construction.

  7. Entry Descent and Landing Workshop Proceedings. Volume 1; EDL Instrumentation Workshop Background and Motivation

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; Lechniak, Jason

    2015-01-01

    Objective: Scope out a low-cost instrumentation effort for Discovery and/or New Frontiers-class missions, including acquisition strategy, for FY17-19 (TBR). This is intended to be a new Game-Changing project. MEDLI and MEDLI2 cost $25-$30M each. These costs are not sustainable. Solutions are too massive and large for small planetary missions. Share various perspectives and previous experiences; discuss costs. Establish the future mission needs and measurement/sensor priorities. Determine the best acquisition and phasing approach.

  8. A Virtual Collaborative Environment for Mars Surveyor Landing Site Studies

    NASA Technical Reports Server (NTRS)

    Gulick, V.C.; Deardorff, D. G.; Briggs, G. A.; Hand, K. P.; Sandstrom, T. A.

    1999-01-01

    Over the past year and a half, the Center for Mars Exploration (CMEX) at NASA Ames Research Center (ARC) has been working with the Mars Surveyor Project Office at JPL to promote interactions among the planetary community and to coordinate landing site activities for the Mars Surveyor Project Office. To date, CMEX has been responsible for organizing the first two Mars Surveyor Landing Site workshops, web-archiving resulting information from these workshops, aiding in science evaluations of candidate landing sites, and serving as a liaison between the community and the Project. Most recently, CMEX has also been working with information technologists at Ames to develop a state-of-the-art collaborative web site environment to foster interaction of interested members of the planetary community with the Mars Surveyor Program and the Project Office. The web site will continue to evolve over the next several years as new tools and features are added to support the ongoing Mars Surveyor missions.

  9. Planetary protection issues and human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1991-01-01

    A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial microbes which could interfere with exobiological analyses; and (2) back contamination of Earth by species that may be present in returned Mars samples. The United States is also signatory to an international treaty designed to protect Earth and planets from harmful cross-contamination during exploration. Therefore, it is timely to assess the necessity for, and impact of, PP procedures on the mission set comprising the human exploration of Mars. The ground-rules adopted at a recent workshop which addressed PP questions of this type are presented. In addition, the workshop produced several recommendations for dealing with forward and back contamination concerns for non-scientific perspectives, including public relations, legal, regulatory, international, and environmental.

  10. Solar Storms, Devils, Dunes, and Gullies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 December 2003

    Man, there sure is a lot going on here! This image was acquired during the peak of the late October record breaking solar storm outbursts. The white dots in this image were in fact caused when the charged particles from the sun hit our camera. One can also see the enigmatic gullies, dark barchan sand dunes and numerous dust devil tracks. This image is in the Noachis region of the heavily cratered southern hemisphere.

    Image information: VIS instrument. Latitude -42.1, Longitude 328.2 East (31.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Dunes and Clouds in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small greenish features in this image are sand dunes. The white feature on the right side is likely an ice cloud.

    Image information: VIS instrument. Latitude 84.6, Longitude 203.1 East (156.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Proceedings of the Polar Processes on Mars Workshop

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1988-01-01

    Included in this publication is a collection of abstracts from the NASA-sponsored workshop, Polar Processes on Mars, which was held at the Sunnyvale Hilton Hotel, Sunnyvale, California, on 12 to 13 May 1988. Support for the workshop came from NASA's Planetary Geology and Geophysics program managed by Dr. Jospeh Boyce. The workshop is one of a series identified by MECA (an acronym for Mars: Evolution of its Climate and Atmosphere) as being worthy of focused research, but one for which it was not possible to hold during the project's lifetime. Consequently, it was held after the project ended. The MECA project was part of the Mars Data Analysis program. The workshop consisted of four sessions: The Polar Caps, Dynamics/Atmospheric Processes, Polar Geology, and Future Measurements. To put things into perspective, each of the first three sessions began with a review. All sessions were scheduled to allow ample time for discussion. A brief review of each session is provided.

  13. Workshop on Discovery Lessons-Learned

    NASA Technical Reports Server (NTRS)

    Saunders, M. (Editor)

    1995-01-01

    As part of the Discovery Program's continuous improvement effort, a Discovery Program Lessons-Learned workshop was designed to review how well the Discovery Program is moving toward its goal of providing low-cost research opportunities to the planetary science community while ensuring continued U.S. leadership in solar system exploration. The principal focus of the workshop was on the recently completed Announcement of Opportunity (AO) cycle, but the program direction and program management were also open to comment. The objective of the workshop was to identify both the strengths and weaknesses of the process up to this point, with the goal of improving the process for the next AO cycle. The process for initializing the workshop was to solicit comments from the communities involved in the program and to use the feedback as the basis for establishing the workshop agenda. The following four sessions were developed after reviewing and synthesizing both the formal feedback received and informal feedback obtained during discussions with various participants: (1) Science and Return on Investment; (2) Technology vs. Risk; Mission Success and Other Factors; (3) Cost; and (4) AO.AO Process Changes and Program Management.

  14. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  15. Current Fault Management Trends in NASA's Planetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.

    2009-01-01

    The key product of this three-day workshop is a NASA White Paper that documents lessons learned from previous missions, recommended best practices, and future opportunities for investments in the fault management domain. This paper summarizes the findings and recommendations that are captured in the White Paper.

  16. Concepts and Approaches for Mars Exploration. Part 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains extended abstracts that have been accepted for presentation at the Concepts and Approaches for Mars Exploration (Part 2) workshop, July 18-20, 2000. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.

  17. MSATT Workshop on Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger (Editor); Banin, Amos (Editor)

    1992-01-01

    The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.

  18. Search for extraterrestrial intelligence (SETI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, P.; Billingham, J.; Wolfe, J.

    1977-01-01

    Findings are presented of a series of workshops on the existence of extraterrestrial intelligent life and ways in which extraterrestrial intelligence might be detected. The coverage includes the cosmic and cultural evolutions, search strategies, detection of other planetary systems, alternate methods of communication, and radio frequency interference. 17 references. (JFP)

  19. Proposal for mars express: detailed dds-test in the "inca city" and "csontváry" areas

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Manrubia, S. C.; Ganti, T.; Berczi, S.; Gesztesi, A.; Fernandez-Remolar, D.; Prieto Ballesteros, O.; Szathmary, E.

    2003-04-01

    Analyis of Mars Global Surveyor MOC images taken in Martian winter and spring has revealed a peculiar spotting phenomenon on the dark dunes in the polar region of Mars [1]. These spots are named Dark Dune Spots (DDSs) and various hypotheses have been put forward for their origin and formation process, which fall into two main groups: geophysical and biological [2, 3, 4, 5 and 6]. Because the high-resolution images by MGS-MOC have shown well-developed and recurrent DDSs on some dark dune fields since the Southern winter of 1999 [5, 6 and 7], we have selected two areas of them. They are many dozen kilometers in size in the Southern polar region. Namely: the "Inca City" area (λ=295.3^oE, ϕ=81.5^oS) and the Northern part of Pityusa Patera (λ=37^oE, ϕ=66^oS), which we call "Csontváry" area. These two areas could be excellent test areas for Mars Express in order to reveal the mechanism of the formation, development and annual recurrence of the DDSs. For this we propose, that different instruments (HRSC, spectrometers, etc.) of the orbiter of the ESA Mars Express Mission should produce high-resolution images and spectral measurements of the frosted surface of the dark dunes of the "Inca City" and the Pityusa Patera from the second half of the Southern winter till the end of spring, with weekly regularity, because this may be sufficient to choose between the abiogenic and the biogenic origin of DDSs. Referenes [1] Malin, M. C. and Edgett, K. S.: 2000, Frosting and defrosting of Martian polar dunes, LPS XXXI, #1056, Houston-CD. [2] Horváth, A., Gánti, T., Gesztesi, A., Bérczi, Sz., Szathmáry, E., 2001, Probable evidences of recent biological activity on Mars: appearance and growing of dark dune spots in the south polar region. LPS XXXII, # 1543, Houston-CD. [3] Malin, M. C. and Edgett, K. S.: 2001, The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission. J. Geophys. Res. 106 E10, p. 23,429-23,570. [4] Gánti, T., Horváth, A., Gesztesi, A., Bérczi, Sz., Szathmáry E.: 2002, Defrosting and Melting, not Defrosting Alone, Lunar Planetary Science XXXIII, #1221, Houston-CD. [5] Horváth, A., Bérczi, Sz., Gánti, T., Gesztesi, A., Szathmáry E.: 2002, The “Inca City” Region of Mars: Test field for Dark Dune Spots Origin, LPS XXXIII, #1109, Houston-CD. [6] Gánti, T., Horváth, A., Gesztesi, A., Bérczi, Sz., Szathmáry, E., 2003, Dark dune spots: possible biomarkers on Mars? OLEB in print. [7] Horváth, A., Gánti, T., Bérczi, Sz., Gesztesi, A., Szathmáry, E., 2003, Morphological analysis of annual recurrence of dark dune spots on Southern Polar Region, LPS XXXIV.

  20. Astronomy Activities for the Classroom.

    ERIC Educational Resources Information Center

    Cain, Peggy W.; Welch, Daniel W.

    Presented are middle school level, activity-oriented astronomy activities developed as a result of an earth science workshop for teachers. Topics include: (1) sun and moon position and measurement; (2) daily, yearly, and seasonal changes in the sun's position; (3) shapes and positions of planetary orbits; (4) eclipses; (5) properties of light; (6)…

  1. Catastrophic disruption of asteriods and satellites; Proceedings of the International Workshop, Pisa, Italy, July 30-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Farinella, P.; Paolicchi, P.; Zappala, V.

    Theoretical, numerical, and experimental investigations of the violent disruption of asteroids or planetary satellites are discussed in reviews and reports. Topics examined include acceleration techniques and results of experiments simulating catastrophic fragmentation events; laboratory simulations of catastrophic impact; scaling laws for the catastrophic collisions of asteroids; asteroid collisional history, the origin of the Hirayama families, and disruption of small satellites; and the implications of the inferred compositions of a steroids for their collisional evolution. Diagrams, graphs, tables, and a summary of the discussion at the workshop are provided.

  2. Catastrophic disruption of asteriods and satellites; Proceedings of the International Workshop, Pisa, Italy, July 30-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Davis, D. R. (Editor); Farinella, P. (Editor); Paolicchi, P. (Editor); Zappala, V. (Editor)

    1986-01-01

    Theoretical, numerical, and experimental investigations of the violent disruption of asteroids or planetary satellites are discussed in reviews and reports. Topics examined include acceleration techniques and results of experiments simulating catastrophic fragmentation events; laboratory simulations of catastrophic impact; scaling laws for the catastrophic collisions of asteroids; asteroid collisional history, the origin of the Hirayama families, and disruption of small satellites; and the implications of the inferred compositions of a steroids for their collisional evolution. Diagrams, graphs, tables, and a summary of the discussion at the workshop are provided.

  3. Origins of Solar Systems Workshop: The Origin, Evolution, and Detectability of Short Period Comets

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    The origin of the short period comets (SPC) (periods less than 200 years), the dynamical formation of their present reservoir(s), the cause and rate of their transport to the inner planetary region where they can be detected, and the magnitude of selection effects in their discovery are important research questions directly coupled to the goals of understanding the origin and evolution of the Solar System. To address these questions in an intensive way, an interdisciplinary, five month long Workshop from Jan. to May 1993 at Southwest Research Institute (SwRI) in San Antonio was convened. The goal of this Workshop was to advance the state of understanding about the origins, dynamical evolution, and present location of short period comets and their reservoir(s).

  4. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  5. Teacher Workshops in the US: Goals, Best Practices and Impact

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.

    2011-10-01

    The goal of the workshop is to educate the teachers on a few focused topics so that they can transfer the knowledge they gain to their students. We will recruit scientists who are attending the meeting to participate in the workshops and will also pair the teachers with scientists in the field who can serve as a resource for the teacher and their class throughout the school year. The scientists can answer questions the teachers may have, be available to do video lectures or interactive question and answer sessions over skype, and work with the teachers to develop hands-on classroom activities. We will partner closely with EPO professionals in NASA's Science Mission Directorate to ensure that best practices for the workshops are employed, including ensuring that the workshop and workshop materials are designed within the framework of the state standards, surveying participating teachers before the workshops about their needs and goals, assessing the participants pre-workshop knowledge, and engaging participants as learners during the workshop [1]. The impact of the workshop will be increased by providing the teachers and students with a scientist who will serve as a long-term resource. We will maintain contact with the teachers after the workshop to ensure that the scientists are still actively engaged in their classroom and to collect feedback. References [1] Shupla C, et al. (2011) Lessons Learned: Best Practices in Educator Workshops. 42nd Lunar and Planetary Science Conference, no. 2828. EPSC Abstracts Vol. 6, EPSC-DPS2011-1775, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011

  6. Application of Interferometric Radars to Planetary Geologic Studies

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.; Rosen, P.; Freeman, A.

    2005-01-01

    Radar interferometry is rapidly becoming one of the major applications of radar systems in Earth orbit. So far the 2000 flight of the Shuttle Radar Topographic Mission (SRTM) is the only dedicated U.S. radar to be flown for the collection of interferometric data, but enough has been learned from this mission and from the use of foreign partner radars (ERS-1/2, Radarsat, ENIVISAT and JERS-1) for the potential planetary applications of this technique to be identified. A recent workshop was organized by the Jet Propulsion Laboratory and the Southern California Earthquake Center (SCEC), and was held at Oxnard, CA, from October 20th - 22nd, 2004. At this meeting, the major interest was in terrestrial radar systems, but approx. 20 or the approx. 250 attendees also discussed potential applications of interferometric radar for the terrestrial planets. The primary foci were for the detection of planetary water, the search for active tectonism and volcanism and the improved topographic mapping. This abstract provides a summary of these planetary discussions at the Oxnard meeting.

  7. Partnering to Enhance Planetary Science Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  8. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  9. Project watching the sky: a playful and constructivist approach in the practice of night sky observations for 2nd grade elementary school students in the city of Santo André

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Faria, R. Z.; Pedroso, M.; Jacinto, C.; Silva, L. C. P.

    2017-07-01

    The Johannes Kepler planetary, located at the SABINA Parque do Conhecimento in the City of Santo André, Brazil, has equipments that allow the teaching and diffusion of Astronomy. The attendances take place during the week for schools and at weekends for the public. The attending focus is on elementary students from Santo André’s municipal schools, kids between 6 and 10 years old. The pedagogical team created attendance models with specific matters for each age. The model is only incorporated into the planetary agenda after the municipal teacheŕs approval. This paper reports the establishment and approval of an attending project for 2nd grade students between September and November 2014. The workshops "My first spyglass" and "Creating my constellations" and the planetary session "Watching the Sky" were created. The Municipal Education Office received the project and passed it to the schools. From the 51 municipal schools, 13 took part sending 21 classes, totaling 521 students. The project included activities for the students, such as the construction of spyglasses out of cardboard which made them learn about constellations of yeaŕs seasons and enabled them to create their own constellations. During the schools permanency in the planetary, the teachers received a survey to evaluate the pilot project. The evaluation of the researched items allowed to classify them into satisfactory, partially satisfactory or unsatisfactory. The results were 95% satisfactory, considering the following aspects: used script, applied workshops, participation, concern and content uptake by the students; and a satisfactory rate of 100% about the used resources. Upon the approval, the pedagogical team included definitively this attendance into their agenda.

  10. Layers, Landslides, and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 27 October 2003

    This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.

    Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Sand and Water

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 November 2003

    This image shows a relatively small crater (35 km across) in the heavily cratered terrain of the southern highlands. At the midlatitudes, this area is known both for its water-formed gullies and its sand dunes. This crater shows spectacular examples of both. In fact, the gullies running down the northern edge of the crater made it to the cover of Science magazine on June 30, 2000. The large dark spot in the floor of the crater is sand that has accumulated into one large dune with a single curvilinear crest.

    Image information: VIS instrument. Latitude -54.9, Longitude 17.5 East (342.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Dalmatian Terrain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2003

    An example of dalmatian terrain near the south pole. The bright material is polar ice and the dark spots dark sands that are appearing in depressions where the ice has defrosted to reveal underlying material. Interestingly, there is an almost continuous dark band around the edges of many of the depressions. This could be a clue to the nature of the sand deposits in polar regions. The sand forms dunes in a range of sizes and shapes. Near the top of the image the dunes shrink until they are smaller than the 18 m pixels of the THEMIS camera and seem to disappear into the surrounding ice.

    Image information: VIS instrument. Latitude -66.6, Longitude 36 East (324 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Proceedings of a Workshop on Cosmogenic Nuclide Production Rates

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J. (Editor); Reedy, Robert C. (Editor); Michel, Rolf (Editor)

    1989-01-01

    Abstracts of reports from the proceedings are presented. The presentations were divided into discussion topics. The following general topic areas were used: (1) measured cosmogenic noble gas and radionuclide production rates in meteorite and planetary surface samples; (2) cross-section measurements and simulation experiments; and (3) interpretation of sample studies and simulation experiments.

  14. Workshop on Viability of Halophilic Bacteria in Salt Deposits

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The significance of finding viable extreme halophiles in halites associated with Permian-aged sedimentary deposits is considered. Issues related to the microbiology and geochemistry of the halite environment are addressed. Recommendations that related the significance of this phenomenon to NASA's interest in planetary exploration and the early evolution of life are provided.

  15. Workshop on Geology of the Apollo 17 Landing Site

    NASA Technical Reports Server (NTRS)

    Ryder, G. (Editor); Schmitt, H. H. (Editor); Spudis, P. D. (Editor)

    1992-01-01

    The topics covered include the following: petrology, lithology, lunar rocks, lunar soil, geochemistry, lunar geology, lunar resources, oxygen production, ilmenite, volcanism, highlands, lunar maria, massifs, impact melts, breccias, lunar crust, Taurus-Littrow, minerals, site selection, regolith, glasses, geomorphology, basalts, tectonics, planetary evolution, anorthosite, titanium oxides, chemical composition, and the Sudbury-Serenitatis analogy.

  16. A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gruener, John

    2012-01-01

    Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).

  17. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2016-12-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement (such as connecting them to opportunities, creating useful resources, and providing training). The advisory board will also assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events. LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the status and current findings of the scientist advisory board, and the resulting lessons learned regarding scientists' needs, abilities, and interests in participating in education and public engagement programs.

  18. Exozodiacal Dust Workshop

    NASA Technical Reports Server (NTRS)

    Backman, D. E. (Editor); Caroff, L. J. (Editor); Sandford, S. A. (Editor); Wooden, D. H. (Editor)

    1998-01-01

    The purpose of the workshop was to understand what effect circumstellar dust clouds will have on NASA's proposed Terrestrial Planet Finder (TPF) mission's ability to search for terrestrial-sized planets orbiting stars in the solar neighborhood. The workshop participants reviewed the properties of TPF, summarized what is known about the local zodiacal cloud and about exozodiacal clouds, and determined what additional knowledge must be obtained to help design TPF for maximum effectiveness within its cost constraint. Recommendations were made for ways to obtain that additional knowledge, at minimum cost. The workshop brought together approximately 70 scientists, from four different countries. The active participants included astronomers involved in the study of the local zodiacal cloud, in the formation of stars and planetary systems, and in the technologies and techniques of ground- and space-based infrared interferometry. During the course of the meeting, 15 invited talks and 20 contributed poster papers were presented, and there were four working sessions. This is a collection of the invited talks, contributed poster papers, and summaries of the working sessions.

  19. Improving Undergraduates' Critical Thinking Skills through Peer-learning Workshops

    NASA Astrophysics Data System (ADS)

    Cole, S. B.

    2013-12-01

    Critical thinking skills are among the primary learning outcomes of undergraduate education, but they are rarely explicitly taught. Here I present a two-fold study aimed at analyzing undergraduate students' critical thinking and information literacy skills, and explicitly teaching these skills, in an introductory Planetary Science course. The purpose of the research was to examine the students' information-filtering skills and to develop a short series of peer-learning workshops that would enhance these skills in both the students' coursework and their everyday lives. The 4 workshops are designed to be easily adaptable to any college course, with little impact on the instructor's workload. They make use of material related to the course's content, enabling the instructor to complement a pre-existing syllabus while explicitly teaching students skills essential to their academic and non-academic lives. In order to gain an understanding of undergraduates' existing information-filtering skills, I examined the material that they consider to be appropriate sources for a college paper. I analyzed the Essay 1 bibliographies of a writing-based introductory Planetary Science course for non-majors. The 22 essays cited 135 (non-unique) references, only half of which were deemed suitable by their instructors. I divided the sources into several categories and classified them as recommended, recommended with caution, and unsuitable for this course. The unsuitable sources ranged from peer-reviewed journal articles, which these novice students were not equipped to properly interpret, to websites that cannot be relied upon for scientific information (e.g., factoidz.com, answersingenesis.org). The workshops aim to improve the students' information-filtering skills by sequentially teaching them to evaluate search engine results, identify claims made on websites and in news articles, evaluate the evidence presented, and identify specific correlation/causation fallacies in news articles and advertisements. Students work in groups of 3-4, discussing worksheet questions that lead them step-by-step through 1) verbalizing their preconceptions of the workshop theme, 2) dissecting instructional materials to discover the cognitive processes they already use, 3) applying skills step-by-step in real-world situations (search engine results, news articles, ads, etc.), and 4) using metacognitive strategies of questioning and reflecting. Student participants in the pilot study often verbalized metacognition, and retained concepts as evidenced by a post-test conducted 2 months after the first workshop. They additionally reported consciously using skills learned in the workshops over a year later.

  20. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital frequency around its central body Saturn about 16 days occupies position before Mercury -πR/91 (Fig. 1). But Titan as a satellite has also another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (the wave with granule πR/91) creating two side frequencies. They are obtained by division and multiplication of the higher frequency by the lower one: the modulations give the sizes πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark near equatorial parts of the satellite (Fig. 4). Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization (2πR-structure). Often observed an essential difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies belonging to terrestrial rocky planets, giant gas planets, icy satellites (Fig.5, Titan) compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At equatorial zones (bulged also due to the rotation ellipsoid) the outer shell - crust tends to be destroyed, sunk, subsided and shrunk as a consequence. At Titan this common planetary feature is expressed very clearly: subsiding dark plains at the equatorial region are not only widespread but also intensively warped (Fig. 2-4). This ubiquitous cross-cutting rippling in response to subsidence should not be confused with eolian forms [3].

  1. Planetary Systems and the Origins of Life

    NASA Astrophysics Data System (ADS)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  2. Earth analog image digitization of field, aerial, and lab experiment studies for Planetary Data System archiving.

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Nelson, D. M.

    2017-12-01

    A portion of the earth analog image archive at the Ronald Greeley Center for Planetary Studies (RGCPS)-the NASA Regional Planetary Information Facility at Arizona State University-is being digitized and will be added to the Planetary Data System (PDS) for public use. This will be a first addition of terrestrial data to the PDS specifically for comparative planetology studies. Digitization is separated into four tasks. First is the scanning of aerial photographs of volcanic and aeolian structures and flows. The second task is to scan field site images taken from ground and low-altitude aircraft of volcanic structures, lava flows, lava tubes, dunes, and wind streaks. The third image set to be scanned includes photographs of lab experiments from the NASA Planetary Aeolian Laboratory wind tunnels, vortex generator, and of wax models. Finally, rare NASA documents are being scanned and formatted as PDF files. Thousands of images are to be scanned for this project. Archiving of the data will follow the PDS4 standard, where the entire project is classified as a single bundle, with individual subjects (i.e., the Amboy Crater volcanic structure in the Mojave Desert of California) as collections. Within the collections, each image is considered a product, with a unique ID and associated XML document. Documents describing the image data, including the subject and context, will be included with each collection. Once complete, the data will be hosted by a PDS data node and available for public search and download. As one of the first earth analog datasets to be archived by the PDS, this project could prompt the digitizing and making available of historic datasets from other facilities for the scientific community.

  3. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  4. Aids and Infectious Diseases (aid) Pmp 2013 Report

    NASA Astrophysics Data System (ADS)

    Buonaguro, Franco M.

    2014-07-01

    The AIDS and Infectious Diseases (AID) PMP of the WFS contributed this year with a session on August 22nd to the Plenary Sessions of the International Seminars on Planetary Emergencies and Associated Meetings--46th Session: The Role of Science in the Third Millennium (Erice, 19-24 August 2013). Furthermore a workshop on August 24th was organized...

  5. The Enigmatic Longevity of Granular Materials on Mars: The Case for Geologically Episodic Dune Formation

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    Martian sand dunes are concentrated in vast sand seas in the circumpolar belt of the planet's northern hemisphere, but they are also pervasive over the whole planet. Their occurrence is to be expected on a super-arid planetary surface subjected to boundary layer drag from a continually active atmosphere. Whilst their occurrence is to be expected, their survival is enigmatic. But the enigma only arises if the martian system is considered similar to Earth's --where sand is moved highly frequently, more or less on a seasonal basis. Experimentally it is readily demonstrated that active sand will soon wear down to small grains and eventually diminish to below the critical sand size required to sustain dune formation. According to conventional wisdom, sand moves at higher speeds on Mars than on Earth, and if it were to move as frequently as it does on Earth, then the dune-forming sand population should have long since disappeared, given the great longevity of the martian aeolian system (Sagan coined the term "kamikaze" grains to express this disappearance). No supply of sand could keep pace with this depletion, especially in light of the fact that Mars does not have very active weathering, nor significant crustal differentiation. On Earth, plate tectonics, magmatic activity, and general crustal differentiation over geological time have produced great concentrations of quartz crystals in the continental crustal masses. Not only are these quartz grains chemically and mechanically resilient, they are about the right size for being transported by either wind or water. Add to this, the geologically recent contribution of glacial grinding, and it is easy to see why there are dune field on Earth. So what are the martian dunes composed of, and how does the material survive the eons of attrition? In addition to experimental demonstrations of sand comminution in laboratory aeolian simulations, the problem can be approached from first principles. Sagan showed that by simple considerations of material strength versus mechanical work applied to the material, comminution to sub-sand size would be inevitable. Another semi-analytical approach might be taken by considering that the archetypal aeolian sand surface texture is an irregularly pitted ("frosted") surface composed of chipping hollows approximately 10 microns in diameter, 5 microns deep. Their volume = about 250 cubic microns, or about 1/25000 of the volume of a 100 micron diameter dune grain. Because a saltating grain always strikes another grain, then two surfaces are impacted. Thus each grain undergoes two impacts for every one saltation leap, when the impact statistics are considered for a closed dune system (it can be calculated that a grain can never undergo <1 impact, and never >2 per saltation leap). Hence, if we conservatively assume that there is damage to a grain each time it bounces, but with the minimum damage of only 2 microscopic craters per impact, then approximately 12,500 impacts are required to completely eliminate the grain. Of course, it would require only a fraction of this amount to reduce the grain to below sand size. A grain will make only several tens of saltation leaps on the stoss side of a dune before becoming buried on the lee slope. The dune then has to move its full length before the grain is exhumed again for abrasion. Even with this hiatus in transport, it is easy to see that terrestrial dunes need resupplying with sand in order to survive. In recent theoretical work it has been shown that martian aeolian transport may be initiated with high-speed grains, but this converts to a lower energy dynamic transport equilibrium in which a reptation population dominates grain transport (on Earth, at least half of the flux is by reptation and creep). On Mars, therefore, average grain speeds may be lower than those on Earth, or at least comparable. This would permit greater longevity for martian sands, but it would not go far enough to solve the survival problem. It may, however, explain why martian dunes are about the same size as terrestrial dunes. If martian saltation leaps were significantly longer than on Earth (as usually assumed), then a dune's lee slope would have to be correspondingly longer in order to trap the sand; this would scale up the whole dune structure. But with shorter trajectories in a reptation population, larger dunes would be unnecessary. Additional information is contained in the original.

  6. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K. (Editor); Carr, M. H. (Editor); Moehlmann, D. (Editor); Stiller, H. (Editor); Matson, D. L. (Editor); Ambrosius, B. A. C. (Editor); Kessler, D. J. (Editor)

    1990-01-01

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  7. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.; Carr, M. H.; Moehlmann, D.; Stiller, H.; Matson, D. L.; Ambrosius, B. A. C.; Kessler, D. J.

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  8. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  9. Approaches for Promoting Lunar and Planetary Science in Higher Education Curricula

    NASA Astrophysics Data System (ADS)

    Hurtado, J. M.; CenterLunar Science Education; Higher Education Consortium

    2011-12-01

    The Center for Lunar Science and Exploration (CLSE) at the Lunar and Planetary Institute has formed a higher-education consortium comprising a group of educators throughout the states of Texas and Oklahoma, all of who are committed to furthering the inclusion of lunar and planetary science in university-level curricula. Members of the Consortium represent the spectrum of higher-educational venues, from research universities to small colleges. They also teach planetary science in a range of settings, from specialized graduate/undergraduate courses to introductory undergraduate courses in general science that incorporate a wide range of other topics. One of the top-level goals of the Consortium is to provide an online forum and a network of educators that can share teaching materials, including: illustrations and animations of scientific concepts; syllabi and lesson plans; and laboratory and other exercises. These materials are being shared with the entire community through the CLSE website (http://www.lpi.usra.edu/nlsi/), and a series of workshops has been held with participating members of the Consortium to continue to develop and solicit content. A specific avenue of bringing lunar and planetary content into the classroom that has been discussed and experimented with over the past two years involves planetary analogs. Participatory exercises developed around the author's work with NASA analog field tests has been used in several classroom lab exercises in a planetary science course, a remote sensing course, and a introductory geologic mapping course. These efforts have proven fruitful in engaging the students in lunar and planetary exploration science.

  10. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great Desert, focused on geology and life in the Colorado Plateau as analogs for Mars. Specific emphases were on geologic processes exemplified in the Grand Canyon, Sunset Crater and Meteor Crater, and on biotic communities in desert soils and hot springs. The classroom portion, hosted by UNM, included lectures, lab work, and teaching exercises keyed to the field experience and its extensions to Mars. Formal followups: non-directive exit questionnaires; email list-serves for participants; websites with images, presentations, and exercises from the workshop, and links to related materials (e.g., http://www.lpi.usra.edu/education/EPO/yellowstone2002/index.html); and interviews for six-month retrospective. Graduate and continuing education credit are available. Past workshops, all relevant to Mars, have targeted: geology and extremophiles of Yellowstone NP, geology of the Cascade volcanos; and giant floods and lava flows of central Washington. The greatest benefit of this workshop format is the teachers' intense, deep experience, emphasizing scientific content. They learn from field, classroom, and laboratory perspectives, and work with PhD level researchers who contribute their excitement, demonstrate and teach critical thought processes, and provide authoritative background and answers. The small group size permits personal interactions (among teachers and presenters) that complement each other's understanding and appreciation of the subject. They log ˜65 contact hours with the staff, in small groups or one-on-one. Teachers return to the classroom with personal experiences, with heightened appreciation, excited, and energetic. The teachers are asked to share their knowledge in their districts (in one case, saving the district thousands of dollars). For the presenters, the workshop format allows personal interactions with the teachers, leading to enhanced appreciation of their perspectives and needs. This year, teacher input assisted with an NSF-sponsored National Park education initiative. And in one case, a meaningful research collaboration has come from these workshops. Logistics is the greatest challenge of this workshop format. Hosts and teaching/lab venues need to be arranged early in sites dictated by science content, not convenience. Travel and lodging must be arranged for teachers and presenters at several sites, usually all distant from the organizing institution. Logistics also dictates that each workshop cannot serve more than about 30 teachers. The depth of knowledge imparted and its long-term effects on the teachers and their districts offsets the small number of teachers reached per year. Authors here are the 2003 organizers and presenters. Many others have organized and presented at past workshops - especially Dr. A.J. Irving of U. Wash. We are grateful for past support from NASA Broker/Facilitator, and now from Sandia National Laboratory and NASA OSS/EPO.

  11. Getting Planetary Data into the Hands of Educators: Recommendations from a Community Discussion

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Lowes, L.; Hammon, A.; Higbie, M.; Klug, S.; Lindstrom, M.; Stockman, S.; Wise, J.

    2004-12-01

    In March 2004 a community of approximately 60 researchers, formal and informal education specialists, classroom educators, data archivists, and educational product developers came together for a day-long conference to discuss the challenges in bringing planetary data into the classroom. The conference was hosted by the Solar System Exploration Education Forum and the South Central Organization of Researchers and Educators of NASA's Office of Space Science Support Network. The workshop was intended to: initiate a dialog among those interested in identifying paths for bringing planetary data to educators; better understand key challenges facing educators who are working with planetary data and issues with gaining access to data; identify common aspects of success of programs and products developed to make data accessible in educational venues; and finally, identify the remaining challenges and make recommendations for how the community should move forward to bring these data into the classroom. Presentations by researchers and educational specialists encompassed the facilitation of accessing data, effective use of data in the classroom, availability of data for use by the educational community, and paths for accessing and using mission data. Panel discussions explored the experiences of researchers, educators, and product developers in creating and implementing programs and products and the challenges remaining for integrating planetary data into educational environments. Discussion among participants resulted in a series of recommendations for the development and implementation of successful programs, including: 1) the intended audience should play an active role in the design and development process; 2) program and product implementation should incorporate adequate training and support for intended users; 3) data access needs to be made easier, perhaps requiring the filtering of raw data and new user interfaces; 4) product developers should present data within the context of a lesson or an exploration that is appropriate for the age level, with ties to standards, assessments, and connections to other disciplines such as language arts and math to ease the time burden on the classroom educator; 5) data need to be accessible within a broad context of important scientific questions and understanding; and 6) the potential community involved in the educational use of planetary data is large -- resources such as master-teachers, museums, pre-service faculty, minority organizations, amateur astronomers and others should be involved and leveraged. The complete list of recommendations, presentations, and participants can be found at (http://www.lpi.usra.edu/score). This conference was intended to initiate community dialog on the use of planetary data in the classroom. Future conferences and workshops are planned to continue the discussion of issues and challenges.

  12. Astro tourism: Astro Izery project

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Kołomański, Sylwester; Żakowicz, Grzegorz; Kornafel, Stanisław; Czarnecki, Tomasz L.; Suchan, Pavel; Kamiński, Zbigniew

    2015-03-01

    The Astro Izery project is carried by several institutions from Poland and Czech Republic. Its aim is to educate and inform tourists, who visit the Izery Mountains, about astronomy and light pollution. The project consists of two activities: permanent (sundials, planetary path etc.) and periodic (meetings, workshops). After five years the project is in good health and will gain more elements in next years.

  13. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  14. MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Haberle, Robert M. (Editor)

    1988-01-01

    The workshop was held to discuss a variety of questions related to the detection and cycling of atmospheric water. Among the questions addressed were: what factors govern the storage and exchange of water between planetary surfaces and atmospheres; what instruments are best suited for the measurement and mapping of atmospheric water; do regolith sources and sinks of water have uniquely identifiable column abundance signatures; what degree of time and spatial resolution in column abundance data is necessary to determine dynamic behavior. Of special importance is the question, does the understanding of how atmospheric water is cycled on Earth provide any insights for the interpretation of Mars atmospheric data.

  15. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  16. Mars Sample Handling Protocol Workshop Series: Workshop 2

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample hazard testing and the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened an additional series of workshops beginning in March 2000. The overall objective of these workshops was to develop comprehensive protocols to assess whether the returned materials contain any biological hazards, and to safeguard the purity of the samples from possible terrestrial contamination. This document is the report of the second Workshop in the Series. The information herein will ultimately be integrated into a final document reporting the proceedings of the entire Workshop Series along with additional information and recommendations.

  17. Results of the Workshop on Impact Cratering: Bridging the Gap Between Modeling and Observations

    NASA Technical Reports Server (NTRS)

    Herrick, Robert (Editor); Pierazzo, Elisabetta (Editor)

    2003-01-01

    On February 7-9,2003, approximately 60 scientists gathered at the Lunar and Planetary Institute in Houston, Texas, for a workshop devoted to improving knowledge of the impact cratering process. We (co-conveners Elisabetta Pierazzo and Robert Herrick) both focus research efforts on studying the impact cratering process, but the former specializes in numerical modeling while the latter draws inferences from observations of planetary craters. Significant work has been done in several key areas of impact studies over the past several years, but in many respects there seem to be a disconnect between the groups employing different approaches, in particular modeling versus observations. The goal in convening this workshop was to bring together these disparate groups to have an open dialogue for the purposes of answering outstanding questions about the impact process and setting future research directions. We were successful in getting participation from most of the major research groups studying the impact process. Participants gathered from five continents with research specialties ranging from numerical modeling to field geology, and from small-scale experimentation and geochemical sample analysis to seismology and remote sensing.With the assistance of the scientific advisory committee (Bevan French, Kevin Housen, Bill McKinnon, Jay Melosh, and Mike Zolensky), the workshop was divided into a series of sessions devoted to different aspects of the cratering process. Each session was opened by two invited t a b , one given by a specialist in numerical or experimental modeling approaches, and the other by a specialist in geological, geophysical, or geochemical observations. Shorter invited and contributed talks filled out the sessions, which were then concluded with an open discussion time. All modelers were requested to address the question of what observations would better constrain their models, and all observationists were requested to discuss how their observations can constrain modeling efforts.

  18. A Planetary Geophysicist Does EPO: Lessons Learned Along the Way

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2011-12-01

    My "day job" is numerical modeling of the interiors of the terrestrial planets, but I have also done EPO projects for the last 17 years while at the Lunar and Planetary Institute. These range from single, hour long talks in classrooms or astronomy clubs, to week-long summer workshops for teachers and librarians, and even semester-long programs, along with a number of curriculum development projects. EPO projects are a great way to help develop both the next generation of scientists and, more importantly, of scientifically literate citizens and taxpayers. Here are a few lessons learned along the way in the school of hard knocks. (1) An engaging delivery style is even more important in EPO presentations than it is in college lectures or conference presentations. Emphasize a few key concepts rather than numerous facts, and keep the jargon out. Good analogies can go a long way towards explaining a concept to any age group. I teach the role of size in planetary cooling by first asking students how long it takes to cook food of various sizes (a hamburger, roast beef, turkey). (2) If you will be working with a group of students for more than one class period, classroom friendly activities strengthen the learning process. Such activities do not need to be elaborate - when teaching about the Moon, I sometimes assign students to take their parents outside at night and show them how to find lava flows on the Moon. Teachers usually need to have classroom activities that are aligned to state or national teaching standards. Fortunately, many effective, standards-aligned activities already exist, so you don't need to reinvent the wheel. For a useful listing of planetary science and astronomy activities, see the LPI website www.lpi.usra.edu/education/resources/ (3) Although EPO work can be personally rewarding, it is not always well rewarded in a professional context, and it can be difficult to find the time and financial resources to sustain major projects. We sometimes use a "teach the teachers" model as a way of leveraging our impact. The material that is taught to 30 teachers in a summer workshop may end up being used to teach 3,000-4,000 students in the following school year. In any workshop presentation, save lots of time for questions. It will get used, and teachers always appreciate having a scientist take the time to answer their questions.

  19. The COSPAR Capacity Building Initiative - past, present, future, and highlights

    NASA Astrophysics Data System (ADS)

    Gabriel, Carlos; Mendez, Mariano; D'Amicis, Raffaella; Santolik, Ondrej; Mathieu, Pierre-Philippe; Smith, Randall

    At the time of the COSPAR General Assembly in Moscow, the 21st workshop of the Programme for Capacity Building will have taken place. We have started in 2001 with the aim of: i) increasing the knowledge and use of public archives of space data in developing countries, ii) providing highly-practical instruction in the use of these archives and the associated publicly-available software, and iii) fostering personal links between participants and the experienced scientists who lecture during the workshops and supervise the projects carried on by the students. Workshops in many space disciplines have been successfully held so far (X-ray, Gamma-ray and Space Optical and UV Astronomy, Magnetospheric Physics, Space Oceanography, Remote Sensing and Planetary Science) in thirteen countries (Argentina, Brazil, China, Egypt, India, Indonesia, Malaysia, Morocco, Romania, Russia, South Africa, Thailand and Uruguay). An associated Fellowship Programme is helping former participants of these workshops to build on skills gained at them. We will summarize the past and discuss the present and future of the Programme, including highlights like the most recent one: the identification of a transient magnetar (the 9th object of this class so far discovered) in the vicinity of a supernova by one of our students, during the CB workshop on high-energy Astrophysics in Xuyi, China, in September 2013.

  20. Life sciences and space research XXIII(2): Planetary biology and origins of life; Proceedings of the Topical Meeting and Workshops XX, XXI and XXIII of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W. (Editor); Dose, K. (Editor); Raup, D. M. (Editor); Klein, H. P. (Editor); Devincenzi, D. L. (Editor)

    1989-01-01

    This volume includes chapters on exobiology in space, chemical and early biochemical evolution, life without oxygen, potential for chemical evolution in the early environment of Mars, planetary protection issues and sample return missions, and the modulation of biological evolution by astrophysical phenomena. Papers are presented on the results of spaceflight missions, the action of some factors of space medium on the abiogenic synthesis of nucleotides, early peptidic enzymes, microbiology and biochemistry of the methanogenic archaeobacteria, and present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations. Consideration is also given to the development of the Alba Patera volcano on Mars, biological nitrogen fixation under primordial Martian partial pressures of dinitrogen, the planetary protection issues in advance of human exploration of Mars, and the difficulty with astronomical explanations of periodic mass extinctions.

  1. Coprates Chasma Landslide

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Coprates Chasma comprises the central portion of the Valles Marineris canyon system complex. This image of the southern wall of Coprates Chasma contains a landslide deposit with dunes over portions of slide. Landslides have very characteristic morphologies on Earth, which they also display on Mars. These morphologies include a distinctive escarpment at the uppermost part of the landslide--called a head scarp (seen at the bottom of this image), a down-dropped block of material below that escarpment that dropped almost vertically, and a deposit of debris that moved away from the escarpment at high speed. In this example, the wall rock displayed in the upper part of the cliff contains spurs and chutes created by differing amounts of erosion. The actual landslide deposit is delineated by its fan-shape and lobate margins. The dunes subsequently marched upon the landslide deposit.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    NASA Technical Reports Server (NTRS)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  3. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  4. MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)

    1992-01-01

    Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.

  5. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.

  6. Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R. (Editor)

    2008-01-01

    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.

  7. USGS-NPS Servicewide Benthic Mapping Program (SBMP) workshop report

    USGS Publications Warehouse

    Moses, Christopher S.; Nayagandhi, Amar; Brock, John; Beavers, Rebecca

    2010-01-01

    The National Park Service (NPS) Inventory and Monitoring (I&M) Program recently allocated funds to initiate a benthic mapping program in ocean and Great Lakes parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. Seventy-four (ocean and Great Lakes) parks, spanning more than 5,000 miles of coastline, many affected by increasing coastal storms and other natural and anthropogenic processes, make the development of a Servicewide Benthic Mapping Program (SBMP) timely. The resulting maps and associated reports will be provided to NPS managers in a consistent servicewide format to help park managers protect and manage the 3 million acres of submerged National Park System natural and cultural resources. Of the 74 ocean and Great Lakes park units, the 40 parks with submerged acreage will be the focus in the early years of the SBMP. The NPS and U.S. Geological Survey (USGS) convened a workshop (June 3-5, 2008) in Lakewood, CO. The assembly of experts from the NPS and other Federal and non-Federal agencies clarified the needs and goals of the NPS SBMP and was one of the key first steps in designing the benthic mapping program. The central needs for individual parks, park networks, and regions identified by workshop participants were maps including bathymetry, bottom type, geology, and biology. This workshop, although not an exhaustive survey of data-acquisition technologies, highlighted the more promising technologies being used, existing sources of data, and the need for partnerships to leverage resources. Workshop products include recommended classification schemes and management approaches for consistent application and products similar to other long-term NPS benthic mapping efforts. As part of the SBMP, recommendations from this workshop, including application of an improved version of the Coastal and Marine Ecological Classification Standard (CMECS), will be tested in several pilot parks. In 2008, in conjunction with the findings of this workshop, the NPS funded benthic mapping projects in Glacier Bay National Park and Preserve, Golden Gate National Recreational Area, Sleeping Bear Dunes National Lakeshore, Gulf Islands National Seashore, Virgin Islands National Park, and Virgin Islands Coral Reef National Monument.

  8. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (Editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  9. Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions

    NASA Technical Reports Server (NTRS)

    Walker, D. (Editor); Mccallum, I. S. (Editor)

    1981-01-01

    The significance of the lunar highland pristine cumulate samples were reevaluated with the aid of the additional insights provided by geologically constrained terrestrial investigations. This exercise involved a review of the state of knowledge about terrestrial and lunar cumulate rocks as well as an enumeration and reevaluation of the processes hypothesized to have been responsible for their formation, both classically and at present.

  10. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 2: Sensing and data acquisitions panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advanced technology requirements associated with sensing and data acquisition systems were assessed for future space missions. Sensing and data acquisition system payloads which would benefit from the use of the space shuttle in demonstrating technology readiness are identified. Topics covered include: atmospheric sensing payloads, earth resources sensing payloads, microwave systems sensing payloads, technology development/evaluation payloads, and astronomy/planetary payloads.

  11. Collaboration in teacher workshops and citizen science

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.

    2013-12-01

    The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.

  12. Tumuli and tubes: Teaching scientific techniques

    NASA Technical Reports Server (NTRS)

    Tatsumura, Michelle J.; Taylor, G. J.; Mouginis-Mark, P. J.

    1993-01-01

    Planetary and space science is the best way to teach basic chemistry, physics, and math. Einstein once said that 'man is drawn to the mysterious and it is from that that we achieve true art and science.' Planets and the processes that shape them are especially mysterious and fascinating to students, young and old, and because of this planetary geology kindles interest that draws them further into the world of science. At the very least, they are engaged enough to learn how science works, a key ingredient in scientific literacy. A project involving field measurements on Kilauea volcano, Hawaii, by a Geology 101 honors class is described. Hawaii is blessed with spectacular, active, accessible, and relatively safe basaltic eruptions. The study of volcanoes, the landforms they produce, and the processes that operate on and in volcanoes, combined with the study of volcanoes on the other planets, is an excellent way to link aspects of Hawaiian geology to the planets. During the past year we have taken advantage of our setting to organize a NASA field workshop for junior investigators and senior graduate students, made field trips and planetary volcanism the centerpieces of our annual Summer Workshop for Teachers, and led a field trip around Kilauea Volcano during the Challenger Center Faculty Development conference, held on the island of Hawaii last summer. An activity for the honors Geology 101 class (all undergraduates) at the University of Hawaii is presently being planned. Our goal is to give them some hands on experience working on a field project and applying what they have learned to planetary volcanoes. The work will include qualitative observations and quantitative measurements on volcanic lava flows. Follow-up activities will involve data analysis. The trip requires planning (at least 3 months before hand) everything from accommodations and insurance to the actual activities we will be doing. Our goal is to stimulate interest and awareness in the students' surroundings, in this case, volcanoes, and to include planetary applications and how studies of terrestrial geology greatly aids studies of the other planets. Two studies are planned both of which are active research projects being conducted by the authors. These projects, tumuli in pahoehoe flow fileds and lava tube cross-secational areas, are described.

  13. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    NASA Astrophysics Data System (ADS)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.

  14. Solar System Observations with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  15. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  16. Impact Through Outreach and Education with Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Heward, A.; Barrosa, M.; Miller, S.

    2015-10-01

    Since 2005, Europlanet has provided a framework to bring together Europe's fragmented planetary science community. The project has evolved through a number of phases into a self-sustaining membership organization. Now, Europlanet is launching a new Research Infrastructure (RI) funded through the European Commission's Horizon 2020 programme that, for the next four years, will provide support, services, access to facilities, new research tools and a virtual planetary observatory. Europlanet 2020 RI's Impact Through Outreach and Education (IOE) activities aim to ensure that the work of Europlanet and the community it supports is known, understood and used by stakeholders, and that their inputs are taken into account by the project. We will engage citizens, policy makers and potential industrial partners across Europe with planetary science and the opportunities that it provides for innovation, inspiration and job creation. We will reach out to educators and students, both directly and through partner networks, to provide an interactive showcase of Europlanet's activities e.g through live link-ups with scientists participating in planetary analogue field trips, educational video "shorts" and through using real planetary data from the virtual observatory in comparative planetology educational activities. We will support outreach providers within the planetary science community (e.g. schools liaison officers, press officers, social media managers and scientists active in communicating their work) through meetings and best practice workshops, communication training sessions, an annual prize for public engagement and a seed-funding scheme for outreach activities. We will use traditional and social media channels to communicate newsworthy results and activities to diverse audiences not just in Europe but also around the globe.

  17. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  18. Spec Tool; an online education and research resource

    NASA Astrophysics Data System (ADS)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  19. Modeling aeolian dune and dune field evolution

    NASA Astrophysics Data System (ADS)

    Diniega, Serina

    Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and quantitative connections between environmental conditions, physical processes, and resultant dune and dune field morphologies, this research furthers our ability to interpret spacecraft images of dune fields, and to use present-day observations to improve our understanding of past terrestrial and martian environments.

  20. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  1. Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy

    USGS Publications Warehouse

    Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  2. Erice International Seminars on Planetary Emergencies, 17th Workshop: The Collision of an Asteroid or Comet with the Earth Held in Erice, Italy on 28 April-4 May 1993

    DTIC Science & Technology

    1993-05-04

    biomass and decrease in ocean productivity, and a climate warming of -80 C in the first few thousand years of the Tertiary. Productivity seems to have... Oligocene transition, and Chicxulub (-200 km) at the K/T boundary. Newly proposed impact structures on the Falkland Plateau (-350 km and 200 Km) apparently

  3. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  4. Thermal Protection System Development, Testing and Qualification

    NASA Astrophysics Data System (ADS)

    Venkatapathy, Ethiraj; Arnold, James; Laub, B.; Hartman, G. J.

    The science community currently has interest in planetary entry probe missions to improve our understanding of the atmospheres of Saturn and Venus [1,2]. As in the case of the Galileo entry probe, such data are critical to the understanding of not only the individual planets but also to further knowledge regarding the formation of the solar system. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient [1] to provide the desired scientific data. The heating rates for the "shallow" Saturn probes and Venus are in the range of 2 - 5KW/cm2 . It is clear that new, mid-density Thermal Protection System (TPS) materials for such probes can be mission-enabling for mass efficiency [3] and also make the use of smaller vehicles possible from advancements in scientific instrumentation [4]. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet Arcjet Facility that was used to qualify Carbon Phenolic for the Galileo Probe. This paper describes emerging TPS technology and the proposed use of an affordable, small 5 MW arc jet that can be used for TPS development in test gases appropriate for the aforementioned, new planetary probe applications. Emerging TPS technologies of interest include a mid-density, chopped molded carbon phenolic (CMCP) material around 0.8g/cc and a densified variant of phenolic impregnated carbon ablator (PICA) around 0.5g/cc. The small 5 MW arc jet facility, called the Development Arcjet Facility (DAF) and the methodology of testing TPS, both based on previous work, are discussed. Finally, the applications to Earth entry appropriate to speeds greater than lunar return (11km/s) are discussed as will facility-to-facility validation using air as a test gas. The use of other facilities for development, qualification and certification of TPS for Saturn and Venus is also discussed. [1] Atreya, S. K., et. al. Formation of Giant Planets and Their Atmospheres: Entry Probes for Saturn and Beyond; 5 th International Planetary Probe Workshop, June 25-29, Bordeaux, France. [2] Baines, K. H, et. al, Exploring Venus with Balloons: Science Objectives and Mission Architectures. 5 th International Planetary Probe Workshop, June 25-29 Bordeaux, France.

  5. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  6. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  7. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    1999-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  8. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    2000-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: ANIMATED ORBITS OF PLANETS AND MOONS: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. SOLAR SYSTEM COLLISIONS: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). SCALE OF THE UNIVERSE: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. SCIENTIFIC NOTATION: Students are interactively guided through conversions between scientific notation and regular numbers. ORBITAL SIMULATIONS: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. ASTRONOMY WORKSHOP BULLETIN BOARD: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  9. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    1999-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  10. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    NASA Astrophysics Data System (ADS)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions elaborated during the workshops, an astrobiology roadmap will be constructed tailored to the European needs and competences. 4. Education and public outreach. Parallel to the workshop and consultation activities, AstRoMap will provide a comprehensive education and outreach programme and disseminate the progress of AstRoMap through its web site (http://www.astromap.eu).

  11. Lunar Regolith Biomining: Workshop Report

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Roberto, Frank F.

    2008-01-01

    On May 5th and 6th, 2007, NASA Ames Research Center hosted a workshop entitled 'Lunar Regolith Biomining'. The workshop addressed the feasibility of biologically-based mining of the lunar regolith along with identification of views and concepts for moving this topic forward to NASA. Workshop presentations provided background in topics of interest that served as the foundation for discussion in the subsequent breakout sessions. The first topical area included the history, status, and issues with biomining on Earth to familiarize all attendees with current activities. These presentations related the primary considerations in existing biomining, e.g., microbes of choice, pH of reactions, time and temperature, specific mining applications and locations, and benefits and/or limitations of biomining. The second area reviewed existing research efforts addressing biomining of planetary surfaces (Mars, Moon), including microbial considerations, and chemical necessities in biomining and biofuel production. The last element pertained to other non-biological considerations and influences in biomining efforts on the lunar surface such as radiation fluxes and effects, and the application of small satellite experiments to learn more about the lunar and Martian surfaces. Following the presentations, the workshop attendees divided into three breakout sessions to discuss areas of interest in greater detail and to define next steps in determining the feasibility of lunar regolith biomining. Topics for each of the three breakout sessions included: 1) bio-communities of choice, target product(s), and suggested ground studies; 2) physical/environmental issues and ground studies; and 3) the development of reference experiments for the Astrobiology Small payloads Workshop. The results of the breakout sessions are summarized and a list of participants is included.

  12. Stars and linear dunes on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Blumberg, Dan G.

    1994-01-01

    A field containing 11 star and incipient star dunes occurs on Mars at 8.8 deg S, 270.9 deg W. Examples of linear dunes are found in a crater at 59.4 deg S, 343 deg W. While rare, dune varieties that form in bi- and multidirectional wind regimes are not absent from the surface of Mars. The occurence of both of these dune fields offers new insight into the nature of martian wind conditions and sand supply. The linear dunes appears to have formed through modification of a formerly transverse aeolian deposit, suggesting a relatively recent change in local wind direction. The 11 dunes in the star dune locality show a progressive change from barchan to star form as each successive dune has traveled up into a valley, into a more complex wind regime. The star dunes corroborate the model of N. Lancaster (1989), for the formation of star dunes by projection of transverse dunes into a complex, topographically influenced wind regime. The star dunes have dark streaks emanating from them, providing evidence that the dunes were active at or near the time the relevant image was obtained by the Viking 1 orbiter in 1978. The star and linear dunes described here are located in different regions on the martian surface. Unlike most star and linear dunes on Earth, both martian examples are isolated occurrences; neither is part of a major sand sea. Previously published Mars general circulation model results suggest that the region in which the linear dune field occurs should be a bimodal wind regime, while the region in which the star dunes occur should be unimodal. The star dunes are probably the result of localized complication of the wind regime owing to topographic confinement of the dunes. Local topographic influence on wind regime is also evident in the linear dune field, as there are transverse dunes in close proximity to the linear dunes, and their occurrence is best explained by funneling of wind through a topographic gap in the upwind crater wall.

  13. Analytical mesoscale modeling of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Lämmel, Marc; Kroy, Klaus

    2017-11-01

    The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this most enigmatic emergent aeolian scale.

  14. Entry Descent and Landing Workshop Proceedings. Volume 1; Commercial Sources for EDL Flight Tests

    NASA Technical Reports Server (NTRS)

    Trombetta, Nick; Horan, Steve

    2015-01-01

    Commercial Off The Shelf is defined as a Federal Acquisition Regulation (FAR) term for commercial items, including services, available in the commercial marketplace that can be bought and used under government contracts. A need for COTS exists to help in reducing avionics cost associated with applicable missions. In a 2014 a Planetary Science Decadal Survey it was stated that it is imperative that NASA expand its investment in fundamental technology areas. Reduced mass and power requirements for spacecraft and their subsystems. New and improved sensors, instruments, and sampling systems; and Mission and trajectory design and optimization Two goals were written as part of the technology investment: 1. Reducing the cost of planetary missions 2. Improving their scientific capability and reliability...." COTS could certainty aid in reducing cost associated with the instrumentation systems.

  15. Planetary system detection by POINTS

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The final report and semiannual reports 1, 2, and 3 in response to the study of 'Planetary System Detection by POINTS' is presented. The grant covered the period from 15 Jun. 1988 through 31 Dec. 1989. The work during that period comprised the further development and refinement of the POINTS concept. The status of the POINTS development at the end of the Grant period was described by Reasenberg in a paper given at the JPL Workshop on Space Interferometry, 12-13 Mar. 1990, and distributed as CfA Preprint 3138. That paper, 'POINTS: a Small Astrometric Interferometer,' follows as Appendix-A. Our proposal P2276-7-09, dated July 1990, included a more detailed description of the state of the development of POINTS at the end of the tenure of Grant NAGW-1355. That proposal, which resulted in Grant NAGW-2497, is included by reference.

  16. Workshop on Cometary Dust in Astrophysics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.

  17. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  18. A case study on dune response to infragravity waves

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Wang, Hui; Li, Huan; Wu, Shuangquan; Li, Cheng

    2017-08-01

    A series of numerical simulations were conducted using the process-based model XBeach to investigate dune response under normal and getting rid of infragravity wave conditions with different slopes. Erosion volume upside the dune toe and dune top recession are set as indicators for dune vulnerability as well as defence capacity for its front-beach. Results show that both dune erosion volume and dune top recession decrease with gentler dune slopes. Of all the simulation cases, dune with a face slope of 1/1 lost most sand and supplied most sand for lower-bed. The presence of infragravity waves is validated to be crucial to dune vulnerability. The dune erosion volume is shown to decrease by 44.5%∼61.5% and the dune top recession decreased by 0%∼45.5% correspondingly, in the case that infragravity motion is not taken into account during simulation for different dune slopes.

  19. Recommendations for Technology Development and Validation Activities in Support of the Origins Program

    NASA Technical Reports Server (NTRS)

    Capps, Richard W. (Editor)

    1996-01-01

    The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large space optics, OSAT is moving to improve the focus of its sensor, spacecraft, and interferometer/telescope technology programs on the specific additional needs of the OSS Origins Program. To better define Origins mission technology and facilitate its development, OSAT and OSS called for a series of workshops with broad participation from industry, academia and the national laboratory community to address these issues. Responsibility for workshop implementation was assigned jointly to the two NASA field centers with primary Origins mission responsibility, the Goddard Space Flight Center and the Jet Propulsion Laboratory. The Origins Technology Workshop, held at Dana Point, California between June 4 and 6, 1996 was the first in the series of comprehensive workshops aimed at addressing the broad technological needs of the Origins Program. It was attended by 64 individuals selected to provide technical expertise relevant to the technology challenges of the Origins missions. This report summarizes the results of that meeting. A higher level executive summary was considered inappropriate because of the potential loss of important context for the recommendations. Subsequent to the Origins Technology Workshop and prior to publication of this report, NASA Headquarters reorganized the activities of the Of fice of Space Access and Technology. It appears likely that responsibility for the technology programs recommended in this document will move to the Office of Space Science.

  20. Physical sense of massive development of low density minerals on the highly standing southern hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    Rotating celestial bodies are built with variously uplifted tectonic blocks of various sizes. The largest blocks are two hemispheres or two antipodean segments: one uplifted and the opposite subsided (a consequence of the wave structurization [1& others]). Having differing planetary radii and same angular velocities of rotation, these blocks must equilibrate their angular momenta by differing densities of infilling them materials (otherwise, a body will be destroyed like a not balanced car weal). For the terrestrial inner rock planets the nature normally uses dense basalts for infilling lowlands and lighter lithologies for building highlands. As relief ranges increase from Mercury to asteroids, density ranges between lowlands and highlands must also increase. Thus, in Venus it could be estimated as ~0.1 g/cm3 (lowlands -Mg-basalt, highlands -alkali basalt), in Earth as ~0.25 (tholeiite - andesite), in Mars as ~ 0.45 (Fe-basalt - syenite, granite) [2-4 & others]. Further outwards, in the asteroid belt there are representatives of very dense lithologies (irons, iron-stones) and very light lithologies (carbonaceous material). Further inwards, in Mercury with its very low relief range prevail low Fe (?)- volcanics. Low density lithologies of martian highlands include already detected by various methods alkaline and subalkaline rocks (Columbia Hills) , dacites (THEMIS data), hydrosilicates and salts (Meridiani Planum and elsewhere). It seems that salts, judging by high contents in rocks S, Cl, Br, not only serve as very abundant cement for eolian sands but also impregnate magmatic and metasomatic highland rocks diminishing their density. The giant very high Martian volcanoes are poor in Fe but not very rich in Si (Gamma-ray orbital spectrometry), as one might expect. A reasonable explanation for this discrepancy is in a high share of salts in composition of their volcanics. yNumerous areas (from 1 to 25 square km) are detected on the highlands with spectral signatures of chlorides - they can indicate at widespread NaCl depositions (Mars Odyssey orbiter, M. Osterloo team of the Univ. of Hawaii, 2008). Zeolites replacing feldspathoids were predicted [4] and were reported among other not dense hydrated minerals [5] So, massive development of low density materials on the highlands serves as an effective tool for diminishing the angular momentum of the highly standing continental segment. References: [1] Kochemasov G. G. (2004) Mars and Earth: two dichotomies - one cause // In Workshop on "Hemispheres apart: the origin and modification of the martian crustal dichotomy", LPI Contribution # 1203, Lunar and Planetary Institute, Houston, p. 37. [2] Kochemasov G.G. (1995) Possibility of highly contrasting rock types at martian highland/lowland contact // Golombek M.P., Edgett K.S., Rice J.W.Jr. (eds) Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips to the Channeled Scabland, Washington. LPI Tech. Rpt. 95-01. Pt. 1. Lunar and Planetary Inst., Houston, 1995. (63 p.), P. 18-19; [3] Kochemasov G.G. (2001) The composition of the martian highlands as a factor of their effective uplifting, destruction and production of voluminous debris // In: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs, LPI contrib. #1101, Lunar & Planetary Inst., Houston, 35-36. [4] Kochemasov G.G.(2006)(abs.), posted Feb. 2006 in a Workshop on Martian Water: Surface and Subsurface, NASA Ames Research Center, Moffett Field, Calif., Febr. 23-24, 2006 at http://es.ucsc.edu/~fnimmo/website/mars2006.html. . [5] Ehlmann B.L., Mustard J.F., Murchie S.L. (2009) Extensive aqueous alternation of Mars' earliest crust: recent results from NASA's CRISM hyperspectral imager & implications for planetary habitability // Vernadsky-Brown Microsymposium 50, Mosow, Russia, Oct. 12-14, 2009, abstract m50_11.

  1. Exploring inner structure of Titan's dunes from Cassini Radar observations

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive correlation between the backscatter and elevation along dune profile for the larger, older dunes in the Great Sand Sea in south-western Egypt and Siwa dune field in north-western Egypt, as opposed to the weak negative correlation exhibited by the smaller, younger Qattaniya dunes in north-eastern Egypt. This result is reinforced by our GPR survey on a large dune in the Siwa dune field and a smaller dune in the Qattaniya dune field. Our GPR data suggest the internal structure of larger dunes to consist of greater number of layers/cross-strata than smaller ones in the first 8 meters of the subsurface, which corresponds to the radar penetration depth at (0.8-1.2) GHz. Dunes on Titan exhibit backscatter-height dependency similar to the smaller Qattaniya dunes. In particular, the Shangri-La and Belet dunes on Titan exhibit a significantly stronger, negative correlation for the backscatter-height dependency compared to the Fensal and Aztlan dunes, suggesting a difference in the internal layering, relative ages and formation history of these dunes on Titan.

  2. Science Missions Enabled by the Ares V

    NASA Technical Reports Server (NTRS)

    Worden, Simon Peter; Weiler, Edward J.

    2008-01-01

    NASA's planned heavy-lift Ares V rocket is a centerpiece of U.S. Space Exploration Policy. With approximately 30% more capacity to Trans-Lunar Injection (TLI) than the Saturn V, Ares V could also enable additional science and exploration missions currently unachievable or extremely unworkable under current launch vehicle architectures. During the spring and summer of 2008, NASA held two workshops dedicated to the discussion of these new mission concepts for the Ares V rocket. The first workshop dealt with astronomy and astrophysics, and the second dealt primarily with planetary science and exploration, but did touch on Earth science and heliophysics. We present here the summary results and outcomes of these meetings, including a discussion of specific mission concepts and ideas, as well as suggestions on design for the Ares V fairing and flight configurations that improve science return.

  3. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  4. Mars Telescopic Observations Workshop II

    NASA Technical Reports Server (NTRS)

    Sprague, A. L. (Editor); Bell, J. F., III (Editor)

    1997-01-01

    Mars Telescopic Observations Workshop E convened in Tucson, Arizona, in October 1997 by popular demand slightly over two years following the first successful Mars Telescopic Observations Workshop, held in Ithaca, New York, in August 1995. Experts on Mars from the United Kingdom, Japan, Germany, and the United States were present. Twenty-eight oral presentations were made and generous time allotted for useful discussions among participants. The goals of the workshop were to (1) summarize active groundbased observing programs and evaluate them in the context of current and future space missions to Mars, (2) discuss new technologies and instrumentation in the context of changing emphasis of observations and theory useful for groundbased observing, and (3) more fully understand capabilities of current and planned Mars missions to better judge which groundbased observations are and will continue to be of importance to our overall Mars program. In addition, the exciting new discoveries presented from the Pathfinder experiments and the progress report from the Mars Global Surveyor infused the participants with satisfaction for the successes achieved in the early stages of these missions. Just as exciting was the enthusiasm for new groundbased programs designed to address new challenges resulting from mission science results. We would like to thank the National Aeronautics and Space Administration as well as Dr. David Black, director of the Lunar and Planetary Institute, and the staff of the Institute's Publications and Program Services Department for providing logistical, administrative, and publication support services for this workshop.

  5. Space Vision: Making Astronomy Accessible to Visually Impaired Students

    NASA Astrophysics Data System (ADS)

    Ries, J. G.; Baguio, M. R.; Jurgens, T. D.; Pruett, K. M.

    2004-05-01

    Astronomy, with good reason, is thought of as a visual science. Spectacular images of deep space objects or other worlds of our solar system inspire public interest in Astronomy. People encounter news about the universe during their daily life. Developing concepts about celestial objects presents an extra challenge of abstraction for people with visual impairments. The Texas Space Grant Consortium with educators at the Texas School for the Blind and Visually Impaired have developed a 2 day workshop to be held in April 2004 to help students with visual impairments understand these concepts. Hands-on activities and experiments will emphasize non-visual senses. For example, students will learn about: - Constellations as historical ways of finding one's way across the sky. - The size and structure of the Solar System by building a scale model on a running track. They will also: - Plan a planetary exploration mission. - Explore wave phenomenon using heat and sound waves. In preparation for the workshop we worked with teens involved in the countywide 4-H Teens Leading with Character (TLC) program to create the tactile materials necessary for the activities. The teens attended solar system education training so they would have the skills necessary to make the tactile displays to be used during the workshop. The results and evaluation of the workshop will be presented at the meeting. Touch the Universe: A NASA Braille Book of Astronomy inspired this workshop, and it is supported by HST Grant HST-ED-90255.01-A.

  6. Implications of dune pattern analysis for Titan's surface history

    NASA Astrophysics Data System (ADS)

    Savage, Christopher J.; Radebaugh, Jani; Christiansen, Eric H.; Lorenz, Ralph D.

    2014-02-01

    Analysis of large-scale morphological parameters can reveal the reaction of dunes to changes in atmospheric and sedimentary conditions. Over 7000 dune width and 7000 dune spacing measurements were obtained for linear dunes in regions across Saturn's moon Titan from images T21, T23, T28, T44 and T48 collected by the Synthetic Aperture RADAR (SAR) aboard the Cassini spacecraft in order to reconstruct the aeolian surface history of Titan. Dunes in the five study areas are all linear in form, with a mean width of 1.3 km and mean crest spacing of 2.7 km, similar to dunes in the African Saharan and Namib deserts on Earth. At the resolution of Cassini SAR, the dunes have the morphology of large linear dunes, and they lack evidence for features of compound or complex dunes. The large size, spacing and uniform morphology are all indicators that Titan's dunes are mature features, in that they have grown toward a steady state for a long period of time. Dune width decreases to the north, perhaps from increased sediment stabilization caused by a net transport of moisture from south to north, or from increased maturity in dunes to the south. Cumulative probability plots of dune parameters measured at different locations across Titan indicate there is a single population of intermediate-to-large-sized dunes on Titan. This suggests that, unlike analogous dunes in the Namib and Agneitir Sand Seas, dune-forming conditions that generated the current set of dunes were stable and active long enough to erase any evidence of past conditions.

  7. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  8. An automated approach for extracting Barrier Island morphology from digital elevation models

    NASA Astrophysics Data System (ADS)

    Wernette, Phillipe; Houser, Chris; Bishop, Michael P.

    2016-06-01

    The response and recovery of a barrier island to extreme storms depends on the elevation of the dune base and crest, both of which can vary considerably alongshore and through time. Quantifying the response to and recovery from storms requires that we can first identify and differentiate the dune(s) from the beach and back-barrier, which in turn depends on accurate identification and delineation of the dune toe, crest and heel. The purpose of this paper is to introduce a multi-scale automated approach for extracting beach, dune (dune toe, dune crest and dune heel), and barrier island morphology. The automated approach introduced here extracts the shoreline and back-barrier shoreline based on elevation thresholds, and extracts the dune toe, dune crest and dune heel based on the average relative relief (RR) across multiple spatial scales of analysis. The multi-scale automated RR approach to extracting dune toe, dune crest, and dune heel based upon relative relief is more objective than traditional approaches because every pixel is analyzed across multiple computational scales and the identification of features is based on the calculated RR values. The RR approach out-performed contemporary approaches and represents a fast objective means to define important beach and dune features for predicting barrier island response to storms. The RR method also does not require that the dune toe, crest, or heel are spatially continuous, which is important because dune morphology is likely naturally variable alongshore.

  9. A data driven model for dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Brodie, K.; Spore, N.

    2016-12-01

    Dune morphology results from a number of competing feedbacks between wave, Aeolian, and biologic processes. Only now are conceptual and numerical models for dunes beginning to incorporate all aspects of the processes driving morphodynamics. Drawing on a 35-year record of observations of dune morphology and forcing conditions at the Army Corps of Engineers Field Research Facility (FRF) at Duck, NC, USA, we hypothesize that local dune morphology results from the competition between dune growth during dry windy periods and erosion during storms. We test our hypothesis by developing a data driven model using a Bayesian network to hindcast dune-crest elevation change, dune position change, and shoreline position change. Model inputs include a description of dune morphology from dune-crest elevation, dune-base elevation, dune width, and beach width. Wave forcing and the effect of moisture is parameterized in terms of the maximum total water level and period that waves impact the dunes, along with precipitation. Aeolian forcing is parameterized in terms of maximum wind speed, direction and period that wind exceeds a critical value for sediment transport. We test the sensitivity of our model to forcing parameters and hindcast the 35-year record of dune morphodynamics at the FRF. We also discuss the role of vegetation on dune morphologic differences observed at the FRF.

  10. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-08

    ISS013-E-65526 (8 Aug. 2006) --- Issaouane Dune Sea, Eastern Algeria is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. This view from one of the smaller dune seas in the central Sahara shows the complex but regular patterns produced by winds in deserts where abundant sand is available. Geologists now know that dune seas (also called ergs) comprise at least three orders of dune size. In this image the largest and oldest appear here as chains oriented about 60 degrees apart, that is, one oriented almost north-south, the other southwest-northeast. The "streets" between the dune chains (also called mega-dunes) are swept clean of sand in places, revealing the original surface, with light colored muds and salt derived from very occasional rains. The chains have probably taken hundreds of thousands of years to accumulate, starting when the Sahara began to become significantly dry roughly 2.5 million years ago. Rivers became smaller, failed to reach the sea and deposited their sand load in the desert. Wind did the rest, blowing the sand into aerodynamic dune forms. According to scientists, chain trends coincide with two of the four major trends identified in the Great Eastern Sand Sea immediately to the north. Each trend likely implies a different formative wind direction--attesting to the climate shifts that have occurred since sand began to accumulate in the central Sahara. Smaller dunes are superimposed on the mega-dunes. Sinuous crest lines are the mesoscale (intermediate in size) forms, forming octopus-like crests, especially evident as the arms of star dunes. Whereas the mega-dunes are apparently stationary, studies based on aerial photographs in other parts of the world show that these dune crests move in the course of decades. The smallest dunes appear in patches on the eastern sides of the mega-dunes as a tracery of closely spaced crests. Small dunes move fast and reform quickly as stronger winds shift with the seasons. Sand grains are blown continuously from upwind dunes, across the dune-free flats. Small dunes form when the grains slow down and accumulate at the next large dune. The small dunes ride up and over the backs of the mega- and meso-dunes. Interestingly the crest orientation of the small dunes is different from that of the mesoscale dunes throughout the image. This is a common effect of wind direction shifting locally depending on dune height: the increased friction caused by larger dunes causes formative winds to blow to the left of the (weaker) winds that form the small dunes. The friction effect of larger dunes is to the right in the southern hemisphere, well illustrated on the coast of the Namib Desert.

  11. Generic and scientific constraints involving geoethics and geoeducation in planetary geosciences

    NASA Astrophysics Data System (ADS)

    Martínez-Frías, Jesús

    2013-04-01

    Geoscience education is a key factor in the academic, scientific and professional progress of any modern society. Geoethics is an interdisciplinary field, which involves Earth and Planetary Sciences as well as applied ethics, regarding the study of the abiotic world. These coss-cutting interactions linking scientific, societal and cultural aspects, consider our planet, in its modern approach, as a system and as a model. This new perspective is extremely important in the context of geoducation in planetary geosciences. In addition, Earth, our home planet, is the only planet in our solar system known to harbor life. This also makes it crucial to develop any scientific strategy and methodological technique (e.g. Raman spectroscopy) of searching for extraterrestrial life. In this context, it has been recently proposed [1-3] that the incorporation of the geoethical and geodiversity issues in planetary geology and astrobiology studies would enrich their methodological and conceptual character (mainly but not only in relation to planetary protection). Modern geoscience education must take into account that, in order to understand the origin and evolution of our planet, we need to be aware that the Earth is open to space, and that the study of meteorites, asteroids, the Moon and Mars is also essential for this purpose (Earth analogs are also unique sites to define planetary guidelines). Generic and scientific constraints involving geoethics and geoeducation should be incorporated into the teaching of all fundamental knowledge and skills for students and teachers. References: [1] Martinez-Frias, J. et al. (2009) 9th European Workshop on Astrobiology, EANA 09, 12-14 October 2009, Brussels, Belgiam. [2] Martinez-Frias, J., et al. (2010) 38th COSPAR Scientific Assembly. Protecting the Lunar and Martian Environments for Scientific Research, Bremen, Germany, 18-25 July. [3] Walsh et al. (2012) 43rd Lunar and Planetary Science Conference, 1910.pdf

  12. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  13. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    NASA Astrophysics Data System (ADS)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  14. Space Electrochemical Research and Technology (SERT)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The conference provided a forum to assess critical needs and technologies for the NASA electrochemical energy conversion and storage program. It was aimed at providing guidance to NASA on the appropriate direction and emphasis of that program. A series of related overviews were presented in the areas of NASA advanced mission models (space stations, low and geosynchronous Earth orbit missions, planetary missions, and space transportation). Papers were presented and workshops conducted in a variety of technical areas, including advanced rechargeables, advanced concepts, critical physical electrochemical issues, and modeling.

  15. Mars global digital dune database and initial science results

    USGS Publications Warehouse

    Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R.

    2007-01-01

    A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera. narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds. Copyright 2007 by the American Geophysical Union.

  16. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the development of vegetation-stabilized dunes, which should be helpful in better understanding of vegetated dune morphology, model verification and prediction, and guiding practical dune stabilization efforts.

  17. Factors influencing the natural regeneration of the pioneering shrub Calligonum mongolicum in sand dune stabilization plantations in arid deserts of northwest China.

    PubMed

    Fan, Baoli; McHugh, Allen David; Guo, Shujiang; Ma, Quanlin; Zhang, Jianhui; Zhang, Xiaojuan; Zhang, Weixing; Du, Juan; Yu, Qiushi; Zhao, Changming

    2018-03-01

    Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.

  18. Ganges Features

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03285 Ganges Features

    This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image.

    Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Melas Chasma Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03041 Dunes in Darwin Crater

    The landslide in the center of this image occurred in the Melas Chasma region of Valles Marineris.

    Image information: VIS instrument. Latitude 11S, Longitude 292.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-15

    This VIS image highlights the dune form/dune density aspects of Olypmia Undae. In the center there is a brighter, diagonal region of few dunes. These dunes are the arc or crescent shape of barchan dunes. As more sand becomes available the barchan dunes begin to merge into transverse dunes. The region of dunes surrounding the bright swath still have the underlying surface visible, and the transverse dunes have a lace-like layout. In the regions with a significant abundance of sand have developed the tightly packed transverse dunes with the wave-like distribution. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 13238 Latitude: 80.7247 Longitude: 173.91 Instrument: VIS Captured: 2004-12-08 09:25 https://photojournal.jpl.nasa.gov/catalog/PIA22296

  1. Astrophysics from the moon; Proceedings of the Workshop, Annapolis, MD, Feb. 5-7, 1990

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J. (Editor); Smith, Harlan J. (Editor)

    1990-01-01

    The present conference on astrophysics from the moon encompasses the study of the Galaxy, external planetary systems, solar physics, stars and stellar evolution, the frontiers of Galactic, extragalactic, and cosmological astronomy, an introduction to lunar-based astronomy, concepts for lunar observatories including high-energy observatories, solar observatories, and observatories for particle astrophysics and gravitational studies. Specific issues addressed include the dynamics of Jovian atmospheres, planetary magnetospheres, flare physics, exobiology and SETI from the lunar farside, and the study of interactive stars, star formation, H II regions in absorption at low frequencies, and normal galaxies. Also addressed are the potential lunar investigation of quasars, the formation epoch, and the large-scale structure of the universe, and observational issues related to X-ray large arrays, optical interferometers, VLF radio astronomy, a UV-solar reflecting coronagraph, and a heavy-nucleus detector.

  2. Extravehicular Activity and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  3. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  4. The Whole Heliosphere Interval: Campaign Summaries and Early Results

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gibson, Sarah E.; Kozyra, Janet U.

    2008-01-01

    The Whole Heliosphere Interval (WHI) is an internationally coordinated observing and modeling effort to characterize the 3-dimensional interconnected solar-heliospheric-planetary system - a.k.a. the "heliophysical" system. The heart of the WHI campaign is the study of the interconnected 3-D heliophysical domain, from the interior of the Sun, to the Earth, outer planets, and into interstellar space. WHI observing campaigns began with the 3-0 solar structure from solar Carrington Rotation 2068, which ran from March 20 - April 16, 2008. Observations and models of the outer heliosphere and planetary impacts extended beyond those dates as necessary; for example, the solar wind transit time to outer planets can take months. WHI occurs during solar minimum, which optimizes our ability to characterize the 3-D heliosphere and trace the structure to the outer limits of the heliosphere. A summary of some of the key results from the WHI first workshop in August 2008 will be given.

  5. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms a long and narrow trough between nebkhas by the "funnelling effect". This process forces sand towards lee slopes, which transform from concave (original barchans) into convex, ultimately resulting in the formation of palmate parabolic dunes.

  6. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: discussion

    USGS Publications Warehouse

    Rubin, David M.; Rubin, Alan M.

    2013-01-01

    Zhou et al. (2012) proposed that longitudinal dunes in the Qaidam Basin, China, formed like yardangs: by erosion into sediment that was not deposited by those dunes. Because erosion occurs on the upwind flanks of most migrating dunes (Rubin and Hunter, 1982, 1985), the key to demonstrating a yardang-like origin is to show that the dunes did not deposit the strata that they contain. Zhou et al. made this argument by proposing that: (1) The dunes have not deposited cross-strata in the past 810 yr. (2) Cross-bedding within the dunes was not deposited by the dunes on the present-day land surface, but rather by older dunes that had a different morphology. (3) The present dunes are a later generation, “most likely of erosional origin similar to yardangs with orientations controlled by strikes of joints,” (p. 1147). (4) Rates of deflation in the dune field have been extremely high for the past 810–2440 yr. This commentary reviews these conclusions, reviews contradictory observations, and considers alternative interpretations.

  7. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations.

    PubMed

    Kiang, Nancy Y; Domagal-Goldman, Shawn; Parenteau, Mary N; Catling, David C; Fujii, Yuka; Meadows, Victoria S; Schwieterman, Edward W; Walker, Sara I

    2018-06-01

    The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O 2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets-Biosignatures-Remote observation-Spectral imaging-Bayesian analysis. Astrobiology 18, 619-626.

  8. Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations

    PubMed Central

    Domagal-Goldman, Shawn; Parenteau, Mary N.; Catling, David C.; Fujii, Yuka; Meadows, Victoria S.; Schwieterman, Edward W.; Walker, Sara I.

    2018-01-01

    Abstract The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets—Biosignatures—Remote observation—Spectral imaging—Bayesian analysis. Astrobiology 18, 619–626. PMID:29741918

  9. Organic materials in planetary and protoplanetary systems: nature or nurture?

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well as observational data, we infer that both "nature" and "nurture" are instrumental in the coloration of small objects in the outer parts

  10. Morphodynamics of dome dunes under unimodal wind regimes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2017-04-01

    Dome dunes are isolated sand piles with a rounded shape and no slip face. They are not only incipient or disappearing dunes, they can also reach a giant size and form dome-dune fields. Nevertheless, unlike other types of dunes, they have not been the subject of intense research, certainly because they result from complex multidirectional wind regimes. Here we analyze the morphodynamics of dome dunes under unimodal wind regimes. From numerical modeling using a normal distribution of sand flux orientation, we show that the transition from barchan to dome dunes occur when the standard deviation is larger than 40°. As confirmed by sand flux roses of dome-dune fields in arid deserts on Earth, it corresponds to RDP/DP-value of 0.8 (RDP/DP is the ratio between the resultant drift potential and the drift potential). Both in the field and in the numerical model, the transition from barchan to dome-dunes can also be captured from the coefficient of variation of the planar dune shape. Not surprisingly, smaller dome dunes are faster than larger ones. However, the dependence of dune migration rate on the RDP-value changes according to the presence or absence of slip faces because of the speed-up effect. Transient finger dunes may develop in dome-dune fields, but they rapidly break-up into smaller bodies. This shows that, contrary to bidirectional wind regimes, a large dispersion of sand flux orientation is not efficient in building longitudinal dunes.

  11. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

    2013-12-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  12. Investigation of Reversing Sand Dunes at the Bruneau Dunes, Idaho, as Analogs for Features on Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Scheidt, S. P.

    2012-12-01

    The Bruneau Dunes in south-central Idaho include several large reversing sand dunes located within a cut-off meander of the Snake River. These dunes include the largest single-structured sand dune present in North America. Wind records from the Remote Automated Weather Station (RAWS) installation at the Mountain Home Air Force Base, which is ~21 km NW of the Bruneau Dunes, have proved to be very helpful in assessing the regional wind patterns at this section of the western Snake River Plains province; a bimodal wind regime is present, with seasonal changes of strong (sand-moving) winds blowing from either the northwest or the southeast. During April of 2011, we obtained ten precision topographic surveys across the southernmost reversing dune using a Differential Global Positioning System (DGPS). The DGPS data document the shape of the dune going from a low, broad sand ridge at the southern distal end of the dune to the symmetrically shaped 112-m-high central portion of the dune, where both flanks of the dune consist of active slopes near the angle of repose. These data will be useful in evaluating the reversing dune hypothesis proposed for enigmatic features on Mars called Transverse Aeolian Ridges (TARs), which could have formed either as large mega-ripples or small sand dunes. The symmetric profiles across TARs with heights greater than 1 m are more consistent with measured profiles of reversing sand dunes than with measured profiles of mega-ripples (whose surfaces are coated by large particles ranging from coarse sand to gravel, moved by saltation-induced creep). Using DGPS to monitor changes in the three-dimensional location of the crests of the reversing dunes at the Bruneau Dunes should provide a means for estimating the likely timescale for changes of TAR crests if the Martian features are indeed formed in the same manner as reversing sand dunes on Earth.

  13. Backscatter modelling and inversion from Cassini/SAR data: Implications for Titan's sand seas properties and climatic conditions

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Rodriguez, S.; Lemonnier, F.; Paillou, P.; Le Gall, A. A.; Narteau, C.

    2015-12-01

    Sand seas on Titan may reflect the present and past climatic conditions. Understanding the morphodynamics and physicochemical properties of Titan's dunes is therefore essential for a better comprehension of the climatic and geological history of the largest Saturn's moon. We derived quantitatively surface properties (texture, composition) from the modelling of microwave backscattered signal and Monte Carlo inversion of despeckled Cassini/SAR data over the equatorial sand seas. We show that dunes and inter-dunes have significantly different physical properties. Absorption is more efficient in the dunes compared to the inter-dunes. The inter-dunes are smoother with an higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs, suggesting the presence of a shallow layer of sediment in between the dunes. Additionally potential secondary bedforms may have been detected. Implications for dune morphodynamics, sediment inventory and climatic conditions occurring on Titan will be discussed.

  14. The Astronomy Workshop: Scientific Notation and Solar System Visualizer

    NASA Astrophysics Data System (ADS)

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2008-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes and by the general public. The philosophy of the site is to foster student interest in astronomy by exploiting their fascination with computers and the internet. We have expanded the "Scientific Notation” tool from simply converting decimal numbers into and out of scientific notation to adding, subtracting, multiplying, and dividing numbers expressed in scientific notation. Students practice these skills and when confident they may complete a quiz. In addition, there are suggestions on how instructors may use the site to encourage students to practice these basic skills. The Solar System Visualizer animates orbits of planets, moons, and rings to scale. Extrasolar planetary systems are also featured. This research was sponsored by NASA EPO grant NNG06GGF99G.

  15. Impacts of Vegetation and Development on the Morphology of Coastal Sand Dunes Using Modern Geospatial Techniques: Jockey's Ridge Case Study

    NASA Astrophysics Data System (ADS)

    Weaver, K.; Mitasova, H.; Overton, M.

    2011-12-01

    LiDAR surveys acquired in the years 2007 and 2008, combined with previous LiDAR, topographic mapping and aerial imagery collected along the Outer Banks of North Carolina were used for comprehensive geospatial analysis of the largest sand dune on the eastern coast of the United States, Jockey's Ridge. The objective of the analysis was to evaluate whether the dune's evolution has continued as hypothesized in previous studies and whether an increase of development and vegetation has contributed to the dune's stabilization and overall loss of dune height. Geospatial analysis of the dune system evolution (1974 - 2008) was performed using time series of digital elevation models at one meter resolution. Image processing was conducted in order to analyze land cover change (1932 - 2009) using unsupervised classification to extract vegetation, development and sand in and around Jockey's Ridge State Park. The dune system evolution was then characterized using feature-based and raster-based metrics, including vertical and horizontal change of dune peaks, horizontal migration of dune crests, slip face geometry transformation and volume change analysis using the core and dynamic layer concept. Based on the evolutionary data studied, the volume of sand at Jockey's Ridge is consistent throughout time, composed of a stable core and a dynamically migrating layer that is not gaining or losing sand. Although the peak elevation of the Main Dune has decreased from 43m in 1953 to 22m in 2008, the analysis has shown that the sand is redistributed within the dune field. Today, the dune field peaks are increasing in elevation, and all of the dunes within the system are stabilizing at similar heights of 20-22m along with transformation of the dunes from unvegetated, crescentic to vegetated, parabolic dunes. The overall land cover trend indicates that since the 1930s vegetation and development have gradually increased over time, influencing the morphology of the dune field by stabilizing the area of sand that once fed the dunes, limiting aeolian sand transport and migration of the dune system. Not only are vegetation and development increasing around the Jockey's Ridge State Park, but vegetation is increasing inside the park boundaries with the majority of growth along the windward side of the dune system, blocking sand from feeding the dunes. Vegetation growth is also found to increase in front of the dune field, recently causing the migration of the dune to slow down.

  16. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation and a parabolic-to-barchan dune transformation have been identified. These zones exhibit different characteristics and dynamics that are sensitive to changes in environmental forces, and can be potentially used as a proxy to monitor the mobility of a dune system.

  17. Megadroughts and late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Hanson, P. R.; Arbogast, A. F.; Johnson, W. C.; Joeckel, R. M.; Young, A. R.

    2010-01-01

    Optical and radiocarbon dating indicates that alluvium underlying dunes near Abilene was deposited at or before ˜45 ka, and that the overlying dunes were active at ˜1.1-0.5 ka. Geochemical data indicate that the Abilene dune sand is immature and was derived from the underlying Pleistocene alluvium, and not from Holocene age Smoky Hill River deposits. These findings suggest that dune activation was a response to increased aridity and local reduction in vegetation cover as opposed to changes in sediment availability from nearby rivers. The time interval of dune activation at Abilene overlaps Medieval Warm Period megadroughts, similar to the larger and more westerly dune fields on the Great Plains, including the Nebraska Sand Hills and the Great Bend Sand Prairie. The activation of smaller dune fields such as the Abilene dunes near the more humid eastern margin of the Great Plains shows the geographic extent and severity of paleodrought events. Unlike the Duncan dunes, another plains-marginal dune field, however, the Abilene dunes show no evidence for multiple drought events during the Holocene. This difference in dune activity, if it is not a result of sampling or preservation bias, indicates variations in the extent and severity of older drought events at the eastern margin of the Great Plains.

  18. Martian Morse Code

    NASA Image and Video Library

    2016-06-29

    These dark dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction. However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the dunes here form distinct dots and dashes. The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape. The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area. http://photojournal.jpl.nasa.gov/catalog/PIA20735

  19. A bibliography of dunes: Earth, Mars, and Venus

    NASA Technical Reports Server (NTRS)

    Lancaster, N.

    1988-01-01

    Dunes are important depositional landforms and sedimentary environments on Earth and Mars, and may be important on Venus. The similarity of dune forms on Earth and Mars, together with the dynamic similarity of aeolian processes on the terrestrial planets indicates that it is appropriate to interpret dune forms and processes on Mars and Venus by using analog studies. However, the literature on dune studies is large and scattered. The aim of this bibliography is to assist investigators by providing a literature resource on techniques which have proved successful in elucidating dune characteristics and processes on Earth, Mars, and Venus. This bibliography documents the many investigations of dunes undertaken in the last century. It concentrates on studies of inland dunes in both hot and cold desert regions on Earth and includes investigations of coastal dunes only if they discuss matters of general significance for dune sediments, processes, or morphology.

  20. Europa's Icy Shell: A Bridge Between Its Surface and Ocean

    NASA Technical Reports Server (NTRS)

    Schenk, Paul; Mimmo, Francis; Prockter, Louise

    2004-01-01

    Europa, a Moon-sized, ice-covered satellite of Jupiter, is second only to Mars in its astrobiological potential. Beneath the icy surface, an ocean up to 150 km deep is thought to exist, providing a potential habitat for life,and a tempting target for future space missions. The Galileo mission to the Jovian system recently ended, but there are already long-range plans to send much more capable spacecraft,such as the proposed Jupiter Icy Moons Orbiter (JIMO), to take a closer look at Europa and her siblings, Ganymede and Callisto, some time in the next two decades. Europak outer icy shell is the only interface between this putative ocean and the surface, but many aspects of this shell are presently poorly understood; in particular, its composition, thickness, deformational history, and mechanical properties. To discuss the ice shell and our current understanding of it, 78 scientists from the terrestrial and planetary science communities in the United States and Europe gathered for a 3-day workshop hosted by the Lunar and Planetary Institute in Houston in February. A key goal was to bring researchers from disparate disciplines together to discuss the importance and limitations of available data on Europa with a post-Galileo perspective. The workshop featured 2 days of reviews and contributed talks on the composition, physical properties, stratigraphy, tectonics, and future exploration of the ice shell and underlying ocean. The final morning included an extended discussion period, moderated by a panel of noted experts, highlighting outstanding questions and areas requiring future research.

  1. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    NASA Astrophysics Data System (ADS)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star dunes located in E and W parts of the erg allow inferring that there must have been differences in supply of the aeolian sand. Eastern slopes of compound star dunes developed in the W part of the erg are inclined 10-15°. This shows that significant delivery of the sand must have occurred also from NE. Eastern slopes of compound star dunes located in the E part of the erg are inclined 20-30°. It can be therefore inferred that they have functioned mainly as lee slopes and the sand was delivery from SW. This proves that location of the dunes within the erg plays a significant role in shaping wind directions responsible for delivery of the sand. Orientation of subsidiary arms does not show any relationship with general wind regime, which leads to conclusion that the subsidiary arms develop due to local diversified regime of nearsurface wind flow. This is governed by barriers such as the star dunes themselves and not by other topographic obstacles.

  2. 'Endurance Crater's' Dazzling Dunes (false-color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

    Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

    Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

  3. What is a Dune: Developing AN Automated Approach to Extracting Dunes from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Taylor, H.; DeCuir, C.; Wernette, P. A.; Taube, C.; Eyler, R.; Thopson, S.

    2016-12-01

    Coastal dunes can absorb storm surge and mitigate inland erosion caused by elevated water levels during a storm. In order to understand how a dune responds to and recovers from a storm, it is important that we can first identify and differentiate the beach and dune from the rest of the landscape. Current literature does not provide a consistent definition of what the dune features (e.g. dune toe, dune crest) are or how they can be extracted. The purpose of this research is to develop enhanced approaches to extracting dunes from a digital elevation model (DEM). Manual delineation, convergence index, least-cost path, relative relief, and vegetation abundance were compared and contrasted on a small area of Padre Island National Seashore (PAIS), Preliminary results indicate that the method used to extract the dune greatly affects our interpretation of how the dune changes. The manual delineation method was time intensive and subjective, while the convergence index approach was useful to easily identify the dune crest through maximum and minimum values. The least-cost path method proved to be time intensive due to data clipping; however, this approach resulted in continuous geomorphic landscape features (e.g. dune toe, dune crest). While the relative relief approach shows the most features in multi resolution, it is difficult to assess the accuracy of the extracted features because extracted features appear as points that can vary widely in their location from one meter to the next. The vegetation approach was greatly impacted by the seasonal and annual fluctuations of growth but is advantageous in historical change studies because it can be used to extract consistent dune formation from historical aerial imagery. Improving our ability to more accurately assess dune response and recovery to a storm will enable coastal managers to more accurately predict how dunes may respond to future climate change scenarios.

  4. Southern hemisphere sand furrows: spatial patterning and implications for the cryo-venting process.

    NASA Astrophysics Data System (ADS)

    Nash, Ciaran; Bourke, Mary

    2015-04-01

    Carbon dioxide is an important volatile on Mars. Seasonally, atmospheric CO2 condenses as ice on to the Martian surface and sublimates during the spring. Links have been made between a suite of observed surface features and the sublimation of surface CO2 ice; these include spider-like araneiform, gullies, and fans. Sand furrows are one such feature; suggested to form due to the erosive action of pressurised CO2 gas as it escapes through cracks in surficial ice (i.e. cryo-venting, Bourke, 2013). There are significant and important differences between the North and South Hemispheres, particularly in the seasonal CO2 deposits. Previous investigations into the formation and distribution of sand furrows on Mars have concentrated solely on the northern hemisphere. We present a study of furrows in the southern hemisphere which has yielded new data on their distribution and spatial patterning as well as providing insights into the cryo-venting process. A total of 221 dune sites were surveyed over the three Martian years' of available HiRISE data to establish the overall distribution of sand furrows. A more detailed study was carried out at eight sites using data from Mars Year 30. These sites represent a latitudinal sample of dunefields located between 40°S to 72°S. Surficial CO2 ice thickness was estimated using the Mars Climate Database (Millour et al., 2014). Our data show that sand furrows are significantly less numerous in the study region than in the northern hemisphere where data show they occur in 95% of surveyed sites. We found a strong correlation between latitude and furrow distribution. As one progresses polewards from 40°S, furrows become more numerous until 68°S. Furrows were not detected south of 72°S. Carbon dioxide ice thickness has been highlighted as a potentially important factor controlling furrow distribution in the northern hemisphere (Bourke and McGaley-Towle, 2014). Results from our investigation suggest there is a feedback mechanism between CO¬2 ice thickness and furrow formation; indicating a threshold thickness above which geomorphologically effective cryo-venting may not occur. Bourke, M. C., The Formation of Sand Furrows by Cryo-Venting on Martian Dunes. 44th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 2013, pp. Abstract #2919. Bourke, M. C., McGaley-Towle, Why do sand furrows distributions vary in the North Polar latitudes on Mars? , European Geosciences Union, Vienna, Vol. 16, EGU2014-13626, 2014. Millour, E., et al., The Mars Climate Database (MCD version 5.1). Eighth International Conference on Mars. Lunar and Planetary Institute, Houston, 2014, pp. Abstract #1184.

  5. Mars in True Color (almost)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 14 November 2003

    This spectacular view of the sunlit cliffs and basaltic sand dunes in southern Melas Chasma shows Mars in a way rarely seen: in full, realistic color. The colorization is the result of a collaboration between THEMIS team members at Cornell University and space artist Don Davis, who is an expert on true-color renderings of planetary and astronomical objects. Davis began with calibrated and co-registered THEMIS VIS multi-band radiance files produced by the Cornell group. Using as a guide true-color imaging from the Hubble Space Telescope and his own personal experience at Mt. Wilson and other observatories, he performed a manual color balance to match more closely the colors of previous visual Mars observations. He also did some manual smoothing and other image processing to minimize the effects of residual scattered light in the images. The result is a view of Mars that invites comparisons to Earth; a scene that one might observe out the window on a flight over the southwest United States, but not quite. The basaltic dunes are commonplace on Mars but a rare feature on Earth. The rounded knobs and elongated mesas on the canyon floor show an erosional style as exotic as Utah's Bryce Canyon but wholly familiar on Mars. Although the inhospitable Martian atmosphere cannot be seen, the magnificent Martian landscape on display in this image beckons space-suited human explorers and the sightseers who will follow.

    Initial image processing and calibration by THEMIS team members J. Bell, T. McConnochie, and D. Savransky at Cornell University; additional processing and final color balance by space artist Don Davis.

    Image information: VIS instrument. Latitude -12.7, Longitude 288.6 East (71.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations agree well with the real dune morphologies when a low vegetation growth rate is applied in the model. Although geochronological investigations, reported in the literature, on the Cooper Creek floodplain did not show the linear dunes declining in age downwind (which suggests the adjacent swales or the transverse dune to be the sediment source), our simulations show that strikingly similar linear dune morphologies can be obtained by sediment influx due to saltation alone. In this case, the bars of the palaeo-Cooper system might as well have served as the sediment source for the formation of the linear dunes. Therefore, our results suggest that a long-distance transport extension model could also explain the linear dune formation, while previous geochronological investigations supported the wind-rift vertical extension and wind-rift vertical accretion models. The morphodynamic simulations may thus not only help to reconstruct the palaeoenvironment of the northern Strzelecki Desert, but also provide insights for the interpretation of the sediment archives located on the Cooper Creek alluvial fan.

  7. Barchan and Linear Dunes on Earth and Mars - Comparative Research

    NASA Astrophysics Data System (ADS)

    Tsoar, H.; Edgett, K. S.; Schatz, V.; Parteli, E. J.; Herrmann, H. J.

    2007-05-01

    High resolution images from MGS and MRO reveal, in detail, ripples and dunes on Mars that were not discerned in old Viking images. The two basic dune types known on Earth, barchan (and transverse) and seif (linear), are also common on Mars, although seif dunes are quite rare on that planet. Some Martian barchan and seif dunes have a different morphology, particularly as evident in the Martian north polar region. Some of the barchans have an elongated, elliptical shape, while some of the linear dunes lack the sinuosity commonly associated with terrestrial seif dunes. These barchan and linear dunes occur together, side-by-side, and in some cases are merged to create a single bed-form. Induration of the dunes, or crust formation, can explain the occurrence of these dunes of unusual morphology in the Martian north polar region. Crusts may form as water vapor diffuses into and out of the fine-grained materials on the planet's surface. Salts would be deposited as intergranular cement. Because these bedforms occur in the polar region, the cementing agent could be ice instead of salts; indeed, the dunes spend more than half each Martian year beneath a covering of seasonal frost, mostly frozen carbon dioxide. Elliptical shaped barchans were created artificially in Saudi Arabia by spraying advancing barchan dunes with crude oil to stabilize them until the dunes reached a streamlined body shape. Simulation work indicates that the same process can occur on the indurated Martian barchans, but by cementation of grains rather than introduction of oil. Short lee dunes that have a linear shape with a sharp-edged crest are known to form from sand accumulation at the lee side of obstacles. Once a dune is stabilized by induration or crust, it functions as an obstacle to the wind. Linear lee dunes stabilized by ice (water or carbon dioxide) or mineral crust may elongate and form a long linear dune that aligns parallel to the wind. Melting of the ice will set up a straight linear dune, with loose sand, parallel to the dominant wind. Field observations on terrestrial deserts show that such a dune can only be formed when it is covered by vegetation. If vegetation is removed the bare linear dune disintegrates into small barchans. Simulation also shows that linear dune is unstable and deforms until it takes the shape of a string of barchans, which are the stable shape under unidirectional winds.

  8. Multiple origins of linear dunes on Earth and Titan

    USGS Publications Warehouse

    Rubin, David M.; Hesp, Patrick A.

    2009-01-01

    Dunes with relatively long and parallel crests are classified as linear dunes. On Earth, they form in at least two environmental settings: where winds of bimodal direction blow across loose sand, and also where single-direction winds blow over sediment that is locally stabilized, be it through vegetation, sediment cohesion or topographic shelter from the winds. Linear dunes have also been identified on Titan, where they are thought to form in loose sand. Here we present evidence that in the Qaidam Basin, China, linear dunes are found downwind of transverse dunes owing to higher cohesiveness in the downwind sediments, which contain larger amounts of salt and mud. We also present a compilation of other settings where sediment stabilization has been reported to produce linear dunes. We suggest that in this dune-forming process, loose sediment accumulates on the dunes and is stabilized; the stable dune then functions as a topographic shelter, which induces the deposition of sediments downwind. We conclude that a model in which Titan's dunes formed similarly in cohesive sediments cannot be ruled out by the existing data.

  9. Coordination of NEO Observers in South-America

    NASA Astrophysics Data System (ADS)

    Tancredi, G.

    At present the discovery of NEOs is concentrated in the Northern Hemisphere. None of the 6 existing survey programs can reach declinations below -30deg. Nevertheless, there are two small surveys ready to start in the near future in the southern hemisphere: an extension of the Catalina Sky Survey using the Uppsala Schmidt in Siding Spring and the Project BUSCA in Uruguay. Many of the NEOs discovered by the northern surveys could reach the southern sky, with declinations unreachable for a northern observer. Furthermore, the recovery of an asteroid in subsequent oppositions could come indistinctly in the northern and southern sky. A network of well-equipped observers in the southern region is then a must in a campaign to catalog the NEO population. In view of this situation, the Planetary Society, through its NEO grant, have already supported many observers in the Southern Hemisphere. The planetary science community in South America has considerably grown in the last 10 years. We have well-known research groups in Argentina, Brazil and Uruguay. Those groups have established many scientific links by exchanging graduate students and through several meetings. In particular, we have already hold two Workshop in Planetary Science in South America in 1999 (La Plata, Argentina) and 2000 (Montevideo, Uruguay) with more than 25 participants each. Recently, in February 2002, we organized a Workshop of NEO observers in Montevideo with the participation of more than 20 professional and amateurs observers from: Argentina: Obs. Ast. Felix Aguilar - Yale University (San Juan) and CRICYT (Mendoza); Brazil: Obs. Abraes de Moraes (San Pablo), Obs. Wykrota (Belo Horizonte) and Observatorio Nacional (Rio de Janeiro); Paraguay: Obs. Nacional de Asuncion and Sociedad de Estudios Astronómicos (Asunción) Uruguay: Depto. Astronomía - Fac. Ciencias, Obs. Ast. Los Molinos and Obs. Kappa Crucis (Montevideo). Among the resolutions of the Workshop, we highlight: * Creation of the "Asociación Spaceguard SudAmérica - SouthAmerican Spaceguard Association" to give a frame for the coordination of our activities * Established a web service to exchange information about our observing plans, objects in need of follow-up only reachable by southern observers, software exchange, etc. * Support the efforts of the astronomers of the Cordoba and La Plata Observatory to catalog the archive plates, useful for pre-discovery images. The members of our group own or have access to more than a dozen telescopes up to 60cm in size. We have already created a discussion list (spaceguard-sa@fisica.edu.uy) to start our coordination efforts.

  10. Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A. (Editor); Whillans, I. M. (Editor)

    1990-01-01

    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.

  11. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    USGS Publications Warehouse

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune fields, which can provide a lower age limit through crater counting: assuming all relatively stabilized dune fields represent a single noncontiguous surface of uniform age, their estimated crater retention age is

  12. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  13. Timing of frost deposition on Martian dunes: A clue to properties of dune particles?

    NASA Technical Reports Server (NTRS)

    Thomas, P.

    1987-01-01

    Scans were made across the Martian dunes found in images taken at several different times to determine the time history of the dune albedo. Atmospheric contributions were estimated using optical depth data and the brightness of shadows in some images. The data show that the dunes brighten very substantially between L(s) = 10 and 40 deg, depending on the latitude. Bright coverings on dunes form outliers 1 to 5 deg north of the cap edge. Formation of the general cap then sometimes reverses the contrast of the dune field with the surrounding area. Causes for the early deposition of frost on dunes relative to surroundings are discussed.

  14. Mars global digital dune database: MC-30

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2012-01-01

    The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System (THEMIS) Infrared (IR) images. In the previous two reports, some dune fields may have been unintentionally excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100 m/pixel) certainly caused us to exclude smaller dune fields. In this report, mapping is more complete. The Arizona State University THEMIS daytime IR mosaic provided complete IR coverage, and it is unlikely that we missed any large dune fields in the South Pole (SP) region. In addition, the increased availability of higher resolution images resulted in the inclusion of more small (~1 km2) sand dune fields and sand patches. To maintain consistency with the previous releases, we have identified the sand features that would not have been included in earlier releases. While the moderate to large dune fields in MGD3 are likely to constitute the largest compilation of sediment on the planet, we acknowledge that our database excludes numerous small dune fields and some moderate to large dune fields as well. Please note that the absence of mapped dune fields does not mean that dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera (MOC) narrow angle, Mars Express High Resolution Stereo Camera, or Mars Reconnaissance Orbiter Context Camera and High Resolution Imaging Science Experiment images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the approximate prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model is also included. In addition to polygons locating dune fields, the database includes ~700 of the THEMIS VIS and MOC images that were used to build the database.

  15. Dune Transition in the High Southern Latitudes

    NASA Image and Video Library

    2017-04-19

    Sand dune populations on Mars can vary widely with respect to morphology, relief, and activity. One of the most striking examples occurs with the many dune fields of the high Southern latitudes. When we venture south of -60 degrees latitude, we see increasing signs of dune degradation, with subdued dune brinks and broad sandy aprons, rather than sharp, dune crests and distinct boundaries. Dunes this far south are also very modest in height, often consisting solely of flat sand sheets. Additionally, global monitoring campaigns are revealing a noticeable lack of changes in these bedform positions, whereas many dunes and ripples to the north are migrating across the surface. This image shows a moderate sized dune field (-72 degrees latitude) that displays most of these morphologic features and a noticeable absence of dune crests. This transition is likely related to polar processes, ground ice, and changes in regional climate relative to the rest of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21595

  16. The ESA Planetary Science Archive User Group (PSA-UG)

    NASA Astrophysics Data System (ADS)

    Rossi, A. P.; Cecconi, B.; Fraenz, M.; Hagermann, A.; Heather, D.; Rosenblatt, P.; Svedhem, H.; Widemann, T.

    2014-04-01

    ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug The PSA is accessible via: http://archives.esac.esa.int/psa

  17. Once in a Blue Dune

    NASA Image and Video Library

    2018-06-11

    Sand dunes often accumulate in the floors of craters. In this region of Lyot Crater NASA's Mars Reconnaissance Orbiter (MRO) shows a field of classic barchan dunes. Just to the south of the group of barchan dunes is one large dune with a more complex structure. This particular dune, appearing like turquoise blue in enhanced color, is made of finer material and/or has a different composition than the surrounding. https://photojournal.jpl.nasa.gov/catalog/PIA22512

  18. RIGED-RA project - Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area - Italy

    NASA Astrophysics Data System (ADS)

    Giambastiani, Beatrice M. S.; Greggio, Nicolas; Sistilli, Flavia; Fabbri, Stefano; Scarelli, Frederico; Candiago, Sebastian; Anfossi, Giulia; Lipparini, Carlo A.; Cantelli, Luigi; Antonellini, Marco; Gabbianelli, Giovanni

    2016-10-01

    Coastal dunes play an important role in protecting the coastline. Unfortunately, in the last decades dunes have been removed or damaged by human activities. In the Emilia- Romagna region significant residual dune systems are found only along Ravenna and Ferrara coasts. In this context, the RIGED-RA project “Restoration and management of coastal dunes along the Ravenna coast” (2013-2016) has been launched with the aims to identify dynamics, erosion and vulnerability of Northern Adriatic coast and associated residual dunes, and to define intervention strategies for dune protection and restoration. The methodology is based on a multidisciplinary approach that integrates the expertise of several researchers and investigates all aspects (biotic and abiotic), which drive the dune-beach system. All datasets were integrated to identify test sites for applying dune restoration. The intervention finished in April 2016; evolution and restoration efficiency will be assessed.

  19. Grain-size variations on a longitudinal dune and a barchan dune

    NASA Astrophysics Data System (ADS)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  20. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru

    NASA Astrophysics Data System (ADS)

    Parker Gay, S.

    1999-03-01

    Significant studies of sand dunes and sand movement made in coastal southern Peru in 1959-1961 [Gay, S.P., 1962. Origen, distribución y movimiento de las arenas eólicas en el área de Yauca a Palpa. Boletin de la Sociedad Geologica del Perú 37, 37-58] have never been published in the English language and consequently have never been referred to in the standard literature. These studies contain valuable information, not developed by later workers in this field, that may be of broad general interest. For example, using airphotos of barchan dunes and plotting the rates of movement vs. dune widths, the author quantified the deduction of Bagnold [Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London.] that the speed of barchan movement is inversely proportional to barchan size (as characterized by height or width). This led to the conclusion that all barchans in a given dune field, regardless of size, sweep out approximately equal areas in equal times. Another conclusion was that collisions between smaller, overtaking dunes and larger dunes in front of them do not result in destruction or absorption of the smaller dunes if the collision is a `sideswipe'. The dunes simply merge into a compound dune for a time, and the smaller dune then moves on intact, i.e., passes, the larger dune, whilst retaining its approximate original size and shape. Another result of the 1959-1961 studies was a map that documents the Pacific coast beaches as the source of the sand ( Fig. 1), which is then blown inland through extensive dune fields of barchans and other dune forms in great clockwise-sweeping paths, to its final resting place in huge sand masses, sometimes called `sand seas' [Lancaster, N., 1995. Geomorphology of Desert Dunes. Routledge, London], at higher elevations 20 to 60 km from the coast. A minor, but nevertheless interesting, discovery was a small heavy mineral dune located directly in the lee of a large barchan, evidently formed by the winnowing action of turbulent airflow streaming off the crest of the 20 m high slipface.

  1. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  2. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  3. IPPW Enabled International Collaborations in EDL Lessons Learned and Recommendations:

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Guelhan, Ali; Munk, Michelle

    2017-01-01

    The International Planetary Probe Workshop (IPPW) is a forum for exchanging information and encourage collaboration. The IPPW-14 (2017) in its 14th year and attracts participants mainly from US and Europe. The authors of this proposed talk are exploring and have established international collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, the unique capabilities and the potential benefits of international collaboration and how to approach the collaboration in order to overcome the challenges.

  4. The ESA Planetary Science Archive User Group (PSA-UG)

    NASA Astrophysics Data System (ADS)

    Pio Rossi, Angelo; Cecconi, Baptiste; Fraenz, Markus; Hagermann, Axel; Heather, David; Rosenblatt, Pascal; Svedhem, Hakan; Widemann, Thomas

    2014-05-01

    ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug. The PSA is accessible via: http://archives.esac.esa.int/psa References: Heather, D., Barthelemy, M., Manaud, N., Martinez, S., Szumlas, M., Vazquez, J. L., Osuna, P. and the PSA Development Team (2013) ESA's Planetary Science Archive: Status, Activities and Plans. EuroPlanet Sci. Congr. #EPSC2013-626

  5. The role of vegetation in shaping dune morphology

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Moore, L. J.; Young, D.

    2012-12-01

    Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them. Consistent with field observations, we find that basic dune morphology is primarily determined by grass species, with linear or hummocky dunes being built by some species, while others may prevent dune formation. We also find that the evolution of coastal dune morphology is controlled by at least two bio-geomorphic couplings: (1) between vegetation growth and sand transport, which leads to a positive feedback for dune growth, as certain beach grasses maximize growth under sand accretion, which means that an ever denser vegetation implies an ever higher accretion rate; and (2) between vegetation growth and shoreline position through the sand influx. While the first coupling is responsible for dune formation, the second one determines when dunes stop growing and thus controls final dune size. This is particularly relevant for accreting/eroding coastlines where we find that dune size, and thus coastal protection, is maximized for relatively small accretion rates while larger accretion rates lead to formation of a new, smaller dune ridge at the beach.

  6. Relationship between vegetation dynamics and dune mobility in an arid transgressive coastal system, Maspalomas, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández-Cordero, Antonio I.; Hernández-Calvento, Luis; Espino, Emma Pérez-Chacón

    2015-06-01

    This paper explores the relationship between vegetation dynamics and dune mobility in an arid transgressive coastal dune system, specifically the dune field of Maspalomas (Gran Canaria, Canary Islands). The aim is to understand the strategies of colonization and survival that plant communities have developed in slacks that face dune advance. The relationship between plant colonization and dune migration was performed by following Tamarix canariensis and Traganum moquinii plants for several years. Morphological data about each individual as well as the distance of each plant to the dune were measured. A study of the colonization patterns developed by T. moquinii, T. canariensis, Cyperus laevigatus and Launaea arborescens communities was performed by analyzing the evolution of consolidated plant patches and adult plants in relation to the dune advance. This was achieved using digital orthophotos and spatial analysis from geographic information systems. Initiation of plant colonization over transgressive dunes occurs on both wet and dry slacks. The results show that both plant colonization and development of adult plants are largely related to dune mobility. Thus, survival of T. moquinii and T. canariensis plants under dune migration conditions is related to both distance to the dune front and plant height at the moment of burial. Distance from the dune front and plant height increases chance of survival. The dynamics of adult plants is also related to dune displacement rates. Thus, each community has different thresholds of resistance to mobility rates. The T. canariensis community withstands average rates higher than 3 m/year. Its arboreal structure allows this species to grow high enough to resist the advance of the dunes and burial. For the T. moquinii community, the population decreases gradually to eventually disappear when dune mobility rates exceed 4 m/year. The C. laevigatus community develops at dune mobility rates lower than 3 m/year, decreasing its surface area at higher rates. The L. arborescens community endures dune migration rates of at least 1.8 m/year. However, different distances between the dune front and the vegetated area also significant factor, because these can compensate for the effects of displacement rates. Thus, the closer a vegetated area is to a dune front, the lower the rates of displacement must be to produce a greater reduction in the surface vegetation. Plant communities present two patterns of plant colonization to resist burial by sand, one vertical and the other horizontal. The horizontal pattern is employed by C. laevigatus and L. arborescens communities and consists of locating new generations of plants in progressive alignment with the dune front migration. The vertical pattern is employed by the T. canariensis community, and consists of increasing the heights of the plants. The T. moquinii community can utilize both patterns because it reacts positively to some degree of burial since it is located in areas where the dunes reach different heights.

  7. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland)

    NASA Astrophysics Data System (ADS)

    Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.

    2017-08-01

    It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.

  8. Controls on desert dune activity - a geospatial approach

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; Hesse, P. P.

    2017-12-01

    Desert and other inland dunes occur on a wide spectrum of activity (defined loosely as the proportion of the surface area subject to sand movement) from unvegetated to sparsely vegetated "active" dunes through discontinuously vegetated inactive dunes to completely vegetated and degraded dunes. Many of the latter are relicts of past climatic conditions. Although field studies and modeling of the interactions between winds, vegetation cover, and dune activity can provide valuable insights, the response of dune systems to climate change and variability past, present, and future has until now been hampered by the lack of pertinent observational data on geomorphic and climatic boundary conditions and dune activity status for most dune areas. We have developed GIS-based approach that permits analysis of boundary conditions and controls on dune activity at a range of spatial scales from dunefield to global. In this approach, the digital mapping of dune field and sand sea extent has been combined with systematic observations of dune activity at 0.2° intervals from high resolution satellite image data, resulting in four classes of activity. 1 km resolution global gridded datasets for the aridity index (AI); precipitation, satellite-derived percent vegetation cover; and estimates of sand transport potential (DP) were re-sampled for each 0.2° grid cell, and dune activity was compared to vegetation cover, sand transport potential, precipitation, and the aridity index. Results so far indicate that there are broad-scale relationships between dunefield mean activity, climate, and vegetation cover. However, the scatter in the data suggest that other local factors may be at work. Intra-dune field patterns are complex in many cases. Overall, much more work needs to be done to gain a full understanding of controls at different spatial and temporal scales, which can be faciliated by this spatial database.

  9. Investigating Mars: Kaiser Crater Dunes

    NASA Image and Video Library

    2018-01-24

    This VIS image of Kaiser Crater shows individual dunes and where the dunes have coalesced into longer dune forms. The addition of sand makes the dunes larger and the intra-dune areas go from sand-free to complete coverage of the hard surface of the crater floor. With a continued influx of sand the region will transition from individual dunes to a sand sheet with surface dune forms. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 1423 Latitude: -46.9573 Longitude: 18.6192 Instrument: VIS Captured: 2002-04-10 16:44 https://photojournal.jpl.nasa.gov/catalog/PIA22173

  10. Natural versus Urban dunes along the Emilia-Romagna coast, Northern Adriatic (Italy)

    NASA Astrophysics Data System (ADS)

    Corbau, Corinne; Simeoni, Umberto

    2014-05-01

    Beach-dune interaction models can be precious tools for land managers and policymakers. However, if the models are inaccurate, land use policies may be designed based on false pretences or assumptions leading to poor land management, long-term erosion and sustainability issues, and increased difficulties in maintaining the dynamic coastal systems. From the literature, it appears that even the most reliable beach-dunes interactions models are not applicable to all coastal systems (Short and Hesp, 1982; Psuty, 1988; Sherman and Bauer, 1993). The study aims to identify the morphological evolution of the Emilia-Romagna coastal dunes according to its natural and "human" characteristics and to classify groups of dunes with similar evolutionary patterns. The coastal area consists essentially of 130 km of low sandy coast, interrupted by vast lagoon areas, harbor jetties and numerous hard coastal defense structures that were built during the first half of the 20th century to protect the Emilia-Romagna coast against erosion. Today about 57% of the littoral is protected by hard defenses, which have modified the morphodynamic characteristics of the beach without inverting the negative coastal evolution's trend. From recent aerial photographs (2011), 62 coastal dunes have been identified and mapped. Furthermore, the dune analysis shows a variability of the "physical characteristics" of coastal-dune systems along the Emilia-Romagna coast. The dune height varies from 1 to 7 meters, the width of the beach and of the active dunes range respectively from 10 to 150 m and from 10 to 65 m. Three main factors may explain the variability of the "physical characteristics": 1- Firstly the frontal dunes may be of different states according to the classification of Hesp (2002) since they correspond to incipient foredunes, well-developed foredunes, blowouts, residual foredunes as well as reactivated relict foredunes, 2- This could also be related to a different orientation of the coastline and foredune's line to the dominant onshore winds and, 3- Human impacts may also explain this variability since most of the dune-beach systems of Emilia-Romagna are characterized by important anthropogenic features that do not adequately describe beach-foredune interactions. A factor analysis of the coastal dunes has allowed formulating hypotheses about their evolutionary trends according to the importance and interference of factors, both natural and anthropic, acting on the beach-dune system. Four groups of dunes have been identified corresponding to natural dunes, semi-anthropic dunes with major natural features, semi-anthropic dunes with major anthropic feature and "urban" dunes. Furthermore, while human activities impede the formation and development of new incipient dunes, other human activities favor the conservation and development of the human-altered foredunes. Hesp, P., 2002: Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology, 245-268. Psuty, N. P. 1988. Sediment budget and dune/beach interaction. Journal of Coastal Research Special Issue 3: 1-4. Sherman, D. J., and B. O. Bauer. 1993. Dynamics of beach-dune systems. Progress in Physical Geography 17 (4): 413-447 Short, A. D., and P. A. Hesp. 1982. Wave, beach and dune interactions in South Eastern Australia. Marine Geology 48: 259-284.

  11. Mars Global Digital Dune Database: MC2-MC29

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Mullins, Kevin F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, Anthony; Christensen, P.R.

    2007-01-01

    Introduction The Mars Global Digital Dune Database presents data and describes the methodology used in creating the database. The database provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields from 65? N to 65? S latitude and encompasses ~ 550 dune fields. The database will be expanded to cover the entire planet in later versions. Although we have attempted to include all dune fields between 65? N and 65? S, some have likely been excluded for two reasons: 1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or 2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera narrow angle (MOC NA) images allowed, we classifed dunes and included dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid was calculated. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes over 1800 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as a series of ArcReader projects which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in ArcMap projects. The ArcMap projects allow fuller use of the data, but require ESRI ArcMap? software. Multiple projects were required to accommodate the large number of images needed. A fuller description of the projects can be found in the Dunes_ReadMe file and the ReadMe_GIS file in the Documentation folder. For users who prefer to create their own projects, the data is available in ESRI shapefile and geodatabase formats, as well as the open Geographic Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. ReadMe files are available in PDF and ASCII (.txt) files. Tables are available in both Excel (.xls) and ASCII formats.

  12. Which Came First?

    NASA Image and Video Library

    2015-09-16

    The workings of the Martian winds are visible in this image of sand dunes trapped inside an unnamed crater in southern Terra Cimmeria captured by NASA Mars Reconnaissance Orbiter spacecraft. Many of the craters in the Southern highlands of Mars contain sand dunes, and HiRISE is still in the process of mapping these dunes and determining how active they are today. So far, the dunes in these craters appear to be a mixed bunch, with some dunes actively advancing while others seem to be frozen in place. This image will be compared to a previous picture, to see how these dunes have changed since 2008. The sand dunes are the large, branched ridges and dark patches that are conspicuous against the bright background, particularly in the northwest corner of our picture. There are also signs of two other wind-related processes: smaller, brighter ridges line the floor of the crater in regularly spaced rows. These are also windblown deposits, mysterious "transverse aeolian ridges" or TARs that are more common in the Martian tropics. Faint, irregular dark lines cross the dunes and the TARs, marking the tracks of dust devils that vacuum the surface during southern summer. So, which came first? We can untangle the history of these processes by looking at the picture more closely. Over most of the image, it is obvious that the dark sand dunes bury the bright TARs, meaning that the sand dunes are younger than the TARs. But this relationship is not so clear for the southernmost dune we see in this picture. Here, the TARs look like they extend into the dune and merge with ripples on the dune's surface, suggesting that the TARs might be younger than the dunes. The question can be resolved by carefully examining an enhanced color cutout. The TARs are brighter and redder than the sand dunes and this color persists on the crests of the TARs as the sand encroaches, burying the valleys first and then the slopes and finally the TAR crests. This tells us that the unusual appearance of the dune margin is caused by burial and exposure of the older TARs by the younger sand. Finally, you can trace the tracks of dust devils crossing over the dunes, telling us that they are younger than the dunes. So, first came the TARs, next the dunes, and last the dust devils -- probably within the last few months! http://photojournal.jpl.nasa.gov/catalog/?IDNumber=pia19941

  13. The Changing Dunes of Wirtz Crater

    NASA Image and Video Library

    2017-01-19

    The large dark feature is a classic Martian sand dune. Most sand on Earth is made from the mineral quartz, which is white and bright. On Mars, most sand is composed of dark basalt, a volcanic rock. For this reason, dunes on Mars are darker than those on Earth. The dunes in this observation, within Wirtz Crater, are known as "barchans." The steepest slope is on the eastern (right) side, partially in shadow, and represents the direction the dune is migrating as the sand is blown and transported by the wind. Small ripples are visible on much of the dune surface. The dark streaks on the dune are tracks left by passing vortices known to us as dust devils. These raise dust off the dune, revealing a darker substrate. http://photojournal.jpl.nasa.gov/catalog/PIA12289

  14. A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Balme, M.; Zimbelman, J.

    2004-01-01

    Martian sand dunes have the potential to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step towards understanding the present as well as past aeolian systems, and by proxy, climatic conditions on Mars. Dunes studied in detail in Viking 1 and 2 Orbiter images have been classified as barchan, barchanoid, transverse, and complex. Regionally, they are concentrated in four locations: The North and South Polar regions, in intra crater dune fields and in troughs and valleys. Here we present the results of a morphometric analysis of barchan dunes in two of these locations: the North Polar Sand Sea (NPSS) and intra-crater dunes.

  15. Origins of late- Pleistocene coastal dune sheets, Magdalena and Guerrero Negro, from continental shelf low-stand supply (70-20 ka), under conditions of southeast littoral- and eolian-sand transport, in Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Peterson, Curt D.; Murillo-Jiménez, Janette M.; Stock, Errol; Price, David M.; Hostetler, Steve W.; Percy, David

    2017-10-01

    Shallow morpho-stratigraphic sections (n = 11) in each of two large coastal dune sheets including the Magdalena (7000 km2) and Guerrero Negro (8000 km2) dune sheets, from the Pacific Ocean side of Baja California Sur, Mexico, have been analyzed for dune deposit age. The shallow morpho-stratigraphic sections (∼2-10 m depth) include 11 new TL and 14C ages, and paleosol chronosequences, that differentiate cemented late Pleistocene dune deposits (20.7 ± 2.1 to 99.8 ± 9.4 ka) from uncemented Holocene dune deposits (0.7 ± 0.05 to at least 3.2 ± 0.3 ka). Large linear dune ridges (5-10 m in height) in the dune sheet interiors trend southeast and are generally of late Pleistocene age (∼70-20 ka). The late Pleistocene dune deposits reflect eolian transport of marine sand across the emerged continental shelf (30-50 km southeast distance) from low-stand paleo-shorelines (-100 ± 25 m elevation), which were locally oriented nearly orthogonal to modeled deep-water wave directions (∼300° TN). During the Holocene marine transgression, onshore and alongshore wave transport delivered remobilized shelf-sand deposits to the nearshore areas of the large dune sheets, building extensive barrier islands and sand spits. Submerged back-barrier lagoons generally precluded marine sand supply to dune sheet interiors in middle to late Holocene time, though exceptions occur along some ocean and lagoon shorelines. Reactivation of the late Pleistocene dune deposits in the dune sheet interiors lead to generally thin (1-3 m thickness), but widespread, covers of Holocene dune deposits (0.41 ± 0.05 to 10.5 ± 1.6 ka). Mechanical drilling will be required to penetrate indurated subsoil caliche layers to reach basal Pleistocene dune deposits.

  16. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby limiting the potential distribution of types of aeolian stratification preserved within crater basins.

  17. Mars Global Digital Dune Database; MC-1

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as an ArcReader project which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in an ArcMap project. The ArcMap project allows fuller use of the data, but requires ESRI ArcMap(Registered) software. A fuller description of the projects can be found in the NP_Dunes_ReadMe file (NP_Dunes_ReadMe folder_ and the NP_Dunes_ReadMe_GIS file (NP_Documentation folder). For users who prefer to create their own projects, the data are available in ESRI shapefile and geodatabase formats, as well as the open Geography Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. (NP_Documentation folder) Documentation files are available in PDF and ASCII (.txt) files. Tables are available in both Excel and ASCII (.txt)

  18. Recent Aeolian Dune Change on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

    2007-01-01

    Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

  19. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-07

    This VIS image of Olympia Undae was collected early in north polar spring. The crests of the dunes are light colored, indicative of a frost covering. As the season changes into summertime, the dune crests will lose the frost and reveal the darker sand beneath. The linear nature of transverse dunes can be seen at the bottom of the image. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 10380 Latitude: 79.7273 Longitude: 176.363 Instrument: VIS Captured: 2004-04-17 02:00 https://photojournal.jpl.nasa.gov/catalog/PIA22290

  20. Morphological response of coastal dunes to a group of three typhoons on Pingtan Island, China

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Dong, Yuxiang; Huang, Dequan

    2018-06-01

    Pingtan Island (Fujian, China) was severely impacted by a group of three typhoons in a sequence of Nepartak, Meranti, and Megi during the summer of 2016. Field investigations were conducted on the island before and after the typhoons using high-precision RTK GPS technology and surveying methods, and we analyzed the morphological responses of three types of coastal dunes (coastal foredunes, climbing dunes, and coastal sand sheets) to the typhoon group. The maximum height decrease among coastal foredunes was 2.89 m after the typhoon group landed; dune volume increased by 0.9%, and the windward side showed a slight height increase, whereas that of the slope crest and leeward slope were slightly lower than the values before the typhoon group landed. The maximum height decrease among climbing dunes was 1.43 m, and dune volume decreased slightly by 0.1%; the height change among climbing dunes differed in magnitude between sites. Among coastal sand sheets, the maximum height increase was 0.75 m, and dune volume increased by 1.5%; the height of frontal coastal sand sheets increased markedly as result of storm surge washover deposits, whereas the heights barely changed at the middle and trailing edges. The above results suggest that the typhoon group imposed significant morphological changes on coastal dunes. However, the features of morphological responses differed between the three types of coastal dunes studied, and also among dunes of the same type based on local characteristics. Furthermore, coastal dunes showed no cumulative effects in their responses to the typhoon group, despite the individual typhoon impacts on coastal dune morphology.

  1. Spatial and temporal variations in the sediment state of North American dune fields

    NASA Astrophysics Data System (ADS)

    Halfen, Alan F.; Lancaster, Nicholas; Wolfe, Stephen

    2015-04-01

    This research evaluates geomorphic and chronologic data from the INQUA Dune Atlas for three areas of North America: 1) the Prairie, Parkland and Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Chronometric data for periods of dune activity and stability are compared with palaeoenvironment reconstructions to assess dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions. In the Central Great Plains, many dune fields are closely linked to fluvial sediment sources. Sediment supply was high in these dune fields during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8 - 8 ka and at short but repeated intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability, as a result of drought, being the primary driver of dune activity during the Holocene.

  2. Spectroscopy, morphometry, and photoclinometry of Titan's dunefields from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Jaumann, R.; Beyer, R.A.; Buratti, B.J.; Pitman, K.; Baines, K.H.; Clark, R.; Nicholson, P.

    2008-01-01

    Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-??m-bright, and dark blue spectral units. Our observations show that an enigmatic "dark red" spectral unit seen in T5 in fact represents a macroscopic mixture with 5-??m-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10?? from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes. ?? 2007 Elsevier Inc. All rights reserved.

  3. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna

    2017-12-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  4. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses; Byrne, Shane; McElwaine, Jim; Urso, Anna

    2017-01-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  5. Earth observation views of the Sahara Desert taken from OV-105 during STS-99

    NASA Image and Video Library

    2000-03-09

    STS099-729-045 (11-22 February 2000) ---This Earth scene from the Space Shuttle Endeavour features linear dunes in the Algerian Saharan sand sea known as the Erg Chech. The dunes, according to NASA scientists, have been built up over thousands of years into masses elongated roughly parallel with the prevailing northeast winds. Dune chains in the northern (upper) half of the view are 5-8 kilometers apart. A slight change in orientation and an increase in the density of dunes appear across the middle of the view. Such changes usually relate to changes in sand supply, and also to topographic scarps over which the dunes pass. Obstacles like scarps and hills locally cause a leftward deflection (in the Northern Hemisphere) in wind direction, an effect that can be seen here in the dune orientation in the middle of the photo. Dunes in the lower part of the view are 2-5 kilometers apart. White patches are small dry lakes at low points in the underlying rock surface. The strong red color in some dunes near the edge of the dune field (left margin) is iron staining derived from sand particles blown into the dunes from the underlying iron-rich soils. A dune-free area appears in the lower left corner.

  6. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  7. Thermophysical Variation within Dune Fields in the Southern Hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Courville, S. W.; Putzig, N. E.; Hoover, R.; Fenton, L. K.

    2016-12-01

    The activity and composition of Martian sand dunes, which are relatively young features, provide insight into the current and recent climate state of Mars. This study investigates small-scale variations of thermophysical properties within dune fields across the southern hemisphere of Mars to better understand near-surface composition. Previous morphological studies of southern hemisphere dune fields on Mars indicate a trend of decreasing activity with increasing latitude. We observe a corresponding trend in thermal properties. To investigate the thermal behavior of the dunes, we use apparent thermal inertia (ATI) derived from the Mars Odyssey's Thermal Emission Imaging System (THEMIS), which has a resolution of 100 meters per pixel. Overlaying THEMIS ATI values on images and digital terrain models from the High Resolution Imaging Science Experiment (HiRISE) allows us to compare ATI with small-scale dune morphology and slopes. In general, we observe three types of ATI behavior: (1) fields with exposed ground between dunes display lower ATI on the dunes themselves, consistent with dunes of relatively low thermal inertia resting upon a wind-resistant consolidated bed with higher thermal inertia; (2) fields with little or no inter-dune exposures exhibit ATI in dune troughs that is 100 tiu or more lower than along crests, counterintuitively suggesting that dune trough material is finer than that along dune crests; and (3) fields with highly degraded dunes typically display uniform ATI values, indicating that their properties do not vary laterally at the resolution of THEMIS images or vertically within a seasonal skin depth. These ATI behaviors correspond to the activity state of the dune field with type 1 being the most active and occurring toward the equator, while type 3 is the least active and found mostly at high southern latitudes. To consider alternative explanations for the ATI variation observed in Type 2 fields, we created thermal models of slopes, lateral mixtures of two particle sizes, and layering of two particle sizes. However, these models are unable to explain the observed ATI, suggesting that the composition and/or activity of these dunes are more complicated than allowed by two-component models.

  8. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-12

    This VIS image of Olympia Undae was collected during north polar summer. The dunes are now completely frost free and are dark in color due to being made of basaltic sand. The surface between the dunes, where visible, is a bright tone. In some regions of dense dunes, the bright material may be a deposit on the dunes rather than the underlying surface. The presence of gypsum has been suggested for Olympia Undae, gypsum is a lighter tone than basalt in this filter of the THEMIS VIS camera. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12614 Latitude: 80.8745 Longitude: 174.688 Instrument: VIS Captured: 2004-10-18 00:23 https://photojournal.jpl.nasa.gov/catalog/PIA22293

  9. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-13

    This VIS image of Olympia Undae was collected during north polar summer. The dunes are now completely frost free and are dark in color due to being made of basaltic sand. The surface between the dunes, where visible, is a bright tone. In some regions of dense dunes, the bright material may be a deposit on the dunes rather than the underlying surface. The presence of gypsum has been suggested for Olympia Undae, gypsum is a lighter tone than basalt in this filter of the THEMIS VIS camera. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 21125 Latitude: 81.5387 Longitude: 181.591 Instrument: VIS Captured: 2006-09-18 18:07 https://photojournal.jpl.nasa.gov/catalog/PIA22294

  10. Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

    2012-04-01

    At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat and erosion of the beach itself. Typically dunes are located behind sand beaches and they are part of the beach-dune systems. Such type of dune reduction could be driven by combination of many factors, both natural ones (such as severe storms, erosion, heavy rains or flooding) and human impacts (large number of installed coast-protection structures along the coast, which interrupt the sediment transport, create new sedimentary deficit and generate erosion). During the recent years most of the Bulgarian beaches have progressively eroded and their areas have significantly been decreased. ii) Dunes that have been reduced/damaged and lost due to expanded tourist and housing infrastructures/developments and due to afforestaion activities. The principal sources of human impacts on sand dunes in Bulgaria are rapid coastal urbanization over the recent years (i.e., hotel and residential constructions, roads, parking structures, and other related infrastructure), unregulated camping and "temporary" constructions on the dunes, a lax regulatory environment that tolerates the re-zoning of protected sand dunes to "agricultural" areas. At most recreational sites there were wide coastal dunes, which however have been destroyed during tourist constructions. Such are dunes at the most famous Bulgarian sea resorts of Golden Sands and Sunny Beach in the areas of Varna and Nessebar. As a consequence, major areas along the Bulgarian coast were completely urbanized by hotels and other infrastructures and large sand dune systems were damaged. iii) Dunes located at still undeveloped coastal sections: yet they are naturally preserved and unthreatened by human pressure boom. These are just a few dune sites: at the northernmost portion of the Bulgarian coast (in the area of Durankulak), at the central part in the region of the largest Bulgarian river, Kamchia River, and along the southernmost coastline (in the area of Veleka River). Although sand dunes in Bulgaria are protected areas and national reserves they have been exposed to large anthropogenic pressure in particular over the last decade. There is an increased demand now of proper management and urgent conservation activities. Such measures first require an accurate understanding of dune properties/behaviour, assessment of anthropogenic factors affecting dune persistence and identification of coastal areas most sensitive to risk of destruction. This research has been undertaken with the support of National Science Fund - Ministry of Education, Youth and Science, (Republic of Bulgaria); Contract No: DNTS 02/11 from 29.09.2010 in the frame of a Joint Research Project between Bulgaria and Romania (2010-2012). The Ministry of Agriculture and Food (Republic of Bulgaria) is deeply acknowledged for providing the modern orthophoto and satellite image data needed and useful also for implementation of the project activities.

  11. DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI ALONG A SAND DUNE STABILIZATION GRADIENT: A CASE STUDY AT PRAIA DE JOAQUINA, ILHA DE SANTA CATARINA, SOUTH BRAZIL

    EPA Science Inventory

    Species diversity of abuscular mycorrhizal fungi (AMF) was assessed along a dunes stabilization gradient (embyonic dune, foredune and fixed dune) at Praia da Joaquina (Joaquina Beach), Ilha de Santa Catarina. These dunes served as a case study to assess whether diversity and myc...

  12. 75 FR 77801 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... December 30, 1982, we published our notice of review classifying the sand dune lizard (dunes sagebrush... listing actions for the southern Idaho ground squirrel, sand dune lizard, or Tahoe yellow cress. The court... by the common name of sand dune lizard (e.g., Degenhardt et al. 1996, p. 159); however, the currently...

  13. Titan's lower troposphere: thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Lebonnois, S.

    2011-12-01

    A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere, Astrophys. J. 687 (2008) L41-L44. [3] Lorenz et al.: A 3 km atmospheric boundary layer on Titan indiacted by dune spacing and Huygens data, Icarus 205, 719-721 (2010) [4] Luciano Iess et al.: Gravity Field, Shape, and Moment of Inertia of Titan, Science 327, 1367(2010) [5] Tokano et al.: Titan's planetary boundary layer structure at the Huygens landing site, J. Geophys. Res vol. 111 (2006) [6] HA. Zebker et al.: Size and Shape of Saturn's Moon TitanScience 324, 921(2009)

  14. More Polar Dunes

    NASA Image and Video Library

    2014-07-11

    This image from NASA 2001 Mars Odyssey spacecraft shows more north polar dunes. If you compare multiple dune images, you will see that the dunes can take different forms and cover different amounts of the plains.

  15. Dark Polar Dunes

    NASA Image and Video Library

    2006-09-01

    This MOC image shows dunes in the martian north polar region. The dunes are composed of dark, coarse sand. The white areas around the dunes are the last remaining areas of seasonal carbon dioxide frost cover

  16. Dunes of the Southern Highlands

    NASA Image and Video Library

    2017-03-23

    Sand dunes are scattered across Mars and one of the larger populations exists in the Southern hemisphere, just west of the Hellas impact basin. The Hellespontus region features numerous collections of dark, dune formations that collect both within depressions such as craters, and among "extra-crater" plains areas. This image displays the middle portion of a large dune field composed primarily of crescent-shaped "barchan" dunes. Here, the steep, sunlit side of the dune, called a slip face, indicates the down-wind side of the dune and direction of its migration. Other long, narrow linear dunes known as "seif" dunes are also here and in other locales to the east. NB: "Seif" comes from the Arabic word meaning "sword." The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.5 centimeters (10 inches) per pixel (with 1 x 1 binning); objects on the order of 77 centimeters (30.3 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21571

  17. Experimental study on the formation of subaqueous barchan dunes in closed conduits

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; Franklin, Erick

    2018-06-01

    The present paper reports the formation of subaqueous barchan dunes by analyzing the temporal evolution of their main geometrical characteristics (width W, length L and horn lengths Lh). After certain time, the dunes reach an equilibrium state and it is possible to study the relation between W versus L, and the dependence of the dune velocity on L. The barchan dunes were formed from spherical glass and zirconium beads. An initial conical heap of beads was placed on the bottom wall of a rectangular channel and it was entrained by a water turbulent flow. The evolution of the dunes was filmed with a CCD camera placed above the channel and mounted on a traveling system. Our results show that after a characteristic time the dune shape does not change and it travels with a roughly constant velocity. Once the equilibrium state is reach, W and L are measured, showing linear dependence. Furthermore, we show that the dune velocity Vd scales with the inverse of the dune length.

  18. Poster 17: Methane storms as a driver of Titan's dune orientation.

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clement; Lebonnois, Sebastien; Rodriguez, Sebastien; Courech Du Pont, Sylvain; Lucas, Antoine

    2016-06-01

    Titan's equatorial regions are covered by eastward oriented linear dunes [1,2]. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth. We propose that Titan's dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation [3]. Using meso-scale simulations of convective methane clouds [4] with a GCM wind profile featuring the superrotation [5,6], we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind calculations and analogies with terrestrial dune fields [7], we show that Titan's dune propagation occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes as the divergence from the equator or the dune size and spacing. It also implies an equatorial origin of Titan's dune sand and a possible occurence of dust storms.

  19. Multiscale Geoarchaeological Approaches from the Laurentine Shore, Castelporziano, Lazio, Italy

    NASA Astrophysics Data System (ADS)

    Bicket, A. R.; Rendell, H. M.; Claridge, A.; Rose, P.; Brown, F. S. J.

    2009-04-01

    The relationship between the meso-scale record of human activity during the Roman period and the larger-scale coastal development of the Tiber Delta (ca. 20 ka) is investigated using the archaeological and sedimentary record from a large aquaculture pond and its wider meso- to macro-scale geomorphological setting. The position of the pond is adjacent to the Roman period shoreline, known as the Laurentine Shore on the southern, distal flank of the Tiber delta, Lazio Italy, within what is now the Castelporziano Estate. The pond is thought to have been constructed in the wet dune slack behind the active coastal foredune. Magnetometer survey and excavation of the archaeological structures around this pond have shown them to be substantial features ca. 80m in length with high-status Imperial Roman architecture and with evidence for water management. Sedimentological analysis of sediment cores from within the ponds are supplemented with diatom analysis to assess the period of pre-construction, use and abandonment of this aquaculture pond. Diatom analysis suggests a relatively short period of use and it is argued that abandonment of the aquaculture structures may be linked to both alkali groundwater conditions and the dynamism of the coastal zone preventing effective management. Optical luminescence dating of the archaeological sediments and the post-abandonment dunes that bury part of the site suggest that the aquaculture pond was abandoned ca. 100 years prior to final abandonment of the Roman settlement. This case-study also highlights the implications for meso-scale investigations of human/environment relationships utilising relatively low-sensitivity sedimentary records without high-resolution proxy records. D-GPS survey in conjunction with a high-quality DEM has permitted important archaeological remains to be understood relative to sea level; a key variable for examining the formation and development of the dune ridge record. These surveys have also permitted the effective mapping of dune ridges, from aerial photography, under the extremely dense vegetation that hinders easy access across much of the site. The D-GPS georeferenced DEM has been linked to the diatom analysis of a cored salt marsh to peat sediment transition providing valuable biostratigraphic information for deriving an accurate measurement of the Roman period sea level (Lambeck et al., 2004a). This measurement is in line with published literature from nearby coastal sites, ca. - 1.3m RSL (Lambeck et al., 2004b). Understanding the sites geomorphological development in the context of eustatic sea level is a key consideration for issues of sand supply driving dune formation, linked ultimately to the development of the Tiber Delta since the Last Glacial Maximum and throughout the Holocene. On this larger spatial scale, the archaeological sites described within the Laurentine Shore, built upon the Roman period coastline, are now preserved several hundred metres inland of the contemporary shoreline. The development of the shoreline can now be investigated within the macro-scale progradation of the Tiber delta relative to eustatic sea level rise. Archaeological excavations since the 1980's have provided a rich record of high status villas, and also the supporting infrastructure of a village settlement (vicus), roads, aqueduct and the large aquaculture ponds. The dominant geomorphological features on the site are preserved coastal dune ridges. Sampling was undertaken along an alongshore transect and three inland transects. This sampling regime focuses upon the contemporary deposition of sands on the beach and the phases of dune formation, preservation and alteration recorded by the relict dune crests in relation to the archaeological record. A campaign of optical dating of the relict dune crests has provided a Late Pleistocene and Holocene record of sandsheet and dune formation linked to delta progradation that permits the larger spatial- and temporal-scale context of the archaeological record to be discussed. Sedimentary petrology techniques allow the provenance and transportation dynamics of both the sand-sized and dust-sized sediments to be assessed. Furthermore this approach also enables an investigation of carbonate and iron oxide diagenetic cements, which are an important product of the long-term in situ weathering of the dune ridges' mineralogical assemblages, but is also a feature of short-term weathering of archaeological contexts. This work has implications for locations of interest to geoarchaeological surveys. There are also important implications for the mineralogy, provenance and preservation of luminescent minerals; and some form mineralogical/provenance analysis is recommended for all optical dating studies as a result. In summary, the geoarchaeological approach undertaken at Castelporziano allows the meso-scale human/environment interactions to be considered within the broader temporal scales of the late Quaternary. It also permits consideration within the macro-spatial scales of the Tiber Delta's development during the last 15-20ka within the context of eustatic sea level rise. REFERENCES LAMBECK, K., ANTONIOLI, F., PURCELL, A. & SILENZI, S. (2004a) Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Reviews, 23, 1567-1598. LAMBECK, K., ANZIDEI, M., ANTONIOLI, F., BENINI, A. & ESPOSITO, A. (2004b) Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth and Planetary Science Letters, 224, 563-575.

  20. Comparison of the Active Bagnold Dune Field with Other Aeolian Deposits Observed at Gale using ChemCam Data.

    NASA Astrophysics Data System (ADS)

    Cousin, A.; Dehouck, E.; Meslin, P. Y.; Williams, A. J.; Stein, N.; Gasnault, O.; Bridges, N.; Ehlmann, B. L.; Schröder, S.; Payre, V.; Rapin, W.; Pinet, P. C.; Sautter, V.; Lanza, N.; Lasue, J.; Maurice, S.; Wiens, R. C.

    2017-12-01

    The Curiosity rover at Gale crater, Mars, had the opportunity to investigate an active dune field called Bagnold Dunes for the first time on another planet. The objectives of this campaign were threefold: Understand the present-day aeolian processes on Mars by investigating the grain size of the particles and their dynamics; Understand the past aeolian processes by looking at the morphology and texture of the dunes; and Investigate the source of the dunes material by measuring their chemistry and mineralogy. The ChemCam instrument acquired a large data volume during this campaign: 18 targets on barchan dunes, 15 targets on a linear dune and then 3 targets on a mega-ripple. In this study, we compare the Bagnold Dunes data to those acquired on soil patches (Aeolis Palus soils) along the traverse corresponding to 60 targets. We have observed that the major oxide composition of the dunes is similar to that of Aeolis Palus soils, with the exception of the FeO and MnO contents that are slightly more elevated in the dunes. Moreover, the material from the dunes and more particularly the coarser particles ( 200 microns) are depleted in volatiles (mostly H) compared to the Aeolis Palus soils. The grain size analyses show that the dunes are depleted in fine-grained particles (<100 microns) compared to Aeolis Palus soils. The leading hypothesis to explain this depletion in volatiles and fine-grained particles is that the dunes, being active, have undergone physical sorting and therefore have lost their finest particles that seem to be the carrier of the volatiles (amorphous component and dust). Moreover, the dunes seem to be enriched in mafic minerals compared to the Aeolis Palus soils, as also shown by the CheMin and APXS instruments. However, thanks to the small footprint of ChemCam, we have shown that the coarsest particles were even more enriched in mafic minerals than the finer ones, in agreement with multispectral ChemCam passive and Mastcam observations. Therefore, the olivine abundance measured by CheMin (analysing only particles < 150 microns) could represent a lower limit with respect of the bulk of the dunes. Nevertheless, no significant difference has been observed with ChemCam between the barchan and linear dunes, even though the linear dunes seem to contain more pyroxenes according to the orbital observations.

  1. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic contributions to lunar science. Participant feedback on workshop surveys was enthusiastically positive. 2012 was the third and final year for the LWEs in the current funding cycle. They will continue in a modified version at NASA Goddard Space Flight Center in Greenbelt, MD, where the LRO Project Office and Education and Public Outreach Team are based. We will present evaluation results from our external evaluator, and share lessons learned from this workshop series. The LWEs can serve as a model for others interested in incorporating scientist and engineer involvement, data from planetary missions, and data-based activities into a thematic professional development experience for science educators. For more information about the LWEs, please visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  2. Observations of Coherent Flow Structures Over Subaqueous High- and Low- Angle Dunes

    NASA Astrophysics Data System (ADS)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2017-11-01

    Large-scale coherent flow structures (CFSs) above dunes are the dominant source of flow resistance and constitute the principal mechanism for sediment transport and mixing in sand bed river and estuarine systems. Based on laboratory observations, CFS formation has been previously linked to flow separation downstream of high-angle dunes with lee slopes of 30°. How CFSs form in natural, deep rivers and estuaries where dunes exhibit lower lee slopes and intermittent flow separation is not well understood. Here we present particle image velocimetry measurements from an experiment where dune lee slope was systematically varied (30°, 20°, and 10°), while other geometric and hydraulic parameters were held constant. We show that CFSs form downstream of all three dune geometries from shear layer vortices in the dune lee. The mode of CFS formation undergoes a low-frequency oscillation with periods of intense vortex shedding interspersed with periods of rare vortex shedding. Streamwise alignment of several vortices during periods of intense shedding results in wedge-shaped CFSs that are advected above the dune stoss side. Streamwise length scales of wedge-shaped CFS correspond to large-scale motions (LSMs). We hypothesize that the advection of LSM over the dune crest triggers the periods of intense shedding in the dune lee. LSMs are weaker and smaller above low-angle dunes; however, the low-frequency oscillation in CFS formation periods persists. The formation of smaller and weaker CFS results in a reduction of flow resistance over low-angle dunes.

  3. Observations of Interannual Dune Morphological Evolution With Comparisons to Shoreline Change Along the Columbia River Littoral Cell

    NASA Astrophysics Data System (ADS)

    Doermann, L.; Kaminsky, G. M.; Ruggiero, P.

    2006-12-01

    Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face recovered quickly and has continued to grow steadily seaward since 1999. The consistency of this dune face behavior may prove to be a reliable indicator of longer-scale beach trends due to its ability to remove the effects of even the most severe seasonal changes. These prograding dunes also accreted vertically by 1-2 m for several years as a distinctly new foredune evolved. However, the dune crest height has remained relatively constant for about the last two years and there is some evidence of a new seaward ridge forming as the beach continues to prograde. Coastal stretches that exhibit large variability in shoreline position also feature more erratic dune behavior. On eroding beaches, the dune face follows the trend of the shoreline, although the rate of retreat is not always steady because of winter scarping. In contrast, beaches with stable shorelines (over interannual-decadal scale) are backed by dunes 8-9 m in height that have shown little to no significant dune face position change over the last nine years. Additionally, across the study area, we observe that wider beaches ( > 100 m) are associated with higher rates of shoreline and dune face accretion, while the narrower beaches ( < 100 m) are either stable or eroding.

  4. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  5. THEMIS Images as Art #42

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Welcome to the second annual THEMIS ART MONTH. From Jan. 31 through March 4 we will be showcasing images for their aesthetic value, rather than their science content. Portions of these images resemble things in our everyday lives, from animals to letters of the alphabet. We hope you enjoy our fanciful look at Mars!

    A pleasant cloudburst seems to fall from these Martian dunes.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-16

    This VIS image was collected at the height of summer. It is during this season that winds are able to move sand sized particles, slowly modifying the dunes. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 13475 Latitude: 80.7459 Longitude: 177.171 Instrument: VIS Captured: 2004-12-27 21:44 https://photojournal.jpl.nasa.gov/catalog/PIA22297

  7. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time

    NASA Astrophysics Data System (ADS)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.

    2018-05-01

    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  8. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  9. Investigating Mars: Kaiser Crater Dunes

    NASA Image and Video Library

    2018-01-23

    Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southeastern part of the crater floor. Most of the individual dunes in Kaiser Crater are barchan dunes. Barchan dunes are crescent shaped with the points of the crescent pointing downwind. The sand is blown up the low angle side of the dune and then tumbles down the steep slip face. This dune type forms on hard surfaces where there is limited amounts of sand. Barchan dunes can merge together over time with increased sand in the local area. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 1036 Latitude: -46.7795 Longitude: 20.2075 Instrument: VIS Captured: 2002-03-09 20:07 https://photojournal.jpl.nasa.gov/catalog/PIA22172

  10. Investigating Mars: Kaiser Crater Dunes

    NASA Image and Video Library

    2018-01-29

    This VIS image of Kaiser Crater shows a region of the dunes with varied appearances. The different dune forms developed due to different amounts of available sand, different wind directions, and the texture of the crater floor. The dune forms change from the bottom to the top of the image - large long connected dunes, to large individual dunes, to the very small individual dunes at the top of the image. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17686 Latitude: -46.6956 Longitude: 19.8394 Instrument: VIS Captured: 2005-12-09 13:25 https://photojournal.jpl.nasa.gov/catalog/PIA22261

  11. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-09

    This VIS image of Olympia Undae was collected during north polar spring. The crests of the dunes and other surfaces are light colored, indicative of a frost covering. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time. As the season changes into summertime, the dune crests will lose the frost and reveal the darker sand beneath. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 27402 Latitude: 81.2035 Longitude: 183.317 Instrument: VIS Captured: 2008-02-17 13:59 https://photojournal.jpl.nasa.gov/catalog/PIA22292

  12. Calculation of Beach Change Under Interacting Cross-Shore and Longshore Processes

    DTIC Science & Technology

    2010-01-01

    the dune toe , berm width, and shoreline position are calculated, while maintaining longshore transport rates representative of the regional long-term...during growth together with the dune shape, the seaward movement of the dune toe ΔyDw for a given increase in dune volume ΔVDw is: ΔyDw = ΔVDw DD ð2Þ...Expressing Eq. (1) in terms of dune toe advance yields: dyDw dt = qw DD ð3Þ It is assumed that sand transport to the dune is related to thewidth of the

  13. Planetary protection issues and future Mars missions

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Klein, H. P.; Bagby, J. R.

    1991-01-01

    A primary scientific theme for the Space Exploration Initiative (SEI) is the search for life, extant or extinct, on Mars. Because of this, concerns have arisen about Planetary Protection (PP), the prevention of biological cross-contamination between Earth and other planets during solar system exploration missions. A recent workshop assessed the necessity for, and impact of, PP requirements on the unmanned and human missions to Mars comprising the SEI. The following ground-rules were adopted: (1) Information needed for assessing PP issues must be obtained during the unmanned precursor mission phase prior to human landings. (2) Returned Mars samples will be considered biologically hazardous until proven otherwise. (3) Deposition of microbes on Mars and exposure of the crew to martian materials are inevitable when humans land. And (4) Human landings are unlikely until it is demonstrated that there is no harmful effect of martian materials on terrestrial life forms. These ground-rules dictated the development of a conservative PP strategy for precursor missions. Key features of the proposed strategy include: to prevent forward-contamination, all orbiters will follow Mars Observer PP procedures for assembly, trajectory, and lifetime. All landers will follow Viking PP procedures for assembly, microbial load reduction, and bio-shield. And, to prevent back-contamination, all sample return missions will have PP requirements which include fail-safe sample sealing, breaking contact chain with the martian surface, and containment and quarantine analysis in Earth-based laboratory. In addition to deliberating on scientific and technical issues, the workshop made several recommendations for dealing with forward and back-contamination concerns from non-scicntific perspectives.

  14. Quantification of Dune Response over the Course of a 6-Day Nor'Easter, Outer Banks, NC

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Spore, N.; Swann, C.

    2014-12-01

    The amount and type of foredune morphologic change during a storm event primarily scales with the level of inundation during that event. Specifically, external hydrodynamic forcing (total water level) can be compared with antecedent beach and foredune morphology to predict an impact regime that relates to the type of expected morphologic evolution of the system. For example, when total water levels are above the dune toe, but below the dune crest, the impact regime is classified as "collision" and the expected morphology response is slumping or scarping of the dune face. While the amount of dune retreat scales largely with the duration of wave attack to the dune face, characteristics of the dune other than its crest or toe elevation may also enhance or impede rates of morphologic change. The aftermath of Hurricane Sandy provided a unique opportunity to observe alongshore variations in dune response to a 6-day Nor'Easter (Hs >4 m in 6 m depth), as a variety of dunes were constructed (or not) by individual home owners in preparation for the winter storm season. Daily terrestrial lidar scans were conducted along 20 km of coastline in Duck, NC using Coastal Lidar And Radar Imaging System (CLARIS) during the first dune collision event following Sandy. Foredunes were grouped by their pre-storm form (e.g. vegetated, pushed, scarped, etc) using automated feature extraction tools based on surface curvature and slope, and daily rates of morphologic volume change were calculated. The highest dune retreat rates were focused along a 1.5 km region where cross-shore erosion of recently pushed, un-vegetated dunes reached 2 m/day. Variations in dune response were analyzed in relation to their pre-storm morphology, with care taken to normalize for alongshore variations in hydrodynamic forcing. Ongoing research is focused on identifying specific metrics that can be easily extracted from topographic DEMs to aid in dune retreat predictions.

  15. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  16. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science faculty, bringing them together at science conferences to share resources and experiences and to discuss pertinent education research. An online higher education clearinghouse, (EarthSpace - http://www.lpi.usra.edu/earthspace), has been developed to provide faculty with news and funding information, the latest education research and resources for teaching undergraduates, and undergraduate course materials, including lectures, labs, and homework. The presentation will explore the Planetary Science E/PO Forum pathways and tools available to support scientists involved in - or interested in being involved in - E/PO.

  17. Seasonal erosion and restoration of Mars' northern polar dunes.

    PubMed

    Hansen, C J; Bourke, M; Bridges, N T; Byrne, S; Colon, C; Diniega, S; Dundas, C; Herkenhoff, K; McEwen, A; Mellon, M; Portyankina, G; Thomas, N

    2011-02-04

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  18. Seasonal erosion and restoration of Mars' northern polar dunes

    USGS Publications Warehouse

    Hansen, C.J.; Bourke, M.; Bridges, N.T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

    2011-01-01

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO 2 seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  19. Change Observed in Martian Sand Dune

    NASA Image and Video Library

    2015-11-16

    This animation flips back and forth between views taken in 2010 and 2014 of a Martian sand dune at the edge of Mount Sharp, documenting dune activity. The images are from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. They cover an area about 740 feet (about 225 meters) wide, showing a site called "Dune 2" in the "Bagnold Dunes" dune field. NASA's Curiosity Mars rover will observe this dune up close on the rover's route up Mount Sharp. North is toward the top. The edge of the dune at the crescent-shaped slip face on the south edge advances slightly during the four-year period between the dates of the images. Figure A is an annotated version with an arrow indicating the location of this change. The lighting angle is different in the two images, resulting in numerous changes in shadows. http://photojournal.jpl.nasa.gov/catalog/PIA20161

  20. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  1. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    NASA Astrophysics Data System (ADS)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of such VLDs can occur today in some coasts where the wind is quite strong and the rain can support some shrubs.

  2. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-02

    ISS013-E-75141 (2 Sept. 2006) --- Erg Oriental, Algeria is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. One of the main interests of rainless regions like the Sahara Desert to landscape science is that the work of flowing water--mainly streams and rivers--becomes less important than the work of wind. According to scientists, over millennia, and if enough sand is available, winds can generate dunes of enormous size, arranged in regular patterns. Long, generally north-south trending linear dunes stretch across much of northeast Algeria covering a vast tract (approximately 140,000 kilometers square) of the Sahara Desert known as the Erg Oriental. Erg means dune sea in Arabic, and the term has been adopted into modern geology. Spanning this image diagonally are a series of two kilometer-wide linear dunes, comprised of red sand, from a point on the southwest margin of the erg (center point 28.9N 4.8W). The dune chains are more than 100 meters high. The "streets" between the dunes are grayer areas free of sand. Linear dune chains are usually generated roughly parallel with the dominant winds. It also seems to be true that linear dunes are built by stronger winds. This detailed view shows that smaller dunes, known as star dunes, are built on top of the linear dunes. By contrast, star dunes seem to form in weak wind regimes, with winds from different directions in each season -- resulting in characteristic "arms" snaking away from a central point. Some scientists therefore think the dunes in this image were generated in two earlier climatic phases, different from that of today. (1) During a phase when winds were stronger and dominantly from one direction (the south), major linear sand masses accumulated. (2) Later, when wind strengths declined, the star dunes formed. Modern features--known as wind streaks--on the edge of the present erg (not shown), younger than either the linear or star dunes, show that present-day sand-moving winds blow from the southwest.

  3. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-05

    Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 27652 Latitude: 80.983 Longitude: 170.458 Instrument: VIS Captured: 2008-03-09 04:03 https://photojournal.jpl.nasa.gov/catalog/PIA22288

  4. The origin of collapse features appearing in a migrating parabolic dune along the southern coast of Lake Michigan

    NASA Astrophysics Data System (ADS)

    Argyilan, Erin P.; Avis, Peter G.; Krekeler, Mark P. S.; Morris, Charles C.

    2015-12-01

    Dune decomposition chimneys are collapse features formed when migrating dunes encroach on a forest and buried trees subsequently decay, leaving a temporarily stable open hole. The recent appearance of holes on the stoss slope of Mount Baldy at the Indiana Dunes National Lakeshore provided an opportunity for study of such features. Mount Baldy is a large parabolic dune that is rapidly migrating onshore over a late Holocene landscape with stabilized relict parabolic dunes that supported oak (Quercus spp.) trees visible on the 1939 aerial photo. Individual holes were mapped to locations on the dune surface that would directly overlie the arm of a buried relict parabolic dune. Analyses of buried trees and surrounding sediment indicated that saprotrophic wood decay fungi continue to actively decompose trees after burial and biomineralization of a calcium-carbonate-rich cement occurs at the contact between organic material and sands. Scanning electron microscopy of the cement showed neoformed authigenic minerals and organic structures consistent in morphology with fungal hyphae. We propose that, within the dune, portions of the decayed trees progressively collapse and infill, and open holes are temporarily stabilized by the calcium-carbonate-rich cement. Further, holes can exist undetected at the surface, covered by a thin veneer of sand. Migrating dune systems are observed in many coastal and inland areas. Ongoing work must address the relative contributions of individual environmental factors on the formation of dune decomposition chimneys, including the biomineralization of cement, sand mineralogy, rate of dune movement, tree species, climate, and the composition of fungal communities.

  5. Formation Mechanisms for Dunes Observed on Titan

    NASA Astrophysics Data System (ADS)

    Vinson, Alec; Hays, C. C.; Lopes-Gautier, R. M.; Mitchell, K. L.; Diniega, S.; Farr, T. G.

    2013-01-01

    The Cassini spacecraft has discovered massive dune fields on Saturn’s largest moon, Titan. The dunes were observed with the Cassini Synthetic Aperture Radar Imaging (SARS) instrument. The radar instrument operates at a frequency of 13.78 GHz, corresponding to a wavelength 2.2 cm. The resolution for the images examined are ~ 1 pixel = 175 m (varies from image to image). These dunes, or at least what’s visible to radar, through the thick nitrogen Titan atmosphere, seem to be almost exclusively longitudinal dunes (with crests forming parallel to prevailing wind directions). Many unanswered questions remain about these dunes. One goal of this project is to attempt to calculate the heights of these dunes, which has not yet been systematically attempted. We will use radar parallax analyses to calculate the height of the dunes. The Cassini radar determines position based on how long the radar wave took to return to the spacecraft, making an assumption that the surface is a perfect sphere. With changes in height, the time return for radar will change, distorting the image. Looking at these distortions (specifically, the shortening or elongation of the side of a dune) and knowing the inclination angle, we can determine height or depth. We will also use this same method with radar images of the Namib dunes, in southwest Africa, as an Earth analog, to test and determine how accurate our method is. This approach should give useful information on the morphology of the dunes on Titan. Knowing more about the morphology of the dunes can teach us more about the dune’s composition and formation mechanisms.

  6. Evaluation of simple geochemical indicators of aeolian sand provenance: Late Quaternary dune fields of North America revisited

    USGS Publications Warehouse

    Muhs, Daniel

    2017-01-01

    Dune fields of Quaternary age occupy large areas of the world's arid and semiarid regions. Despite this, there has been surprisingly little work done on understanding dune sediment provenance, in part because many techniques are time-consuming, prone to operator error, experimental, highly specialized, expensive, or require sophisticated instrumentation. Provenance of dune sand using K/Rb and K/Ba values in K-feldspar in aeolian sands of the arid and semiarid regions of North America is tested here. Results indicate that K/Rb and K/Ba can distinguish different river sands that are sediment sources for dunes and dune fields themselves have distinctive K/Rb and K/Ba compositions. Over the Basin and Range and Great Plains regions of North America, the hypothesized sediment sources of dune fields are reviewed and assessed using K/Rb and K/Ba values in dune sands and in hypothesized source sediments. In some cases, the origins of dunes assessed in this manner are consistent with previous studies and in others, dune fields are found to have a more complex origin than previously thought. Use of K/Rb and K/Ba for provenance studies is a robust method that is inexpensive, rapid, and highly reproducible. It exploits one of the most common minerals found in dune sand, K-feldspar. The method avoids the problem of using simple concentrations of key elements that may be subject to interpretative bias due to changes in mineralogical maturity of Quaternary dune fields that occur over time.

  7. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars

    PubMed Central

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K.; Michaels, Timothy I.

    2018-01-01

    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum’s Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion. PMID:29576818

  8. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars.

    PubMed

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I

    2017-06-01

    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  9. Post-storm beach and dune recovery: Implications for barrier island resilience

    NASA Astrophysics Data System (ADS)

    Houser, Chris; Wernette, Phil; Rentschlar, Elizabeth; Jones, Hannah; Hammond, Brianna; Trimble, Sarah

    2015-04-01

    The ability of beaches and dunes to recover following an extreme storm is a primary control of barrier island response to sea-level rise and changes in the frequency and/or magnitude of storm surges. Whereas erosion of the beach and dune occurs over hours and days, it can be years to decades before the beach and dune are able to recover to their pre-storm state. As a consequence, there are numerous descriptions of near-instantaneous beach and dune erosion due to storms, the immediate onshore transport of sand, and the initial phases of beach and dune recovery following a storm, but a paucity of data on long-term beach and dune recovery. A combination of previously published data from Galveston Island, Texas and new remotely sensed data from Santa Rosa Island, Florida is used in the present study to quantify the rate of dune recovery for dissipative and intermediate beach types, respectively. Recovery of the dune height and volume on Galveston Island was observed within two years following Hurricane Alicia (1983) and was largely complete within six years of the storm, despite extensive washover. In contrast, the dunes on Santa Rosa Island in Northwest Florida began to recover four years after Hurricane Ivan (2004), and only after the profile approached its pre-storm level and the rate of vegetation recovery (regrowth) was at a maximum. Results show that complete recovery of the largest dunes (in height and volume) will take approximately 10 years on Santa Rosa Island, which suggests that these sections of the island are particularly vulnerable to significant change in island morphology if there is also a change in the frequency and magnitude of storm events. In contrast, the areas of the island with the smallest dunes before Hurricane Ivan exhibited a rapid recovery, but no further growth in profile volume and dune height beyond the pre-storm volume and height, despite continued recovery of the largest dunes to their pre-storm height. A change in storm magnitude and/or frequency is a potential threat to barrier island resilience, particularly for those sections of the island where dune recovery has historically taken the longest time. Further study is required to determine how and why dune recovery varies for the dissipative and intermediate beaches of Galveston Island and Santa Rosa Island, respectively.

  10. Aeolian Processes of the Pismo-Oceano Dune Complex, California

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Tchakerian, V.; Houser, C.

    2012-12-01

    The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.

  11. Origin of the late quaternary dune fields of northeastern Colorado

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.

    1996-01-01

    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These studies, which demonstrate the importance of fluvial-source sediments for dune fields in Colorado, may be applicable to other dune fields in North America. Because modern drift potentials in northeastern Colorado are among the highest in the world, the present stability of dunes in the region may be in part a function of the dunes being supply-limited rather than solely transport-limited. Extensive (??? 7700 km2) late Holocene dunes document that eolian sand in northeastern Colorado is very sensitive to small changes in climate or fluvial source conditions.

  12. Post-storm evolution a high-energy remote sandy beach backed by a high and wide coastal dune

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Bujan, Stéphane; Ferreira, Sophie

    2016-04-01

    During the winter 2013/2014, the high-energy meso-macrotidal remote beach of Truc Vert (SW France) was exposed to the most energetic wave conditions over at least the last 65 years with, for instance, the 2-month averaged significant wave height at the coast exceeding 3.6 m. Unprecedented beach and dune erosion was observed with the notable presence of a 700-m long localized megacusp embayment with the erosion scarp height exceeding 6 m in its centre where the dune retreat reached 30 m. Both the beach and the coastal dune eroded by about 90 m3/m within 3 months of severe storm activity, that is, a total beach-dune system sediment loss reaching 180m3/m. Beach and dune evolution after the winter 2013/2014 was inspected from March 2014 to November 2015 using bimonthly topographic surveys covering 1500+ m alongshore. 1.5 years after the winter 2014/2015, the beach-dune system did not fully recover to its pre-winter 2014/2015 level. The dune accreted by only a few m3/m while the beach accreted by an impressive amount of approximately 150m3/m, to reach a total volume that was only exceeded in 2012 within our full 10-year time series. Despite little volumetric changes, the dune showed significant morphological change through slumping and onshore wave- and wind-driven sediment transport. Seasonal natural revegetation was observed with large dune grass growth into the summer berm and within the erosion scarp with slumped clots of dune grass re-establishing their growth during the winter 2014/2015. In late 2015, the onset of morphological foredune development was observed. It is anticipated that, if Truc Vert is not exposed to a cluster of severe storms during the winter 2015/2016, the coastal dune will increase in volume within 2016 at a much higher rate than during 2015. Last but not least, starting in late 2015, the coastal dune of Truc Vert is now intensively monitored through regular 4-km long UAV photogrammetric surveys. Given that, nowadays, some scientists advocate that dunes maintained as dynamic systems retaining diversity and complexity not only provide more ecosystem services but can even be more resistant to marine erosion and more resilient than actively managed dunes, it is the objective to test different dune management strategies at Truc Vert, including no dune maintenance.

  13. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    USGS Publications Warehouse

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (???5?? latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan's asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan's northern tropics. ?? 2011 Elsevier Inc.

  14. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-06

    This VIS image of Olympia Undae was collected early in north polar spring. The crests of the dunes are light colored, indicative of a frost covering. As the season changes into summertime, the dune crests will lose the frost and reveal the darker sand beneath. The margin of the north polar cap is visible at the top of the image. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 10293 Latitude: 83.0224 Longitude: 174.743 Instrument: VIS Captured: 2004-04-09 22:04 https://photojournal.jpl.nasa.gov/catalog/PIA22289

  15. Exploring elements that influence stewardship in the eastern Lake Ontario dune and wetland area

    Treesearch

    Diane Kuehn; James Smahol

    2010-01-01

    Th e Eastern Lake Ontario Dune and Wetland Area (ELODWA) is a 17-mile stretch of sand dunes, wetlands, and woodlands along the eastern shore of Lake Ontario in New York State. Reductions in negative, visitor-caused impacts on the dunes (e.g., trampling of dune vegetation and sand erosion) are thought to be due in part to the extensive visitor education efforts of...

  16. The Single-Phase ProtoDUNE Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abi, B.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  17. Numerical study of turbulent flow over stages of interacting barchan dunes: sediment scour and vorticity dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Anderson, William

    2017-11-01

    Large-eddy simulation (LES) results of unidirectional turbulent flow over interacting barchan dunes are presented. A series of interacting barchan dune topographies have been considered wherein a small dune is positioned at locations upflow of a relatively larger dune, and at a slight spanwise offset. The smaller dune is geometrically similar, but one-eighth the volume of the larger dune, thus replicating instantaneous realizations during actual dune interactions. We report that flow channeling in the interdune space induces a mean flow heterogeneity - termed ``wake veering'' - in which the location of maximum momentum deficit in the dune wake is spanwise-displaced. The probability density functions of streamwise velocity fluctuation in the interdune space showed wide variability, and were used to select low-frequency, high-magnitude thresholds for conditional sampling. Conditionally- and Reynolds-averaged iso-contours of Q-criterion and differential helicity revealed a persistent roller in interdune space, which strengthened asymmetric sediment erosion via scouring. We assess terms in the Reynolds-averaged streamwise vorticity transport, and show that the roller is primarily sustained by stretching. Finally, we present results of joint time-frequency analysis using wavelet decomposition, which shows that the dune geometry imparts a distinct influence on the local flow.

  18. Hardened Dunes in Arcadia Planitia

    NASA Image and Video Library

    2014-10-29

    NASA Mars Reconnaissance Orbiter HiRISE, with its high resolution and eight years in orbit about Mars, has shown that many dunes and ripples on the planet are active. This demonstrates that in some areas sand is loose enough and winds strong enough, that significant change can occur. Nevertheless, other Martian dunes are clearly *inactive*. This image in Arcadia Planitia shows dunes in a crater. Unlike active dunes on the planet, those here are bright, and, zooming in, there are several lines of evidence indicating that the dunes have become indurated, that is, hardened into cohesive sediment or even into sandstone rock. For example, the dune field at the southern edge is cut off by a step cliff, indicating erosion of hard material. Although fine scale ripples on the original dune surface are preserved, we also see large scale fluting from southwest to northeast, a common texture associated with wind-induced sand abrasion. How these dunes became indurated is unknown. One possibility is that this area of Mars was buried and then exhumed, a process that seems to have occurred many times in the Martian past over various areas of the planet. During burial, compaction and possibly ground water circulation would have indurated the dunes, leaving them as a hard sandstone that, when exhumed, was subsequently partially eroded. http://photojournal.jpl.nasa.gov/catalog/PIA18890

  19. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-08-02

    This image shows individual dunes on the floor of Russell Crater, as well as larger dunes created by individual dunes coalescing . These dunes are in the western part of the dune field. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 26372 Latitude: -54.372 Longitude: 12.5481 Instrument: VIS Captured: 2007-11-24 17:16 https://photojournal.jpl.nasa.gov/catalog/PIA21800

  20. Digital Game-Based Learning to Encourage Secondary Students to Purse STEM Related Careers Using Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Ortiz-Correa, Z. M.; Lautenbach, J.; Franco-Diaz, E.; Raizada, S.; Ghosh, T.; Rivera-Valentín, E.; Ortiz, A.

    2017-12-01

    This project was developed to encourage secondary students to pursue STEM related careers through exposure to the interdisciplinary nature of the Arecibo Observatory (AO) in Puerto Rico. The idea for this project was initiated due to the NSF-funded Research Experience for Teachers (RET) Summer Program. The AO RET summer program allows teaching faculty from public schools to collaborate with scientist on their ongoing research or instrument development projects at the AO for five weeks. Subsequently, the research is disseminated among secondary students through several workshops and hands-on activities. Through the workshops and hands-on activities underrepresented secondary students will learn about the research conducted at the AO to study Earth's upper atmosphere, asteroids and other Solar System bodies, as well as stars and galaxies beyond. Afterwards, students will develop virtual worlds simulating the different AO facilities (Lidar Laboratory, Radio Telescope, Planetary Radar System, HF Facility, Visitor Center, among others) and showing their functions using digital game-based learning.

  1. NASA Participated in the Japan 2001 Science, Creativity and the Young Mind Workshop

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Petersen, Ruth A.

    2002-01-01

    During the week of July 23, 2001, a workshop called the Japan 2001 Science, Creativity and the Young Mind took place at Bristol University in Bristol, England. Coordinated by the Clifton Scientific Trust, it brought together 60 British and Japanese students and provided them with a forum for learning and interacting. All the students were chosen from geographical areas of social deprivation, where university education is not seen as a natural progression for students. One of the aims of the workshop was to give the combined group a new view of themselves as potential scientists and an ambition to succeed at the highest level. Members of the Glenn Research Center's Learning Technologies Project participated with six of the students and their team leaders as a Space Science Team. Four interactive videoconferencing sessions were held between the NASA Glenn Research Center and Bristol University on four consecutive days. During the sessions, students raised questions concerning various theories about the probable formation of volcanoes on Mars. Of specific interest was if the great Tharsis volcanoes might be the result of an ancient collision of planetary proportions, or if plate tectonic movement, evidence for which was recently discovered by NASA's Mars Global Surveyor Spacecraft, might account for them.

  2. Dunes and microdunes on Venus: Why were so few found in the Magellan data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle 1 images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel relfections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  3. Dunes and Microdunes on Venus: Why Were So Few Found in the Magellan Data?

    NASA Technical Reports Server (NTRS)

    Weitz, Catherine M.; Plaut, Jeffrey J.; Greeley, Ronald; Saunders, R. Steven

    1994-01-01

    A search through cycle 1, 2, and 3 Magellan radar data covering 98% of the surface of Venus revealed very few dunes. Only two possible dune fields and several areas that may contain microdunes smaller than the resolution of the images (75 m) were identified. The Aglaonice dune field was identified in the cycle I images by the specular returns characteristic of dune faces oriented perpendicular to the radar illumination. Cycle 1 and 2 data of the Fortuna-Meshkenet dune field indicate that there has been no noticeable movement of the dunes over an 8-month period. The dunes, which are oriented both parallel and perpendicular to the radar illumination, appear to be dark features on a brighter substrate. Bright and dark patches that were visible in either cycle 1 or 2 data, but not both, allowed identification of several regions in the southern part of Venus that may contain microdunes. The microdunes are associated with several parabolic crater deposits in the region and are probably similar to those formed in wind tunnel experiments under Venus-like conditions. Bragg scattering and/or subpixel reflections from the near-normal face on asymmetric microdunes may account for these bright and dark patches. Look-angle effects and the lack of sufficient sand-size particles seem to be the most likely reasons so few dunes were identified in Magellan data. Insufficient wind speeds, thinness of sand cover, and difficulty in identifying isolated dunes may also be contributors to the scarcity of dunes.

  4. Investigating Mars: Olympia Undae

    NASA Image and Video Library

    2018-03-08

    This VIS image of Olympia Undae was collected during north polar spring. The crests of the dunes and other surfaces are light colored, indicative of a frost covering. At the top right of the image is a region of smooth surfaces. This is the ejecta from Jojutla Crater. The ejecta is a higher elevation than the rest of the surface, and dunes are "climbing" or "skirting" the ejecta regions. The density of dunes and the alignments of the dune crests varies with location, controlled by the amount of available sand and the predominant winds over time, and, in this case, the presence of different surface elevations. As the season changes into summertime, the dune crests will lose the frost and reveal the darker sand beneath. This loss of frost is just starting to be visible at the bottom of the image. Olympia Undae is a vast dune field in the north polar region of Mars. It consists of a broad sand sea or erg that partly rings the north polar cap from about 120° to 240°E longitude and 78° to 83°N latitude. The dune field covers an area of approximately 470,000 km2 (bigger than California, smaller than Texas). Olympia Undae is the largest continuous dune field on Mars. Olympia Undae is not the only dune field near the north polar cap, several other smaller fields exist in the same latitude, but in other ranges of longitude, e.g. Abolos and Siton Undae. Barchan and transverse dune forms are the most common. In regions with limited available sand individual barchan dunes will form, the surface beneath and between the dunes is visible. In regions with large sand supplies, the sand sheet covers the underlying surface, and dune forms are found modifying the surface of the sand sheet. In this case transverse dunes are more common. Barchan dunes "point" down wind, transverse dunes are more linear and form parallel to the wind direction. The "square" shaped transverse dunes in Olympia Undae are due to two prevailing wind directions. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 27352 Latitude: 80.9139 Longitude: 185.126 Instrument: VIS Captured: 2008-02-13 11:10 https://photojournal.jpl.nasa.gov/catalog/PIA22291

  5. Terrestrial analogs of the hellespontus dunes, Mars

    USGS Publications Warehouse

    Breed, C.S.

    1977-01-01

    Geomorphic features in the Hellespontus region, Mars, were compared with dunes of the crescentic ridge type in numerous terrestrial sand seas quantitatively by dimensional analysis of dune lengths, widths, and wavelengths. Mean values for the Hellespontus dunes are close to mean values derived from measurements of all sampled terrestrial sand seas. Terrestrial analogs of form and areal distribution of the Hellespontus dunes are shown by comparison of scale ratios derived from the measurements. Dunes of similar form occur in South West Africa, in Pakistan, in the southeastern Arabian peninsula, in the Sahara, in eastern USSR and northern China, and in western North America. Terrestrial analogs closest to form and areal distribution of the Hellespontus dunes are in the Kara Kum Desert, Turkmen SSR, and in the Ala Shan (Gobi) Desert, China. ?? 1977.

  6. Dune Morphodynamics on a Semi-Arid, Wave-Dominated Barrier Island: South Padre Island, Texas

    NASA Astrophysics Data System (ADS)

    Del Angel, D. C.; Gibeaut, J. C.

    2012-12-01

    Spatial and temporal dune accretion along the barrier island of South Padre Island (SPI),Texas was examined using a combination of field measurements and lidar elevation data. Volume change rates derived from the data were compared to potential sediment transport rates derived from Hsu's (1974 & 1977) model using local wind-gauge data. A statistical model was then used to investigate controls on foredune accretion. Dune volume change was estimated from cross-shore profile measurements acquired during the summer of 2009, spring of 2010, and fall of 2010. For summer 2009 to spring 2010, dune volume change ranged from -18 to 12.5 m^3/m. The onshore potential drift for the same time period was estimated to be 6.6 m^3/m. In comparison, volume change ranged from -5.5 to 5.3 m^3/m for spring to fall 2010 with most dunes experiencing erosion. The estimated onshore drift was much higher at 22.5 m^3/m. The high drift potential associated with the spring and summer months is attributed to the predominant wind direction and the occurrence of tropical storms. Dune volume change was also observed on a longer time scale using lidar DEMs for the years 2000, 2005, and 2009. From 2000 to 2005, most natural dunes experienced accretion with a mean of 17.67 m^3/m, whereas between 2005 and 2009, the majority of dunes experienced volume loss with a mean change of -4.16 m^3/m. Overall, the mean volume change from 2000 to 2009 was 13.51 m^3/m. Onshore drift for 2000 to 2005 was estimated to be 16.44 m^3/m, which is a good approximation to the observed volume change. In contrast, onshore drift for 2000 to 2009 was estimated to be 80.4 m^3/m, which is substantially higher than the mean volume change observed during the period. The discrepancy between the modeled and observe value is partly due to dune volume loss from storm surge erosion. In addition, there was a significant increase in onshore drift potential from 2006 to 2008. Stepwise backward regression was used to find significant correlations (p-values < 0.01) between observed values in dune volume change and beach and dune morphometric parameters. Examined parameters include beach width, beach height, beach slope, shoreline orientation, the long-term rate of shoreline displacement, and aeolian dune form (washover terrace, dune terrace, dune ridge and active dunes). Model results show that dune type, beach width, and shoreline orientation were significant contributors. A hierarchical partitioning method provided further insight by showing that dune type explains most of the variation (57%), followed by beach width (30%) and lastly, orientation (< 2%). Based on the volumetric change analysis, results observed from 2000 to 2005 provide a good estimate of the average dune accretion for SPI because of the low impact of storms. But, from the wind models, potential transport has yearly fluctuations which can affect accretion rates. Furthermore, accretion will continue to be interrupted by the periodic occurrence of storms. Spatial variability of dune volume change is related to the existing dune form and beach morphology as evidenced by the statistical analysis. It is expected that the relative occurrence of washovers, terraces, ridges, and active dunes will vary in time as storms, drought and anthropogenic stresses change.

  7. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  8. The morphodynamics and internal structure of intertidal fine-gravel dunes: Hills Flats, Severn Estuary, UK

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Radecki-Pawlik, A.; Williams, J. J.; Rumble, B.; Meshkova, L.; Bell, P.; Breakspear, R.

    2006-01-01

    In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m - 2 , sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m - 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s - 1 . Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary 'caps' overlie a more stable dune 'core'. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.

  9. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    NASA Astrophysics Data System (ADS)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  10. Boundary Conditions for Aeolian Activity in North American Dune Fields

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Lancaster, N.; Wolfe, S.

    2014-12-01

    Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.

  11. Late Quaternary stratigraphy and geochronology of the western Killpecker Dunes, Wyoming, USA

    USGS Publications Warehouse

    Mayer, J.H.; Mahan, S.A.

    2004-01-01

    New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field's history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ???15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ???13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ???8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ???5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ???2000 and 1500 yr, followed by a brief (???500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ???700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (???350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene. ?? 2003 University of Washington. All rights reserved.

  12. The Quantification and Evolution of Resilience in Integrated Coastal Systems

    DTIC Science & Technology

    2012-08-01

    for natural protection when protective beaches and sand dunes are destroyed or overtopped. Protects a beach or sand dune that fronts backshore from...dredged material on a beach, dune , barrier island, or sand berm located in the near- shore zone. Stabilize the location of an eroding beach, dune ...waves will erode beaches and dunes . Table 5. Components and processes that are part of an ecosystem restoration subsystem defined by an oyster

  13. Probabilistic estimation of dune retreat on the Gold Coast, Australia

    USGS Publications Warehouse

    Palmsten, Margaret L.; Splinter, Kristen D.; Plant, Nathaniel G.; Stockdon, Hilary F.

    2014-01-01

    Sand dunes are an important natural buffer between storm impacts and development backing the beach on the Gold Coast of Queensland, Australia. The ability to forecast dune erosion at a prediction horizon of days to a week would allow efficient and timely response to dune erosion in this highly populated area. Towards this goal, we modified an existing probabilistic dune erosion model for use on the Gold Coast. The original model was trained using observations of dune response from Hurricane Ivan on Santa Rosa Island, Florida, USA (Plant and Stockdon 2012. Probabilistic prediction of barrier-island response to hurricanes, Journal of Geophysical Research, 117(F3), F03015). The model relates dune position change to pre-storm dune elevations, dune widths, and beach widths, along with storm surge and run-up using a Bayesian network. The Bayesian approach captures the uncertainty of inputs and predictions through the conditional probabilities between variables. Three versions of the barrier island response Bayesian network were tested for use on the Gold Coast. One network has the same structure as the original and was trained with the Santa Rosa Island data. The second network has a modified design and was trained using only pre- and post-storm data from 1988-2009 for the Gold Coast. The third version of the network has the same design as the second version of the network and was trained with the combined data from the Gold Coast and Santa Rosa Island. The two networks modified for use on the Gold Coast hindcast dune retreat with equal accuracy. Both networks explained 60% of the observed dune retreat variance, which is comparable to the skill observed by Plant and Stockdon (2012) in the initial Bayesian network application at Santa Rosa Island. The new networks improved predictions relative to application of the original network on the Gold Coast. Dune width was the most important morphologic variable in hindcasting dune retreat, while hydrodynamic variables, surge and run-up elevation, were also important

  14. Geochemical evidence for a complex origin for the Kelso dunes, Mojave National Preserve, California USA

    USGS Publications Warehouse

    Muhs, Daniel; Lancaster, Nicholas; Skipp, Gary L.

    2017-01-01

    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent (~ 100 km2), it has a wide variety of dune forms and contains many active dunes (~ 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  15. A complex origin for the Kelso Dunes, Mojave National Preserve, California, USA: A case study using a simple geochemical method with global applications

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Lancaster, Nicholas; Skipp, Gary L.

    2017-01-01

    The Kelso Dune field in southern California is intriguing because although it is of limited areal extent ( 100 km2), it has a wide variety of dune forms and contains many active dunes ( 40 km2), which is unusual in the Mojave Desert. Studies over the past eight decades have concluded that the dunes are derived primarily from a single source, Mojave River alluvium, under a dominant, westerly-to-northwesterly wind regime. The majority of these studies did not, however, present data to support the Mojave River as the only source. We conducted mineralogical and geochemical studies of most of the 14 geomorphically defined dune groups of the Kelso Dune field as well as potential sand sources, alluvial sediments from the surrounding mountain ranges. Results indicate that sands in the nine western dune groups have K/Rb and K/Ba (primarily from K-feldspar) compositions that are indistinguishable from Mojave River alluvium (westerly/northwesterly winds) and Budweiser Wash alluvium (southwesterly winds), permitting an interpretation of two sources. In contrast, sands from the five eastern dune groups have K/Rb and K/Ba values that indicate significant inputs from alluvial fan deposits of the Providence Mountains. This requires either rare winds from the east or southeast or, more likely, aeolian reworking of distal Providence Mountain fan sediments by winds from the west, at a rate greater than input from the Mojave River or other western sources. The results indicate that even a small dune field can have a complex origin, either from seasonally varying winds or complex alluvial-fan-dune interaction. Application of K/Rb and K/Ba in K-feldspar as a provenance indicator could be used in many of the world's ergs or sand seas, where dune origins are still not well understood or are controversial. Four examples are given from Africa and the Middle East where such an approach could yield useful new information about dune sand provenance.

  16. Evidence for community structure and habitat partitioning in coastal dune stiletto flies at the Guadalupe-Nipomo dunes system, California

    PubMed Central

    Holston, Kevin C.

    2005-01-01

    This study provides empirical evidence for habitat selection by North American species of stiletto flies (Diptera: Therevidae), based on local distributions of adults and immatures, and the first hypothesis of community assemblages proposed for a stiletto fly community. Sites at three localities within the Guadalupe-Nipomo dune system were sampled for stiletto flies in 1997 and 2001 by sifting sand, malaise trapping, and hand netting. Nine species were collected from four ecological zones and three intermediate ecological zones: Acrosathe novella (Coquillett), Brachylinga baccata (Loew), Nebritus powelli (Webb and Irwin), Ozodiceromyia sp., Pherocera sp., Tabudamima melanophleba (Loew), Thereva comata Loew, Thereva elizabethae Holston and Irwin, and Thereva fucata Loew. Species associations of adults and larvae with habitats and ecological zones were consistent among sites, suggesting that local distributions of coastal dune stiletto fly species are influenced by differences in habitat selection. In habitats dominated by the arroyo willow,Salix lasiolepsis, stiletto fly larvae of three species were collected in local sympatry, demonstrating that S. lasiolepsis stands along stabilized dune ridges can provide an intermediate ecological zone linking active dune and riparian habitat in the Guadalupe-Nipomo dune system. Sites dominated by European beach grass, Ammophilia arenaria, blue gum, Eucalyptus globulus, and Monterey cypress, Cupressus macrocarpa, are considered unsuitable for stiletto flies, which emphasizes the importance of terrestrial habitats with native vegetation for stiletto fly species. The local distributions of stiletto fly species at the Guadalupe-Nipomo dune system allow the community to be divided into three assemblages; active dune, pioneer scrub, and scrub-riparian. These assemblages may be applicable to other coastal dune stiletto fly communities, and may have particular relevance to stiletto fly species collected in European coastal dunes. The results from this study provide a descriptive framework for studies testing habitat selection in coastal dune stiletto fly species and inform conservation of threatened dune insects. PMID:17119624

  17. Looking inside out: tracing internal moisture and salinity changes in dunes on the west coast of Ireland

    NASA Astrophysics Data System (ADS)

    Nash, Ciaran; Bourke, Mary

    2017-04-01

    Coastal sand dune systems are some of the most physically dynamic landscapes; their susceptibility to geomorphic change is rooted in a host of interconnected processes and feedbacks. Soil moisture and salinity are two fundamental environmental variables capable of exerting a geomorphic influence but have not been thoroughly investigated in coastal dunes. In northwest Europe, coastal dunes are predominantly sediment-limited systems with reduced capacities to avoid severe morphological changes arising from storms. Climatic changes over the next century are predicted to manifest in more frequent and intense storms with the potential to enact severe geomorphic change in coastal settings. A lack of data pertaining to internal dune hydrosaline dynamics suggests we are missing part of the bigger picture. We conducted a pilot study of moisture and salinity dynamics within the upper 50 cm of the vadose zone in a vegetated dune system at Golden Strand, Achill Island on the west coast of Ireland. Golden Strand is a roughly 800 m long embayed sandy beach, backed by vegetated dunes that protect a low-lying machair grassland. A study transect was established across this dune-machair system, perpendicular to the shore. Innovative instrumentation in the form of capacitance probes and internal dune thermochrons were deployed to sample at 10 cm depth intervals at a sampling rate of 10 minutes and coupled with on-site rainfall data. Results indicate that dune moisture tracks rainfall inputs up to 30 cm depth. Antecedent moisture at depth was found to influence infiltration of water through the dune profile. Salinity within the study transect decreased with distance from the beach, suggesting that salt spray is the primary salt delivery mechanism in the dune system. We also noted that moisture and salinity below 30 cm depth failed to respond to rainfall events of varying intensities. Relatively constant moisture and salinity were observed at all depths within the machair. Predictions of climatic change for Ireland suggest more intense short-period precipitation events, this may increase infiltration depth. Baseline data collected will prove informative in predicting the response of Irish coastal dunes via changes in vegetation and dune stability.

  18. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs. ?? 2011 Elsevier Ltd.

  19. Flood-formed dunes in Athabasca Valles, Mars: Morphology, modeling, and implications

    USGS Publications Warehouse

    Burr, D.M.; Carling, P.A.; Beyer, R.A.; Lancaster, N.

    2004-01-01

    Estimates of discharge for martian outflow channels have spanned orders of magnitude due in part to uncertainties in floodwater height. A methodology of estimating discharge based on bedforms would reduce some of this uncertainty. Such a methodology based on the morphology and granulometry of flood-formed ('diluvial') dunes has been developed by Carling (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) and applied to Pleistocene flood-formed dunes in Siberia. Transverse periodic dune-like bedforms in Athabasca Valles, Mars, have previously been classified both as flood-formed dunes and as antidunes. Either interpretation is important, as they both imply substantial quantities of water, but each has different hydraulic implications. We undertook photoclinometric measurements of these forms, and compared them with data from flood-formed dunes in Siberia. Our analysis of those data shows their morphology to be more consistent with dunes than antidunes, thus providing the first documentation of flood-formed dunes on Mars. Other reasoning based on context and likely hydraulics also supports the bedforms' classification as dunes. Evidence does not support the dunes being aeolian, although a conclusive determination cannot be made with present data. Given the preponderance of evidence that the features are flood-formed instead of aeolian, we applied Carling's (1996b, in: Branson, J., Brown, A.G., Gregory, K.J. (Eds.), Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication No. 115, London, UK, 165-179) dune-flow model to derive the peak discharge of the flood flow that formed them. The resultant estimate is approximately 2??106 m3/s, similar to previous estimates. The size of the Athabascan dunes' in comparison with that of terrestrial dunes suggests that these martian dunes took at least 1-2 days to grow. Their flattened morphology implies that they were formed at high subcritical flow and that the flood flow that formed them receded very quickly. ?? 2004 Elsevier Inc. All rights reserved.

  20. OAST Space Theme Workshop. Volume 2: Theme summary. 4: Solar system exploration (no. 10). A: Statement of theme: B. 26 April 1976 Presentation. C. Summary. D. Initiative actions (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Major strategies for exploring the solar system focus on the return of information and the return of matter. Both the planetary exploration facility, and an orbiting automated space station, and the sample return and exploration facility have similar requirements. The single most essential need to enable intensive study of the outer solar system is nuclear propulsion and power capability. New initiatives in 1978 related to the reactor, data and sample acquisition and return, navigation, and environmental protection are examined.

  1. Mercury Orbiter: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  2. NASA'S second decade in space.

    NASA Technical Reports Server (NTRS)

    Manganiello, E. J.

    1972-01-01

    Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.

  3. How Altitude and Latitude Control Dune Morphometry on Titan

    NASA Technical Reports Server (NTRS)

    Le Gall, A.; Hayes, A.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.

    2011-01-01

    Dune fields are one of the dominant landforms and represent the largest known organic reservoir on Titan. SAR-derived topography show that Titan's dune terrains tend to occupy the lowest altitude areas in equatorial regions occurring at mean elevations between approx.-400 and 0 m. In elevated dune terrains, there is a definite trend towards a smaller dune to interdune ratio, interpreted as due to limited sediment availability. A similar linear correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. These findings place important constraints on Titan's geology and climate.

  4. Stability of isolated Barchan dunes

    NASA Astrophysics Data System (ADS)

    Fourrière, Antoine; Charru, François

    2010-11-01

    When sand grains are entrained by an air flow over a non-erodible ground, or with limited sediment supply from the bed, they form isolated dunes showing a remarkable crescentic shape with horns pointing downstream. These dunes, known as Barchan dunes, are commonly observed in deserts, with height of a few meters and velocity of a few meters per year (Bagnold 1941). These dunes also exist under water, at a much smaller, centimetric size (Franklin & Charru 2010). Their striking stability properties are not well understood yet. Two phenomena are likely to be involved in this stability: (i) relaxation effects of the sand flux which increases from the dune foot up to the crest, related to grain inertia or deposition, and (ii) a small transverse sand flux due to slope effects and the divergence of the streamlines of the fluid flow. We reproduced aqueous Barchan dunes in a channel, and studied their geometrical and dynamic properties (in particular their shape, velocity, minimum size, and rate of erosion). Using coloured glass beads (see the figure), we were then able to measure the particle flux over the whole dune surface. We will discuss the stability of these dunes in the light of our measurements.

  5. Occurrence of amphibians in northern California coastal dune drainages

    USGS Publications Warehouse

    Halstead, Brian J.; Kleeman, Patrick M.

    2017-01-01

    Many coastal dune ecosystems have been degraded by non-native dune vegetation, but these systems might still provide valuable habitat for some taxa, including amphibians. Because restoration of degraded dune systems is occurring and likely to continue, we examined the occurrence of amphibians in drainages associated with a coastal dune ecosystem degraded by invasive plants (European Beachgrass, Ammophila arenaria, and Iceplant, Carpobrotus edulis). We found that occupancy of 3 amphibian species (California Red-legged Frog, Rana draytonii; Sierran Treefrog, Hyliola sierra; and Rough-skinned Newt, Taricha granulosa) among 21 coastal-dune drainages was high, with most coastal-dune drainages occupied by all 3 species. Furthermore, reproduction of Sierran Treefrogs and California Red-legged Frogs was estimated to occur in approximately ½ and ⅓ of the drainages, respectively. The probability of occurrence of Rough-skinned Newts and pre-metamorphic life stages of both anurans decreased during the study, perhaps because of ongoing drought in California or precipitation-induced changes in phenology during the final year of the study. Maintaining structural cover and moist features during dune restoration will likely benefit native amphibian populations inhabiting coastal-dune ecosystems.

  6. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.

    2008-01-01

    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the study areas. High wind power alone does not completely destabilize these dunes. A large decrease in wind power either has little short-term effect on the dunes, or more likely its effect is sufficiently small that it is obscured by human impacts on dune stability in many parts of the study areas. ?? 2008 Elsevier B.V. All rights reserved.

  7. Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary

    DTIC Science & Technology

    2010-02-04

    bed channel, where ripples, dunes , washed out dunes , and antidunes are possible. It is not, however, appropriate to describe a gravel bed channel in...For more frequent events the bedform is generally in lower regime dunes or plane bed. However, the probability of levee failure below 10 percent...from dunes (lower regime) to upper regime (washed out dunes ) the roughness value drops precipitously. A discussion in ASCE (2009) suggests that

  8. Predictability of dune activity in real dune fields under unidirectional wind regimes

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2015-02-01

    We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Año Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.

  9. Recent eolian activity and paleoclimate fluctuations in the Ferris Lost Soldier Area, South-Central Wyoming

    NASA Astrophysics Data System (ADS)

    Gaylord, D. R.

    1983-09-01

    The Ferris Dune Fields were examined. Sand dunes are especially valuable in paleoclimate reconstructions because they: (1) bury and preserve datable materials and artifacts; (2) respond to even subtle changes in wind velocity and direction as reflected both in external morphology and internal structures; and (3) remain unconsolidated, making them amenable to easy textural and compositional examination. The valley of Clear Creek in the Ferris Dunes reveals a relatively continuous Holocene section of interbedded dune and interdunal pond deposits. Radiocarbon dates from the interdunal pond strata at Clear Creek, theoretical sand dune migration rates, compositional analysis of periglacial sand wedges, and relative dating of actively migrating parabolic dunes reveals a general sequence of geologic-climatic events that affected the Ferris-Lost Soldier area. The most recent major reactivaton of dunes occurred approximately 290 years ago.

  10. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément

    2016-04-01

    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  11. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were 29° where grainflows were present and 33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  12. Linear Dunes and Playas, Simson Desert, South Australia, Australia

    NASA Image and Video Library

    1991-12-01

    This image of abstract shapes is comprised numerous subparallel, very long, orange colored linear dunes and patchy grey dry lakes (playas). The dunes are aligned north to south in the great central basin of Astralia (27.0S, 138.0E). The regularity of the dunes is created by the winds blowing from the south. As the dunes advance, jaged edges on the south side of each dry lake are formed while the north side is eroded smooth by the wind and water.

  13. Coastal Evolution Modeling at Multiple Scales in Regional Sediment Management Applications

    DTIC Science & Technology

    2011-05-01

    run-up height (including setup), ∆h is the surge level (including tide elevation relative to mean sea level (MSL)); zD is the dune toe elevation...interactive shoreline, dune , and inlet evolution, on the scale of hundreds of years, a regional and long-term perspective. The regional model...side by subscript r. Dune Erosion As waves run up on the beach and reach the foot of the dune , the dune will be subject to erosion. If it is assumed

  14. Dune Erosion Models and Swash Zone Kinematics from Remote Video Observations

    DTIC Science & Technology

    2010-12-09

    system. Thus, successful prediction of dune erosion requires knowledge of the expected trajectory of the eroding dune toe . If we describe the... dune toe trajectory as following a slope, βT, two end member retreat trajectories exist. The first would be direct landward erosion so that zb never...changes     0 0   T bb ztz  (2.24) The second end member trajectory is that erosion moves the dune toe directly up the foreshore slope

  15. Titan Aeromony and Climate Workshop

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  16. The DUNE Mission

    NASA Astrophysics Data System (ADS)

    Castander, F. J.

    The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.

  17. Environmental implications of the use of sulfidic back-bay sediments for dune reconstruction — Lessons learned post Hurricane Sandy

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Benzel, William M.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Reilly, Timothy J.; Adams, Monique; Berry, Cyrus J.; Fischer, Jeffrey; Fisher, Irene

    2016-01-01

    Some barrier-island dunes damaged or destroyed by Hurricane Sandy's storm surges in October 2012 have been reconstructed using sediments dredged from back bays. These sand-, clay-, and iron sulfide-rich sediments were used to make berm-like cores for the reconstructed dunes, which were then covered by beach sand. In November 2013, we sampled and analyzed partially weathered materials collected from the cores of reconstructed dunes. There are generally low levels of metal toxicants in the reconstructed dune materials. However oxidation of reactive iron sulfides by percolating rainwater produces acid-sulfate pore waters, which evaporate during dry periods to produce efflorescent gypsum and sodium jarosite salts. The results suggest use of sulfidic sediments in dune reconstruction has both drawbacks (e.g., potential to generate acid runoff from dune cores following rainfall, enhanced corrosion of steel bulwarks) and possible benefits (e.g., efflorescent salts may enhance structural integrity).

  18. Non-standard neutrino interactions at DUNE

    DOE PAGES

    de Gouvea, Andre; Kelly, Kevin J.

    2016-03-15

    Here, we explore the effects of non-standard neutrino interactions (NSI) and how they modify neutrino propagation in the Deep Underground Neutrino Experiment (DUNE). We find that NSI can significantly modify the data to be collected by the DUNE experiment as long as the new physics parameters are large enough. For example, if the DUNE data are consistent with the standard three-massive-neutrinos paradigm, order 0.1 (in units of the Fermi constant) NSI effects will be ruled out. On the other hand, if large NSI effects are present, DUNE will be able to not only rule out the standard paradigm but alsomore » measure the new physics parameters, sometimes with good precision. We find that, in some cases, DUNE is sensitive to new sources of CP-invariance violation. We also explored whether DUNE data can be used to distinguish different types of new physics beyond nonzero neutrino masses. In more detail, we asked whether NSI can be mimicked, as far as the DUNE setup is concerned, by the hypothesis that there is a new light neutrino state.« less

  19. Do Sahara dunes make dust? Some dunes do and some dunes don't

    NASA Astrophysics Data System (ADS)

    Bristow, Charlie

    2017-04-01

    The Sahara desert is responsible for producing around half of the atmospheric mineral dust on Earth. While most of the Sahara has the potential to produce dust some areas have been identified using remote sensing as especially prolific dust sources such as the Bodélé Depression in Chad which is described as the dustiest place on Earth. Geomorphological analysis indicates that these areas are usually topographic lows, such as the Bodélé, as well as regions on the flanks of topographic highs. This view was challenged by Crouvi et al. (2012) who suggest that active sand dunes are the most frequent dust sources. In this paper we use an experimental dust chamber to generate dust from dune sediments collected from the crest of active sand dunes across the Sahara including samples from the Bodélé depression, as well as dune sands from Algeria, Egypt, Libya, Morocco and Tunisia. The experiments produced a wide range of results indicating that some dune sands, including those from the Bodélé produce much more dust than others.

  20. Observation and numerical modeling of tidal dune dynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2018-05-01

    Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.

  1. Investigating Mars: Russell Crater

    NASA Image and Video Library

    2017-08-01

    This image shows individual dunes on the floor of Russell Crater. These dunes are in the southern part of the dune field. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! https://photojournal.jpl.nasa.gov/catalog/PIA21799

  2. Variations in Titan's dune orientations as a result of orbital forcing

    NASA Astrophysics Data System (ADS)

    McDonald, George D.; Hayes, Alexander G.; Ewing, Ryan C.; Lora, Juan M.; Newman, Claire E.; Tokano, Tetsuya; Lucas, Antoine; Soto, Alejandro; Chen, Gang

    2016-05-01

    Wind-blown dunes are a record of the climatic history in Titan's equatorial region. Through modeling of the climatic conditions associated with Titan's historical orbital configurations (arising from apsidal precessions of Saturn's orbit), we present evidence that the orientations of the dunes are influenced by orbital forcing. Analysis of 3 Titan general circulation models (GCMs) in conjunction with a sediment transport model provides the first direct intercomparison of results from different Titan GCMs. We report variability in the dune orientations predicted for different orbital epochs of up to 70°. Although the response of the GCMs to orbital forcing varies, the orbital influence on the dune orientations is found to be significant across all models. Furthermore, there is near agreement among the two models run with surface topography, with 3 out of the 5 dune fields matching observation for the most recent orbital cycle. Through comparison with observations by Cassini, we find situations in which the observed dune orientations are in best agreement with those modeled for previous orbital configurations or combinations thereof, representing a larger portion of the cycle. We conclude that orbital forcing could be an important factor in governing the present-day dune orientations observed on Titan and should be considered when modeling dune evolution.

  3. Dune-slope activity due to frost and wind throughout the north polar erg, Mars

    PubMed Central

    DINIEGA, SERINA; HANSEN, CANDICE J.; ALLEN, AMANDA; GRIGSBY, NATHAN; LI, ZHEYU; PEREZ, TYLER; CHOJNACKI, MATTHEW

    2018-01-01

    Repeat, high-resolution imaging of dunes within the Martian north polar erg have shown that these dune slopes are very active, with alcoves forming along the dune brink each Mars year. In some areas, a few hundred cubic metres of downslope sand movement have been observed, sometimes moving the dune brink ‘backwards’. Based on morphological and activity-timing similarities of these north polar features to southern dune gullies, identifying the processes forming these features is likely to have relevance for understanding the general evolution/modification of dune gullies. To determine alcove-formation model constraints, we have surveyed seven dune fields, each over 1–4 Mars winters. Consistent with earlier reports, we found that alcove-formation activity occurs during the autumn–winter seasons, before or while the stable seasonal frost layer is deposited. We propose a new model in which alcove formation occurs during the autumn, and springtime sublimation activity then enhances the feature. Summertime winds blow sand into the new alcoves, erasing small alcoves over a few Mars years. Based on the observed rate of alcove erasure, we estimated the effective aeolian sand transport flux. From this, we proposed that alcove formation may account for 2–20% of the total sand movement within these dune fields. PMID:29731538

  4. Dune-slope activity due to frost and wind throughout the north polar erg, Mars.

    PubMed

    Diniega, Serina; Hansen, Candice J; Allen, Amanda; Grigsby, Nathan; Li, Zheyu; Perez, Tyler; Chojnacki, Matthew

    2017-01-01

    Repeat, high-resolution imaging of dunes within the Martian north polar erg have shown that these dune slopes are very active, with alcoves forming along the dune brink each Mars year. In some areas, a few hundred cubic metres of downslope sand movement have been observed, sometimes moving the dune brink 'backwards'. Based on morphological and activity-timing similarities of these north polar features to southern dune gullies, identifying the processes forming these features is likely to have relevance for understanding the general evolution/modification of dune gullies. To determine alcove-formation model constraints, we have surveyed seven dune fields, each over 1-4 Mars winters. Consistent with earlier reports, we found that alcove-formation activity occurs during the autumn-winter seasons, before or while the stable seasonal frost layer is deposited. We propose a new model in which alcove formation occurs during the autumn, and springtime sublimation activity then enhances the feature. Summertime winds blow sand into the new alcoves, erasing small alcoves over a few Mars years. Based on the observed rate of alcove erasure, we estimated the effective aeolian sand transport flux. From this, we proposed that alcove formation may account for 2-20% of the total sand movement within these dune fields.

  5. Martian Surface and Atmosphere Workshop

    NASA Astrophysics Data System (ADS)

    Schuraytz, Benjamin C.

    The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.

  6. Vegetation of semi-stable rangeland dunes of the Navajo Nation, Southwestern USA

    USGS Publications Warehouse

    Thomas, Kathryn A.; Redsteer, Margaret H.

    2016-01-01

    Dune destabilization and increased mobility is a worldwide issue causing ecological, economic, and health problems for the inhabitants of areas with extensive dune fields. Dunes cover nearly a third of the Navajo Nation within the Colorado Plateau of southwestern USA. There, higher temperatures and prolonged drought beginning in 1996 have produced significant increases in dune mobility. Vegetation plays an important role in dune stabilization, but there are few studies of the plants of the aeolian surfaces of this region. We examined plant species and their attributes within a moderately vegetated dune field of the Navajo Nation to understand the types and characteristics of plants that stabilize rangeland dunes. These dunes supported a low cover of mixed grass-scrubland with fifty-two perennial and annual species including extensive occurrence of non-native annual Salsola spp. Perennial grass richness and shrub cover were positively associated with increased soil sand composition. Taprooted shrubs were more common on sandier substrates. Most dominant grasses had C4 photosynthesis, suggestive of higher water-use efficiencies and growth advantage in warm arid environments. Plant cover was commonly below the threshold of dune stabilization. Increasing sand movement with continued aridity will select for plants adapted to burial, deflation, and abrasion. The study indicates plants tolerant of increased sand mobility and burial but more investigation is needed to identify the plants adapted to establish and regenerate under these conditions. In addition, the role of Salsola spp. in promoting decline of perennial grasses and shrubs needs clarification.

  7. Earth observation taken by the Expedition 28 crew

    NASA Image and Video Library

    2011-09-08

    ISS028-E-044444 (8 Sept. 2011) --- This image, photographed by an Expedition 28 crew member on the International Space Station, highlights a sand dune field within the Burqin-Haba River-Jimunai Desert near the borders of China, Mongolia, Russia and Kazakhstan. The dune field (approximately 32 kilometers long) is located immediately to the west-northwest of the city of Burqin (not shown), and is part of the Junggar Basin, a region of active petroleum production in northwestern China. The Irtysh River, with associated wetlands and riparian vegetation (appearing grey-green in the image) flows from its headwaters in the Altay Mountains to the east towards Siberia to the west (right to left). Tan sandy linear dunes at center on the south side of the Irtysh River dominate the view. The linear dunes are formed from mobile barchan (crescent-shaped) dunes moving from left to right in this view; the barchans eventually merge to form the large linear dunes some of which reach 50-100 meters in height. Sand moving along the southern edge of the dune field appears to be feeding a southeastern lobe with a separate population of linear dunes (lower right). The Burqin-Haba River-Jimunai Desert area also includes darker gravel covered surfaces that form pavements known locally as gobi. These are somewhat indistinguishable from vegetated areas arresting some of the dunes at the resolution of the image, but tend to be located on the flat regions between the dunes.

  8. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani

    2013-12-01

    Dunes on Titan, a dominant landform comprising at least 15% of the surface, represent the end product of many physical processes acting in alien conditions. Winds in a nitrogen-rich atmosphere with Earth-like pressure transport sand that is likely to have been derived from complex organics produced in the atmosphere. These sands then accumulate into large, planet-encircling sand seas concentrated near the equator. Dunes on Titan are predominantly linear and similar in size and form to the large linear dunes of the Namib, Arabian and Saharan sand seas. They likely formed from wide bimodal winds and appear to undergo average sand transport to the east. Their singular form across the satellite indicates Titan’s dunes may be highly mature, and may reside in a condition of stability that permitted their growth and evolution over long time scales. The dunes are among the youngest surface features, as even river channels do not cut through them. However, reorganization time scales of large linear dunes on Titan are likely tens of thousands of years. Thus, Titan’s dune forms may be long-lived and yet be actively undergoing sand transport. This work is a summary of research on dunes on Titan after the Cassini Prime and Equinox Missions (2004-2010) and now during the Solstice Mission (to end in 2017). It discusses results of Cassini data analysis and modeling of conditions on Titan and it draws comparisons with observations and models of linear dune formation and evolution on Earth.

  9. A morphometric comparison of the Namib and southwest Kalahari dunefields using ASTER GDEM data

    NASA Astrophysics Data System (ADS)

    White, Kevin; Bullard, Joanna; Livingstone, Ian; Moran, Lisa

    2015-12-01

    The increased availability of digital elevation models and satellite image data enable testing of morphometric relationships between sand dune variables (dune height, spacing and equivalent sand thickness), which were originally established using limited field survey data. These long-established geomorphological hypotheses can now be tested against very much larger samples than were possible when available data were limited to what could be collected by field surveys alone. This project uses ASTER global digital elevation model (GDEM) data to compare morphometric relationships between sand dune variables in the southwest Kalahari dunefield to those of the Namib sand sea, to test whether the relationships found in an active sand sea (Namib) also hold for the fixed dune system of the nearby southwest Kalahari. The data show significant morphometric differences between the simple linear dunes of the Namib sand sea and the southwest Kalahari; the latter do not show the expected positive relationship between dune height and spacing. The southwest Kalahari dunes show a similar range of dune spacings, but they are less tall, on average, than the Namib sand sea dunes. There is a clear spatial pattern to these morphometric data; the tallest and most closely spaced dunes are towards the southeast of the Kalahari dunefield; and this is where the highest values of equivalent sand thickness result. We consider the possible reasons for the observed differences and highlight the need for more studies comparing sand seas and dunefields from different environmental settings.

  10. Flowing Dunes of Shangri-La Denoised

    NASA Image and Video Library

    2016-09-07

    This radar image of the Shangri-La Sand Sea on Titan from NASA's Cassini spacecraft shows hundreds of sand dunes are visible as dark lines snaking across the surface. These dunes display patterns of undulation and divergence around elevated mountains (which appear bright to the radar), thereby showing the direction of wind and sand transport on the surface. Sands being carried from left to right (west to east) cannot surmount the tallest obstacles; instead, they are directed through chutes and canyons between the tall features, evident in thin, blade-like, isolated dunes between bright some features. Once sands have passed around the obstacles, they resume their downwind course, at first collecting into small, patchy dunes and then organizing into larger, more pervasive linear forms, before being halted once again by obstacles. These patterns reveal the effects not only of wind -- perhaps even modern winds if the dunes are actively moving today -- but also the effects of underlying bedrock and surrounding topography. Dunes across the solar system aid in our understanding of underlying topography, winds and climate, past and present. Similar patterns can be seen in dunes of the Great Sandy Desert in Australia, where dunes undulate broadly across the uneven terrain and are halted at the margins of sand-trapping lakes. The dune orientations correlate generally with the direction of current trade winds, and reveal that winds must have been similar back when the dunes formed, during the Pleistocene glacial and interglacial periods. The image was taken by the Cassini Synthetic Aperture radar (SAR) on July 25, 2016 during the mission's 122nd targeted Titan encounter. The image has been modified by the denoising method described in A. Lucas, JGR:Planets (2014). http://photojournal.jpl.nasa.gov/catalog/PIA20711

  11. Flowing Dunes of Shangri-La

    NASA Image and Video Library

    2016-09-07

    The Shangri-La Sand Sea on Titan is shown in this image from the Synthetic Aperture radar (SAR) on NASA's Cassini spacecraft. Hundreds of sand dunes are visible as dark lines snaking across the surface. These dunes display patterns of undulation and divergence around elevated mountains (which appear bright to the radar), thereby showing the direction of wind and sand transport on the surface. Sands being carried from left to right (west to east) cannot surmount the tallest obstacles; instead, they are directed through chutes and canyons between the tall features, evident in thin, blade-like, isolated dunes between bright some features. Once sands have passed around the obstacles, they resume their downwind course, at first collecting into small, patchy dunes and then organizing into larger, more pervasive linear forms, before being halted once again by obstacles. These patterns reveal the effects not only of wind -- perhaps even modern winds if the dunes are actively moving today -- but also the effects of underlying bedrock and surrounding topography. Dunes across the solar system aid in our understanding of underlying topography, winds and climate, past and present. Similar patterns can be seen in dunes of the Great Sandy Desert in Australia, where dunes undulate broadly across the uneven terrain and are halted at the margins of sand-trapping lakes. The dune orientations correlate generally with the direction of current trade winds, and reveal that winds must have been similar back when the dunes formed, during the Pleistocene glacial and interglacial periods. An annotated version of this radar image is also available.at the Photojournal. North on Titan is up in the image. Radar illuminates the scene from upper right at a 27-degree incidence angle. http://photojournal.jpl.nasa.gov/catalog/PIA20710

  12. Characteristics of dune-paleosol-sequences in Fuerteventura. - What should be questioned?

    NASA Astrophysics Data System (ADS)

    Faust, Dominik; Willkommen, Tobias; Yanes, Yurena; Richter, David; Zöller, Ludwig

    2013-04-01

    Characteristics of dune-paleosol-sequences in Fuerteventura. - What should be questioned? Dominik Faust, TU Dresden, Germany Tobias Willkommen, TU Dresden, Germany Yurena Yanes, CSIC Granada/Cincinatti, Spain/USA David Richter, TU Dresden, Germany Ludwig Zöller, Uni Bayreuth, Germany The northern part of Fuerteventura is characterized by large dune fields. We investigated dune-paleosol-sequences in four pits to establish a robust stratigraphy and to propose a standard section. An interaction of processes like dune formation, soil formation and redeposition of soils and sand are most important to understand the principles of landscape development in the study area. To our mind a process cycle seem to be important: First climbing-dunes are formed by sand of shelf origin. Then soil formation could have taken place. Soil and/or sand were then eroded and deposited at toe slope position. This material in turn is the source of new sand supply and dune formation. The described cycle may be repeated several times and this ping-pong-process holds on. The results are sections composed of dune layers, paleosols and colluvial material interbedded. Fundamental questions still remain unanswered: Is climate change responsable for changes in process combination (e.g. from dune formation to soil formation)? Or are these features due to divergence phenomenon, where different effects/results (dune and soils) may be linked to similar causes (here: climate)? Assuming that different features (soils and dunes) were formed under one climate, increasing soil forming intensity could be mainly a function of decreasing sand supply. This in turn could be caused by reduced sand production (s. ZECH et al. accepted). However geochemical data and mollusc assemblages point to changing environments in space and even climate modifications in time.

  13. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars.

    PubMed

    Ewing, R C; Lapotre, M G A; Lewis, K W; Day, M; Stein, N; Rubin, D M; Sullivan, R; Banham, S; Lamb, M P; Bridges, N T; Gupta, S; Fischer, W W

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  14. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  15. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2009-12-01

    ISS022-E-005258 (1 Dec. 2009) --- This detailed hand-held digital camera?s image recorded from the International Space Station highlights sand dunes in the Fachi-Bilma erg, or sand sea, which is part of the central eastern Tenere Desert. The Tenere occupies much of southeastern Niger and is considered to be part of the larger Sahara Desert that stretches across northern Africa. Much of the Sahara is comprised of ergs ? with an area of approximately 150,000 square kilometers, the Fachi-Bilma is one of the larger sand seas. Two major types of dunes are visible in the image. Large, roughly north-south oriented transverse dunes fill the image frame. This type of dune tends to form at roughly right angles to the dominant northeasterly winds. The dune crests are marked in this image by darker, steeper sand accumulations that cast shadows. The lighter-toned zones between are lower interdune ?flats?. The large dunes appear to be highly symmetrical with regard to their crests. This suggests that the crest sediments are coarser, preventing the formation of a steeper slip face on the downwind side of the dune by wind-driven motion of similarly-sized sand grains. According to NASA scientists, this particular form of transverse dune is known as a zibar, and is thought to form by winnowing of smaller sand grains by the wind, leaving the coarser grains to form dune crests. A second set of thin linear dunes oriented at roughly right angles to the zibar dunes appears to be formed on the larger landforms and is therefore a younger landscape feature. These dunes appear to be forming from finer grains in the same wind field as the larger zibars. The image was taken with digital still camera fitted with a 400 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.

  16. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  17. A wind proxy based on migrating dunes at the Baltic coast: statistical analysis of the link between wind conditions and sand movement

    NASA Astrophysics Data System (ADS)

    Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane

    2017-07-01

    We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.

  18. Non-climatic signal in ice core records: Lessons from Antarctic mega-dunes

    NASA Astrophysics Data System (ADS)

    Ekaykin, Alexey; Eberlein, Lutz; Lipenkov, Vladimir; Popov, Sergey; Schroder, Ludwig

    2015-04-01

    We present the results of glaciological investigations in the mega-dune area located 30 km to the east from Vostok Station (central East Antarctica) implemented during the 58th and 59th Russian Antarctic Expedition (January 2013 and January 2014). Snow accumulation rate and isotope content (δD and δ18O) were measured along the 2-km profile across the mega-dune ridge accompanied by precise GPS altitude measurements and GPR survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by 1 order of magnitude within the distance < 1 km, with the reduced accumulation at the leeward slope of the dune and increased accumulation in the hollow between the dunes. At the same time, the accumulation rate averaged over the length of a dune wave (25 mm w.e.) corresponds well with the value obtained at Vostok Station, which suggests no additional wind-driven snow sublimation in the mega-dunes comparing to the surrounding plateau. The snow isotope content is in negative correlation with the snow accumulation, which could be explained by post-depositional snow modification and/or by enhanced redistribution by wind of winter precipitation comparing to summer precipitation. Using the GPR data, we estimated the dune drift velocity (5.5 ± 1.3 m yr-1). The full cycle of the dune drift is thus about 340 years. Since the spatial anomalies of snow accumulation and isotope content are supposed to drift with the dune, an ice core drilled in the mega-dune area would exhibit the non-climatic 340-yr cycle of these two parameters. We made an attempt to simulate a vertical profile of isotope content with such a non-climatic variability in a virtual ice core, using the data on the dune size and velocity. The obtained results are discussed in terms of real ice core data interpretation.

  19. Mineralogic variability of the Kelso Dunes, Mojave Desert, California derived from Thermal Infrared Multispectral Scanner (TIMS) data

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Howard, Douglas A.; Christensen, Philip R.; Lancaster, Nicholas

    1993-01-01

    Mineral identification and mapping of alluvial material using thermal infrared (TIR) remote sensing is extremely useful for tracking sediment transport, assessing the degree of weathering and locating sediment sources. As a result of the linear relation between a mineral's percentage in a given area (image pixel) and the depth of its diagnostic spectral features, TIR spectra can be deconvolved in order to ascertain mineralogic percentages. Typical complications such as vegetation, particle size and thermal shadowing are minimized upon examination of dunes. Actively saltating dunes contain little to no vegetation, are very well sorted and lack the thermal shadows that arise from rocky terrain. The primary focus of this work was to use the Kelso Dunes as a test location for an accuracy analysis of temperature/emissivity separation and linear unmixing algorithms. Accurate determination of ground temperature and component discrimination will become key products of future ASTER data. A decorrelation stretch of the TIMS image showed clear color variations within the active dunes. Samples collected from these color units were analyzed for mineralogy, grain size, and separated into endmembers. This analysis not only revealed that the dunes contained significant mineralogic variation, but were more immature (low quartz percentage) than previously reported. Unmixing of the TIMS data using the primary mineral endmembers produced unique variations within the dunes and may indicate near, rather than far, source locales for the dunes. The Kelso Dunes lie in the eastern Mojave Desert, California, approximately 95 km west of the Colorado River. The primary dune field is contained within a topographic basin bounded by the Providence, Granite Mountains, with the active region marked by three northeast trending linear ridges. Although active, the dunes appear to lie at an opposing regional wind boundary which produces little net movement of the crests. Previous studies have estimated the dunes range from 70% to 90% quartz mainly derived from a source 40 km to the west. The dune field is assumed to have formed in a much more arid climate than present, with the age of the deposit estimated at greater than 100,000 years.

  20. Sand dune tracking from satellite laser altimetry

    NASA Astrophysics Data System (ADS)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees East. Two different dune types can be distinguised which exhibit a 6 m and 26 m average dune advance over a 6 months time period. Wind speed/direction data and the observed dune advance agree well and indicate that dune tracking from space is a viable alternative to in situ or model data.

  1. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is broadly similar in composition to the active dune sands, with low dust, and elevated Mg and Ni. The compositional differences between sand bodies indicate the influence of ongoing eolian sorting processes. Further, the Cr enrichment (found in most Gale sediments, most notably the linear dunes off-crest sands) reinforces evidence of local contributions.

  2. Earth Observations taken by the Expedition 31 Crew

    NASA Image and Video Library

    2012-05-11

    ISS031-E-030783 (11 May 2012) --- Linear dunes in the Great Sand Sea in southwest Egypt are featured in this image photographed by an Expedition 31 crew member on the International Space Station. In southwestern Egypt, deep in the Sahara Desert, the action of wind dominates landscapes today much as it has done for the past several thousand years. Winds blowing from the north have fashioned sands into large dunes, aligned parallel with these winds. The so-called linear dunes?shown here in the Great Sand Sea?are easily seen from space and local maps show that they rise 20?30 meters above the surrounding flat plains. The distance between individual linear dunes is interestingly regular, at 1.5?2.5 kilometers, suggesting some equilibrium exists between the formative wind strength and the sand supply. It is possible that linear dunes may relate to earlier times when winds were stronger than they are today, or sand more plentiful. The dark patch of rock outcrop at upper right sticks up above the surface on which the dunes lie by as much as 150 meters. The north winds have been deflected around this high zone, and smaller secondary linear dunes can be seen along the right side of the image, aligned with local winds that become ever more northeasterly with nearness to the outcrops. A dune-free zone on the protected downwind (south-southeast) side of the outcrop gives a sense of the sand movement (generally from the bottom of the image towards the top). At first glance, the large linear dunes appear to be the major landform in the image; however a complex pattern of even smaller dunes can be seen perched on top of the largest dunes (inset). The sand that comprises many dune fields usually, according to scientists, derives from some larger river not very distant upwind, supplied from the dry river bed (exposed to the wind during dry seasons of low river flow, or regional change to a more arid climate). Inland dune fields thus lie downwind of the source river. A large, unnamed river once flowed to the Mediterranean Sea situated west of the dunes shown in this picture, dumping its sand load 300 kilometers northwest of the area shown. It is likely that this river, the evidence of which is now almost completely obliterated, was the source of the sand in the linear dunes, the scientists say.

  3. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain

    NASA Astrophysics Data System (ADS)

    Olariu, Cornel; Steel, Ronald J.; Dalrymple, Robert W.; Gingras, Murray K.

    2012-11-01

    The Lower Eocene Baronia Formation in the Ager Basin is interpreted as a series of stacked compound dunes confined within a tectonically generated embayment or tidal seaway. This differs from the previous interpretation of lower Baronia sand bodies as tidal bars in the front of a delta. The key architectural building block of the succession, the deposit of a single compound dune, forms a 1-3 m-thick, upward coarsening succession that begins with highly bioturbated, muddy, very fine to fine grained sandstone that contains an open-marine Cruziana ichnofacies. This is overlain gradationally by ripple-laminated sandstone that is commonly bioturbated and contains mud drapes. The succession is capped by fine- to coarse-grained sandstones that contain both planar and trough cross-strata with unidirectional or bi-directional paleocurrent directions and occasional thin mud drapes on the foresets. The base of a compound dune is gradational where it migrated over muddy sandstone deposited between adjacent dunes, but is sharp and erosional where it migrated over the stoss side of a previous compound dune. The cross strata that formed by simple superimposed dunes dip in the same direction as the inclined master bedding planes within the compound dune, forming a forward-accretion architecture. This configuration is the fundamental reason why these sandbodies are interpreted as compound tidal dunes rather than as tidal bars, which, in contrast, generate lateral-accretion architecture. In the Baronia, fields of compound dunes generated tabular sandbodies 100s to 1000s of meters in extent parallel to the paleocurrent direction and up to 6 m thick that alternate vertically with highly bioturbated muddy sandstones (up to 10 m thick) that represent the low-energy fringes of the dune fields or periods of high sea level when current speeds decreased. Each cross-stratified sandstone sheet (compound-dune complexes) contains overlapping lenticular "shingles" formed by individual compound dunes, separated by 10-30 cm of bioturbated muddy sandstone, which migrated over each other in an offlapping, progradational fashion. Each compound-dune complex (the best reservoir rock) thins as it downlaps, at average rates of 3-4 m/km in a dip direction. These reservoir units can be comprised of discrete compartments, each formed by a single compound dune, that extend for 500-1000 m in the direction of the current, and are at least 350-600 m wide in a flow-transverse direction. Distinguishing between tidal bars and tidal dunes in an ancient tidal succession can be difficult because both can contain similar cross-bedded facies and have overlapping thicknesses; however, the internal architecture and sandbody orientations are different. Tidal bars have their long axis almost parallel both to the tidal current direction and to the strike of the lateral-accretion master surfaces. In inshore areas, they are bounded by channels and fine upward. Large compound tidal dunes, in contrast, have their crest oriented approximately normal to the tidal currents and contain a forward-accretion architecture. Coeval channels are uncommon within large, sub-tidal dune fields. The above distinctions are very important to reservoir description and modeling, because the long axis of the intra-reservoir compartments in the two cases will be 90° apart.

  4. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B

    A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate zones, and two-dimensional dune bedforms exclusively on the lateral and distal edges of the deposits. The latter are also found where flows moved upslope. Elongate dune bedforms were deposited from flows with both granular-based and tractional flow boundaries that possessed high capacity and competence. They may have formed in a subcritical context by the blocking of material on the stoss side. We do not interpret them as antidune or "chute-and-pool" structures. The dimensions and cross-stratification patterns of transverse dune bedforms are interpreted as resulting from low competence currents with a significant deposition rate, but we rule out their interpretation as "antidunes". A similar conclusion holds for lunate dune bedforms, whose curved shape results from a sedimentation rate dependent on the thickness of the bedform. Finally, two-dimensional dune bedforms were formed where lateral transport exceeds longitudinal transport; i.e., in areas where currents were able to spread laterally in low velocity zones. We suggest that the aggrading ash bedsets with upstream crest migration were formed under subcritical flow conditions where the tractional bedload transport was less important than the simultaneous fallout from suspension. This produced differential draping with no further reworking. We propose the name "regressive climbing dunes" for structures produced by this process. A rapid decrease in current velocity, possibly triggered by hydraulic jumps affecting the entire parent flows, is inferred to explain their deposition. This process can in principle hold for any kind of particulate density current.

  5. Outreach and Education with Europlanet 2020 RI

    NASA Astrophysics Data System (ADS)

    Heward, Anita R.; Barrosa, Mariana; Europlanet 2020 RI

    2016-10-01

    Since 2005, Europlanet has provided a framework to bring together Europe's widespread planetary science community. The project has evolved through a number of phases, and currently comprises a Research Infrastructure (RI) funded through the European Commission's Horizon 2020 program, as well as a self-sustaining membership organization. Launched in September 2015, Europlanet 2020 RI provides support, services, access to facilities, new research tools and a virtual planetary observatory. Europlanet 2020 RI's outreach and education program aims to engage members of the public, schools, teachers, policy makers and industrial partners across Europe with planetary science and the opportunities that it provides for innovation, inspiration and job creation. Europlanet's outreach and education activities are led by Science Office Ltd, a Portuguese-based SME, and a network of partners spread across nine countries including University College London, the University of Leiden, University of Latvia, Vilnius University, the Institute of Accelerating Systems and Applications, the Observatoire de Paris, CAB-INTA and the Austrian Space Forum.Europlanet supports educators and outreach providers within the planetary science community by organizing meetings, best practice workshops and communication training sessions, offering a seed-funding scheme for outreach activities, and awarding an annual prize for public engagement. Europlanet is also developing its own education and outreach resources, including an animation on 'Jupiter and its Icy Moons' (the first in a series of video "shorts") and kits for hands-on comparative planetology activities. The Europlanet Media Centre uses traditional and social media channels to communicate newsworthy results and activities to diverse audiences in Europe and worldwide. Using tools like Google Hangouts, the project connects planetary researchers directly with the public and school groups. In addition, Europlanet engages with policy makers in the European Parliament and the European Commission, as well as high-level representatives of ESA, NASA and other space agencies, through an active programme of individual briefings, events and exhibitions.

  6. Aeolian sand as a tool for understanding Mars: Thermal infrared remote sensing of volcaniclastic Mars-analog sand dunes in Christmas Lake Valley, Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    1996-10-01

    INTRODUCTION: On Earth, aeolian sand dunes are used as tools of scientific inquiry. Holocene and Pleistocene dunes preserve clues about Quaternary climate variations and human activities ranging from Ice Age hunting practices to Twentieth Century warfare. Modern dunes contain the sedimentary textures and structures necessary for interpreting ancient sandstones, and they provide natural laboratories for investigation of aeolian physics and desertification processes. The dunes of Mars can likewise be used as scientific tools. Dunes provide relatively dust-free surfaces. From a remote sensing perspective, martian dunes have much potential for providing clues about surface mineralogy and the interaction between the surface and atmosphere. Such information can in turn provide insights regarding crust composition, volcanic evolution, present and past climate events, and perhaps weathering rates. The Mars Global Surveyor Thermal Emission Spectrometer (TES) is expected to reach the planet in September 1997. TES will provide 6 to 50 micrometer spectra of the martian surface at ground resolutions of 3 to 9 km. Sandy aeolian environments on Mars might provide key information about bedrock composition. To prepare for the TES investigation, I have been examining a thermal infrared image of a Mars-composition analog dune field in Christmas Lake Valley, Oregon. COMPOSITION AND GEOLOGIC SETTING: The "Shifting Sand Dunes" dune field is located at the eastern end of Christmas Lake Valley, in what was once the Pleistocene Fort Rock Lake [1]. Much of the sand that makes up the Shifting Sand Dunes dune field is reworked Mt. Mazama airfall from its terminal eruption 6,800 years ago, plus material deflated from the lake bed [1, 2]. The main constituents of the dunes are volcanic glass and devitrified glass fragments, plagioclase crystals, basalt lithic fragments, aggregates of silt and clay-size volcanic ash, pyroxenes, opaque oxide minerals (mostly magnetite), and trace occurrences of fossil fragments and other minerals [3]. THERMAL INFRARED IMAGE: The thermal infrared images used in this study was obtained by the NASA Ames Research Center C-130 Earth Resources airborne Thermal Infrared Multispectral Scanner (TIMS) on 21 September 1991. The image has 6 spectral bands between 8 and 12 micrometers and a ground resolution of 9 m/pixel. The raw image was converted to calibrated radiance, from which normalized emittance was computed for each of the six bands, following the method of Realmutto [4]. Atmospheric effects were corrected using an empirical method described by Edgett and Anderson [5]. The resulting 6-band image provides quantitative determination of the surface emissivity. Dune spectra in the image match spectra obtained in our laboratory using samples collected from the field area [3, 5]. ACTIVE DUNES, INACTIVE DUNES, AND INTERDUNE AREAS FROM EMISSIVITY VARIATION: This study shows that in a modern dune field, the location of active dunes, interdune surfaces, and inactive dunes can be mapped using emissivity in the thermal infrared band that shows the most spectral variation [6]. In this case, TIMS band 3 (9.2 micrometers) had the most variation, although the entire emissivity range was only from 0.89 to 1.0. Active dunes had the lowest emissivities (0.89 to 0.91), inactive dunes were distinguished by higher emissivities (.094 to 1.0), and interdune surfaces had intermediate values (0.90 to 0.95). These emissivity variations result from differences in particle size, as inactive dunes tend to have finer-grained silt and dust on them. LINEAR UNMIXING USING IMAGE ENDMEMBERS: Quantitative estimates of thermal infrared spectral emissivity are ideally suited to unmixing analysis. For grains larger than the wavelength (e.g., dune sand), a linear unmixing approach provides geologically useful results [7]. In the present study, image endmembers were selected for a preliminary unmixing study: (1) "regular sand," which contains nearly 50% plagioclase and nearly 20% volcanic glass; (2) "dark sand, which consists mainly of basalt clasts (> 25%) and glass (> 30%); (3) "mud chips," which are volcanic ash aggregates broken into sand-sized pieces, (4) sagebrush and grass; and (5) thick vegetation, such as an alfalfa farm near the dunes. The most important result of this preliminary unmixing work is an image that shows the distribution of ash aggregates and "dark sand," both of which vary throughout the dune field as a function of proximity to the source. The volcanic ash aggregates, in particular, are locally eroded from a layer that caps the Pleistocene lake beds that underlie the dunes [3]. SUMMARY: This study highlights the use of thermal infrared spectra to map local contributions of sand to a dune field, and to distinguish active versus inactive dune fields. Mapping of local contributions to active dune fields on Mars using TES or other multispectral images has potential to provide indications of local bedrock composition. REFERENCES: [1] Allison, I. S. (1979) Oregon Dept. Geol. Minl. Res. Spec. Pap. 7. [2] Dole, H. M. (1942) M.S. Thesis, Oregon State, Corvallis, Or. [3] Edgett, K. S. (1994) in Ph.D. Diss., pp. 145-201, Arizona State, Tempe, AZ. [4] Realmutto, V. J. (1990) in JPL Publ. 90-55, pp. 31-35. [5] Edgett, K. S., and D. L. Anderson (1995) in JPL Publ. 95-1, v. 2, pp. 9-12. [6] Edgett, K. S. et al. (1995) in JPL Publ. 95-1, v. 2, pp. 13-16. [7] Ramsey, M. S. (1996) Ph.D. Diss, Arizona State, Tempe, AZ.

  7. Preliminary study of Kelso Dunes using AVIRIS, TM, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Xu, Pung; Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    Remote sensing of sand dunes helps in the understanding of aeolian process and provides important information about the regional geologic history, environmental change, and desertification. Remotely sensed data combined with field studies are valuable in studying dune morphology, regional aeolian dynamics, and aeolian depositional history. In particular, active and inactive sands of the Kelso Dunes have been studied using landsat TM and AIRSAR. In this report, we describe the use of AVIRIS data to study the Kelso dunes and to compare the AVIRIS information with that from TM and AIRSAR.

  8. Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2012-01-01

    The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the late 1940s and includes contemporary experience. The people presenting bring a variety of points of view, including not only U.S. but international, although most, if not all, have collaborated on international teams. The second day will consist of a series of small focused group interactions centered on those elements likely to be needed for traverse missions, such as mobility, habitation, and extravehicular activity (EVA, aka space suits). Our invited participants will be talking with people that specialize in these elements so that we can foster more direct interaction and exchange of experiences between these two exploration communities. After the workshop we will be preparing a report documenting these presentations and the essence of the focused interactions.

  9. North Polar False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image contains dunes, and small areas of 'blue' which may represent fresh (ie. not dust covered) frost or ice.

    Image information: VIS instrument. Latitude 85, Longitude 235.8 East (124.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico

    USGS Publications Warehouse

    Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

    2006-01-01

    The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  11. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    USGS Publications Warehouse

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-01-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  12. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    NASA Astrophysics Data System (ADS)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-02-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  13. Reestablishing Naturally Functioning Dunes on Developed Coasts.

    PubMed

    Nordstrom; Lampe; Vandemark

    2000-01-01

    / The potential for reestablishing dune habitat is investigated in municipalities in New Jersey, USA, where natural coastal landforms and biota have been eliminated or reduced in extent. Dunes are classified using width, relationship to natural and cultural features, and changes through time, and they are assessed for their value as naturally functioning landforms in developed municipalities. The relationship between size and longevity that exists under natural conditions is altered by human activity. Small dunes on privately owned lots can survive as long as larger dunes in natural areas that are located farther inland, and foredunes repaired using sand fences and earth-moving equipment can survive where they could not under natural conditions.Common beach management practices reduce the ecological values of coastal dunes. Mechanical beach cleaning eliminates incipient dunes, habitat for nesting birds, seed sources for pioneer dune colonizers and food for fauna, and artificially small, stabilized foredunes reduce the variability in microenvironments necessary for biodiversity. Recent initiatives for reducing coastal hazards, protecting nesting birds, and encouraging nature-based tourism provide incentive for the development of a restoration program for beaches and dunes that is compatible with human use. Suggested changes in management practice include restricting or rerouting pedestrian traffic, altering beach-cleaning procedures, using symbolic fences to allow for aeolian transport while preventing trampling of dunes, and eliminating or severely restricting exotic species. Landforms will be more natural in function and appearance but will be more dynamic, smaller and in a different position from those in natural areas. Research needs are specified for ecological, geomorphological, and attitudinal studies to support and inform restoration planning.

  14. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  15. Laboratory Observations of Dune Erosion

    NASA Astrophysics Data System (ADS)

    Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.

    2006-12-01

    Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.

  16. Stability and bistability in a one-dimensional model of coastal foredune height

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Moore, Laura J.

    2016-05-01

    On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.

  17. Investigating Mars: Kaiser Crater Dunes

    NASA Image and Video Library

    2018-01-30

    At the top of this VIS image crescent shaped dunes are visible. As the dunes approach a break in elevation the forms change to connect the crescents together forming long aligned dune forms. Kaiser Crater is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser Crater is just one of several large craters with extensive dune fields on the crater floor. Other nearby dune filled craters are Proctor, Russell, and Rabe. Kaiser Crater is 207 km (129 miles) in diameter. The dunes are located in the southern part of the crater floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34157 Latitude: -46.9336 Longitude: 18.9272 Instrument: VIS Captured: 2009-08-26 18:49 https://photojournal.jpl.nasa.gov/catalog/PIA22262

  18. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  19. Dune migration in a steep, coarse-bedded stream

    USGS Publications Warehouse

    Dinehart, Randy L.

    1989-01-01

    During 1986 and 1987, migrating bed forms composed of coarse sand and fine gravel (d50=1.8 to 9.1 mm) were documented in the North Fork Toutle River at Kid Valley, Washington, at flow velocities ranging from 1.6 to 3.4 m s−1 and depths of 0.8 to 2.2 m. The bed forms (predominantly lower regime dunes) were studied with a sonic depth sounder transducer suspended in the river at a stationary point. Twelve temporal depth-sounding records were collected during storm runoff and nearly steady, average streamflow, with record durations ranging from 37 to 261 min. Waveform height was defined by dune front heights, which ranged from 12 to 70 cm. A weak correlation between flow depth and the standard deviation of bed elevation was noted. Dune front counts and spectral analyses of the temporal records showed that dune crests passed the observation point every 2 to 5 min. Dunes were often superposed on larger bed forms with wave periods between 10 and 30 min. Gradual changes in waveform height and periodicity occurred over several hours during storm runoff. The processes of dune growth and decay were both time-dependent and affected by changes in streamflow. Rates of migration for typical dunes were estimated to be 3 cm s−1, and dune wavelengths were estimated to be 6 to 7 m.

  20. The effects of psammophilous plants on sand dune dynamics

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Ashkenazy, Yosef

    2014-07-01

    Mathematical models of sand dune dynamics have considered different types of sand dune cover. However, despite the important role of psammophilous plants (plants that flourish in moving-sand environments) in dune dynamics, the incorporation of their effects into mathematical models of sand dunes remains a challenging task. Here we propose a nonlinear physical model for the role of psammophilous plants in the stabilization and destabilization of sand dunes. There are two main mechanisms by which the wind affects these plants: (i) sand drift results in the burial and exposure of plants, a process that is known to result in an enhanced growth rate, and (ii) strong winds remove shoots and rhizomes and seed them in nearby locations, enhancing their growth rate. Our model describes the temporal evolution of the fractions of surface cover of regular vegetation, biogenic soil crust, and psammophilous plants. The latter reach their optimal growth under either (i) specific sand drift or (ii) specific wind power. The model exhibits complex bifurcation diagrams and dynamics, which explain observed phenomena, and it predicts new dune stabilization scenarios. Depending on the climatological conditions, it is possible to obtain one, two, or, predicted here for the first time, three stable dune states. Our model shows that the development of the different cover types depends on the precipitation rate and the wind power and that the psammophilous plants are not always the first to grow and stabilize the dunes.

  1. Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric

    Science.gov Websites

    Dune Buggy Camp Discovery Helps Kids Build an Electric Dune Buggy to someone by E-mail Share Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Facebook Tweet about Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Twitter Bookmark

  2. Illustrative Experiments of the Erosion of Sand and Accompanying Theoretical Considerations

    ERIC Educational Resources Information Center

    Schneiderbauer, Simon

    2012-01-01

    Winds in desert regions form the well-known barchan dunes. Frequently, human settlements are threatened by the migration of these dunes. But why do these dunes move? And how is dune migration in deserts connected to scour development in the vicinity of pylons in river beds or to snow cornices in alpine regions? This paper introduces the topic of…

  3. Eolian deposition cycles since AD 500 in Playa San Bartolo lunette dune, Sonora, Mexico: Paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Ortega, Beatriz; Schaaf, Peter; Murray, Andrew; Caballero, Margarita; Lozano, Socorro; Ramirez, Angel

    2013-12-01

    Records of past climatic changes in desert environments are scarce due to the poor preservation of biological proxies. To overcome this lack we consider the paleoenvironmental significance and age of a lunette dune at the eastern rim of Playa San Bartolo (PSB) in the Sonoran Desert (Mexico). Thermoluminescence and optical stimulated luminescence (TL and OSL) provide the chronology of lunette dune development. Mineralogical, geochemical (major, trace and REE element concentrations) and rock magnetic analyses allow for the assessment of sediment provenance and changes in the composition of the PSB dune over time. The upper 6 m of dune accumulation occurred over the past 1.5 ka, largely during AD 500-1200, a period that correlates with the Medieval climatic anomaly (AD 300-1300). Variability in composition of dune sediments is attributed to changes in sediment sources. Sand sized deposits are mainly eroded from granitoids from nearby outcrops. Sandy silt deposits, rich in evaporative minerals, resulted after the flooding of PSB, later deflation and accumulation of both detritic and authigenic components in the dune. These findings suggest that main dune accretion occurred during regionally extended drought conditions, disrupted by sporadic heavy rainfall.

  4. Microbial Characterization of Qatari Barchan Sand Dunes

    PubMed Central

    Chatziefthimiou, Aspassia D.; Nguyen, Hanh; Richer, Renee; Louge, Michel; Sultan, Ali A.; Schloss, Patrick; Hay, Anthony G.

    2016-01-01

    This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert. PMID:27655399

  5. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater - three distinct endmembers identified

    NASA Astrophysics Data System (ADS)

    Charles, Heather; Titus, Timothy; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2017-01-01

    The composition of two dune fields, Ogygis Undae and the NE-SW trending dune field in Gale crater (the "Bagnold Dune Field" and "Western Dune Field"), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available. Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields. The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  6. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater – three distinct endmembers identified

    USGS Publications Warehouse

    Charles, Heather; Titus, Timothy N.; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2016-01-01

    The composition of two dune fields, Ogygis Undae and the NE–SW trending dune field in Gale crater (the “Bagnold Dune Field” and “Western Dune Field”), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available.Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields.The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  7. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  8. A contribution of gravity and seismic data in understanding the geometry of the Zouaraa - Ouchtata dune (NW Tunisia): Hydrogeological implications

    NASA Astrophysics Data System (ADS)

    Djebbi, M.; Gabtni, H.

    2018-01-01

    As it is located in a very particular and complex domain within the Tellian fold and thrust belt zone in northwestern Tunisia, the Nefza area has always been challenging. Geological, hydrogeological and geophysical studies were conducted in the region. A multidisciplinary study was performed by combining geological and geophysical techniques. Gravity data processing revealed the continuity of the outcropping series of Argoub Er Romane and Jebel Hamra underneath the dune deposits building a high zone separating the dune of Zouaraa and Ouchtata into two asymmetric basins. It forms a threshold zone that controls the geometry of the dune reservoir in the area. The distribution of the gravity anomaly along the dune of Zouaraa proved the heterogeneity of this dune reservoir. Gravity data modeling for this area confirmed these results and showed a preferential tendency of subsidence to the northwest and thus the thickening of Zouaraa dune sequence as compared to that of Ouchtata.

  9. Earth-like sand fluxes on Mars.

    PubMed

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S

    2012-05-09

    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  10. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  11. Etiologie Rare de Sinusites Nosocomiales en Milieu de Reanimation - A Propos d'une Observation

    PubMed Central

    Messadi, A.A.; Oueslati, S.; Thabet, L.; Bousselmi, K.; Menif, E.

    2006-01-01

    Summary Les sinusites nosocomiales ne sont pas rares en réanimation. Elles surviennent en général dans les suites d'une intubation nasotrachéale voire même orotrachéale. Le tubage gastrique peut être à lui seul à l'origine d'une sinusite nosocomiale. Nous rapportons le cas d'une patiente hospitalisée qui a été victime de brûlures étendues chez qui la sonde nasogastrique a été à l'origine d'une pansinusite dont l'issue a été fatale. PMID:21991055

  12. A World of Snowy Dunes

    NASA Image and Video Library

    2017-08-21

    It is spring in the Northern hemisphere when NASA's Mars Reconnaissance Orbiter took this image. Over the winter, snow and ice have inexorably covered the dunes. Unlike on Earth, this snow and ice is carbon dioxide, better known to us as dry ice. When the sun starts shining on it in the spring, the ice on the smooth surface of the dune cracks and escaping gas carries dark sand out from the dune below, often creating beautiful patterns. On the rough surface between the dunes, frost is trapped behind small sheltered ridges. https://photojournal.jpl.nasa.gov/catalog/PIA21882

  13. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing percentage is 50%. The best water cement ratio for mix proportion is 0.45. It was observed that the available amount of dune sand can be extracted to meet the demand for sand in construction industry. However, the extraction of dune sand from the areas close to the sea will cause several social, environmental and legal problems. Therefore sand mining from dunes must be commenced after making a detailed Environmental Impact Assessment.

  14. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon?

    NASA Astrophysics Data System (ADS)

    Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.

    2011-12-01

    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10^3 migration timescales). In addition, comparisons between spacing and defect density of Titan's dunes and some of the largest fields observed on Earth and Mars reveal that dune patterns on all three planets are geometrically similar, suggesting that growth and organization share common pattern dynamics. Our results suggest that Titan's dunes may react to gross bedform transport averaged over orbital timescales, relaxing the requirement that a single modern wind regime is required to produce the observed pattern.

  15. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  16. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  17. Demography and monitoring of Welsh's milkweed (Asclepias welshii) at Coral Pink Sand Dunes

    Treesearch

    Brent C. Palmer; L. Armstrong

    2001-01-01

    Results are presented of a 12-year monitoring program on the Coral Pink Sand Dunes and Sand Hills populations of the threatened Welsh's milkweed, Asclepias welshii N & P Holmgren. The species is an early sera1 member of the dune flora, colonizing blowouts and advancing with shifting dunes. When an area stabilizes and other vegetation encroaches, A. welshii is...

  18. Global characterization of Titan's dune fields by RADAR and VIMS observations

    NASA Astrophysics Data System (ADS)

    garcia, A.; Rodriguez, S.; Lucas, A.; Appéré, T.; Le Gall, A.; Reffet, E.; Le Corre, L.; Le Mouélic, S.; Cornet, T.; Courrech Du Pont, S.; Narteau, C.; Bourgeois, O.; Radebaugh, J.; Arnold, K.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Lorenz, R. D.; Turtle, E. P.

    2013-12-01

    Cassini/RADAR high-resolution images of Titan's surface revealed linear features, geomorphologically similar to longitudinal dunes. Those dunes cover a large portion of the whole surface of Titan, i.e 7.8%, and 13.4% are present on the 58.4% of the surface imaged by the RADAR/SAR from July 2004 to July 2013 (fig.1). 99.6% of the dunes are confined at the equatorial regions (30°N-30°S). Formed and sculpted by the wind, those features represent clues for the understanding of the climatic history on the satellite. By using the joint analysis between RADAR/SAR observations and the infrared VIMS mosaic corrected for atmospheric contributions acquired through July 2013 and June 2010 respectively, we found a very high degree of correlation at global scale (more than 70%) between the RADAR dunes and a specific infrared VIMS spectral unit, the 'dark brown unit'. Some RADAR dunes, less than 2%, also belong in a commonly referenced unit, the 'dark blue unit'. These two units have been delimited by defining for each a specific set of spectral criteria. We have shown that those two units present a spectral behavior different, especially at short wavelengths (below 2 μm) allowing to say that the 'dark brown unit' is dominated by organic sediment, similar to atmospheric aerosols, namely tholins, and the 'dark blue' is most likely enriched in water ice compared to the rest of Titan's surface. Given the strong correlation between RADAR dunes and the infrared 'dark brown unit' we are now able to extrapolate the total surface area of the dunes material to the total surface area of the 'dark brown unit' which correspond to 17% of the Titan's surface. This permits to estimate the volume of sediment of 360,000 km3 (total mass ≈ 290,000 GT). Thus, these estimates based on the RADAR dunes/VIMS units correlation make the dune fields the largest organic reservoir on Titan's surface and characterize more precisely the composition of the dune material over the total extend of the dune regions.

  19. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare plants, insects, lizards, birds, and mammals.

  20. Storms in the tropics of Titan.

    PubMed

    Schaller, E L; Roe, H G; Schneider, T; Brown, M E

    2009-08-13

    Methane clouds, lakes and most fluvial features on Saturn's moon Titan have been observed in the moist high latitudes, while the tropics have been nearly devoid of convective clouds and have shown an abundance of wind-carved surface features like dunes. The presence of small-scale channels and dry riverbeds near the equator observed by the Huygens probe at latitudes thought incapable of supporting convection (and thus strong rain) has been suggested to be due to geological seepage or other mechanisms not related to precipitation. Here we report the presence of bright, transient, tropospheric clouds in tropical latitudes. We find that the initial pulse of cloud activity generated planetary waves that instigated cloud activity at other latitudes across Titan that had been cloud-free for at least several years. These observations show that convective pulses at one latitude can trigger short-term convection at other latitudes, even those not generally considered capable of supporting convection, and may also explain the presence of methane-carved rivers and channels near the Huygens landing site.

Top