Evidence for a planetary mass third body orbiting the binary star KIC 5095269
NASA Astrophysics Data System (ADS)
Getley, A. K.; Carter, B.; King, R.; O'Toole, S.
2017-07-01
In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.
The Planetary and Eclipse Oil Paintings of Howard Russell Butler
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Olson, R. M.
2013-10-01
The physics-trained artist Howard Russell Butler (1856-1934) has inspired many astronomy students through his planetary and eclipse paintings that were long displayed at the Hayden Planetarium in New York, the Fels Planetarium at the Franklin Institute in Philadelphia, and the Buffalo Museum of Science. We discuss not only the eclipse triptychs (1918, 1923, and 1925) at each of those institutions but also his paintings of Mars as seen from Phobos and from Deimos (with landscapes of those moons in the foreground depicted in additional oils hung at Princeton University) and the Earth from our Moon. We also describe his involvement with astronomy and his unique methodology that allowed him to surpass the effects then obtainable with photography, as well as his inclusion in a U.S. Naval Observatory eclipse expedition in 1918, as well as his auroral, solar-prominence, and 1932-eclipse paintings.
Mapping the 2017 Eclipse: Education, Navigation, Inspiration
NASA Astrophysics Data System (ADS)
Zeiler, M.
2015-12-01
Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.
The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417
NASA Astrophysics Data System (ADS)
Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle
2017-01-01
Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.
Lunar eclipses: Probing the atmosphere of an inhabited planet
NASA Astrophysics Data System (ADS)
García Muñoz, A.
2013-04-01
The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.
Forthcoming Occultations of Astrometric Radio Sources by Planets
NASA Technical Reports Server (NTRS)
L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana
2010-01-01
Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
A Comparison of BLISS and PLD on Low-SNR WASP-29b Spitzer Observations
NASA Astrophysics Data System (ADS)
Challener, Ryan; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Deming, Drake; Hellier, Coel
2018-01-01
We present an analysis of Spitzer secondary eclipse observations of exoplanet WASP-29b. WASP-29b is a Saturn-sized, short-period exoplanet with mass 0.24 ± 0.02 Jupiter masses and radius 0.84 ± 0.06 Jupiter radii (Hellier et al., 2010). We measure eclipse depths and midpoints using our Photometry for Orbits, Eclipses, and Transits (POET) code, which does photometry and light-curve modeling with a BiLinearly Interpolated Subpixel Sensitivity (BLISS) map, and our Zen Eliminates Noise (ZEN) code, which takes POET photometry and applies Pixel-Level Decorrelation (PLD). BLISS creates a physical map of pixel gain variations, and is thereby independent of any astrophysical effects. PLD takes a mathematical approach, using relative variations in pixel values near the target to eliminate position-correlated noise. The results are consistent between the methods, except in one outlier observation where neither model could effectively remove correlated noise in the light curve. Using the eclipse timings, along with previous transit observations and radial velocity data, we further refine the orbit of WASP-29b, and, when excluding the outlier, determine an eccentricity between 0.037 and 0.056. We performed atmospheric retrieval with our Bayesian Atmospheric Radiative Transfer (BART) code but find that, when the outlier is discarded, the planet is consistent with a blackbody, and molecular abundances cannot be constrained. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
A map of the day-night contrast of the extrasolar planet HD 189733b.
Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas
2007-05-10
'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.
Infrared spectroscopy of the transiting extrasolar planet HD 209458 b during secondary eclipse
NASA Astrophysics Data System (ADS)
Richardson, Lee Jeremy
2003-10-01
We present spectroscopic observations that place strong limits on the atmospheric structure of the transiting extrasolar planet HD 209458 b. The discovery of the transit has led to several new observations that have provided the most de tailed information on the physical properties of a planet outside the solar system. These observations have concentrated on the primary eclipse, the time at which the planet crosses in front of the star as seen from Earth. The measurements have determined the basic physical characteristics of the planet, including radius, mass, average density, and orbital inclination, and have even refined values of the stellar mass and radius. Transmission spectroscopy of the system during primary eclipse resulted in the first detection of the atmosphere of an extrasolar planet, with the measurement of the sodium doublet. The present work discusses the first reported attempts to detect the secondary eclipse, or the disappearance of the planet behind the star, in the infrared. We devise the method of ‘occultation spectroscopy’ to detect the planetary spectrum, by searching in combined light for subtle changes in the shape of the spectrum as the planet passes behind the star. Predicted secondary eclipse events were observed from the Very Large Telescope (VLT) on UT 8 and 15 July 2001 using the Infrared Spectrometer and Array Camera (3.5 3.7 μm). Further observations from the NASA Infrared Telescope Facility (IRTF) using the SpeX instrument (1.9 4.2 μm) included two predicted secondary eclipse events on UT 20 and 27 September 2001. Analysis of these data reveal a statistically significant non- detection of the planetary spectrum. The results place strong limits on the structure of the planetary atmosphere and reject widely-accepted models for the planet that assume the incident stellar radiation is completely absorbed and re-emitted in the substellar hemisphere. Situations that remain consistent with our data include an isothermal atmosphere or the presence of a high absorptive or reflective cloud. The latter case is also consistent with the observed low sodium abundance from transmission spectroscopy. These results represent the strongest limits to date on the temperature structure of the planetary atmosphere.
Fifty year canon of solar eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1986-01-01
A reference of moderately detailed eclipse predictions and maps for use by the professional astronomical community is provided. The general characteristics of every solar eclipse and a detailed set of cylindrical project world maps which show the umbral paths of every solar eclipse from 1901 to 2100 are presented. The geodetic path coordinates and local circumstance on the center line, and a series of orthographic projection maps which show the regions of visibility of both partial and central phases for every eclipse from 1986 through 2035 are also provided.
I Think I See the Light Curve: The Good (and Bad) of Exoplanetary Inverse Problems
NASA Astrophysics Data System (ADS)
Schwartz, Joel Colin
Planets and planetary systems change in brightness as a function of time. These "light curves" can have several features, including transits where a planet blocks some starlight, eclipses where a star obscures a planet's flux, and rotational variations where a planet reflects light differently as it spins. One can measure these brightness changes--which encode radii, temperatures, and more of planets--using current and planned telescopes. But interpreting light curves is an inverse problem: one has to extract astrophysical signals from the effects of imperfect instruments. In this thesis, I first present a meta study of planetary eclipses taken with the Spitzer Space Telescope. We find that eclipse depth uncertainties may be overly precise, especially those in early Spitzer papers. I then offer the first rigorous test of BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping, which is widely used to model detector systematics of Spitzer. We show that this ad hoc method is not statistically sound, but it performs adequately in many real-life scenarios. Next, I present the most comprehensive empirical analysis to date on the energy budgets and bulk atmospherics of hot Jupiters. We find that dayside and nightside measurements suggest many hot Jupiters have reflective clouds in the infrared, and that day-night heat transport decreases as these planets are irradiated more. I lastly describe a semi-analytical model for how a planet's surfaces, clouds, and orbital geometry imprint on a light curve. We show that one can strongly constrain a planet's spin axis--and even spin direction--from modest high-precision data. Importantly, these methods will be useful for temperate, terrestrial planets with the launch of the James Webb Space Telescope and beyond.
NASA Astrophysics Data System (ADS)
Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.
2017-12-01
The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep searches have been conducted. Our observations will only be the second time ever a search for Vulcanoids will have been conducted in the NIR. In this presentation, I will review our NASA flight program, and focus on the planetary science observations that came from the Great American Eclipse of 2017.
Fifty year canon of solar eclipses: 1986 - 2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1987-01-01
A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.
Comparison of BiLinearly Interpolated Subpixel Sensitivity Mapping and Pixel-Level Decorrelation
NASA Astrophysics Data System (ADS)
Challener, Ryan C.; Harrington, Joseph; Cubillos, Patricio; Foster, Andrew S.; Deming, Drake; WASP Consortium
2016-10-01
Exoplanet eclipse signals are weaker than the systematics present in the Spitzer Space Telescope's Infrared Array Camera (IRAC), and thus the correction method can significantly impact a measurement. BiLinearly Interpolated Subpixel Sensitivity (BLISS) mapping calculates the sensitivity of the detector on a subpixel grid and corrects the photometry for any sensitivity variations. Pixel-Level Decorrelation (PLD) removes the sensitivity variations by considering the relative intensities of the pixels around the source. We applied both methods to WASP-29b, a Saturn-sized planet with a mass of 0.24 ± 0.02 Jupiter masses and a radius of 0.84 ± 0.06 Jupiter radii, which we observed during eclipse twice with the 3.6 µm and once with the 4.5 µm channels of IRAC aboard Spitzer in 2010 and 2011 (programs 60003 and 70084, respectively). We compared the results of BLISS and PLD, and comment on each method's ability to remove time-correlated noise. WASP-29b exhibits a strong detection at 3.6 µm and no detection at 4.5 µm. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
NASA Technical Reports Server (NTRS)
Trauger, John T.
2005-01-01
Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.
Confirming Variability in the Secondary Eclipse Depth of the Rocky Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tamburo, Patrick; Mandell, Avi; Deming, Drake; Garhart, Emily
2017-01-01
We present a reanalysis of Spitzer transit and secondary eclipse observations of the rocky super Earth 55 Cancri e using Pixel Level Decorrelation (Deming et al. 2015). Secondary eclipses of this planet were found to be significantly variable by Demory et al. (2016), implying a changing brightness temperature which could be evidence of volcanic activity due to tidal forces. If genuine, this result would represent the first evidence for such a process outside of bodies in our own solar system, and would further expand our understanding of the huge variety of planetary systems that can develop in our universe. Spitzer eclipse observations, however, are subject to strong systematic effects which can heavily impact the retrieved eclipse model. A reanalysis of this result with an independent method is therefore needed to confirm eclipse depth variability. We tentatively confirm variability, finding a shallower increase in eclipse depth over the course of observations compared to Demory et al. (2015).
The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem
NASA Astrophysics Data System (ADS)
Yousef, S. M.
The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.
Report of the IAU Working Group on Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The Working Group on Solar Eclipses coordinates scientists and information in the study of the Sun and the heliosphere at solar eclipses. Our Website at http://eclipses.info has a wide variety of information, including links to maps and other websites dealing with solar eclipses, as well as information on how to observe the partial-phases of solar eclipses safely and why it is interesting for not only scientists but also for the public to observe eclipses and to see how we work to uncover the mysteries of the sun's upper atmosphere. In the last triennium, there were total eclipses in Australia and the Pacific in 2012; in an arc across Africa from Gabon to Uganda and Kenya in 2013; and in the Arctic, including Svalbard and the Faeroes plus many airplanes aloft, in 2015. In the coming triennium, there will be total solar eclipses in Indonesia and the Pacific in 2016 and then, on 21 August 2017, a total solar eclipse that will sweep across the Continental United States from northwest to southeast. Mapping websites, all linked to http://eclipses.info, include Fred Espenak's http://EclipseWise.com; Michael Zeiler's http://GreatAmericanEclipse.com and http://eclipse-maps.com; Xavier Jubier's http://xjubier.free.fr; and (with weather and cloudiness analysis) Jay Anderson's http://eclipser.ca. Members of the Working Group, chaired by Jay Pasachoff (U.S.), include Iraida Kim (Russia), Kiroki Kurokawa (Japan), Jagdev Singh (India), Vojtech Rusin (Slovakia), Zhongquan Qu (China), Fred Espenak (U.S.), Jay Anderson (Canada), Glenn Schneider (U.S.), Michael Gill (U.K.), Xavier Jubier (France), Michael Zeiler (U.S.), and Bill Kramer (U.S.).
Activity Based Astronomy for Primary Science Programs.
ERIC Educational Resources Information Center
Ginns, Ian
Print materials in astronomy such as books, journals, charts, and posters are typically the sources of information for teachers and children about the moon, the sun, lunar and solar eclipses, planetary sizes, distances of planets from the sun, planetary atmospheres, and so on. This paper describes and analyzes a number of activities designed to…
Poster 16: Eclipse-induced changes of Titan's meteorology at equinox
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya
2016-06-01
Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.
Implications of the Secondary Eclipse of Exoplanet HAT-P-11b
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.
2010-01-01
We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, Th.; Figueira, P.; Ciceri, S.; Santos, N.
2015-04-01
Context. The Kepler mission has searched for planetary transits in more than two hundred thousand stars by obtaining very accurate photometric data over a long period of time. Among the thousands of detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data are needed to characterize the rest of the candidates and reject other possible configurations. Aims: We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis of those that present large variations, which are compatible with being eclipsing binaries. We also study those showing high rotational velocities, which prevents us from reaching the necessary precision to detect planetary-like objects. Methods: We present new radial velocity results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory and analyze their high-spatial resolution (lucky) images obtained with AstraLux and the Kepler light curves of some interesting cases. Results: We have found five spectroscopic and eclipsing binaries (group A). Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such an effect, including the presence of a third substellar body possibly detected in our radial velocity analysis. We also provide upper mass limits to the transiting companions of six other KOIs with high rotational velocities (group B). This property prevents the radial velocity method from achieving the necessary precision to detect planetary-like masses. Finally, we analyze the large radial velocity variations of two other KOIs, which are incompatible with the presence of planetary-mass objects (group C).These objects are likely to be stellar binaries. However, a longer timespan is needed to complete their characterization. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.
2016-12-01
We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Wasser, Molly; Day, Brian; Bakerman, Maya; Shaner, Andrew; Joseph, Emily; International Observe the Moon Night Coordinating Committee
2018-01-01
International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA’s Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the NASA’s Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors.In 2017 InOMN will be held on October 28th, and will engage thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. This year, we have partnered with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. Since 2010, over 3,800 InOMN events have been registered engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. We will present current results from the 2017 InOMN evaluation.Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and certificates of participation. Additionally, InOMN highlights partner resources such as online interfaces including Moon Trek (https://moontrek.jpl.nasa.gov) and CosmoQuest (https://cosmoquest.org/x/) to provide further opportunities to engage with NASA science.Learn more about InOMN at http://observethemoonnight.org.
High precision ground-based measurements of solar diameter in support of PICARD mission
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2011-12-01
The measurement of the solar diameter is introduced in the wider framework of solar variability and of the influences of the Sun upon the Earth's climate. Ancient eclipses and planetary transits would permit to extend the knowledge of the solar irradiance back to three centuries, through the parameter W=dLogR/dLogL. The method of Baily's beads timing during eclipses is discussed, and a significant improvement with respect to the last 40 years has been obtained by reconstructing the Limb Darkening Function's inflexion point from their light curve and the corresponding lunar valleys' profiles. The case of the Jan 15, 2010 annular eclipse has been studied in detail, as well as the last two transits of Venus. The atlas of Baily's beads, realized with worldwide contributions by IOTA members is presented along with the solar diameter during the eclipse of 2006. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-altimeter map made by the Kaguya lunar probe in 2009 has been followed. The other method for the accurate measurement of the solar diameter alternative to the PICARD / PICARD-sol mission is the drift-scan method used either by the solar astrolabes either by larger telescopes. The observatories of Locarno and Paris have started an observational program of the Sun with this method with encouraging results. For the first time an image motion of the whole Sun has been detected at frequencies of 1/100 Hz. This may start explain the puzzling results of the observational campaigns made in Greenwich and Rome from 1850 to 1955. The meridian line of Santa Maria degli Angeli in Rome is a giant pinhole telescope and it permits to introduce didactically almost all the arguments of classical astrometry here presented. The support to the PICARD mission continues with the analyses of the transit of Venus and the total eclipse of 2012.
Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC
NASA Technical Reports Server (NTRS)
Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.
2010-01-01
We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric
Ionospheric effects over Europe during the solar eclipse on 20 March 2015
NASA Astrophysics Data System (ADS)
Hoque, Mainul; Jakowski, Norbert; Berdermann, Jens
2017-04-01
A total solar eclipse occurred on March 20, 2015 moving from the North-West Europe towards the North-East. Due to strong solar radiation changes dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact e.g. on the temperature and ionization during the eclipse. We analyzed the 20 March 2015 solar eclipse effects on the ionospheric structure over Europe using multi-sensor observations such as vertical sounding (VS) and Global Positioning System (GPS) measurements. Whereas the VS measurements are used to provide peak electron density information at the ionospheric F2, F1 and E layers over selected ionosonde stations, a dense network of GPS stations is used to provide high spatial resolution of the total electron content (TEC) estimates over Europe. We reconstructed the TEC maps with 5 minutes time resolution and thus investigated the original TEC maps and differential TEC maps obtained by subtracting 27 days medians from the actual TEC map values on 20 March 2015. By combining VS and GPS measurements the equivalent slab thickness has been estimated over several ionosonde stations to get information how the shape of the vertical electron density profile changes during the eclipse. The analysis of the solar eclipse on 20 March 2015 presented here will contribute to understand the ionospheric response on solar eclipses occurring at different latitudes. The observations indicate that a number of competitive processes initiated by an eclipse are often enhanced by dynamic forces associated with large scale geophysical conditions not directly impacted by the solar eclipse. Our TEC estimation shows that the total ionization reduces up to 60% (after bias correction 40%) as a function of obscuration. Since the 20 March 2015 eclipse occurred during the negative phase of a severe geomagnetic storm on 17 March 2015, the observed TEC depletion is higher than those reported earlier for 1999 and 2005 eclipses. Thus, a negative bias of up to 20% was observed over Northern Europe already before the eclipse occurred. Moreover, the eclipse path of the solar eclipse in 2015 is traced at higher latitudes compared with eclipses observed in the years 1999 and 2005. The ionospheric response to the obscuration function is delayed up to 40 minutes decreasing with growing distance from the totality zone and increasing with altitude. The increasing delay with altitude is in agreement with earlier findings for other eclipses. The equivalent slab thickness was found to increase by approximately 80 -100 km during the solar eclipse on 20 March 2015 showing evidence for a pronounced loss in the bottomside ionosphere causing a delayed depletion of the topside ionosphere.
Detection of the Secondary Eclipse of Exoplanet HAT P-11b
NASA Technical Reports Server (NTRS)
Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.
2010-01-01
We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.
Educating the Public about the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-01-01
On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds on the centerline. Our research on the 2017 total solar eclipse is supported by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.
Observation and Analysis of Secondary Eclipses of WASP-32b
NASA Astrophysics Data System (ADS)
Garland, Justin; Harrington, Joesph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Matthew O.; Maxted, Pierre F. L.
2014-11-01
We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered by Maxted et al. (2010), this hot-Jupiter planet has a mass of 3.6 +/- 0.07 Mj, a radius of 1.18 +/- 0.07 Rj, and an orbital period of 2.71865 +/- 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 micron and 4.5 micron channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse-depth measurements, estimates of infrared brightness temperatures, and refinements of orbital parameters for WASP-32b from our eclipse measurements as well as amatuer and professional data. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Shaner, Andy; Wenger, Matthew; Bakerman, Maya; Joseph, Emily; Day, Brian; White, Vivian; InOMN Coordinating Committee
2017-01-01
2017 marks the eighth International Observe the Moon Night (InOMN), which will be held on July 15, 2017. We will present findings from the first seven years, including the most recent figures from the October 2016 event, and provide an overview of the 2017 events which will support the Great American Eclipse which occurs about five weeks later, on August 21, 2017.InOMN is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. This year InOMN’s event will support broad efforts to promote the eclipse by providing resources to help InOMN hosts highlight lunar science that will influence the eclipse, such as the topography of the Moon, which affects the edges of the eclipse path and the location and duration of Baily’s beads. The InOMN team will host webinars to discuss the Moon, lunar science, and lunar and solar eclipses.Each year, thousands of visitors take part in hundreds of events across the world. In the first seven years (2010 to 2016) over 3,700 events were registered worldwide and hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and held at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and homes. Evaluation of InOMN reveals that events are raising visitors’ awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so.InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more and register to host an event at http://observethemoonnight.org/.
Eclipse-Like Events on This Week @NASA – August 18, 2017
2017-08-18
ena such as the Aug. 21, 2017 solar eclipse can inspire awe, but scientists can also use eclipse-like events to learn more about the universe. For instance, a total eclipse, or an occultation in scientific terms – happens when a celestial body completely blocks light from a star, like our sun. This type of event can help astronomers learn more about an object’s atmosphere, including whether it might be surrounded by rings or other planetary matter. During a similar event, called a transit, variations in light that result when a closer object passes in front of a star, but only blocks a small part of the star, have been used by missions such as our Kepler space telescope, to discover new planets outside our solar system. Also, SpaceX Launches Science, Supplies to Space Station, New Communications Satellite Launched, Cassini Begins Final Five Orbits around Saturn and Spacewalk aboard the Space Station!
The occurrence of planets and other substellar bodies around white dwarfs using K2
NASA Astrophysics Data System (ADS)
van Sluijs, L.; Van Eylen, V.
2018-03-01
The majority of stars both host planetary systems and evolve into a white dwarf (WD). To understand their post-main-sequence planetary system evolution, we present a search for transiting/eclipsing planets and other substellar bodies (SBs) around WDs using a sample of 1148 WDs observed by K2. Using transit injections, we estimate the completeness of our search. We place constraints on the occurrence of planets and SBs around WDs as a function of planet radius and orbital period. For short-period (P < 40 d) small objects, from asteroid-sized to 1.5 R⊕, these are the strongest constraints known to date. We further constrain the occurrence of hot Jupiters ( < 1.5 per cent), habitable zone Earth-sized planets ( < 28 per cent), and disintegrating short-period planets ( ˜ 12 per cent). We blindly recovered all previously known eclipsing objects, providing confidence in our analysis, and make all light curves publicly available.
Measuring the Infrared Spectrum of the Transiting Extrasolar Planet HD 209458b
NASA Astrophysics Data System (ADS)
Richardson, L. Jeremy; Cho, James; Deming, Drake; Hansen, Brad; Harrington, Joseph; Menou, Kristen; Seager, Sara
2005-06-01
Researchers from two independent groups recently detected the first infrared signal from an extrasolar planet. Deming et. al. (2005a) detected the 24-micron flux density of HD 209458b using MIPS at secondary eclipse, and Charbonneau et. al. (2005) detected the infrared signal of TrES-1 using IRAC at 4.5 and 8 microns. These results have dramatically demonstrated the ability of Spitzer to characterize extrasolar planets. We propose to build on these observations with IRS spectroscopy of HD 209458b from 7.4 to 14.5 microns. By observing the system both during and outside of secondary eclipse, we will derive the planetary spectrum from the change in the shape of the continuum spectrum in combined light. These observations will lead directly to a measurement of the temperature gradient in the planetary atmosphere and the column density of water above the clouds, and we will search for variability due to atmospheric dynamics.
Annular and Total Solar Eclipses of 2010
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, J.
2008-01-01
While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.
Five Millennium Canon of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2006-01-01
During 5,000-year period from -1999 to +3000 (2000BCE to 3000CE), Earth will experience 11,898 eclipses of the Sun. The statistical distribution of eclipse types for this interval is as follows: 4,200 partial eclipses, 3956 annular eclipses, 3173 total eclipses,and 569 hybrid eclipses. Detailed global maps for each of the 11,898 eclipses delineate the geographic regions of visibility for both the penumbral (partial) and umbral or antumbral (total, annular, or hybrid) phases of every event. Modern political borders are plotted to assist in the determination of eclipse visibility. The uncertainty in Earth's rotational period expressed in the parameter (delta)T and its impact on the geographic visibility of eclipses in the past and future is discussed.
On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations
NASA Astrophysics Data System (ADS)
Stankov, S.; Verhulst, T. G. W.
2017-12-01
A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca
We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less
Preparing for and Observing the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2015-11-01
I discuss ongoing plans and discussions for EPO and scientific observing of the 21 August 2017 total solar eclipse. I discuss aspects of EPO based on my experiences at the 60 solar eclipses I have seen. I share cloud statistics along the eclipse path compiled by Jay Anderson, the foremost eclipse meteorologist. I show some sample observations of composite imagery, of spectra, and of terrestrial temperature changes based on observations of recent eclipses, including 2012 from Australia and 2013 from Gabon. Links to various mapping sites of totality, partial phases, and other eclipse-related information, including that provided by Michael Zeiler, Fred Espenak (retired from NASA) and Xavier Jubier can be found on the website I run for the International Astronomical Union's Working Group on Eclipses at http://www.eclipses.info.
Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b
NASA Astrophysics Data System (ADS)
Sheppard, Kyle; Mandell, Avi M.; Tamburo, Patrick; Gandhi, Siddarth; Pinhas, Arazi; Madhusudhan, Nikku; Deming, Drake
2018-01-01
Hot Jupiters have been vital in revealing the structural and atmospheric diversity of gas-rich planets. Since they are exposed to extreme conditions and relatively easy to observe through transit and eclipse spectroscopy, hot Jupiters provide a window into a unique part of parameter space, allowing us to better understand both atmospheric physics and planetary structure. Additionally, constraints on the structure and composition of exoplanetary atmospheres allow us to test and generalize planetary formation models. We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (Teq=2400K, M=10MJ) based on Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We report a 4.7σ detection of CO, and a non-detection of water vapor as well as all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and an extremely high metallicity (C/H=~283x solar). If confirmed with future observations, WASP-18b would be the first example of a planet with a non-oxide driven thermal inversion and an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets.
Eclipse cooling of selected lunar features
NASA Technical Reports Server (NTRS)
Shorthill, R. W.; Saari, J. M.; Baird, F. E.; Lecompte, J. R.
1970-01-01
Thermal measurements were made in the 10 to 12 micron band of the lunar surface during the total eclipse of December19, 1964. A normalized differential thermal contour map is included, showing the location of the thermal anomalies or hot spots on the disk and the eclipse cooling curves of 400 sites, of which more than 300 were hot spots. The eclipse cooling data is compared to a particulate thermophysical model of the soil.
Constraining Lunar Cold Spot Properties Using Eclipse and Twilight Temperature Behavior
NASA Astrophysics Data System (ADS)
Powell, T. M.; Greenhagen, B. T.; Hayne, P. O.; Bandfield, J. L.
2016-12-01
Thermal mapping of the nighttime lunar surface by the Diviner instrument on the Lunar Reconnaissance Orbiter (LRO) has revealed anomalous "cold spot" regions surrounding young impact craters. These regions typically show 5-10K lower nighttime temperatures than background regolith. Previous modeling has shown that cold spot regions can be explained by a "fluffing-up" of the top centimeters of regolith, resulting in a layer of lower-density, highly-insulating material (Bandfield et al., 2014). The thickness of this layer is characterized by the H-parameter, which describes the rate of density increase with depth (Vasavada et al., 2012). Contrary to expectations, new Diviner and ground-based telescopic data have revealed that these cold spot regions remain warmer than typical lunar regolith during eclipses and for a short twilight period at the beginning of lunar night (Hayne et al., 2015). These events act on much shorter timescales than the full diurnal day-night cycle, and the surface temperature response is sensitive to the properties of the top few millimeters of regolith. Thermal modeling in this study shows that this behavior can be explained by a profile with higher surface density and higher H-parameter relative to typical regolith. This results in a relative increase in thermal inertia in the top few millimeters of regolith, but decreased thermal inertia at centimeter depth scales. Best-fit surface density and H-parameter values are consistent with the temperature behavior observed during diurnal night as well as early twilight and eclipse scenarios. We interpret this behavior to indicate the presence of small rocks at the surface deposited by granular flow mixing during cold spot formation. This study also shows that eclipse and twilight data can be used as an important constraint in determining the thermophysical properties of lunar regolith. References: Bandfield, et al. (2014), Icarus, 231, 221-231. Hayne, et al. (2015), In Lunar and Planetary Science Conference (Vol. 46, p. 1997). Vasavada, et al. (2012), J. Geophys. Res., 117(E12).
Solar Eclipses and the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2009-05-01
Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.
UTM: Universal Transit Modeller
NASA Astrophysics Data System (ADS)
Deeg, Hans J.
2014-12-01
The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.
Total Eclipse of the Ballpark: Connecting Space and Sports
NASA Astrophysics Data System (ADS)
Wasser, Molly; Petro, Noah; Jones, Andrea; Bleacher, Lora; Keller, John; Wes Patterson, G.
2018-01-01
The anticipation and excitement surrounding the total solar eclipse of 2017 provided astronomy educators with an incredible platform to share space science with huge audiences. The Public Engagement Team for NASA’s Lunar Reconnaissance Orbiter (LRO) took advantage of this opportunity to share lunar science with the public by highlighting the often-overlooked central player in the eclipse – the Moon. As the sole planetary science representatives on NASA’s Science Mission Directorate eclipse leadership team, the LRO team had limited resources to conduct national public outreach. In order to increase our reach, we found success in partnerships.In early 2017, we began working with Minor League Baseball (MiLB) teams across the path of totality on August eclipse events. These partnerships proved fruitful for both parties. While MiLB is a national organization, each team is deeply rooted in its community. This proved essential as each of our four main MiLB partners handled event logistics, provided facilities, connected NASA Subject Matter Experts (SMEs) with local media, and drew in captive crowds. With this tactic, a handful of NASA representatives were able to reach nearly 30,000 people. In turn, LRO provided engaging educational content relevant to the context, SMEs to guide the eclipse viewing experience, eclipse glasses, and safety information. Our participation drew in an audience who would not typically attend baseball games while we were able to reach individuals who would not normally attend a science event. In addition, the eclipse inspired one team, the Salem-Keizer Volcanoes from Salem, OR, to make baseball history by holding the first ever eclipse delay in professional sports.In this talk, we will present on the benefits of the partnership, offer lessons learned, and suggest ways to get involved for the 2024 eclipse – and all the baseball seasons in between.
Fifty Year Canon of Lunar Eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1989-01-01
A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035.
The Secondary Eclipse and Transit of HD 209458b at 24 micron
NASA Astrophysics Data System (ADS)
Harrington, J.; Luszcz, S.; Deming, D.; Richardson, L. J.; Seager, S.
2005-08-01
We used the Multiband Imaging Photometer on the Spitzer Space Telescope to obtain 24-micron lightcurves for one secondary eclipse and half a transit of extrasolar planet HD 209458b behind/in front of its star. Optimal photometric extraction of the total system brightness gives S/N of ˜100 per 10-sec exposure. We measure the deficit of planetary flux in secondary eclipse at 55 ± 10 μ Jy, or 0.260 ± 0.046% of the stellar flux, giving a brightness temperature of 1130 ± 150 K. The secondary eclipse occurs within 7 min (1σ ) of the mid-time between transits, essentially eliminating the hypothesis that HD 209458b's radius is inflated by tidal dissipation due to an elliptical orbit. Such an orbit would have required a second planet in a resonant orbit. This measurement and a similar, simultaneously-submitted result for TrES-1 by Charbonneau et al. (2005) are the first direct measurements of radiation from confirmed extrasolar planets. We measure a preliminary transit depth of 1.559 ± 0.065% of the stellar flux. The stellar limb-darkening curve is flat to within the errors, as expected for this wavelength. Adopting a stellar radius of 1.18 ± 0.10 R⊙ (Cody and Sasselov 2002) gives a planetary radius of 1.43 ± 0.13 RJ, consistent with that derived from optical measurements. The large error bar prevents us from ruling out a significant wavelength dependence of the eclipsing radius, as might be be expected if a particulate coma were responsible for the inflated optical radius. Spitzer has acquired an additional complete transit; updated results will be presented at the conference. This work was supported by the NASA Origins of Solar Systems program and the Spitzer Space Telescope. LJR is an NRC research associate.
Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse
NASA Astrophysics Data System (ADS)
Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi
2017-12-01
Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.
Analysis of Secondary Eclipse Observations of Exoplanet WASP-34b
NASA Astrophysics Data System (ADS)
Challener, Ryan; Harrington, Joseph; Garland, Justin; Cubillos, Patricio; Blecic, Jasmina; Smalley, Barry
2014-11-01
WASP-34b is a short-period exoplanet with a mass of 0.59 +/- 0.01 Jupiter masses orbiting a sun-like star with a period of 4.3177 days and an eccentricity of 0.038 +/- 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 micron channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We present eclipse-depth measurements, estimates of infrared brightness temperatures, and refine the orbit using our secondary eclipse measurements. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Planetary Geologic Mapping Handbook - 2010. Appendix
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650
NASA Astrophysics Data System (ADS)
Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.
2018-04-01
We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.
2012-03-15
The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc.more » This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the estimated total ring mass is {approx}8-0.4 M{sub Moon} (if the rings have optical opacity similar to Saturn's rings), and the edge of the outermost detected ring has orbital radius {approx}0.4-0.09 AU. In the new era of time-domain astronomy opened by surveys like SuperWASP, ASAS, etc., and soon to be revolutionized by Large Synoptic Survey Telescope, discovering and characterizing eclipses by circumplanetary and circumsecondary disks will provide us with observational constraints on the conditions that spawn satellite systems around gas giant planets and planetary systems around stars.« less
Planetary Geologic Mapping Handbook - 2009
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A.; Hare, T. M.
2009-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
A new catalog of planetary maps
NASA Technical Reports Server (NTRS)
Batson, R. M.; Inge, J. L.
1991-01-01
A single, concise reference to all existing planetary maps, including lunar ones, is being prepared that will allow map users to identify and locate maps of their areas of interest. This will be the first such comprehensive listing of planetary maps. Although the USGS shows index maps on the collar of each map sheet, periodically publishes index maps of Mars, and provides informal listings of the USGS map database, no tabulation exists that identifies all planetary maps, including those published by DMA and other organizations. The catalog will consist of a booklet containing small-scale image maps with superimposed quadrangle boundaries and map data tabulations.
Nasa's Planetary Geologic Mapping Program: Overview
NASA Astrophysics Data System (ADS)
Williams, D. A.
2016-06-01
NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.
Total Solar Eclipse of 2008 August 01
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2007-01-01
On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
A study for testing the Kerr metric with AGN iron line eclipses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn
2016-04-01
Recently, two of us have studied iron line reverberation mapping to test black hole candidates, showing that the time information in reverberation mapping can better constrain the Kerr metric than the time-integrated approach. Motivated by this finding, here we explore the constraining power of another time-dependent measurement: an AGN iron line eclipse. An obscuring cloud passes between the AGN and the distant observer, covering different parts of the accretion disk at different times. Similar to the reverberation measurement, an eclipse might help to better identify the relativistic effects affecting the X-ray photons. However, this is not what we find. Inmore » our study, we employ the Johannsen-Psaltis parametrisation, but we argue that our conclusions hold in a large class of non-Kerr metrics. We explain our results pointing out an important difference between reverberation and eclipse measurements.« less
Astronomy Activities for the Classroom.
ERIC Educational Resources Information Center
Cain, Peggy W.; Welch, Daniel W.
Presented are middle school level, activity-oriented astronomy activities developed as a result of an earth science workshop for teachers. Topics include: (1) sun and moon position and measurement; (2) daily, yearly, and seasonal changes in the sun's position; (3) shapes and positions of planetary orbits; (4) eclipses; (5) properties of light; (6)…
NASA Astrophysics Data System (ADS)
Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.
2018-06-01
Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.
Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone
NASA Astrophysics Data System (ADS)
Winter, H. D., III
2017-12-01
The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.
The Great Exoplanet Eclipse: Spitzer Observations of the Benchmark Sub-Saturn-Mass Planet KELT-11b
NASA Astrophysics Data System (ADS)
Colon, Knicole; Beatty, Thomas; Line, Michael; Kreidberg, Laura; Lopez, Eric; Stassun, Keivan; Rodriguez, Joseph; Pepper, Joshua; James, David
2017-10-01
KELT-11b is a unique sub-Saturn-mass planet with a super-Jupiter radius that is in orbit around a bright, metal-rich, sub-giant star. We propose to observe a single eclipse of KELT-11b with Spitzer in IRAC Channel 2, which will allow us to precisely constrain the orbital eccentricity of the planet, study atmospheric circulation in an as yet unexplored regime of planetary surface gravity and temperature, and perform comparative science with other exoplanets in order to explore the correlation between surface gravity and thermal structure. Spitzer is the only active facility capable of providing the high precision, continuous infrared eclipse photometry of KELT-11b that is required to reach these objectives. The Spitzer infrared eclipse combined with near-infrared transmission spectroscopy that we will obtain with WFC3 on the Hubble Space Telescope will ultimately enable a detailed investigation of the atmospheric properties of KELT-11b and will provide a benchmark for planning thermal observations of exoplanets with the James Webb Space Telescope.
NASA Astrophysics Data System (ADS)
Pérez-Ayúcar, M.; Breitfelner, M.
2017-09-01
Solar transits are rare astronomical event of profound historical importance and with an enormous potential to engage nowadays students and general public into Planetary Sciences and Space. Mercury transits occur only about every 13-14 times per century. Total solar eclipses occur around 18 months apart somewhere on Earth, but they recur only every 3-4 centuries on the same location. Although its historic scientific importance (examples, to measure the distances in the solar system, to observe the solar corona) has diminished since humanity roams our solar system with robotic spacecrafts, transits remain a spectacular astronomical event that is used very effectively to engage general public and students to Science and Space in general. The educational project CESAR (Cooperation through Education in Science and Astronomy Research) has been covering since 2012 such events (Venus transit 2012, live Sun transmissions, solar eclipses, ISS transits ...). We report the outstanding outcome of the two public educational and outreach events since last year: the May 2016 Mercury Transit, and the recent August 2017 Total Eclipse. And the follow up activities expected for future transits.
HAT-P-16b: A Bayesian Atmospheric Retrieval
NASA Astrophysics Data System (ADS)
McIntyre, Kathleen; Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Challener, Ryan; Bakos, Gaspar
2017-10-01
HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). We observed two secondary eclipses of HAT-P-16b using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the planet. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Dayside atmospheric structure of HD209458b from Spitzer eclipses
NASA Astrophysics Data System (ADS)
Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina
2017-10-01
HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Observation and Analysis of Secondary Eclipses of WASP-32b
NASA Astrophysics Data System (ADS)
Garland, Justin; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.
2015-11-01
We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered in 2010 by Maxted et al, this hot-Jupiter planet has a mass of 3.6 ± 0.07 Mj, a radius of 1.18 ± 0.07 Rj, an equilibrium temperature of 1560 ± 50 K, and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 µm and 4.5 µm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 µm band and inconclusive results in the 3.6 µm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 µm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Secondary Eclipse Observations and Orbital Analysis of WASP-32b
NASA Astrophysics Data System (ADS)
Garland, Justin; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.
2016-01-01
We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered by Maxted et al. (2010), this hot-Jupiter planet has a mass of 3.6 ± 0.07 MJ a radius of 1.18 ± 0.07 RJ and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 μm and 4.5 μm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 μm band and inconclusive results in the 3.6 μm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 μm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resultingmore » in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.« less
Total solar eclipse of 3 November 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.
NASA Astrophysics Data System (ADS)
Buxner, S.; Jones, A. P.; Bleacher, L.; Wasser, M. L.; Day, B. H.; Shaner, A. J.; Bakerman, M. N.; Joseph, E.
2017-12-01
International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA's Solar System Exploration Research Virtual Institute (SSERVI), the NASA's Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors. In 2017, InOMN will bring together thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. We are partnering with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. This is part of a new partnership with the Sun-Earth Day team, through the Heliophysics Education Consortium, to better connect the two largest NASA-sponsored public engagement events, increase participation in both events, and share best practices in implementation and evaluation between the teams. Over 3,800 InOMN events have been registered between 2010 and 2016, engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. InOMN events are evaluated to determine the value of the events and to allow us to improve the experience for event hosts and visitors. Our results show that InOMN events are hosted by scientists, educators, and citizen enthusiasts around the world who leverage InOMN to bring communities together, get visitors excited and learn about the Moon - and beyond, and share resources to extend engagement in lunar and planetary science and observation. Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and certificates of participation. Additionally, InOMN highlights partner resources such as online interfaces including Moon Trek (https://moontrek.jpl.nasa.gov) and CosmoQuest (https://cosmoquest.org/x/) to provide further opportunities to engage with NASA science. Learn more about InOMN at http://observethemoonnight.org.
A search for extra-solar planetary transits in the field of open cluster NGC 6819
NASA Astrophysics Data System (ADS)
Street, Rachel Amanda
The technique of searching for extra-solar planetary transits is investigated. This technique, which relies on detecting the brief, shallow eclipses caused by planets passing across the line of sight to the primary star, requires high-precision time-series photometry of large numbers of stars in order to detect these statistically rare events. Observations of 18000 stars in the field including the intermediate-age open cluster NGC 6819 are presented. This target field constrasts with the stellar environment surveyed by the radial velocity technique, which concentrates on the Solar neighbourhood. I present the data-reduction techniques used to obtain high-precision photometry in a semi-automated fashion for tens of thousands of stars at a time, together with an algorithm designed to search the resulting lightcurves for the transit signatures of hot Jupiter type planets. I describe simulations designed to test the detection efficiency of this algorithm and, for comparison, predict the number of transits expected from this data, assuming that hot Jupiter planets similar to HD 209458 are as common in the field of NGC 6819 as they are in the Solar neighbourhood. While no planetary transits have yet been identified, the detection of several very low amplitude eclipses by stellar companions demonstrates the effectiveness of the method. This study also indicates that stellar activity and particularly blending are significant causes of false detections. A useful additional consequence of studying this time-series photometry is the census it provides of some of the variable stars in the field. I report on the discovery of a variety of newly-discovered variables, including Algol-type detached eclipsing binaries which are likely to consist of M-dwarf stars. Further study of these stars is strongly recommended in order to help constrain models of stellar structure at the very low mass end. I conclude with a summary of this work in the context of other efforts being made in this field and recommend promising avenues of further study.
Total Solar Eclipse of 2006 March 29
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2004-01-01
On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total Solar Eclipse of 2002 December 04
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2001-01-01
On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces
NASA Astrophysics Data System (ADS)
Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent
2017-04-01
Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.
Spacecraft Status Report: 2001 Mars Odyssey
NASA Technical Reports Server (NTRS)
Boyles, Carole
2012-01-01
Fourth extension of Odyssey mission continues, with orbital science investigations and relay services for landed assets. Mitigation of aging IMU and UHF transceiver. ODY has responded to Program Office/board recommendations. All Stellar mode has been certified for flight operations and is now standard for nadir point operations on the A-side. Investigating options to mitigate aging Battery. Gradual transfer to a later LMST orbit node to shorten eclipse durations. Reduce spacecraft loads during the longer eclipses. Optimize battery performance. ODY is preparing for E5 Proposal and Planetary Science Division FY12 Senior Review activities. ODY is on track to support MSL EDL and surface operations. ODY is managing consumables in order to remain in operations until 2020.
Annular Solar Eclipse of 10 May 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.
Mapping the Pressure-radius Relationship of Exoplanets
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Fossati, Luca; Kubyshkina, Darya
2017-10-01
The radius of a planet is one of the most physically meaningful and readily accessible parameters of extra-solar planets. This parameter is extensively used in the literature to compare planets or study trends in the know population of exoplanets. However, in an atmosphere, the concept of a planet radius is inherently fuzzy. The atmospheric pressures probed by trasmission (transit) or emission (eclipse) spectra are not directly constrained by the observations, they vary as a function of the atmospheric properties and observing wavelengths, and further correlate with the atmospheric properties producing degenerate solutions.Here, we characterize the properties of exoplanet radii using a radiative-transfer model to compute clear- atmosphere transmission and emission spectra of gas-dominated planets. We explore a wide range of planetary temperatures, masses, and radii, sampling from 300 to 3000 K and Jupiter- to Earth-like values. We will discuss how transit and photospheric radii vary over the parameter space, and map the global trends in the atmospheric pressures associated with these radii. We will also highlight the biases introduced by the choice of an observing band, or the assumption of a clear/cloudy atmosphere, and the relevance that these biases take as better instrumentation improves the precision of photometric observations.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…
Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions
NASA Astrophysics Data System (ADS)
Schaffenroth, Veronika; Geier, Stephan; Heber, Uli
2014-09-01
The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Roberts, Billy J; Kutchenreiter, Mark C
The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of themore » path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.« less
Eclipses of the inner satellites of Jupiter observed in 2015
NASA Astrophysics Data System (ADS)
Saquet, E.; Emelyanov, N.; Colas, F.; Arlot, J.-E.; Robert, V.; Christophe, B.; Dechambre, O.
2016-06-01
Aims: During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. Methods: We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. Results: We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These observation accuracies largely override standard astrometric measurements. The (O - C)s for the eclipse of Thebe are 75 mas on the X-axis and 120 mas on the Y-axis. The (O - C)s for the total eclipses of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three events. Taking into account the ratio of (O - C) to precision of the astrometric results, we show a significant discrepancy with the theory established by Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris. Three of the four eclipse observations where recorded at the 1 m telescope of Pic du Midi Observatory (S2P), the other at Saint-Sulpice Observatory.
There's An App For That: Planning Ahead for the Solar Eclipse in August 2017
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve
2017-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
NASA Astrophysics Data System (ADS)
Fraknoi, Andrew; Schatz, Dennis; Dusenbery, Paul; Duncan, Douglas; Holland, Anne; Laconte, Keliann
2018-01-01
With support from the Moore Foundation, Google, the Research Corporation, and NASA, we were able to distribute about 2.1 million eclipse glasses and an extensive booklet of eclipse information and outreach suggestions to 7,100 public libraries throughout the nation. It appears that this project was the single largest program to provide glasses and eclipse information to the public in the U.S. The project using (and significantly enlarged) the existing STARNet network of libraries set up and maintained by the Space Science Institute. We were able to get glasses to a diverse set of institutions, including urban, rural, Native American, small town and large city libraries. In this poster, we will summarize the history of the project, the various components and how they worked together, and the results of a post survey of the librarians, which provided numbers, photographs, and impressions from the many libraries and their patrons. A map of the libraries involved is at www.starnetlibraries.org/2017eclipse/. The booklet of information that was sent to help train librarians in eclipse science and eclipse outreach can still be downloaded free at: http://www.starnetlibraries.org/EclipseGuide/.”
Secondary eclipse observations and the atmosphere of exoplanet WASP-34b
NASA Astrophysics Data System (ADS)
Challener, Ryan C.; Harrington, Joseph; Cubillos, Patricio; Garland, Justin; Foster, Andrew S. D.; Blecic, Jasmina; Foster, AJ; Smalley, Barry
2015-11-01
WASP-34b is a short-period exoplanet with a mass of 0.59 ± 0.01 Jupiter masses orbiting a G5 star with a period of 4.3177 days and an eccentricity of 0.038 ± 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 μm channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to present eclipse-depth measurements, estimates of infrared brightness temperatures, and a refined orbit. With our Bayesian Atmospheric Radiative Transfer (BART) code, we characterized the atmosphere's temperature and pressure profile, and molecular abundances. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.
NASA Astrophysics Data System (ADS)
Petro, Noah; Keller, John
2016-07-01
The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance and surface slopes. It is important to note that LRO data has also vastly improved our understanding of the location of surface features across the entire Moon, thus enabling the accurate geolocation of any spot on the Moon. LRO will participate in the Planetary Science Division Senior Review to propose for two years of operations (FY17-18). As part of the senior review process the LRO instrument teams and project are defining exciting new science questions and instrument modes. We are also evaluating new orbits for the spacecraft in order to maximize the science return, as well as put us in a position to leverage possible future opportunities (e.g., observe future landings by commercial/private/international missions, upcoming eclipses). [1] Vondrak, R., et al., (2010) Space Science Reviews, 150, 7-22. [2] Patterson, G. W., et al., (2016) LPSC. [3] LRO PDS Archive, (http://pds-geosciences.wustl.edu/missions/lro/).
NASA Astrophysics Data System (ADS)
Brunier, Serge; Luminet, Jean-Pierre
2000-12-01
Stargazers who may have missed the last total solar eclipse of the 20th century this past summer have just been given another chance to observe this "once in a lifetime" occurrence. Inside Glorious Eclipses they will find startling images and rich personal accounts that fully capture this event and other recent eclipses. The book will also insure that readers will not miss another eclipse in the next 60 years! Specially designed in a beautiful, large format, the volume portrays eclipses of all kinds--lunar, solar, and those occurring elsewhere in the Solar System and beyond. Brunier and Luminet have gathered together all aspects of eclipses, and carefully selected a host of lavish images. The authors detail the history of eclipses, the celestial mechanics involved, their observation, and scientific interest. Personal accounts of recent eclipses are also included as well as all relevant information about forthcoming eclipses up to 2060. Complete with NASA maps and data, Glorious Eclipses is the ultimate source for all those interested in these remarkable (and rare) celestial events. Serge Brunier is chief editor of the journal Ciel et Espace, a photo-journalist, and the author of many nonfiction books aimed at both specialists and the general public. Jean-Pierre Luminet is an astrophysicist at the Paris-Meudon Observatory and director of research at the Centre pour la Recherche Scientifique. He is the author of many popular astronomy books, including Black Holes (Cambridge University Press, 1992).
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos
2016-04-01
Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.
NASA Astrophysics Data System (ADS)
Bours, M. C. P.; Marsh, T. R.; Parsons, S. G.; Dhillon, V. S.; Ashley, R. P.; Bento, J. P.; Breedt, E.; Butterley, T.; Caceres, C.; Chote, P.; Copperwheat, C. M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Kilkenny, D.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Sahman, D. I.; Vučković, M.; Wilson, R. W.
2016-08-01
We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yr, with secondaries of spectral type K2 - M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yr, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with the so-called Applegate mechanism, which proposes that magnetic cycles in the secondary stars can drive variability in the binary orbits. We also present new eclipse times of NN Ser, which are still compatible with the previously published circumbinary planetary system model, although only with the addition of a quadratic term to the ephemeris. Finally, we conclude that we are limited by the relatively short observational baseline for many of the binaries in the eclipse timing programme, and therefore cannot yet draw robust conclusions about the cause of orbital period variations in evolved, white dwarf binaries.
Ionospheric response over Europe during the solar eclipse of March 20, 2015
NASA Astrophysics Data System (ADS)
Hoque, Mohammed Mainul; Wenzel, Daniela; Jakowski, Norbert; Gerzen, Tatjana; Berdermann, Jens; Wilken, Volker; Kriegel, Martin; Sato, Hiroatsu; Borries, Claudia; Minkwitz, David
2016-10-01
The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth's upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC) maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS) and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF) signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the Sun's obscuration function. By modelling TEC depletion and knowing the Sun's obscuration function in advance, Global Navigation Satellite System (GNSS) operators may improve the broadcast ionospheric correction during a solar eclipse day.
Fundamental parameters of exoplanets and their host stars
NASA Astrophysics Data System (ADS)
Coughlin, Jeffrey Langer
For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.
Investigations of a New Eclipsing Cataclysmic Variable HBHA 4705-03
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Vlasyuk, V. V.; Spiridonova, O. I.
2013-01-01
Results of photometric and spectroscopic investigations of the recently discovered eclipsing cataclysmic variable star HBHA 4705-03 are presented. The emission spectra of the system show broad hydrogen and helium emission lines. The bright spots with an approximately zero velocity components are found in the Doppler maps for the hydrogen and ionized helium lines. The disc structure is more prominent in the maps for the neutral helium lines. The masses of the components (MWD = 0.54 ± 0.10M⊙ and MRD = 0.45 ± 0.05 M⊙), and the orbit inclination (i = 71.°8 ± 0.°7) were estimated using the radial velocity light curve and the eclipse width. The modeling of the light curve allows us to evaluate the bright spot parameters and the mass accretion rate (M ≍ 2 ·1017 g s-1).
NASA Astrophysics Data System (ADS)
2010-10-01
Francisco Diego recorded spectacular images of the 11 July 2010 total solar eclipse from Rapa Nui (Easter Island), making the most of modern digital technology - much of which originated from astronomical research - in taking and processing the images. The European Space Agency has set out its priorities for the decade starting in 2015, in a report entitled Cosmic Vision. The first Viktor Ambartsumian International Prize, in memory of the distinguished Armenian theorist, goes to the team led by Prof. Michel Mayor of the Observatory of Geneva, for ``their important contribution in the study of relation between planetary systems and their host stars''.
A spectrum of an extrasolar planet.
Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph
2007-02-22
Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2007-01-01
The Plug-in Image Component Widget (PICWidget) is a software component for building digital imaging applications. The component is part of a methodology described in GIS Methodology for Planning Planetary-Rover Operations (NPO-41812), which appears elsewhere in this issue of NASA Tech Briefs. Planetary rover missions return a large number and wide variety of image data products that vary in complexity in many ways. Supported by a powerful, flexible image-data-processing pipeline, the PICWidget can process and render many types of imagery, including (but not limited to) thumbnail, subframed, downsampled, stereoscopic, and mosaic images; images coregistred with orbital data; and synthetic red/green/blue images. The PICWidget is capable of efficiently rendering images from data representing many more pixels than are available at a computer workstation where the images are to be displayed. The PICWidget is implemented as an Eclipse plug-in using the Standard Widget Toolkit, which provides a straightforward interface for re-use of the PICWidget in any number of application programs built upon the Eclipse application framework. Because the PICWidget is tile-based and performs aggressive tile caching, it has flexibility to perform faster or slower, depending whether more or less memory is available.
Lunar Surface Properties from Diviner Eclipse Observations
NASA Astrophysics Data System (ADS)
Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul
2015-04-01
The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the presence of blocky ejecta material. Comparisons of the rock abundance derived from the eclipse measurements can be made to those derived from the standard Diviner diurnal data [2] in order to constrain the rock size distribution. At a small nighttime cold spot, we observed brightness temperatures during the eclipse that were more than 10K higher than those observed in surrounding non-cold-spot regions. This seemingly paradoxical result implies that the vertical stratigraphy of the Moon's near-surface regolith may be more complex than has been previously appreciated. We are in the process of evaluating several possible explanations for this phenomenon quantitatively. References: [1] Paige D. A., et al. (2010) Space Sci. Rev. 150, 125-160. [2] Bandfield J. L., et al. (2011) J. Geophys. Res., 116, E12. [3] Ghent R. R., et al. (2014) Geology, 42 (12), 1059-1062. [4] Paige D. A., et al. (2010) Science, 330, 479-482. [5] Hayne P. O., et al. (2015) Icarus, submitted. [6] Greenhagen B. T., et al. (2010) Science, 329, 1507-1509. [7] Glotch T. D., et al. (2010) Science, 329, 1510-1513. [8] Allen C. C., et al. (2012) J. Geophys. Res., 117, E12. [9] Bandfield J. L., et al. (2014) Icarus, 231, 221-231. [10] Hayne P. O., et al. (2011) AGU Fall Meeting Abstracts, p. 1712. [11] Hayne P. O., et al. (2010) Science, 330, 477-479. Acknowledgement: Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Total Solar Eclipse of 1997 March 9
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1995-01-01
A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2001 June 21
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1999-01-01
On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nikole K.; Showman, Adam P.; Knutson, Heather A.
2013-04-01
We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands of the Spitzer Space Telescope. The 3.6 and 4.5 {mu}m data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 {mu}m that robustly maps position-dependent flux variations. Wemore » find that the peak in planetary flux occurs at 4.39 {+-} 0.28, 5.84 {+-} 0.39, and 4.68 {+-} 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% {+-} 0.0089%, 0.1162% {+-} 0.0080%, and 0.1888% {+-} 0.0072% in the 3.6, 4.5, and 8.0 {mu}m bands, respectively. Our measured secondary eclipse depths of 0.0996% {+-} 0.0072%, 0.1031% {+-} 0.0061%, 0.071%{sub -0.013%}{sup +0.029,} and 0.1392% {+-} 0.0095% in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 {+-} 0.00048) and argument of periapse ({omega} = 188. Degree-Sign 09 {+-} 0. Degree-Sign 39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.« less
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.
2017-12-01
2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on the results of our efforts to engage the public with these two events, and make recommendations for extending and sustaining the engagement of the public in preparation for the 2024 total solar eclipse.
Creating a Road Map for Planetary Data Spatial Infrastructure
NASA Astrophysics Data System (ADS)
Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.
2017-09-01
There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.
The Role of Geologic Mapping in NASA PDSI Planning
NASA Astrophysics Data System (ADS)
Williams, D. A.; Skinner, J. A.; Radebaugh, J.
2017-12-01
Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.
A bibliography of planetary geology principal investigators and their associates, 1976-1978
NASA Technical Reports Server (NTRS)
1978-01-01
This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.
Hubble Space Telescope observations of Europa in and out of eclipse
Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.
2010-01-01
Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.
Total Solar Eclipse of 1999 August 11
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1997-01-01
On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
March 7, 1970 solar eclipse investigation
NASA Technical Reports Server (NTRS)
Accardo, C. A.
1972-01-01
Studies from rockets directed toward establishing the solar X-ray fluxes during the 7 March 1970 total eclipse over the North American continent are reported. A map of the eclipse path is presented. The measured absorption profiles for the residual X-rays are useful in establishing their contribution to the D and E region ionization during the eclipse. The studies were performed with two Nike-Apache payloads launched over Wallops Island, Virginia. In addition to three X-ray detectors in the 1 to 8A, 8 to 20A and 44 to 60A bands, there was included in the payloads two additional experiments. These were an electric field experiment and an epithermal photoelectron experiment. The X-ray instrumentation, payload description, flight circumstances and finally, the X-ray results obtained are described. The various computer codes employed for the purpose of reducing the telemetered data as well as the eclipse codes are included.
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
ON THE ORBIT OF EXOPLANET WASP-12b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.
We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 {+-} 0.002) implied eccentricity at the 4.5{sigma} level.more » The spectroscopic orbit of Hebb et al. has eccentricity 0.049 {+-} 0.015, a 3{sigma} result, implying an eclipse phase of 0.509 {+-} 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 {+-} 0.0006 (3.6 and 5.8 {mu}m) and 0.5006 {+-} 0.0007 (4.5 and 8.0 {mu}m). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 {+-}{sup +0.007}{sub -0.006}) is consistent with a circular orbit at better than 2{sigma}. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1{sigma}; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.« less
Atmospheric, Orbital and Secondary Eclipse Analysis of HAT-P-30-WASP-51b
NASA Astrophysics Data System (ADS)
Foster, Andrew S.; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan; Foster, Austin James; Garland, Justin
2016-01-01
HAT-P-30-WASP-51b is a hot-Jupiter planet that orbits an F star every 2.8106 days at a distance of 0.0419 AU. Using the Spitzer Space Telescope in 2012 (Spitzer Program Number 70084) we observed two secondary eclipses of the planet, one in the 3.6 μm channel on 3 January and one in the 4.5 μm channel on 17 January. We present eclipse-depth measurements of 0.00163±0.0001 and 0.00146±0.00013 and we esitmate the infrared brightness temperatures to be 1900±50 and 1600±60 for these two channels, respectively, from an analysis using our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. We also refine its orbit using our own secondary-eclipse measurements in combination with radial-velocity and transit observations from both professional and amateur observers. The most notable result from this orbital analysis is a detection of eccentricity in the planet's orbit. Using only the phase of our secondary eclipses, we can constrain ecosw to a minimum of 0.0084±0.0004, a 20 sigma detection of one component of the orbit's eccentricity that is independent of the effects that stellar tides have on radial velocity data. We then characterize its atmosphere's temperature- pressure profile and molecular abundances using our Bayesian Atmospheric Radiative Transfer code (BART). Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Sciences Fellowship.
Atmospheric, Orbital and Eclipse Depth Analysis of the Hot Jupiter HAT-P-30-WASP-51b
NASA Astrophysics Data System (ADS)
Foster, Andrew S.; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, A. J.; Challener, Ryan; Garland, Justin
2015-11-01
HAT-P-30-WASP-51b is a hot-Jupiter planet that orbits an F star every 2.8106 days at a distance of 0.0419 AU. Using the Spitzer Space Telescope in 2012 (Spitzer Program Number 70084) we observed two secondary eclipses of the planet, one in the 3.6 μm channel on 3 January and one in the 4.5 μm channel on 17 January. We present eclipse-depth measurements of 0.00163 ± 0.0001 and 0.00146 ± 0.00013 and we esitmate the infrared brightness temperatures to be 1900 ± 50 and 1600 ± 60 for these two channels, respectively, from an analysis using our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. We also refine its orbit using our own secondary-eclipse measurements in combination with radial-velocity and transit observations from both professional and amateur observers. The most notable result from this orbital analysis is a detection of eccentricity in the planet's orbit. Using only the phase of our secondary eclipses, we can constrain ecosw to a minimum of 0.0084 ± 0.0004, a 20 sigma detection of one component of the orbit's eccentricity that is independent of the effects that stellar tides have on radial velocity data. We then characterize its atmosphere's temperature- pressure profile and molecular abundances using our Bayesian Atmospheric Radiative Transfer code (BART). Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.
Solar Eclipse Computer API: Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve
2016-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
On-line Eclipse Resources from the U.S. Naval Observatory: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Fredericks, Amy C.; Bartlett, J. L.; Bell, S.; Stapleton, J. C.
2014-01-01
On 8 April 2024, “…night from mid-day…” (Archilochus, 648 BCE) will appear to fortunate observers along a narrow band, approximately 115 mi (185 km) wide, that crosses fifteen states from Texas to Maine. In response to growing interest in the two total solar eclipses that will sweep the continental United States in the next 11 years, the U.S. Naval Observatory has developed an on-line resource center with direct links to 2024-specific services: the 2024 April 8 Total Solar Eclipse page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php). The Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php) calculates tables of local circumstances for events visible throughout the world. A similar service is available for lunar eclipses, Lunar Eclipse Computer (http://aa.usno.navy.mil/data/docs/LunarEclipse.php). The USNO Eclipse Portal (http://astro.ukho.gov.uk/eclbin/query_usno.cgi) provides diagrams and animations showing the global circumstances for events visible throughout the world and local circumstances for events visible at selected locations. The Web site, which includes both solar and lunar eclipses, is a joint effort with Her Majesty’s Nautical Almanac Office. The Eclipses of the Sun and Moon page (http://aa.usno.navy.mil/data/docs/UpcomingEclipses.php) links to electronic copies of the visibility maps from The Astronomical Almanac. The Eclipse Reference List (http://aa.usno.navy.mil/faq/docs/eclipse_ref.php) is a representative survey of the available literature for those interested in delving into these phenomena, either technically or historically. As exciting as the 2024 total solar eclipse, another spectacular event will precede it; a total solar eclipse will cross a different swath of the continent on August 21, 2017. The U.S. Naval Observatory has a resource center for that event as well (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) . If your plans for 2024 are not yet made, visit the 2024 April 8 Total Solar Eclipse page to prepare for up to 4 minutes 31 seconds of “unexampled beauty, grandeur, and impressiveness” (Newcomb 1890) and of darkness.
NASA Astrophysics Data System (ADS)
Fienberg, R. T.; Speck, A. K.; Habbal, S. R.
2017-12-01
More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the task force's activities, take stock of what went right and what went wrong, and consider how to do an even better job preparing the nation for the next two "Great American" solar eclipses: the annular eclipse of October 14, 2023, and the total eclipse of April 8, 2024.
Standards-Based Open-Source Planetary Map Server: Lunaserv
NASA Astrophysics Data System (ADS)
Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.
2018-04-01
Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.
HST images of the eclipsing pulsar B1957+20
NASA Technical Reports Server (NTRS)
Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.
1995-01-01
We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.
Mapping the accretion disc of the short period eclipsing binary SDSS J0926+3624
NASA Astrophysics Data System (ADS)
Schlindwein, Wagner; Baptista, Raymundo
2018-05-01
We report the analysis of time-series of optical photometry of SDSS J0926+3624 collected with the Liverpool Robotic Telescope between 2012 February and March while the object was in quiescence. We combined our median eclipse timing with those in the literature to revise the ephemeris and confirm that the binary period is increasing at a rate \\dot{P}=(3.2 ± 0.4)× 10^{-13} s/s. The light curves show no evidence of either the orbital hump produced by a bright spot at disc rim or of superhumps; the average out-of-eclipse brightness level is consistently lower than previously reported. The eclipse map from the average light curve shows a hot white dwarf surrounded by a faint, cool accretion disc plus enhanced emission along the gas stream trajectory beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow/penetration at that epoch. We estimate a disc mass input rate of \\dot{M}=(9 ± 1)× 10^{-12} M_⊙ yr^{-1}, more than an order of magnitude lower than that expected from binary evolution with conservative mass transfer.
Total solar eclipse of 1995 October 24
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1994-01-01
A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.
Planetary Geologic Mapping Python Toolbox: A Suite of Tools to Support Mapping Workflows
NASA Astrophysics Data System (ADS)
Hunter, M. A.; Skinner, J. A.; Hare, T. M.; Fortezzo, C. M.
2017-06-01
The collective focus of the Planetary Geologic Mapping Python Toolbox is to provide researchers with additional means to migrate legacy GIS data, assess the quality of data and analysis results, and simplify common mapping tasks.
Public Education and Outreach for Observing Solar Eclipses and Transits
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The general public is often very interested in observing solar eclipses, with widespread attention from newspapers and other sources often available only days before the events. Recently, the 2012 eclipse's partial phases in Australia and the 2015 eclipse's partial phases throughout Europe as well as western Asia and northern Africa, were widely viewed. The 21 August 2017 eclipse, whose totality will sweep across the Continental United States from northwest to southeast, will have partial phases visible throughout the U.S., Canada, Mexico, Central America, and into South America. The 2019 and 2020 partial phases of total eclipses will be visible throughout South America, and partial phases from annular eclipses will be visible from other parts of the world. The 9 May 2016 transit of Mercury will be best visible from the Western Hemisphere, Europe, and Africa. Many myths and misunderstandings exist about the safety of observing partial phases, and it is our responsibility as astronomers and educators to transmit accurate information and to attempt the widest possible distribution of such information. The Working Group on Public Education at Eclipses and Transits, formerly of Commission 46 on Education and Development and now of New Commission 11, tries to coordinate the distribution of information. In collaboration with the Solar Division's Working Group on Solar Eclipses, their website at http://eclipses.info is a one-stop shop for accurate information on how to observe eclipses, why it is interesting to do so, where they will be visible (with links to online maps and weather statistics), and how encouraging students to observe eclipses can be inspirational for them, perhaps even leading them to realize that the Universe can be understood and therefore renewing the strength of their studies. Links to information about transits of Mercury and Venus are also included.
Planetary Candidates from K2 Campaign 16
NASA Astrophysics Data System (ADS)
Yu, Liang; Crossfield, Ian J. M.; Schlieder, Joshua E.; Kosiarek, Molly R.; Feinstein, Adina D.; Livingston, John H.; Howard, Andrew W.; Benneke, Björn; Petigura, Erik A.; Bristow, Makennah; Christiansen, Jessie L.; Ciardi, David R.; Crepp, Justin R.; Dressing, Courtney D.; Fulton, Benjamin J.; Gonzales, Erica J.; Hardegree-Ullman, Kevin K.; Henning, Thomas; Isaacson, Howard; Lépine, Sébastien; Martinez, Arturo O.; Morales, Farisa Y.; Sinukoff, Evan
2018-07-01
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in “forward-facing” mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16 and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V = 6.9, K = 5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a 2.56 ± 0.18 R ⊕ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries, and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow up.
NASA Astrophysics Data System (ADS)
Kortenkamp, Stephen J.; Brock, Laci
2016-10-01
Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.
Path planning for planetary rover using extended elevation map
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo
1994-01-01
This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.
2015-05-01
A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.
Spitzer Secondary Eclipses of HAT-P-13b
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.
2013-10-01
HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.
Gifts from Exoplanetary Transits
NASA Astrophysics Data System (ADS)
Narita, Norio
2009-08-01
The discovery of transiting extrasolar planets has enabled us to do a number of interesting studies. Transit photometry reveals the radius and the orbital inclination of transiting planets, which allows us to learn the true mass and density of the respective planets by the combined information from radial velocity (RV) measurements. In addition, follow-up observations of transiting planets, looking at such things as secondary eclipses, transit timing variations, transmission spectroscopy, and the Rossiter-McLaughlin effect, provide us information about their dayside temperatures, unseen bodies in systems, planetary atmospheres, and the obliquity of planetary orbits. Such observational information, which will provide us a greater understanding of extrasolar planets, is available only for transiting planets. Here, I briefly summarize what we can learn from transiting planets and introduce previous studies.
NASA Astrophysics Data System (ADS)
Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.
Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.
Circular polarimetry of fifteen interesting objects.
NASA Technical Reports Server (NTRS)
Kemp, J. C.; Wolstencroft, R. D.; Swedlund, J. B.
1972-01-01
The results of a search are presented for circular polarization of visible light in 15 objects, including two eclipsing binaries, six magnetic Ap stars, three planetary nebulae, Hubble's Nebula, M87, Sirius, and the Orion A region. On the whole, the results were null, down to typical upper limits for q of 0.01 per cent. A complete description of the used photoelastic polarimeter is given, with special attention to the incidental linear-circular conversion.
Planetary cartography in the next decade: Digital cartography and emerging opportunities
NASA Technical Reports Server (NTRS)
1989-01-01
Planetary maps being produced today will represent views of the solar system for many decades to come. The primary objective of the planetary cartography program is to produce the most complete and accurate maps from hundreds of thousands of planetary images in support of scientific studies and future missions. Here, the utilization of digital techniques and digital bases in response to recent advances in computer technology are emphasized.
DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donovan, Francis T.; Charbonneau, David; Knutson, Heather A.
2010-02-20
We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +- 0.021%, 0.230% +- 0.024%, 0.199% +- 0.054%, and 0.359% +- 0.060% at 3.6 {mu}m, 4.5 {mu}m, 5.8 {mu}m, and 8.0 {mu}m, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T{sub eff} = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. Themore » observed planet-to-star flux ratios in all four IRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet.« less
NASA Technical Reports Server (NTRS)
Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.
2017-01-01
Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer
NASA Astrophysics Data System (ADS)
Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa
2016-08-01
We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.
NASA Astrophysics Data System (ADS)
Saquet, E.; Emelyanov, N.; Robert, V.; Arlot, J.-E.; Anbazhagan, P.; Baillié, K.; Bardecker, J.; Berezhnoy, A. A.; Bretton, M.; Campos, F.; Capannoli, L.; Carry, B.; Castet, M.; Charbonnier, Y.; Chernikov, M. M.; Christou, A.; Colas, F.; Coliac, J.-F.; Dangl, G.; Dechambre, O.; Delcroix, M.; Dias-Oliveira, A.; Drillaud, C.; Duchemin, Y.; Dunford, R.; Dupouy, P.; Ellington, C.; Fabre, P.; Filippov, V. A.; Finnegan, J.; Foglia, S.; Font, D.; Gaillard, B.; Galli, G.; Garlitz, J.; Gasmi, A.; Gaspar, H. S.; Gault, D.; Gazeas, K.; George, T.; Gorda, S. Y.; Gorshanov, D. L.; Gualdoni, C.; Guhl, K.; Halir, K.; Hanna, W.; Henry, X.; Herald, D.; Houdin, G.; Ito, Y.; Izmailov, I. S.; Jacobsen, J.; Jones, A.; Kamoun, S.; Kardasis, E.; Karimov, A. M.; Khovritchev, M. Y.; Kulikova, A. M.; Laborde, J.; Lainey, V.; Lavayssiere, M.; Le Guen, P.; Leroy, A.; Loader, B.; Lopez, O. C.; Lyashenko, A. Y.; Lyssenko, P. G.; Machado, D. I.; Maigurova, N.; Manek, J.; Marchini, A.; Midavaine, T.; Montier, J.; Morgado, B. E.; Naumov, K. N.; Nedelcu, A.; Newman, J.; Ohlert, J. M.; Oksanen, A.; Pavlov, H.; Petrescu, E.; Pomazan, A.; Popescu, M.; Pratt, A.; Raskhozhev, V. N.; Resch, J.-M.; Robilliard, D.; Roschina, E.; Rothenberg, E.; Rottenborn, M.; Rusov, S. A.; Saby, F.; Saya, L. F.; Selvakumar, G.; Signoret, F.; Slesarenko, V. Y.; Sokov, E. N.; Soldateschi, J.; Sonka, A.; Soulie, G.; Talbot, J.; Tejfel, V. G.; Thuillot, W.; Timerson, B.; Toma, R.; Torsellini, S.; Trabuco, L. L.; Traverse, P.; Tsamis, V.; Unwin, M.; Abbeel, F. Van Den; Vandenbruaene, H.; Vasundhara, R.; Velikodsky, Y. I.; Vienne, A.; Vilar, J.; Vugnon, J.-M.; Wuensche, N.; Zeleny, P.
2018-03-01
During the 2014-2015 mutual events season, the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE), Paris, France, and the Sternberg Astronomical Institute (SAI), Moscow, Russia, led an international observation campaign to record ground-based photometric observations of Galilean moon mutual occultations and eclipses. We focused on processing the complete photometric observations data base to compute new accurate astrometric positions. We used our method to derive astrometric positions from the light curves of the events. We developed an accurate photometric model of mutual occultations and eclipses, while correcting for the satellite albedos, Hapke's light scattering law, the phase effect, and the limb darkening. We processed 609 light curves, and we compared the observed positions of the satellites with the theoretical positions from IMCCE NOE-5-2010-GAL satellite ephemerides and INPOP13c planetary ephemeris. The standard deviation after fitting the light curve in equatorial positions is ±24 mas, or 75 km at Jupiter. The rms (O-C) in equatorial positions is ±50 mas, or 150 km at Jupiter.
Algol: An Early Candidate for a Transiting Exoplanet
NASA Astrophysics Data System (ADS)
French, Linda M.; Stuart, I.
2008-09-01
Virtually every astronomy text credits John Goodricke (1764-1786) with the discovery of the period of variability of the star Algol (β Per) and with the explanation of its variation (eclipses by an unseen stellar companion). Today, Algol is considered a prototype of an eclipsing binary star. In actuality, John Goodricke worked in collaboration with his neighbor, mentor, and distant relative, Edward Pigott. As observed by Hoskin1, the observing journals2 of the two clearly show that the eclipse explanation originated with Edward. Both originally used the term "planet” to describe the eclipsing body. However, in Goodricke's 1783 paper describing Algol, he writes: "....I should imagine it could hardly be accounted for otherwise than either by the interposition of a large body revolving round Algol, or some kind of motion of its own, whereby part of its body, covered with spots or such like matter...."3 Goodricke was later to soften his stance still further after the two discovered several other variable stars; his last published work4 mentions only starspots as an explanation for the light variation of Algol. Although the physics of the time would not have allowed Goodricke and Pigott to distinguish between a star and a planet as the unseen companion, the eighteenth-century astronomers showed great prescience in realizing that the eclipses of Algol were just that. Their mental leap, at a time when astronomers were just beginning to think seriously of discovering planets around other stars, should not go unremembered by modern planetary scientists. Footnotes 1 Hoskin, M. (1982). In Stellar Astronomy, Science History Publications Ltd., Chalfont St. Giles, England. 2 Goodricke and Pigott journals. York City Archives, York, England. 3 Goodricke, J. G. (1783). Phil. Soc. Roy. Soc. London 73, 474-482. 4 Goodricke, J. G. (1786). Phil. Soc. Roy. Soc. London 76, 48-61.
Pixel-Level Decorrelation and BiLinearly Interpolated Subpixel Sensitivity applied to WASP-29b
NASA Astrophysics Data System (ADS)
Challener, Ryan; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Deming, Drake
2017-10-01
Measured exoplanet transit and eclipse depths can vary significantly depending on the methodology used, especially at the low S/N levels in Spitzer eclipses. BiLinearly Interpolated Subpixel Sensitivity (BLISS) models a physical, spatial effect, which is independent of any astrophysical effects. Pixel-Level Decorrelation (PLD) uses the relative variations in pixels near the target to correct for flux variations due to telescope motion. PLD is being widely applied to all Spitzer data without a thorough understanding of its behavior. It is a mathematical method derived from a Taylor expansion, and many of its parameters do not have a physical basis. PLD also relies heavily on binning the data to remove short time-scale variations, which can artifically smooth the data. We applied both methods to 4 eclipse observations of WASP-29b, a Saturn-sized planet, which was observed twice with the 3.6 µm and twice with the 4.5 µm channels of Spitzer's IRAC in 2010, 2011 and 2014 (programs 60003, 70084, and 10054, respectively). We compare the resulting eclipse depths and midpoints from each model, assess each method's ability to remove correlated noise, and discuss how to choose or combine the best data analysis methods. We also refined the orbit from eclipse timings, detecting a significant nonzero eccentricity, and we used our Bayesian Atmospheric Radiative Transfer (BART) code to retrieve the planet's atmosphere, which is consistent with a blackbody. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
NASA Astrophysics Data System (ADS)
Livingston, W.
The occasion of a total eclipse impacts the human observer with a bewildering rapid sequence of phenomena: mid-day cooling, failing light without accustomed color change, shadow-bands transiting the ground, cessation of bird sounds, possible frantic beating of jungle drums, Baily's beads, appearance of flame-like prominences, and most fantastic of all the solar corona. The author considers that although the corona is known to be 2 - 20(106)K, there is a lack of consensus on the heating mechanism, except the energy must be non-thermal and derived from surface and sub-surface convective motions. Theoreticians invoke the Joule dissipation of magnetic fields by Alfvén waves, electric currents in loop structures, or MHD turbulence. Although eclipse experiments to discriminate between these ideas generally fail, the sighting of 'plasmoids' was reported from the CFHT on Mauna Kea at the 1991 eclipse. Future experiments include: IR mapping of the coronal spectrum, spectroscopic velocity measurements, and the continued search for waves, nanoflares, and plasmoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.
We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less
WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, Kamen O.; Deming, Drake; Knutson, Heather A.
2013-06-20
We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 {mu}m bands. HAT-P-3b and HAT-P-4b are Jupiter-mass objects orbiting an early K and an early G dwarf star, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 {mu}m). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% 4.5 {mu}m). The two planets' photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature inversions in their atmospheres. HAT-P-12bmore » is a Saturn-mass planet and is one of the coolest planets ever observed during secondary eclipse, along with the hot Neptune GJ 436b and the hot Saturn WASP-29b. We are able to place 3{sigma} upper limits on the secondary eclipse depth of HAT-P-12b in both wavelengths: <0.042% (3.6 {mu}m) and <0.085% (4.5 {mu}m). We discuss these results in the context of the Spitzer secondary eclipse measurements of GJ 436b and WASP-29b. It is possible that we do not detect the eclipses of HAT-P-12b due to high eccentricity, but find that weak planetary emission in these wavelengths is a more likely explanation. We place 3{sigma} upper limits on the |e cos {omega}| quantity (where e is eccentricity and {omega} is the argument of periapsis) for HAT-P-3b (<0.0081) and HAT-P-4b (<0.0042), based on the secondary eclipse timings.« less
Toward the 4-Micron Infrared Spectrum of the Transiting Extrasolar Planet HD 209458 b
NASA Astrophysics Data System (ADS)
Richardson, L. J.; Deming, D.
2003-12-01
We have continued our analysis of infrared spectra of the "transiting planet" system, HD 209458, recorded at the NASA IRTF in September 2001. The spectra cover two predicted secondary eclipse events, wherein the planet passed behind the star and re-emerged. We are attempting to detect the planet's infrared continuum peaks, by exploiting the spectral modulation which accompanies the secondary eclipse. Our initial analysis placed the strongest limits to date on the spectrum of the planet near 2.2 microns (Richardson, Deming & Seager 2003, recently appeared in ApJ). Further analysis of our long wavelength data (3.0--4.2 microns) decorrelates and removes most of the systematic errors due to seeing and guiding fluctuations. This decorrelation has improved the precision of our analysis to the level where a predicted 4-micron planetary flux peak may now be detectable.
Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Garhart, Emily; Deming, Drake; Mandell, Avi
2016-10-01
We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.
High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26
NASA Astrophysics Data System (ADS)
Southworth, John; Hinse, T. C.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Galianni, P.; Gerner, T.; Giannini, E.; Gu, S.-H.; Hundertmark, M.; Jørgensen, U. G.; Juncher, D.; Kerins, E.; Mancini, L.; Rabus, M.; Ricci, D.; Schäfer, S.; Skottfelt, J.; Tregloan-Reed, J.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Browne, P.; Ciceri, S.; D'Ago, G.; Damerdji, Y.; Diehl, C.; Dodds, P.; Elyiv, A.; Fang, X.-S.; Finet, F.; Figuera Jaimes, R.; Hardis, S.; Harpsøe, K.; Jessen-Hansen, J.; Kains, N.; Kjeldsen, H.; Korhonen, H.; Liebig, C.; Lund, M. N.; Lundkvist, M.; Mathiasen, M.; Penny, M. T.; Popovas, A.; Prof., S.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schmidt, R. W.; Schönebeck, F.; Snodgrass, C.; Street, R. A.; Surdej, J.; Tsapras, Y.; Vilela, C.
2014-10-01
We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5-1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.
VizieR Online Data Catalog: Extrasolar planet HD 189733b whitelight curve (Crouzet+, 2014)
NASA Astrophysics Data System (ADS)
Crouzet, N.; McCullough, P. R.; Deming, D.; Madhusudhan, N.
2017-05-01
We used HST WFC3 with the newly implemented spatial scanning mode, developed in part to enable observations such as these (McCullough & MacKenty, 2012wfc..rept....8M). In this mode, a controlled scan is applied to the telescope during the exposure in a direction perpendicular to the wavelength dispersion direction (Figure 1). This technique is particularly efficient for bright stars such as HD 189733 (see McCullough et al. 2014ApJ...791...55M, for more details). One eclipse of HD 189733b was observed on 2013 June 24. The observations are divided into five HST orbits, the planetary eclipse occurring during the fourth orbit. In total, 159 exposures of 5.97 s each were acquired, corresponding to 32 exposures per orbit (except for the first orbit in which the first image is a direct image). (1 data file).
The DECam Minute Cadence Survey
NASA Astrophysics Data System (ADS)
Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.
2017-03-01
We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Line, Michael R.; Yung, Yuk L., E-mail: mrl@gps.caltech.edu
2013-12-10
Chemical disequilibrium has recently become a relevant topic in the study of the atmospheres of transiting extrasolar planets, brown dwarfs, and directly imaged exoplanets. We present a new way of assessing whether or not a Jovian-like atmosphere is in chemical disequilibrium from observations of detectable or inferred gases such as H{sub 2}O, CH{sub 4}, CO, and H{sub 2}. Our hypothesis, based on previous kinetic modeling studies, is that cooler atmospheres will show stronger signs of disequilibrium than hotter atmospheres. We verify this with chemistry-transport models and show that planets with temperatures less than ∼1200 K are likely to show themore » strongest signs of disequilibrium due to the vertical quenching of CO, and that our new approach is able to capture this process. We also find that in certain instances a planetary composition may appear in equilibrium when it actually is not due to the degeneracy in the shape of the vertical mixing ratio profiles. We determine the state of disequilibrium in eight exoplanets using the results from secondary eclipse temperature and abundance retrievals. We find that all of the planets in our sample are consistent with thermochemical equilibrium to within 3σ. Future observations are needed to further constrain the abundances in order to definitively identify disequilibrium in exoplanet atmospheres.« less
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
UTM, a universal simulator for lightcurves of transiting systems
NASA Astrophysics Data System (ADS)
Deeg, Hans
2009-02-01
The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. Applications of UTM to date have been mainly in the generation of light-curves for the testing of detection algorithms. For the preparation of such test for the Corot Mission, a special version has been used to generate multicolour light-curves in Corot's passbands. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson
The Kepler Space Telescope is currently searching for planets transiting stars along the ecliptic plane as part of its extended K2 mission. We processed the publicly released data from the first year of K2 observations (Campaigns 0, 1, 2, and 3) and searched for periodic eclipse signals consistent with planetary transits. Out of the 59,174 targets that we searched, we detect 234 planetary candidates around 208 stars. These candidates range in size from gas giants to smaller than the Earth, and range in orbital periods from hours to over a month. We conducted initial reconnaissance spectroscopy of 68 of themore » brighter candidate host stars, and present high-resolution optical spectra for these stars. We make all of our data products, including light curves, spectra, and vetting diagnostics available to users online.« less
The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G
NASA Technical Reports Server (NTRS)
1994-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.
Exoplanet Characterization With Spitzer Eclipses
NASA Astrophysics Data System (ADS)
Harrington, Joseph
We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline attempts about 50 different analyses per observation, permuting different photometry aperture sizes, centering methods, and systematic models to find the best according to the standard deviation of normalized residuals and the Akaike and Bayesian Information Criteria. As a demonstration of its ease of use, two undergraduates have recently led papers based on the pipeline. The team now seeks funds for graduate student Patricio Cubillos, who is already trained and working (e.g., Cubillos et al. 2011). He will lead 1-2 secondary eclipse papers per year, based on our recent output. Three undergraduates will handle routine tasks and produce between them about one paper per year. The PI and a programmer are also supported. Our long-term goal is to produce a statistical sample of exoplanet secondary eclipses at wavelengths inaccessible to facilities other than Spitzer. These measure properties of exoplanetary atmospheres and orbits. Each planet is of significant intrinsic interest. In addition, an aggregate plot of planetary brightness vs. equilibrium temperature shows a significant jump in brightness near 2000 K. We will explore this and other results of aggregation, such as why some hot planets do or do not have thermal inversions, and under what circumstances photochemistry is important. There will be three main products from this grant: 1. Secondary eclipse analyses for 11 planets, including assessment of inversions, abundances, and thermal profiles. 2. Aggregate data analyses related to the brightness jump, which planets have thermal inversions and disequilibrium chemistry, and whether stellar metallicity, surface gravity, etc., affect the emitted fluxes. 3. Statistical enhancements to our open-source code for retrieving atmospheric composition and thermal profiles from eclipse data, using the method of Madhusudhan and Seager.
Map of the Pluto System - Children's Edition
NASA Astrophysics Data System (ADS)
Hargitai, H. I.
2016-12-01
Cartography is a powerful tool in the scientific visualization and communication of spatial data. Cartographic visualization for children requires special methods. Although almost all known solid surface bodies in the Solar System have been mapped in detail during the last more than 5 decades, books and publications that target children, tweens and teens never include any of the cartographic results of these missions. We have developed a series of large size planetary maps with the collaboration of planetary scientists, cartographers and graphic artists. The maps are based on photomosaics and DTMs that were redrawn as artwork. This process necessarily involved generalization, interpretation and transformation into the visual language that can be understood by children. In the first project we selected six planetary bodies (Venus, the Moon, Mars, Io, Europa and Titan) and invited six illustrators of childrens'books. Although the overall structure of the maps look similar, the visual approach was significantly different. An important addition was that the maps contained a narrative: different characters - astronauts or "alien-like lifeforms" - interacted with the surface. The map contents were translated into 11 languages and published online at https://childrensmaps.wordpress.com.We report here on the new map of the series. Following the New Horizons' Pluto flyby we have started working on a map that, unlike the others, depicts a planetary system, not only one body. Since only one hemisphere was imaged in high resolution, this map is showing the encounter hemispheres of Pluto and Charon. Projected high resolution image mosaics with informal nomenclature were provided by the New Horizons Team. The graphic artist is Adrienn Gyöngyösi. Our future plan is to produce a book format Children's Atlas of Solar System bodies that makes planetary cartographic and astrogeologic results more accessible for children, and the next generation of planetary scientists among them.
Activities in planetary geology for the physical and earth sciences
NASA Technical Reports Server (NTRS)
Dalli, R.; Greeley, R.
1982-01-01
A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.
Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
NASA Technical Reports Server (NTRS)
1993-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.
Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions
NASA Technical Reports Server (NTRS)
vanGasselt, Stephan; Nass, A.
2010-01-01
Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.
Abstracts of the annual meeting of Planetary Geologic Mappers: June 21-22, 2002, Tempe, Arizona
Gregg, Tracy K. P.; Tanaka, Kenneth L.; Senske, David A.
2002-01-01
The annual meeting of planetary geologic mappers allows mappers the opportunity to exchange ideas, experiences, victories, and problems. In addition, presentations are reviewed by the Geologic Mapping Subcommittee (GEMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GEMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips that offer Earth analogs and parallels to planetary mapping problems or workshops that provide information and status of current missions. The 2002 meeting of planetary geologic mappers was held June 21-22 at the Mars Flight Facility, Arizona State University, Tempe, Arizona. Dr. Phil Christensen graciously offered the use of the newly renovated facility, and Ms. Kelly Bender not only proved to be a courteous hostess, but also arranged a short workshop on June 23 regarding TES and THEMIS data. Approximately 30 people attended each day of the 2-day meeting, although not the same 30—some attended only on Thursday and others only on Friday. On Thursday, eight mappers gave oral presentations of Mars mapping, and an additional two presentations were presented as posters only. Eight oral presentations on Venus mapping were given on Friday, and an additional four presentations were posters only. Twelve people attended the TES/THEMIS workshop. Presentations of Ganymede mapping and Europa mapping (the latter not yet financially sponsored by PG&G mapping program) were also given on Friday. Aside from the regular presentations of maps-in-progress, there were some additional talks. Lisa Gaddis (USGS) presented a proposal seeking support for a new lunar mapping program in light of all the new data available; she made a good case that the GEMS panel discussed. Jim Skinner (USGS) gave a short presentation on free (or nearly so) software available for 3D viewing of planetary surfaces. Healthy discussions focused on the review time for some maps and the use of different styles of correlation charts observed on the presented maps. Next year’s meeting will be held June 19-20 at Brown University, Providence, RI.
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, Kamen O.; Deming, Drake; Burrows, Adam
We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare themore » planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.« less
KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.
2016-12-01
Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.
Using Coronal Hole Maps to Constrain MHD Models
NASA Astrophysics Data System (ADS)
Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran
2017-08-01
In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.
Camera characterization for all-sky polarization measurements during the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Hashimoto, Taiga; Dahl, Laura M.; Laurie, Seth A.; Shaw, Joseph A.
2017-08-01
A solar eclipse provides a rare opportunity to observe skylight polarization during conditions that are fundamentally different than what we see every day. On 21 August 2017 we will measure the skylight polarization during a total solar eclipse in Rexburg, Idaho, USA. Previous research has shown that during totality the sky polarization pattern is altered significantly to become nominally symmetric about the zenith. However, there are still questions remaining about the details of how surface reflectance near the eclipse observation site and optical properties of aerosols in the atmosphere influence the totality sky polarization pattern. We will study how skylight polarization in a solar eclipse changes through each phase and how surface and atmospheric features affect the measured polarization signatures. To accomplish this, fully characterizing the cameras and fisheye lenses is critical. This paper reports measurements that include finding the camera sensitivity and its relationship to the required short exposure times, measuring the camera's spectral response function, mapping the angles of each camera pixel with the fisheye lens, and taking test measurements during daytime and twilight conditions. The daytime polarimetric images were compared to images from an existing all-sky polarization imager and a polarimetric radiative transfer model.
Developing an Application to Increase the Accessibility of Planetary Geologic Maps
NASA Astrophysics Data System (ADS)
Jacobsen, R. E.; Fay, C.
2018-06-01
USGS planetary geologic maps are widely used digital products with text, raster, vector, and temporal data, within a highly standardized design. This tool will augment the user experience by improving accessibility among the various forms of data.
Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b
NASA Astrophysics Data System (ADS)
Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon
2017-01-01
Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; DePoy, Darren L.; Lambas, Diego G.; Colazo, Carlos; Stringer, Katelyn
2016-09-01
The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of three nearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.
Discovery of deep eclipses in the cataclysmic variable IPHAS J051814.33+294113.0
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. P.
2018-06-01
Performing the photometric observations of the cataclysmic variable IPHAS J051814.33+294113.0, we discovered very deep eclipses. The observations were obtained over 14 nights, had a total duration of 56 hours and covered one year. The large time span, during which we observed the eclipses, allowed us to measure the orbital period in IPHAS J051814.33+294113.0 with high precision, P_{orb}=0.20603098± 0.00000025 d. The prominent parts of the eclipses lasted 0.1± 0.01 phases or 30± 3 min. The depth of the eclipses was variable in the range 1.8-2.9 mag. The average eclipse depth was equal to 2.42± 0.06 mag. The prominent parts of the eclipses revealed a smooth and symmetric shape. We derived the eclipse ephemeris, which, according to the precision of the orbital period, has a formal validity time of 500 years. This ephemeris can be useful for future investigations of the long-term period changes. During the latter four observational nights in 2017 January, we observed the sharp brightness decrease of IPHAS J051814.33+294113.0 by 2.3 mag. This brightness decrease imitated the end of the dwarf nova outburst. However, the long-term light curve of IPHAS J051814.33+294113.0 obtained in the course of the Catalina Sky Survey during 8 years showed no dwarf nova outbursts. From this we conclude that IPHAS J051814.33+294113.0 is a novalike variable. Moreover, the sharp brightness decrease, which we observed in IPHAS J051814.33+294113.0, suggests that this novalike variable belongs to the VY Scl-subtype. Due to very deep eclipses, IPHAS J051814.33+294113.0 is suitable to study the accretion disc structure using eclipse mapping techniques. Because this novalike variable has the long orbital period, it is of interest to determine the masses of the stellar components from radial velocity measurements. Then, our precise eclipse ephemeris can be useful to the phasing of spectroscopic data.
The changing phases of extrasolar planet CoRoT-1b.
Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon
2009-05-28
Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.
A comparison of infrared, radar, and geologic mapping of lunar craters
Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.
1974-01-01
Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.
An online planetary exploration tool: ;Country Movers;
NASA Astrophysics Data System (ADS)
Gede, Mátyás; Hargitai, Henrik
2017-08-01
Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Long-Period Exoplanets from Photometric Transit Surveys
NASA Astrophysics Data System (ADS)
Osborn, Hugh
2017-10-01
Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way
A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS
Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R.
2011-01-01
Since the beginning of planetary exploration, mapping has been fundamental to summarize observations returned by scientific missions. Sensor-based mapping has been used to highlight specific features from the planetary surfaces by means of processing. Interpretative mapping makes use of instrumental observations to produce thematic maps that summarize observations of actual data into a specific theme. Geologic maps, for example, are thematic interpretative maps that focus on the representation of materials and processes and their relative timing. The advancements in technology of the last 30 years have allowed us to develop specialized systems where the mapping process can be made entirely in the digital domain. The spread of networked computers on a global scale allowed the rapid propagation of software and digital data such that every researcher can now access digital mapping facilities on his desktop. The efforts to maintain planetary missions data accessible to the scientific community have led to the creation of standardized digital archives that facilitate the access to different datasets by software capable of processing these data from the raw level to the map projected one. Geographic Information Systems (GIS) have been developed to optimize the storage, the analysis, and the retrieval of spatially referenced Earth based environmental geodata; since the last decade these computer programs have become popular among the planetary science community, and recent mission data start to be distributed in formats compatible with these systems. Among all the systems developed for the analysis of planetary and spatially referenced data, we have created a working environment combining two software suites that have similar characteristics in their modular design, their development history, their policy of distribution and their support system. The first, the Integrated Software for Imagers and Spectrometers (ISIS) developed by the United States Geological Survey, represents the state of the art for processing planetary remote sensing data, from the raw unprocessed state to the map projected product. The second, the Geographic Resources Analysis Support System (GRASS) is a Geographic Information System developed by an international team of developers, and one of the core projects promoted by the Open Source Geospatial Foundation (OSGeo). We have worked on enabling the combined use of these software systems throughout the set-up of a common user interface, the unification of the cartographic reference system nomenclature and the minimization of data conversion. Both software packages are distributed with free open source licenses, as well as the source code, scripts and configuration files hereafter presented. In this paper we describe our work done to merge these working environments into a common one, where the user benefits from functionalities of both systems without the need to switch or transfer data from one software suite to the other one. Thereafter we provide an example of its usage in the handling of planetary data and the crafting of a digital geologic map. ?? 2010 Elsevier Ltd. All rights reserved.
A General Event Location Algorithm with Applications to Eclipse and Station Line-of-Sight
NASA Technical Reports Server (NTRS)
Parker, Joel J. K.; Hughes, Steven P.
2011-01-01
A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.
Constraining the atmosphere of exoplanet WASP-34b
NASA Astrophysics Data System (ADS)
Challener, Ryan; Harrington, Joseph; Cubillos, Patricio; Garland, Justin; Foster, Andrew S. D.; Blecic, Jasmina; Foster, Austin James; Smalley, Barry
2016-01-01
WASP-34b is a short-period exoplanet with a mass of 0.59 +/- 0.01 Jupiter masses orbiting a G5 star with a period of 4.3177 days and an eccentricity of 0.038 +/- 0.012 (Smalley, 2010). We observed WASP-34b using the 3.6 and 4.5 micron channels of the Infrared Array Camera aboard the Spitzer Space Telescope in 2010 (Program 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to present eclipse-depth measurements, estimates of infrared brightness temperatures, and a refined orbit. With our Bayesian Atmospheric Radiative Transfer (BART) code, we characterized the atmosphere's temperature and pressure profile, and molecular abundances. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. J. Blecic holds a NASA Earth and Space Science Fellowship.
Earth's transmission spectrum from lunar eclipse observations.
Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L
2009-06-11
Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.
NASA Technical Reports Server (NTRS)
Borgen, Richard L.
2013-01-01
The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.
Searching for Extrasolar Trojan Planets: A Status Report
NASA Astrophysics Data System (ADS)
Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.
2001-05-01
We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France
Digitizing Villanova University's Eclipsing Binary Card Catalogue
NASA Astrophysics Data System (ADS)
Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej
2018-01-01
Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.
Planetary mapping—The datamodel's perspective and GIS framework
NASA Astrophysics Data System (ADS)
van Gasselt, S.; Nass, A.
2011-09-01
Demands for a broad range of integrated geospatial data-analysis tools and methods for planetary data organization have been growing considerably since the late 1990s when a plethora of missions equipped with new instruments entered planetary orbits or landed on the surface. They sent back terabytes of new data which soon became accessible for the scientific community and public and which needed to be organized. On the terrestrial side, issues of data access, organization and utilization for scientific and economic analyses are handled by using a range of well-established geographic information systems (GIS) that also found their way into the field of planetary sciences in the late 1990s. We here address key issues concerning the field of planetary mapping by making use of established GIS environments and discuss methods of addressing data organization and mapping requirements by using an easily integrable datamodel that is - for the time being - designed as file-geodatabase (FileGDB) environment in ESRI's ArcGIS. A major design-driving requirement for this datamodel is its extensibility and scalability for growing scientific as well as technical needs, e.g., the utilization of such a datamodel for surface mapping of different planetary objects as defined by their respective reference system and by using different instrument data. Furthermore, it is a major goal to construct a generic model which allows to perform combined geologic as well as geomorphologic mapping tasks making use of international standards without loss of information and by maintaining topologic integrity. An integration of such a datamodel within a geospatial DBMS context can practically be performed by individuals as well as groups without having to deal with the details of administrative tasks and data ingestion issues. Besides the actual mapping, key components of such a mapping datamodel deal with the organization and search for image-sensor data and previous mapping efforts, as well as the proper organization of cartographic representations and assignments of geologic/geomorphologic units within their stratigraphic context.
Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…
Observation of Celestial Phenomena in Ancient China
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.
X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814
NASA Technical Reports Server (NTRS)
Mukai, K.; Hellier, C.; Madejski, G.; Patterson, J.; Skillman, D. R.
2003-01-01
V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable approximately 37 (sup) away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods: the accretion geometry changes over the approximately 50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan; Jaumann, Ralf
2010-05-01
The Helmholtz Alliance and the European Planetary Network are research communities with different main topics. One of the main research topics which are shared by these communities is the question about the geomorphological evolutions of planetary surfaces as well as the geological context of life. This research contains questions like "Is there volcanic activity on a planet?" or "Where are possible landing sites?". In order to help answering such questions, analyses of surface features and morphometric measurements need to be performed. This ultimately leads to the generation of thematic maps (e.g. geological and geomorphologic maps) as a basis for the further studies. By using modern GIS techniques the comparative work and generalisation during mapping processes results in new information. These insights are crucial for subsequent investigations. Therefore, the aim is to make these results available to the research community as a secondary data basis. In order to obtain a common and interoperable data collection results of different mapping projects have to follow a standardised data-infrastructure, metadata definition and map layout. Therefore, we are currently focussing on the generation of a database model arranging all data and processes in a uniform mapping schema. With the help of such a schema, the mapper will be able to utilise a predefined (but customisable) GIS environment with individual tool items as well as a standardised symbolisation and a metadata environment. This environment is based on a data model which is currently on a conceptual level and provides the layout of the data infrastructure including relations and topologies. One of the first tasks towards this data model is the definition of a consistent basis of symbolisation standards developed for planetary mapping. The mapper/geologist will be able to access the pre-built signatures and utilise these in scale dependence within the mapping project. The symbolisation will be related to the data model in the next step. As second task, we designed a concept for description of the digital mapping result. Therefore, we are creating a metadata template based on existing standards for individual needs in planetary sciences. This template is subdivided in (meta) data about the general map content (e.g. on which data the mapping result based on) and in metadata for each individual mapping element/layer comprising information like minimum mapping scale, interpretation hints, etc. The assignment of such a metadata description in combination with the usage of a predefined mapping schema facilitates the efficient and traceable storage of data information on a network server and enables a subsequent representation, e.g. as a mapserver data structure. Acknowledgement: This work is partly supported by DLR and the Helmholtz Alliance "Planetary Evolution and Life".
Ayan, A; Lu, L; Rong, Y; Cunningham, M; Weldon, M; Welliver, M; Woollard, J; Gupta, N
2012-06-01
To investigate the feasibility of using the Irregular Surface Compensator (ISC) planning feature of the Eclipse treatment planning system (TPS) for Total Body Irradiation (TBI). TBI treatments require that the whole body receives within +-10% of the prescribed dose. Different body parts with different thicknesses compared to the umbilicus separation may receive higher or lower doses compared to the prescribed dose. Another challenge is to keep the lung dose below 10Gy to avoid complications. To mitigate this problem, physical compensators and blocks are used during the treatment for different body parts and lungs. This method presents a challenge during the treatment delivery and prolongs the treatment time due to patient setup, in-vivo on-line dosimetric monitoring and the adjustment of the compensators frequently during the treatment. We investigated the use of ISC planning feature of Eclipse TPS which is an electronic compensation method that calculates a fluence map based on the body contour from the CT image. The fluence map is delivered with dynamic MLCs . This TBI treatment technique was tested using a Rando phantom in Head First Supine position with lateral beams at SSD=250cm.The calculated fluence were edited so that the lung received <∼10Gy for 12Gy prescription. A single fraction of 2Gy was delivered and the in-vivo measurements were performed in the neck, lung and the umbilicus by using OSLDs. OSLD measurements and the Eclipse TPS predictionswere 200.4/195.0, 162.2/168.9, and 196.1/208.9 cGy for the neck, lung and the umbilicus respectively. The feasibility of using the 'Irregular Surface Compensator' feature of Eclipse TPS for TBI treatment planning was demonstrated. Good agreement (<6%) between the predicted and measured doses was obtained. The proposed planning and delivery simplifies the compensation and blocking to achieve uniform dose distributions and reduces the treatment time. © 2012 American Association of Physicists in Medicine.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
The near-infrared properties of compact binary systems
NASA Astrophysics Data System (ADS)
Froning, Cynthia Suzanne
I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Stephenson, F. R.
East Asian observations are of established importance in Applied Historical Astronomy. The earliest astronomical records from this part of the world (China, Japan and Korea) originate from China. These observations, mainly of lunar eclipses, are recorded on oracle bones from the period ca. 1300 - 1050 BC. Virtually all later Chinese and other East Asian astronomical records now exist only in printed copies. The earliest surviving series of solar eclipse observations from any part of the world is contained in the Chunqiu (722 - 481 BC), a chronicle of the Chinese state of Lu. However, not until after 200 BC, with the establishment of a stable empire in China, do detailed astronomical records survive. These are mainly contained in specially compiled astrological treatises in the official dynastic histories. Such records, following the traditional style, extend down to the start of the present century. All classes of phenomena visible to the unaided eye are represented: solar and lunar eclipses, lunar and planetary movements among the constellations, comets, novae and supernovae, meteors, sunspots and the aurora borealis. Parallel, but independent series of observations are recorded in Japanese and Korean history, especially after about AD 800. Sources of Japanese records tend to be more diverse than their Chinese and Korean counterparts, but fortunately Kanda Shigeru (1935) and Ohsaki Shyoji (1994) have made extensive compilations of Japanese astronomical observations down to the 1860s. Throughout East Asia, dates were expressed in terms of a luni-solar calendar.
Atmospheric Retrievals of HAT-P-16b and WASP-11b/HAT-P-10b
NASA Astrophysics Data System (ADS)
McIntyre, Kathleen; Harrington, Joseph; Challener, Ryan; Lenius, Maria; Hartman, Joel D.; Bakos, Gaspar A.; Blecic, Jasmina; Cubillos, Patricio E.; Cameron, Andrew
2018-01-01
We report Bayesian atmospheric retrievals performed on the exoplanets HAT-P-16b and WASP-11b/HAT-P-10b. HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). WASP-11b/HAT-P-10b is a cooler (1020 ± 17 K), 0.487 ± 0.018 Jupiter-mass exoplanet orbiting a K3 star every 3.7224747 ± 0.0000065 days (Bakos et al. 2009, co-discovered by West et al. 2008). We observed secondary eclipses of both planets using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the two planets. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.
Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse
NASA Astrophysics Data System (ADS)
Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare
2010-01-01
We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.
NASA Astrophysics Data System (ADS)
Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.
2017-12-01
As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.
NASA Astrophysics Data System (ADS)
Blumenthal, Sarah D.; Mandell, Avi M.; Hébrard, Eric; Batalha, Natasha E.; Cubillos, Patricio E.; Rugheimer, Sarah; Wakeford, Hannah R.
2018-02-01
We aim to see if the difference between equilibrium and disequilibrium chemistry is observable in the atmospheres of transiting planets by the James Webb Space Telescope (JWST). We perform a case study comparing the dayside emission spectra of three planets like HD 189733b, WASP-80b, and GJ 436b, in and out of chemical equilibrium at two metallicities each. These three planets were chosen because they span a large range of planetary masses and equilibrium temperatures, from hot and Jupiter-sized to warm and Neptune-sized. We link the one-dimensional disequilibrium chemistry model from Venot et al. (2012), in which thermochemical kinetics, vertical transport, and photochemistry are taken into account, to the one-dimensional, pseudo line-by-line radiative transfer model, Pyrat bay, developed especially for hot Jupiters, and then simulate JWST spectra using PandExo for comparing the effects of temperature, metallicity, and radius. We find the most significant differences from 4 to 5 μm due to disequilibrium from CO and CO2 abundances, and also H2O for select cases. Our case study shows a certain “sweet spot” of planetary mass, temperature, and metallicity where the difference between equilibrium and disequilibrium is observable. For a planet similar to WASP-80b, JWST’s NIRSpec G395M can detect differences due to disequilibrium chemistry with one eclipse event. For a planet similar to GJ 436b, the observability of differences due to disequilibrium chemistry is possible at low metallicity given five eclipse events, but not possible at the higher metallicity.
Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond
NASA Technical Reports Server (NTRS)
Fong, Terrence W.
2010-01-01
In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.
Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.
2017-12-01
Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.
Reports of planetary geology program, 1976 - 1977. [abstracts
NASA Technical Reports Server (NTRS)
Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III
1977-01-01
One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.
SPIDERMAN: an open-source code to model phase curves and secondary eclipses
NASA Astrophysics Data System (ADS)
Louden, Tom; Kreidberg, Laura
2018-06-01
We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimized to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the data set. As a test case, we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two-dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model, we find that the best-fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.
Hubble Space Telescope Parallel Observations Supporting the Kepler Mission
NASA Astrophysics Data System (ADS)
Caldwell, J.; Borucki, W.
1999-09-01
Kepler will detect Earth-like planets by monitoring 100,000 stars over four years for planetary transits. The required photometric precision is one part in 100.000. It is expected that if such ``Earths" are common, about 200 will be detected. In order to achieve the necessary precision, Kepler will be intentionally unfocussed, spreading the light of a single star over an area of 25 pixels. This will minimize the effect of space-craft jitter on photon counting. However, it will also allow the possibility of confusion with background objects which may be in the line of sight to a Kepler target. The greatest concern is that there may be a distant eclipsing binary star which could introduce a photometric signature that is similar to a planetary transit. For the brightest stars in Kepler's intended magnitude range, which is 9 to 14 mv, this will not be serious, because the profiles are different: eclipses have a ``V" shape, transits are flat-bottomed, and Kepler will differentiate the two. However, in this magnitude range, the number of stars per magnitude doubles at each fainter magnitude. More than half of Kepler's discoveries will be in the magnitude which is the faintest in which the precision of the photometry will be able to reveal a transit. That is, most of the discoveries will be low signal to noise events, in which the reality of a small decrease in the light from the region of the target star is certain, but the details of the decrease are not. Hubble Space Telescope images indicate there will be, on average, 0.5 background objects in the magnitude range that could be a problem for Kepler in the 25 pixel blur region of Kepler's optics. Approximately half of the stars will be binaries. The probability that a binary will be eclipsing is the same as that a planetary orbit will be transitting. In order to reduce the chance of a misidentification, various strategies can be used. Rather than integrating the signal over the 25 pixels and returning only the sum, the entire pixel set can be returned for some or all of the target stars. The spectral bandpass can be filtered to maximize contrast between target stars and background ones. Dedicated Hubble imaging could eliminate all uncertainty for over 90 per cent of Kepler's target stars in one HST orbit per star. Further, moving to high galactic latitude would reduce the chance of confusion faster than the decrease in the number of targets stars. Our and other studies indicate that at high galactic latitudes, a large fraction of the background objects are galaxies rather than stars. Galaxies cannot produce a photometric event which mimics a planetary transit. Finally, our studies have shown that a large fraction of the stars in the magnitude range of concern to Kepler may in fact be cool white dwarfs, from which the probability of a confusing event is small. Nevertheless, we acknowledge that a few per cent of the 200 Earths that Kepler is expected to find may be erroneous, and we urge travellers to confirm their hotel reservations directly before setting out to visit one of them.
Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps
NASA Astrophysics Data System (ADS)
Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.
2017-07-01
Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.
NASA Astrophysics Data System (ADS)
Vedavyas
A Multi-disciplinary Research into the Chronologies of Ancient Nations -- like the Vedas of India Rishies, the Chaldeans, Babylonians, Egyptians and the Chinese. Which traces how the "Measurement of Time" -- which began with the observations of sunrise and Sunset, Full-Moons, eclipses, the movement of stars and the Discovery of the Zodiac that starry pathway of sun in his annual Cycle of the 12-Zodiacal months, the Measurement of Time by planetary Cycles the Discovery of Astronomy and Symbolic or Kabalistic Astrology of the Bible's Old Testament; the Epics of Babylonians and 'Cosmic Cycles' of Chaldeans and Egyptians also the Ancient "Four Yugas" or Hindu Vedic Cycles.
Chemical kinetics on extrasolar planets.
Moses, Julianne I
2014-04-28
Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.
NASA Astrophysics Data System (ADS)
Manaud, Nicolas; Carter, John; Boix, Oriol
2016-10-01
The "Where On Mars?" project is essentially the evolution of an existing outreach product developed in collaboration between ESA and CartoDB; an interactive map visualisation of the ESA's ExoMars Rover candidate landing sites (whereonmars.co). Planetary imagery data and maps are increasingly produced by the scientific community, and shared typically as images, in scientific publications, presentations or public outreach websites. However, this media lacks of interactivity and contextual information available for further exploration, making it difficult for any audience to relate one location-based information to another. We believe that interactive web maps are a powerful way of telling stories, engaging with and educating people who, over the last decade, have become familiar with tools such as Google Maps. A few planetary web maps exist but they are either too complex for non-experts, or are closed-systems that do not allows anyone to publish and share content. The long-term vision for the project is to provide researchers, communicators, educators and a worldwide public with an open planetary mapping and social platform enabling them to create, share, communicate and consume research-based content. We aim for this platform to become the reference website everyone will go to learn about Mars and other planets in our Solar System; just like people head to Google Maps to find their bearings or any location-based information. The driver is clearly to create for people an emotional connection with Mars. The short-term objectives for the project are (1) to produce and curate an open repository of basemaps, geospatial data sets, map visualisations, and story maps; (2) to develop a beautifully crafted and engaging interactive map of Mars. Based on user-generated content, the underlying framework should (3) make it easy to create and share additional interactive maps telling specific stories.
Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b
NASA Astrophysics Data System (ADS)
Sheppard, Kyle B.; Mandell, Avi M.; Tamburo, Patrick; Gandhi, Siddharth; Pinhas, Arazi; Madhusudhan, Nikku; Deming, Drake
2017-12-01
We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b ({T}{eq}=2411 {{K}}, M=10.3 {M}J) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4 μm. However, we infer emission at 4.5 μm and absorption at 1.6 μm that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity ({{C}}/{{H}}={283}-138+395× solar). The derived composition and T/P profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at > 2σ . Future observations are necessary to confirm the unusual planetary properties implied by these results.
NASA Astrophysics Data System (ADS)
Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.
2017-06-01
The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.
NASA Astrophysics Data System (ADS)
Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.
2013-01-01
This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18
Characterization of the atmosphere of the hot Jupiter HAT-P-32Ab and the M-dwarf companion HAT-P-32B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ming; Wright, Jason T.; Curtis, Jason
We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/Wide-field Infra-Red Camera (WIRC) in H and K{sub S} bands and with Spitzer/IRAC at 3.6 and 4.5 μm. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.''923 ± 0.''004 and a position angle 110.°64 ± 0.°12. We measure the flux ratios of the binary in g'r'i'z' and H and K{sub S} bands, and determine T {sub eff}= 3565 ± 82more » K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090% ± 0.033%, 0.178% ± 0.057%, 0.364% ± 0.016%, and 0.438% ± 0.020% in the H, K{sub S} , 3.6 and 4.5 μm bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well described by a blackbody model for the planet with T {sub p} = 2042 ± 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 ± 1.3 minutes from the predicted mid-eclipse time, which constrains e = 0.0072{sub −0.0064}{sup +0.0700} when combined with radial velocity data and is more consistent with a circular orbit.« less
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006
Gregg, Tracy K. P.; Tanaka, Kenneth L.; Saunders, R. Stephen
2006-01-01
Approximately 18 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU's School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. Like other USGS-published maps, proposals to complete a lunar geologic map must be submitted to the regular Planetary Geology & Geophysics (PGG) program for peer review. Jim Skinner (USGS) later presented the progress of the 1:2.5M-scale map of the lunar Copernicus quadrangle, and demonstrated the wide range of data that are available to support these maps. Gaddis and Skinner encouraged the community to submit proposals for generating lunar geologic maps, and reminded us that, as for all planetary maps, the project must be science-driven. Venus mapper Jim Zimbelman of the Smithsonian Institution (SI) presented the progress for his V-15 and V-16 quadrangles; Vicki Hansen (University of Minnesota Duluth) showed her preliminary work on V-45. Zimbelman addressed an issue that has been plaguing the community: 'delinquent Venus mappers'. In short, there were a number of Venus maps funded in the early 1990s under the Venus Data Analysis Program (VDAP). Unfortunately, funding for this program was cut before many Venus maps could be completed, resulting in about 10 Venus maps that were initially assigned but have shown little or no progress in many years. Zimbelman announced that he was not going to be able to complete quadrangle V-27 that he was assigned under VDAP, and was therefore returning that quadrangle to the community; he invited people to propose to PGG to map this quadrangle. Dave Williams of Arizona State University (ASU) reported on the progress of his global Io map. His mapping team recently received the completed, controlled global mosaic (using Voyager and Galileo images) from the USGS; this will be the basemap for their geologic mapping. Furthermore, the three team members (Laszlo Keszthelyi, David Crown and Dave Williams) have calibrated their individual mapping techniques by each mapping the same region for comparison. Thomas Doggett (ASU) showed progress on the global Europa map that was awarded to Ron Greeley. There was some consternation expressed on the methodology for determining relative ages of the lineaments; it was suggested that Vicki Hansen contact Patricio Figueredo (Exxon) directly, because Figueredo is the one who has been developing the lineament mapping techniques. Mars remains the most popular planet to map. Kevin Williams (SI) and Corey Fortezzo (SI) presented progress on their 1:500K maps in the Margaritifer Terra region of Mars. Jim Zimbelman described his 1:1M Medusae Fossae map, which is nearing completion. Peter Mouginis-Mark (University of Hawai'i) reported progress on his 1:200K maps of Tooting crater and of the Olympus Mons summit caldera. Jim Skinner discussed the progress of his and Ken Herkenhoff?s (USGS) map (1:500K) on the Olympia Cavi region of Mars? north pole, and Eric Kolb (USGS) presented work that he and Ken Tanaka (USGS) are completing on the Martian south pole. David Crown of the Planetary Science Institute (PSI) reported on numerous 1:500K and 1:1M maps in the Hellas and Hesperia regions of Mars. Frank Chuang (PSI) discussed progress on mapping the Deuteronilus Mensae reg
Eclipse Mapping Experiments in Dwarf Novae Outbursts
NASA Astrophysics Data System (ADS)
Borges, B. W.; Baptista, R.
2006-06-01
In this work, we report the eclipse mapping analysis of CCD photometric data of two short period dwarf novae - V4140 Sgr (Borges & Baptista 2005) and HT Cas (Borges, Baptista & Catalán, in preparation) - during observed outburst events. The analysis of the observations of V4140 Sgr, done between 1991 and 2001, reveals that the object was in the decline from an outburst in 1992 and again in outburst in 2001. A distance of d = 170+/-30 pc is obtained from a method similar to that used to constrain the distance to open clusters. From this distance, disc radial brightness temperature distributions are determined, and the disc temperatures remain below the critical effective temperature T_{crit} at all disc radii during the outburst. The distributions in quiescence and in outburst are significantly different from those of other dwarf novae of similar orbital period. These results cannot be explained within the framework of the disc instability model and the small amplitude outbursts of V4140 Sgr can be due bursts of enhanced mass transfer rate from the secondary star. Our HT Cas data consist of V and R CCD photometric observations done in 2005 November with the 0.95-m James Gregory Telescope (JGT) and cover a outburst cycle. We used the entropy associated to the eclipse maps to obtain the semi-opening disc angle α evolution throught the outburst. The obtained angles are systematically lower than those obtained by Ioannou et al. (1999) and we can conclude that the outburst radial profiles must be flatter than the the T ∝ r^{-3/4} law of steady state dics, against the expectations of the disc instability model. Our intensity radial distributions presents the same ``outside-in'' outburst behavior as obtained by the referred author.
Phase Variations, Transits and Eclipses of the Misfit CoRoT-2b
NASA Astrophysics Data System (ADS)
Cowan, Nicolas; Deming, Drake; Gillon, Michael; Knutson, Heather; Madhusudhan, Nikku; Rauscher, Emily
2011-05-01
We propose to observe the nearby transiting hot Jupiter CoRoT-2b for a little over one planetary orbit on two occasions, yielding two secondary eclipses, a transit, and a full phase curve in each of the 3.6 and 4.5 micron channels. These data will help resolve the unique nature of this bloated planet: CoRoT-2b is the only hot Jupiter that is poorly fit by either inverted or non-inverted spectral models (Deming et al. 2011). Two hypotheses have been proposed to explain the peculiar mid-IR colors of CoRoT-2b, and thermal phase measurements with Spitzer's continuous, high-precision photometry will be able to distinguish between them: the planet has a non-inverted atmosphere but is losing mass to its host star, or the planet has a peculiar kind of temperature inversion due to mysterious atmospheric scatterers. CoRoT-2b is also among the most inflated hot Jupiters and, because of its relatively large mass, cannot be reconciled with interior evolution models, despite a small but non-zero eccentricity. A recent planetary collision may be necessary to explain the planet's youthful radius (Guillot & Havel 2011). Finally, the planet's extremely young host star, CoRoT-2, is the most chromospherically active of all transit hosts. This appears to be a common thread connecting all of its planet's peculiarities: the high UV flux of the star will drive mass loss, as well as photochemistry. Most importantly, the radius measurement of the planet at optical wavelengths may be contaminated by star spots. Mid-IR transit measurements from Spitzer will help resolve the mystery of CoRoT-2b's inflated radius.
Planetary Cartography and Mapping: where we are Today, and where we are Heading For?
NASA Astrophysics Data System (ADS)
Naß, A.; Di, K.; Elgner, S.; van Gasselt, S.; Hare, T.; Hargitai, H.; Karachevtseva, I.; Kersten, E.; Manaud, N.; Roatsch, T.; Rossi, A. P.; Skinner, J., Jr.; Wählisch, M.
2017-07-01
Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning) and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance). It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission's lifetime, data and higher level products like mosaics and digital terrain models (DTMs) are stored in archives - and eventually into maps and higher-level data products - to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
First results in terrain mapping for a roving planetary explorer
NASA Technical Reports Server (NTRS)
Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo
1989-01-01
To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.
Multistage Planetary Power Transmissions
NASA Technical Reports Server (NTRS)
Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.
1986-01-01
PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.
Astrophotography Basics: Meteors, Comets, Eclipses, Aurorae, Star Trails. Revised.
ERIC Educational Resources Information Center
Eastman Kodak Co., Rochester, NY.
This pamphlet gives an introduction to the principles of astronomical picture-taking. Chapters included are: (1) "Getting Started" (describing stationary cameras, sky charts and mapping, guided cameras, telescopes, brightness of astronomical subjects, estimating exposure, film selection, camera filters, film processing, and exposure for…
Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.
2018-05-01
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam
NASA Astrophysics Data System (ADS)
Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.
2018-06-01
Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.
Results from the Modern Eddington Experiment
NASA Astrophysics Data System (ADS)
Schaefer, Bradley E.; Hynes, Robert I.
2018-01-01
The original Eddington Eclipse Experiment (for the 29 May 1919 total solar eclipse) was a test of Einstein's General Relativity, which predicted that the apparent positions of stars near the eclipsed Sun would be shifted outward by up to 1.7". Their results were from 7 stars on 7 plates, with the measured shift at the solar limb of 1.98±0.12". On 6 November 1919, Eddington announced the triumph of Einstein, with many far-reaching effects. To further test General Relativity, the basic 'Eddington eclipse experiment' was run successfully at six later eclipses (the last in 1973), all with only ~10% accuracy.Over the last few years it has become possible to move past the old technology of photographic plates, due to the production of large-scale monochromatic CCD chips. A large number of pixels across is required so that a large field-of-view can go along with adequate resolution. These chips are now commercially available. The perfect opportunity arose with the 21 August 2017 total solar eclipse. Suddenly, it was possible for ordinary astronomers to test Einstein with simple off-the-shelf equipment.We ran a Modern Eddington Experiment from Casper Wyoming. We used the SBIG STX 16803 CCD camera (4096X4096, 9 micron pixels), along with a TeleVue NP101is APO refractor (4.0" aperture, F=540 mm). After experiments, it was decided to run without any filter. The plate scale was near 382 "/mm, the pixel size was 3.4", and the field-of-view was 3.9°X3.9°. We obtained 39 1-second images of star fields centered (with substantial shifts between images) in the dark sky 7 hours before the eclipse, for the purpose of mapping out optical distortions and CCD imperfections. The system was untouched even until the eclipse was over. During the 146-second totality, with slight cirrus clouds, we obtained 11 eclipse images, with 1.0 and 0.5 second exposures, showing over 60 stars (to SNR=10) from 53"-155" from the Sun-center.The analysis is currently underway. Effects to be corrected for include differential refraction, differential aberration, proper motion, parallax, optical distortions, and the tangent plane. Final results should be completed by the time of our AAS meeting.
St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor
NASA Astrophysics Data System (ADS)
Olson, Roberta J. M.; Pasachoff, Jay M.
During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the image that Asam invented to visualize St. Benedict's vision that it found reflection in the subsequent Bavarian Benedictine visual tradition. Total solar eclipses are among the most spectacular sights in Nature. Therefore, in an age obsessed with revealing the divine through natural idioms and making religious experiences direct - not to mention that light had long functioned as a symbol of divinity in the Christian tradition - it seems fitting that solar eclipses would be interpreted as a metaphor of a divine presence or a miracle.
EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Sahil; Wettlaufer, John S.; Sordo, Fabio Del
2017-01-01
Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source ofmore » information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.« less
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
Planetary Cartography - Activities and Current Challenges
NASA Astrophysics Data System (ADS)
Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita
2018-05-01
Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.
A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b
NASA Technical Reports Server (NTRS)
Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake
2007-01-01
We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.
High-speed knots in the hourglass-shaped planetary nebula Hubble 12
NASA Astrophysics Data System (ADS)
Vaytet, N.; Rushton, A. P.; Lloyd, M.; Lopez, J. A.; Meaburn, J.; O'Brien, T. J.; Mitchell, D. L.; Pollacco, D.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Martir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N ii] 6584 image of Hb 12. We measured from our spectroscopy radial velocities of about 120 km s-1 for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in HA and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.
An examination of astrophysical habitats for targeted SETI
NASA Technical Reports Server (NTRS)
Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.
1991-01-01
Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.
Scorched Planets: Understanding the Structure and Climate of Hot Jupiter Atmospheres
NASA Astrophysics Data System (ADS)
Colón, Knicole; Martioli, Eder; Angerhausen, Daniel; Rodriguez, Joseph E.; Zhou, George; Pepper, Joshua; Stassun, Keivan; Gaudi, B. Scott; James, David; Eastman, Jason; Beatty, Thomas G.; Bayliss, Daniel
2015-12-01
Radial velocity and transit surveys have revealed that hot Jupiters are intrinsically rare in the Galaxy. These extreme examples of extrasolar planets have been the subject of many studies to date, but their formation and evolution are still shrouded in mystery. I will present results from a large ground-based survey to study the atmospheres of hot Jupiters via their secondary eclipses in the near-infrared. Such observations provide us with a direct measurement of thermal emission from a planet’s day-side, allowing us to probe the connection between the atmospheric structure and climate deep in their atmospheres, as well as the irradiation from their host star. I will present results obtained for several hot Jupiters using the wide-field camera WIRCam on the 3.6m Canada-France-Hawaii-Telescope (CFHT). The sample of hot Jupiters observed to date in the CFHT survey spans a range of planetary parameters (e.g. temperatures and densities) and also includes several new exotic discoveries from the KELT transit survey, such as a planet in a hierarchical triple stellar system as well as a planet with a very rapidly rotating host star. Results from the CFHT survey will be combined with those from an ongoing survey of hot Jupiter eclipses in the southern hemisphere using the 3.9m Anglo-Australian Telescope as well as an upcoming survey using the 4m Mayall Telescope at Kitt Peak National Observatory. The combined survey will be the largest homogeneous study of this kind to date, and it will provide us with the congruent observations of a significant number of unique planets in eclipse. These observations will ultimately allow a comprehensive statistical analysis of the diversity of hot Jupiter atmospheres via their near-infrared eclipses. In addition, this project will identify legacy targets for comparative exoplanetology using next-generation facilities such as the James Webb Space Telescope.
Optical Spectra of Extrasolar Giant Planets
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam
2004-01-01
The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.
X-ray wind tomography of IGR J17252-3616
NASA Astrophysics Data System (ADS)
Manousakis, Antonios; Walter, Roland
IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.
2015-11-01
The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.
Lunar and Planetary Science XXXV: Education
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Education" includes the following topics: 1) Convection, Magnetism, Orbital Resonances, Impacts, and Volcanism: Energies and Processes in the Solar System: Didactic Activities; 2) Knowledge Management in Aerospace-Education and Training Issues; 3) Creating Easy-to-Understand Planetary Maps; 4) Planetary Environment comparison in the Education of Astrobiology; and 5) Design and Construction of a Mechanism for the Orbital Resonances Simulation.
GIS Facility and Services at the Ronald Greeley Center for Planetary Studies
NASA Astrophysics Data System (ADS)
Nelson, D. M.; Williams, D. A.
2017-06-01
At the RGCPS, we established a Geographic Information Systems (GIS) computer laboratory, where we instruct researchers how to use GIS and image processing software. Seminars demonstrate viewing, integrating, and digitally mapping planetary data.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
NASA Technical Reports Server (NTRS)
Martin, P.; Stofan, E. R.; Guest, J. E.
2009-01-01
A geologic map of the Sedna Planitia (V-19) quadrangle is being completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program, and will be submitted for review by September 2009.
Starspots on WASP-107 and pulsations of WASP-118
NASA Astrophysics Data System (ADS)
Močnik, T.; Hellier, C.; Anderson, D. R.; Clark, B. J. M.; Southworth, J.
2017-08-01
By analysing the K2 short-cadence photometry, we detect starspot occultation events in the light curve of WASP-107, the host star of a warm-Saturn exoplanet. WASP-107 also shows a rotational modulation with a period of 17.5 ± 1.4 d. Given that the rotational period is nearly three times the planet's orbital period, one would expect in an aligned system to see starspot occultation events to recur every three transits. The absence of such occultation recurrences suggests a misaligned orbit unless the starspots' lifetimes are shorter than the star's rotational period. We also find stellar variability resembling γ Doradus pulsations in the light curve of WASP-118, which hosts an inflated hot Jupiter. The variability is multiperiodic with a variable semi-amplitude of ˜200 ppm. In addition to these findings, we use the K2 data to refine the parameters of both systems and report non-detections of transit-timing variations, secondary eclipses and any additional transiting planets. We used the upper limits on the secondary-eclipse depths to estimate upper limits on the planetary geometric albedos of 0.7 for WASP-107b and 0.2 for WASP-118b.
Gazetteer of planetary nomenclature 1994
Batson, Raymond M.; Russell, Joel F.
1995-01-01
Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.
Reports of planetary geology program, 1983
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1984-01-01
Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.
A continued program of planetary study at the University of Texas McDonald Observatory
NASA Technical Reports Server (NTRS)
Smith, H. J.; Barker, E. S.; Cochran, W. D.; Trafton, L. M.
1986-01-01
The beginning of eclipses of the Pluto-Charon system was detected. The onset of coma formation of P/Halley at 5.4 au was detected and evidence of sublimation at 4.8 au when CN emission was detected. Extensive spatial maps of the gas in the comae of comets Halley and Giacobini-Zinner were obtained in fall 1985. Halley was time variable, and Giacobini-Zinner was depleted in C2 and C3 relative to CN. Comet Kopff was shown to have a pre-perihelion brightness maximum of its gas, consistent with mantle development if the comet is a high obliquity object. New Haser model scale lengths for CN, C3, and C2 were determined using results from the Faint Comet Survey. Spectra of 12 asteroids in unusual orbits showed no evidence of any comet-like emission features. In particular, 3200 Phaethon (1983 TB) has no gas or dust coma, in spite of the similarity of its orbit with the Geminid meteor stream. Data were analyzed on Saturn's H2 and CH4 bands for the recent southern summer using a Tomasko-Doose type of haze distribution. This haze model fits the data moderately well, giving a CH4 mixing ratio of (4.2 + or 0.4)x003. Simple functions were found to approximate the collision-induced rotation-translation thermal opacity of H2.
NASA Astrophysics Data System (ADS)
Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.
2015-12-01
The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.
2017-12-01
A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. Ice core records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from ice cores collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of ice core and geophysical measurements. Low- and high-frequency ice penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter ice core drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. Ice velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/ice cores (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter ice core drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new ice core chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal ice flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional water cycle (e.g., accumulation/precipitation, moisture source and trajectory, coupled ocean/atmosphere variability). We compare the updated Eclipse record with other data in the North Pacific region, including the new Denali 1200-year ice core datasets, to assess regional hydroclimate variability during the Common Era.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Day, Brian
2017-01-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, B. H.; Law, E.
2017-12-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.
Geodatabase model for global geologic mapping: concept and implementation in planetary sciences
NASA Astrophysics Data System (ADS)
Nass, Andrea
2017-04-01
One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards for digitizing, visualization, data merging and synchronization in the processes of interpretative mapping project. Following the new technological innovations within GIS software and the individual requirements for mapping Ceres, a template was developed based on the symbology and framework. The template for (GIS-base) mapping presented here directly links the generically descriptive attributes of planetary objects to the predefined and standardized symbology in one data structure. Using this template the map results are more comparable and better controllable. Furthermore, merging and synchronization of the individual maps, map projects and sheets will be far more efficient. The template can be adapted to any other planetary body and or within future discovery missions (e.g., Lucy and Psyche which was selected to explore the early solar system by NASA) for generating reusable map results.
Lunar and planetary maps and charts available for public sale
NASA Technical Reports Server (NTRS)
1973-01-01
A catalog of lunar and planetary charts which are available from the U.S. Government Printing Office is presented. The charts are identified by the area of the lunar topology involved and the prices of each chart are shown.
Collaboration, Community and Collective Intelligence Will Eclipse the Cartography of Collision
ERIC Educational Resources Information Center
Dellit, Jillian
2003-01-01
This article is a response to "Mapping educational research and its impact on Australian schools," Chapter 2 of The Impact of Educational Research, in which researchers Allyson Holbrook, John Ainley, Sid Bourke, John Owen, Philip McKenzie, Sebastian Mission and Trevor Johnson report on their Commonwealth Education Department commissioned…
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Yashiro, Seiji; Reginald, Nelson; Thakur, Neeharika; Thompson, Barbara J.; Gong, Qian
2018-01-01
We present preliminary results obtained by observing the solar corona during the 2017 August 21 total solar eclipse using a polarization camera mounted on an eight-inch Schmidt-Cassegrain telescope. The observations were made from Madras Oregon during 17:19 to 17:21 UT. Total and polarized brightness images were obtained at four wavelengths (385, 398.5, 410, and 423 nm). The polarization camera had a polarization mask mounted on a 2048x2048 pixel CCD with a pixel size of 7.4 microns. The resulting images had a size of 975x975 pixels because four neighboring pixels were summed to yield the polarization and total brightness images. The ratio of 410 and 385 nm images is a measure of the coronal temperature, while that at 423 and 398.5 nm images is a measure of the coronal flow speed. We compared the temperature map from the eclipse observations with that obtained from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly images at six EUV wavelengths, yielding consistent temperature information of the corona.
The Monthly Sky Guide: Sixth Edition
NASA Astrophysics Data System (ADS)
Ridpath, Ian; Tirion, Wil
2003-06-01
The latest edition of Ian Ridpath and Wil Tirion's popular guide to the night sky is updated for planet positions and forthcoming eclipses up to the end of the year 2007. With one chapter for each month of the year, this is an easy-to-use handbook for anyone wanting to identify constellations, star clusters, nebulae, to plot the movement of planets, or witness solar and lunar eclipses. Most of the features discussed are visible to the naked eye and all can be seen with a small telescope or binoculars. Ian Ridpath has been a full-time writer, broadcaster and lecturer on astronomy and space for more than twenty-five years. He has written and edited more than 40 books, including A Comet Called Haley (Cambridge, 1985). Wil Tirion made his first star map in 1977. It showed stars to the magnitude of 6.5 and was issued as a set of maps by the British Astronomical Association in 1981. He has illustrated numerous books and magazines, including The Cambridge Star Atlas (Cambridge, 2001). Previous Edition Pb (1999): 0-521-66771-2
NASA Astrophysics Data System (ADS)
Udalski, A.; Szewczyk, O.; Zebrun, K.; Pietrzynski, G.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Wyrzykowski, L.
2002-12-01
We present results of the second "planetary and low-luminosity object transit" campaign conducted by the OGLE-III survey. Three fields (35' X 35' each) located in the Carina regions of the Galactic disk (l ≈ 290°) were monitored continuously in February-May 2002. About 1150 epochs were collected for each field. The search for low depth transits was conducted on about 103 000 stars with photometry better than 15 mmag. In total, we discovered 62 objects with shallow depth (≤ 0.08 mag) flat-bottomed transits. For each of these objects several individual transits were detected and photometric elements were determined. Also lower limits on radii of the primary and companion were calculated. The 2002 OGLE sample of stars with transiting companions contains considerably more objects that may be Jupiter-sized (R < 1.6 R_Jup) compared to our 2001 sample. There is a group of planetary candidates with the orbital periods close to or shorter than one day. If confirmed as planets, they would be the shortest period extrasolar planetary systems. In general, the transiting objects may be extrasolar planets, brown dwarfs, or M-type dwarfs. One should be, however, aware that in some cases unresolved blends of regular eclipsing stars can mimic transits. Future spectral analysis and eventual determination of the amplitude of radial velocity should allow final classification. High resolution spectroscopic follow-up observations are, therefore, strongly encouraged. All photometric data are available to the astronomical community from the OGLE INTERNET archive.
Dynamical habitability of planetary systems.
Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, F.; Zhao, G.; Fosbury, R. A. E.
Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter–McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO High Accuracy Radial velocity Planet Searcher spectrograph. We analyzemore » the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth’s atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. Its particular asset is that photometric reference stars are not required, circumventing the principal challenge for transmission spectroscopy studies of exoplanet atmospheres using large ground-based telescopes.« less
Exoplanet Observations in SOFIA's Cycle 1
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel
2013-06-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.
Updating the Geologic Maps of the Apollo 15, 16, and 17 Landing Sites
NASA Astrophysics Data System (ADS)
Garry, W. B.; Mest, S. C.; Yingst, R. A.; Ostrach, L. R.; Petro, N. E.; Cohen, B. A.
2018-06-01
Our team is funded through NASA's Planetary Data Archiving, Restoration, and Tools (PDART) program to produce two new USGS Special Investigation Maps (SIM) for the Apollo 15, 16, and 17 missions: a regional map (1:200K) and a landing-site map (1:24K).
Lessons from accretion disks in cataclysmic variables
NASA Astrophysics Data System (ADS)
Horne, Keith
1998-04-01
We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.
McIDAS-eXplorer: A version of McIDAS for planetary applications
NASA Technical Reports Server (NTRS)
Limaye, Sanjay S.; Saunders, R. Stephen; Sromovsky, Lawrence A.; Martin, Michael
1994-01-01
McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data applications in research and routine operations. The environment allows convenient access, navigation, analysis, display, and animation of planetary data by utilizing the full calibration data accompanying the planetary data. Support currently exists for Voyager images of the giant planets and their satellites; Magellan radar images (F-MIDR and C-MIDR's, global map products (GxDR's), and altimetry data (ARCDR's)); Galileo SSI images of the earth, moon, and Venus; Viking Mars images and MDIM's as well as most earth based telescopic images of solar system objects (FITS). The NAIF/JPL SPICE kernels are used for image navigation when available. For data without the SPICE kernels (such as the bulk of the Voyager Jupiter and Saturn imagery and Pioneer Orbiter images of Venus), tools based on NAIF toolkit allow the user to navigate the images interactively. Multiple navigation types can be attached to a given image (e.g., for ring navigation and planet navigation in the same image). Tools are available to perform common image processing tasks such as digital filtering, cartographic mapping, map overlays, and data extraction. It is also possible to have different planetary radii for an object such as Venus which requires a different radius for the surface and for the cloud level. A graphical user interface based on Tel-Tk scripting language is provided (UNIX only at present) for using the environment and also to provide on-line help. It is possible for end users to add applications of their own to the environment at any time.
A Photometric Search for Planets in the Open Cluster NGC 7086
NASA Astrophysics Data System (ADS)
Rosvick, Joanne M.; Robb, Russell
2006-12-01
In an attempt to discover short-period, Jupiter-mass planets orbiting solar-type stars in open clusters, we searched for planetary transits in the populous and relatively unstudied open cluster NGC 7086. A color-magnitude diagram constructed from new B and V photometry is presented, along with revised estimates of the cluster's color excess, distance modulus, and age. Several turnoff stars were observed spectroscopically in order to determine a color excess of E(B-V)=0.83+/-0.02. Empirically fitting the main sequences of two young open clusters and the semiempirical zero-age main sequence of Vandenberg and Poll yielded a distance modulus of (V-MV)=13.4+/-0.3 mag. This corresponds to a true distance modulus of (m-M)0=10.8 mag or a distance of 1.5 kpc to NGC 7086. These values were used with isochrones from the Padova group to obtain a cluster age of 100 Myr. Eleven nights of R-band photometry were used to search for planetary transits. Differential magnitudes were constructed for each star in the cluster. Light curves for each star were produced on a night-to-night basis and inspected for variability. No planetary transits were apparent; however, some interesting variable stars were discovered: a pulsating variable that appears to be a member of the γ Dor class and four possible eclipsing binary stars, one of which actually may be a multiple system.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus
NASA Technical Reports Server (NTRS)
Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.
1974-01-01
The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.
The Allegheny Observatory search for planetary systems
NASA Technical Reports Server (NTRS)
Gatewood, George D.
1989-01-01
The accomplishments of the observatory's search for planetary systems are summarized. Among these were the construction, implementation, and regular use of the Multichannel Astrometric Photometer (MAP), and the design, fabrication and use of the second largest refractor objective built since 1950. The MAP parallax and planetary observing programs are described. Various developments concerning alternate solid state photodetectors and telescope instrumentation are summarized. The extreme accuracy of the system is described in relation to a study of the position and velocity of the members of the open cluster Upgren 1. The binary star system stringently tests the theory of stellar evolution since it is composed of an evolved giant F5 III and a subgiant F5 IV star. A study that attempts to measure the luminosities, surface temperatures, and masses of these stars is discussed.
A bibliography of planetary geology principal investigators and their associates, 1982 - 1983
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1984-01-01
This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.
Coronal Dynamics at Recent Total Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Lu, M.; Davis, A. B.; Demianski, M.; Rusin, V.; Saniga, M.; Seaton, D. B.; Lucas, R.; Babcock, B. A.; Dantowitz, R.; Gaintatzis, P.; Seeger, C. H.; Malamut, C.; Steele, A.
2014-12-01
Our composite images of the solar corona based on extensive imaging at the total solar eclipses of 2010 (Easter Island), 2012 (Australia), and 2013 (Gabon) reveal several coronal mass ejections and other changes in coronal streamers and in polar plumes. Our resultant spatial resolution is finer than that available in imaging from spacecraft, including that from SOHO/LASCO or STEREO. We trace the eruptions back to their footpoints on the sun using imaging from SDO and SWAP, and follow them upwards through the corona, measuring velocities. The high-resolution computer compositing by Miloslav Druckmüller and Hana Druckmüllerová (2010 and 2013) and Pavlos Gaintatzis (2012) allows comparison of our images with those taken at intervals of minutes or hours along the totality path. Williams College's 2013 eclipse expedition was supported in part by grant 9327-13 from National Geographic Society/Committee for Research and Exploration. Our work on the 2012 eclipse is supported in part by grant AGS-1047726 from Solar Terrestrial Research/NSF AGS. V.R. and M.S. were partially supported by the VEGA grant agency project 2/0098/10 and 2/0003/13 (Slovak Academy of Sciences) and Grant 0139-12 from NG/CRE, and Hana Druckmüllerová by grant 205/09/1469 of the Czech Science Foundation. M.L. was supported by Sigma Xi. C.M. was a Keck Northeast Astronomy Consortium Summer Fellow, supported at Williams College by REU/NSF grant AST-1005024. Partial support was provided by U.S. Department of Defense's ASSURE program. J.M.P. thanks Caltech's Planetary Sciences Department for hospitality. Support for D.B.S. and SWAP came from PRODEX grant C90345 managed by ESA in collaboration with the Belgian Federal Science Policy Office (BELSPO) in support of the PROBA2/SWAP mission, and from the EC's Seventh Framework Programme (FP7/2007-2013) under grant 218816 (SOTERIA project, www.soteria-space.eu). SWAP is a project of the Centre Spatial de Liège and the Royal Observatory of Belgium funded by BELSPO.
Both, Stefan; Alecu, Ionut M; Stan, Andrada R; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M; Alecu, Rodica
2007-03-07
An effective patient quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria--that is, action limits. Based on dose measurements performed with a commercially available two-dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6-MV X-ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS,220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3-mm distance to agreement (DTA) criteria. We investigated the treatment-site dependency of PPP and PDE. The results show that, at 3% and 3-mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site.
The Amateur Astronomer's Introduction to the Celestial Sphere
NASA Astrophysics Data System (ADS)
Millar, William
2005-12-01
This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.
Precision Stellar and Planetary Astrophysics with TESS and Gaia
NASA Astrophysics Data System (ADS)
Stevens, Daniel J.; KELT Collaboration
2018-01-01
There is an ever-present need for precise and accurate stellar parameters, particularly for low-mass stars. For example, some fraction of measured M dwarf radii are inflated and have effective temperatures that are suppressed relative to predictions from models, but the physical cause of these effects is still uncertain. This is exacerbated by the fact that only a handful of M dwarfs -- all from double-lined eclipsing binaries (EBs) -- have both masses and radii measured to 3% or better. In the Gaia era, we can now measure model-independent masses and radii for single-lined EBs, thus expanding the sample of stars with precisely measured parameters by at least an order of magnitude, in principle. I will illustrate how one can combine Gaia parallaxes and broad-band stellar fluxes with the eclipse and radial velocity data to provide model-independent masses and radii. I will present our expected achievable constraints on the masses and radii of single-lined EBs. I will discuss both our current effort to turn several dozens of single-lined EBs discovered by the KELT and HATNet surveys into a catalog of exquisitely characterized stars and exoplanets as well as the prospects for achieving similar science for a much larger number of systems with TESS.
The 1973 dust storm on Mars: Maps from hourly photographs
NASA Technical Reports Server (NTRS)
Martin, L. J.
1975-01-01
The hourly progress of the 1973 major Martian storm was mapped using photographic images from the International Planetary Patrol. Two series of 20 daily maps show the semi-hourly positions of the storm brightenings in red light and blue light. The maps indicate that the 1973 storm had many similarities to the 1971 storm.
Kepler AutoRegressive Planet Search
NASA Astrophysics Data System (ADS)
Feigelson, Eric
NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.
Natural Satellite Ephemerides at JPL
NASA Astrophysics Data System (ADS)
Jacobson, Robert Arthur; Brozovic, Marina
2015-08-01
There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.
Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.
2002-01-01
The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at lander (outcrop) scales. Trips to the top of the rift-flanking mountains (Sandia Peak, 10,600 ft) and the Valles Caldera, as well as various active spring deposits highlighted the day. After welcoming remarks from the host, Larry Crumpler, opening remarks by Tim Parker and Dave Senske and a report on mapping program status by Ken Tanaka, the mappers’ oral presentations began the morning of June 18, with a session on Venus Geologic Mapping. The afternoon continued with an exciting USGS Planetary GIS on the Web (PIGWAD) demonstration and ended with an open discussion of issues in planetary mapping. Posted maps of Venus quadrangles were viewed during the morning break. Tuesday’s Mars Geologic Mapping session began with a pep talk from Tim Parker encouraging mapping community input to the MER landing site selection committee and continued with Steve Saunders describing the potential contribution of Odyssey Mission data to the geologic mapping of Mars. A Mars map poster session was held during the morning break, and the meeting was adjourned mid-afternoon. After the mappers meeting on Tuesday, attendants were treated to a "Field trip to Mars." The Institute of Meteoritics at the University of New Mexico houses an outstanding collection of meteorites, including those that have been identified as originating from Mars. The Institute tour featured examples of most of the different lithologies exhibited by martian meteorites identified to date, as well as some of the analytical tests (scanning electron microscope) they are conducting on specimens from ALH84001. Wednesday, June 20, featured an optional post-meeting field trip to see a travertine quarry and nearby sites of travertine deposition, the Very Large Array near Socorro, and other volcanic features within the Rio Grande Rift.
NASA Technical Reports Server (NTRS)
Gatewood, George; Han, Inwoo; Black, David C.
2001-01-01
Hipparcos and Multichannel Astrometric Photometer (MAP) observations of rho Coronae Borealis independently display astrometric motion at the period of the proposed extrasolar planetary companion to the star. Individual least-squares fits to each astrometric data set yield independent estimates of the semimajor axis, inclination, and node angle that are in excellent agreement. A combined solution of the Hipparcos and MAP data yields an inclination of 0.5 deg, a node at 30.5 +/- 12.4, and a semimajor axis of 1.66 +/- 0.35 mas, indicating a companion mass of 0.14 +/- 0.05 solar masses over two orders of magnitude greater than the minimum mass for the companion as determined by radial velocity studies. This mass is approximately that of an M dwarf star, the companion cannot be a planetary object.
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, B. H.; Law, E.
2016-12-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
Planetary Data Systems (PDS) Imaging Node Atlas II
NASA Technical Reports Server (NTRS)
Stanboli, Alice; McAuley, James M.
2013-01-01
The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.
David Levy's Guide to Eclipses, Transits, and Occultations
NASA Astrophysics Data System (ADS)
Levy, David H.
2010-08-01
Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.
NASA Astrophysics Data System (ADS)
Reginald, Nelson L.; Davila, Joseph M.; St. Cyr, Orville C.; Rabin, Douglas M.
2017-06-01
We conducted an experiment in conjunction with the total solar eclipse of 1 August 2008 in China to determine the thermal electron temperature in the low solar corona close to the solar limb. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an 8 inch f/10 Schmidt Cassegrain telescope with a thermoelectrically cooled CCD camera at the focal plane. Results are electron temperatures of 1 MK at 1.08 R⊙ and 1.13 R⊙ from the Sun center in the polar and equatorial regions, respectively. This experiment confirms the results of an earlier experiment conducted in conjunction with the total eclipse of 29 March 2006 in Libya, and results are that at a given coronal height the electron temperature in the polar region is larger than at the equatorial region. In this paper we show the importance of using the correct photospheric spectrum pertinent to the solar activity phase at the time of the experiment, which is a required parameter for modeling the underlying theoretical concept for temperature interpretation of the measured intensity ratios using color filters.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2010-01-01
Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.
Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates
NASA Technical Reports Server (NTRS)
Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.
2008-01-01
The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.
Multilingual Maps of the Terrestrial Planets and their Moons: the East and Central European Edition
NASA Astrophysics Data System (ADS)
Hargitai, H.; Berczi, Sz.
A series of Multilingual planetary maps has been published by the Cosmic Materials Space Research Group of the Eötvös Loránd University (Budapest, Hungary) with consultations by Russian and German colleagues. The maps are a result of a cooperation of MIIGAiK (which offered the base maps), ELTE, the Copernicus Observatory and Planetarium in Brno, the Zagreb Astronomical Observatory, the Jagellonian University Observatory, the Tectonics and Geological Cartography Section of the Faculty of Geology at Warsaw University and the University of Architecture, Civil Engeneering and Geodesy in Sofia. The series has been initiated by the International Cartographic Association (ICA), Commission on Planetary Cartography (Shingareva et al. 2006). The now complete series has been published from 2001 to 2006: Mars (2001), Venus (2003), Moon (2003), Mercury (2004) and Phobos and Deimos (2006). (Hargitai et al 2001-2006) These maps are more than outreach posters but less than maps for scientific purposes. These give a good overview of the topography and geology of the planets in a global to regional scale. They contain multilingual information concerning planetary science results and specific characteristics of the planetary body relief, placed on the lower margins of the front sides of the maps and the whole back side (geography, geology, stratigraphy, history of discovery and full index of names). These texts appear in Czech, Bulgarian, Hungarian, Croatian, Polish and English. In some cases it was the first time that a particular term (and its definition) was translated into one of these Central European languages. After compiling the first four maps it can be concluded that such work can effectively draw the attention of earth scientists to the specific features - and the mere existence - of other planetary bodies by simply discussing the translation of their terminology. Apart from circulating the maps in classrooms, this might be the most important scientific result of this edition. A new, improved edition of the Venus Map was made in Polish and Hungarian for 1 use in the recent Venus transit events. In this map, the visual appearance has been modified: the original pencil drawing was mixed with actual radar image patches and vector symbols. The new edition uses symbols for features which would otherwise be too small for the representation at the given scale. For the improvement of the overall "3D" appearance, a limb darkening shading method was used. For the impact craters radar images were used instead of the drawing, which represents their actual ejecta characteristics more realistically. Lava channels are shown by yellow lines that follow the meanderings of the channels. The same method was used for fossae. Some lava flows that appear in the radar images are also shown. The elevated terrae got a darker brownish hue, while lower planitiae (plains) are shown in a light orange resulting in a "warm/hot" appereance. The locations of some of the smaller geologic hot spots" ("ticks", farra etc.) are also shown. We have added several new names to the nomenclature appearing on the map and used different font faces for the different features, taking terrestrial physical geographic maps as samples. Wherever possible, the names appear parallel to the latitude grid. The legend got more space and contains not only basic (morphologic) features defined with Latin terms by IAU, but also other features or landscape types which are only described and discussed in planetary science publications. In the legend, not only official" IAU definitions are included, but also the morphologic description and geologic interpretation. After finishing the series we have started to update the maps and made a survey amongst students about the usability of the maps. As a result, we found that non- professionals expect maps to use Earth map standards and conventions, for example they looked for mountain peak heights and familiar symbols. We have re-designed the maps and added more details. We also look for a new color-code, since the natural terrestrial map colors scheme can not be used here: colors like blue or green can be misinterpreted easily. The colors on a terrestrial topographic map use a color system that reflects general vegetation cover (green) and the hydrologic system (blue). Part of this color system, however, can also be found in nature: in yellowing leaves (green-yellow-brown). On Mars or the Moon we try to find a color system that reflect the general colors of these planets but also allows discretion of the colors that reflect height or/and terrain type. The maps are available via internet for free pdf download at http://planetologia.elte.hu. References: Hargitai H. I., Rükl A., Gabzdyl P., Roša D., Kundera T., Marjanac T., Ozimkowsky W., Peneva E., Bandrova T., Oreshina L. S., Baeva L. Y, Krasnopevtseva B. V, Shingareva K. B. (2001-2006) Maps of Mars, Venus, Mercury, Moon, Phobos and Deimos, Central European Edition. Budapest 2 Shingareva K. B., J. Zimbelman, M. Buchroithner, H. I. Hargitai (2006): The Realization of ICA Commission Projects on Planetary Cartography Cartographica Volume 40, issue 4. 3
Robots and Humans in Planetary Exploration: Working Together?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)
2002-01-01
Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure
Reports of Planetary Geology and Geophysics Program, 1984
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler); Watters, T. R. (Compiler)
1985-01-01
Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, M; Salinas Aranda, F; Dodat, D
Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Spear, A. J.; Allin, P. C.; Austin, R. S.; Berman, A. L.; Chandlee, R. C.; Clark, J.; Decharon, A. V.; De Jong, E. M.; Griffith, D. G.
1992-01-01
Magellan started mapping the planet Venus on September 15, 1990, and after one cycle (one Venus day or 243 earth days) had mapped 84 percent of the planet's surface. This returned an image data volume greater than all past planetary missions combined. Spacecraft problems were experienced in flight. Changes in operational procedures and reprogramming of onboard computers minimized the amount of mapping data lost. Magellan data processing is the largest planetary image-processing challenge to date. Compilation of global maps of tectonic and volcanic features, as well as impact craters and related phenomena and surface processes related to wind, weathering, and mass wasting, has begun. The Magellan project is now in an extended mission phase, with plans for additional cycles out to 1995. The Magellan project will fill in mapping gaps, obtain a global gravity data set between mid-September 1992 and May 1993, acquire images at different view angles, and look for changes on the surface from one cycle to another caused by surface activity such as volcanism, faulting, or wind activity.
Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems
NASA Astrophysics Data System (ADS)
Prsa, Andrej
The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.
NASA's Lunar and Planetary Mapping and Modeling Program
NASA Astrophysics Data System (ADS)
Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.
2016-12-01
NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, René; Albrecht, Simon, E-mail: rheller@physics.mcmaster.ca, E-mail: albrecht@phys.au.dk
We present two methods to determine an exomoon's sense of orbital motion (SOM), one with respect to the planet's circumstellar orbit and one with respect to the planetary rotation. Our simulations show that the required measurements will be possible with the European Extremely Large Telescope (E-ELT). The first method relies on mutual planet-moon events during stellar transits. Eclipses with the moon passing behind (in front of) the planet will be late (early) with regard to the moon's mean orbital period due to the finite speed of light. This ''transit timing dichotomy'' (TTD) determines an exomoon's SOM with respect to themore » circumstellar motion. For the 10 largest moons in the solar system, TTDs range between 2 and 12 s. The E-ELT will enable such measurements for Earth-sized moons around nearby Sun-like stars. The second method measures distortions in the IR spectrum of the rotating giant planet when it is transited by its moon. This Rossiter-McLaughlin effect (RME) in the planetary spectrum reveals the angle between the planetary equator and the moon's circumplanetary orbital plane, and therefore unveils the moon's SOM with respect to the planet's rotation. A reasonably large moon transiting a directly imaged planet like β Pic b causes an RME amplitude of almost 100 m s{sup –1}, about twice the stellar RME amplitude of the transiting exoplanet HD209458 b. Both new methods can be used to probe the origin of exomoons, that is, whether they are regular or irregular in nature.« less
Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2010-01-01
This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.
Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System
NASA Astrophysics Data System (ADS)
Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray
2018-01-01
Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Liang; Winn, Joshua N.; Rappaport, Saul
The T Tauri star PTFO 8-8695 exhibits periodic fading events that have been interpreted as the transits of a giant planet on a precessing orbit. Here we present three tests of the planet hypothesis. First, we sought evidence for the secular changes in light-curve morphology that are predicted to be a consequence of orbital precession. We observed 28 fading events spread over several years and did not see the expected changes. Instead, we found that the fading events are not strictly periodic. Second, we attempted to detect the planet's radiation, based on infrared observations spanning the predicted times of occultations.more » We ruled out a signal of the expected amplitude. Third, we attempted to detect the Rossiter–McLaughlin effect by performing high-resolution spectroscopy throughout a fading event. No effect was seen at the expected level, ruling out most (but not all) possible orientations for the hypothetical planetary orbit. Our spectroscopy also revealed strong, time-variable, high-velocity Hα and Ca H and K emission features. All these observations cast doubt on the planetary hypothesis, and suggest instead that the fading events represent starspots, eclipses by circumstellar dust, or occultations of an accretion hotspot.« less
NASA Astrophysics Data System (ADS)
Smith, Alexander; De Marco, O.
2007-12-01
Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.
Reports of Planetary Geology Program, 1982
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1982-01-01
Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.
Development and Use of Numerical and Factual Data Bases
1983-10-01
the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in
A new planetary mapping for future space missions
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen
2015-04-01
The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/
Revisiting the Energy Budget of WASP-43b: Enhanced Day-Night Heat Transport
NASA Astrophysics Data System (ADS)
Keating, Dylan; Cowan, Nicolas B.
2017-11-01
The large day-night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature of 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day-night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.
Alecu, Ionut M.; Stan, Andrada R.; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M.; Alecu, Rodica
2007-01-01
An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc PMID:17592459
Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2009-01-01
This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.
Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates
NASA Astrophysics Data System (ADS)
Pędzich, Paweł
2017-12-01
The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced) in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.
2014-01-01
Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.
2014-01-01
Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.
NASA Astrophysics Data System (ADS)
Kortenkamp, S.; Baldridge, A. M.; Bleamaster, L. F.; Buxner, S.; Canizo, T.; Crown, D. A.; Lebofsky, L. A.
2012-12-01
The Planetary Science Institute (PSI), in partnership with the Tucson Regional Science Center, offers a series of professional development workshops targeting K-8 science teachers in southern Arizona. Using NASA data sets, research results, and a team of PSI scientists and educators, our workshops provide teachers with in-depth content knowledge of fundamental concepts in astronomy, geology, and planetary science. Current workshops are: The Earth-Moon System, Exploring the Terrestrial Planets, Impact Cratering, The Asteroid-Meteorite Connection, Volcanoes of the Solar System, Deserts of the Solar System, and Astrobiology and the Search for Extrasolar Planets. Several workshops incorporate customized computer visualizations developed at PSI. These visualizations are designed to help teachers overcome the common misconceptions students have in fundamental areas of space science. For example, the simple geometric relationship between the sun, the moon, and Earth is a concept that is rife with misconceptions. How can the arrangement of these objects account for the constantly changing phases of the moon as well as the occasional eclipses of the sun and moon? Students at all levels often struggle to understand the explanation for phases and eclipses even after repeated instruction over many years. Traditional classroom techniques have proven to be insufficient at rooting out entrenched misconceptions. One problem stems from the difficulty of developing an accurate mental picture of the Earth-Moon system in space when a student's perspective has always been firmly planted on the ground. To address this problem our visualizations take the viewers on a journey beyond Earth, giving them a so-called "god's eye" view of how the Earth-Moon system would look from a distance. To make this journey as realistic as possible we use ray-tracing software, incorporate NASA mission images, and accurately portray rotational and orbital motion. During a workshop our visualizations are used in conjunction with more traditional classroom techniques. This combination instills a greater confidence in teachers' understanding of the concepts and therefore increases their ability to teach their students. To date we have produced over 100 unique visualizations to demonstrate many different fundamental concepts in the Earth and space sciences. Participants in each workshop are provided with digital copies of the visualizations in a variety of file formats. They also receive Keynote and PowerPoint templates pre-embedded with the visualizations to facility straightforward use on Macs or PCs in their classrooms. A measure of the success of PSI's workshops is that nearly 50% of our teachers have attended multiple workshops, and teachers often cite the visualizations as one of the top benefits of their experience. Details of our workshops as well as downloadable examples of some visualizations can be found at: www.psi.edu/epo. This work is supported by NASA EPOESS award NNX10AE56G: Workshops in Science Education and Resources (WISER): Planetary Perspectives.
NASA Astrophysics Data System (ADS)
Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo
2018-01-01
The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.
Quality assurance methodology for Varian RapidArc treatment plans
Cirino, Eileen T.; Xiong, Li; Mower, Herbert W.
2010-01-01
With the commercial introduction of the Varian RapidArc, a new modality for treatment planning and delivery, the need has arisen for consistent and efficient techniques for performing patient‐specific quality assurance (QA) tests. In this paper we present our methodology for a RapidArc treatment plan QA procedure. For our measurements we used a 2D diode array (MapCHECK) embedded at 5 cm water equivalent depth in MapPHAN 5 phantom and an Exradin A16 ion chamber placed in six different positions in a cylindrical homogeneous phantom (QUASAR). We also checked the MUs for the RapidArc plans by using independent software (RadCalc). The agreement between Eclipse calculations and MapCHECK/MapPHAN 5 measurements was evaluated using both absolute distance‐to‐agreement (DTA) and gamma index with 10% dose threshold (TH), 3% dose difference (DD), and 3 mm DTA. The average agreement was 94.4% for the DTA approach and 96.3% for the gamma index approach. In high‐dose areas, the discrepancy between calculations and ion chamber measurements using the QUASAR phantom was within 4.5% for prostate cases. For the RadCalc calculations, we used the average SSD along the arc; however, for some patients the agreement for the MUs obtained with RadCalc versus Eclipse was inadequate (discrepancy>5%). In these cases, the plan was divided into partial arc plans so that RadCalc could perform a better estimation of the MUs. The discrepancy was further reduced to within ~4% using this approach. Regardless of the variation in prescribed dose and location of the treated areas, we obtained very good results for all patients studied in this paper. PACS number: 87.55.Qr
Radar Probing of Planetary Regoliths: An Example from the Northern Rim of Imbrium Basin
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.; Campbell, Bruce A.; Ghent, Rebecca R.; Hawke, B. Ray; Leverington, David W.
2006-01-01
Imaging radar measurements at long wavelengths (e.g., >30 cm) allow deep (up to tens of meters) probing of the physical structure and dielectric properties of planetary regoliths. We illustrate a potential application for a Mars orbital synthetic aperture radar (SAR) using new Earth-based 70-cm wavelength radar data for the Moon. The terrae on the northern margin of Mare Imbrium, the Montes Jura region, have diffuse radar backscatter echoes that are 2-4 times weaker at 3.8-cm, 70-cm, and 7.5-m wavelengths than most other lunar nearside terrae. Possible geologic explanations are (1) a pyroclastic deposit associated with sinuous rilles in this region, (2) buried mare basalt or a zone of mixed highland/basaltic debris (cryptomaria), or (3) layers of ejecta associated with the Iridum and Plato impacts that have fewer meter-sized rocks than typical highlands regolith. While radar data at 3.8-cm to 7.5-m wavelengths suggest significant differences between the Montes Jura region and typical highlands, the surface geochemistry and rock abundance inferred from Clementine UV-VIS data and eclipse thermal images are consistent with other lunar terrae. There is no evidence for enhanced iron abundance, expected for basaltic pyroclastic deposits, near the source vents of the sinuous rilles radial to Plato. The regions of low 70-cm radar return are consistent with overlapping concentric ''haloes'' about Iridum and Plato and do not occur referentially in topographically low areas, as is observed for radar-mapped cryptomaria. Thus we suggest that the extensive radar-dark area associated with the Montes Jura region is due to overlapping, rock-poor ejecta deposits from Iridum and Plato craters. Comparison of the radial extent of low-radar-return crater haloes with a model for ejecta thickness shows that these rock-poor layers are detected by 70-cm radar where they are on the order of 10 m and thicker. A SAR in orbit about Mars could use similar deep probing to reveal the nature of crater - and basin-related deposits.
NASA Astrophysics Data System (ADS)
Nass, A.
2017-12-01
Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within Information Science and Management, and Data Warehousing. This contribution describes the necessary map archive components that have to be considered for an efficient establishment and user-oriented accessibility. It will be described how already existing developments could be used, and which components will have to be developed yet.
Popular Astronomy in the World and in Armenia
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2014-10-01
A review on the popular astronomy and astronomy outreach in the world and in Armenia is given. Various ways and methods of popularization of astronomy are described. The International Year of Astronomy (IYA-2009), amateur astronomy, publication of books and other materials, the database of astronomical books, AstroBook exhibition, science-popular articles, "Astghagitak" online science-popular astronomical journal, calendar of astronomical events, databases of Solar and Lunar eclipses 2001-2050, planetary triple conjunctions 2001-2050, and of periodic comets at ArAS webpage, ArAS School Lectures Program, public lectures, "Universe" club at "Mkhitar Sebastatsi" educational ensemble, the online database of Armenian astronomers, biographies of famous Armenian astronomers, astronomers' anniversaries, scientific journalism of Armenia, and "Mass media news" section at ArAS webpage are described and discussed.
NASA Astrophysics Data System (ADS)
Harris, W. M.; Scope Team
2003-04-01
The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1996-03-01
The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.
Planetary perspective. Report of Working Group Number 4
NASA Technical Reports Server (NTRS)
Rossbacher, L. A.
1985-01-01
The study of global megageomorphology from a planetary perspective requires that, philosophically, we view the Earth as a planet like any other; one among a number of bodies of varied size and composition which, together with the Sun, form the Solar System. A first step in the study of the Earth from the planetary perspective is the development of global distribution maps of surface factors as landforms, tectonics, and of key processes operating on Earth. Data of other types, such as gravity and magnetism, should also be included and, so far as possible, multiple data sets should be developed. The compilation of maps would serve as a catalyst for research and a basis for interpretation. They could be used scientifically to document changes such as glacial variations and their relationships to climate, volcanic eruptions and their effects, and coastal alterations. Slow and rapid changes should be studied together with the relationships between scale and the rapidity of change. A study of the relationship of geomorphology (i.e., surficial processes) to lithology and structure is needed. The planetary perspective can also help in the identification and investigation of exotic features such as suspect terrains.
Five Millennium Catalog of Lunar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "FiveMillenniumCanonofLunarEclipses." It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse (latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, Brian; Law, Emily
2016-10-01
NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also serve as outstanding resources for education and outreach. As such, they have been designated by NASA's Science Mission Directorate as key supporting infrastructure for the new education programs selected through the division's recent CAN.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.
2009-01-01
Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.
Low-Mass Stars and Their Companions
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler
In this thesis, I present seven studies aimed towards better understanding the demographics and physical properties of M dwarfs and their companions. These studies focus in turn on planetary, brown dwarf, and stellar companions to M dwarfs. I begin with an analysis of radial velocity and transit timing analyses of multi-transiting planetary systems, finding that if both signals are measured to sufficiently high precision the stellar and planetary masses can be measured to a high precision, eliminating a need for stellar models which may have systematic errors. I then combine long-term radial velocity monitoring and a direct imaging campaign to measure the occurrence rate of giant planets around M dwarfs. I find that 6.5 +/- 3.0% of M dwarfs host a Jupiter mass or larger planet within 20 AU, with a strong dependence on stellar metallicity. I then present two papers analyzing the LHS 6343 system, which contains a widely separated M dwarf binary (AB). Star A hosts a transiting brown dwarf (LHS 6343 C) with a 12.7 day period. By combining radial velocity data with transit photometry, I am able to measure the mass and radius of the brown dwarf to 2% precision, the most precise measurement of a brown dwarf to date. I then analyze four secondary eclipses of the LHS 6343 AC system as observed by Spitzer in order to measure the luminosity of the brown dwarf in both Spitzer bandpasses. I find the brown dwarf is consistent with theoretical models of an 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 +/- 130 K. This is the first non-inflated brown dwarf with a measured mass, radius, and multi-band photometry, making it an ideal test of evolutionary models of field brown dwarfs. Next, I present the results of an astrometric and radial velocity campaign to measure the orbit and masses of both stars in the GJ 3305 AB system, an M+M binary comoving with 51 Eridani, a more massive star with a directly imaged planetary companion. I compare the masses of both stars to largely untested theoretical models of young M dwarfs, finding that the models are consistent with the measured mass of star A but slightly overpredict the luminosity of star B. In the final two science chapters I focus on space-based transit surveys, present and future. First, I present the first catalog of statistically validated planets from the K2 mission, as well as updated stellar and planetary parameters for all systems with candidate planets in the first K2 field. The catalog includes K2-18b, a ``mini-Neptune'' planet that receives a stellar insolation consistent with the level that the Earth receives from the Sun, making it a useful comparison against planets of a similar size that are highly irradiated, such as GJ 1214 b. Finally, I present predictions for the WFIRST mission. While designed largely as a microlensing mission, I find it will be able to detect as many as 30,000 transiting planets towards the galactic bulge, providing information about how planet occurrence changes across the galaxy. These planets will be able to be confirmed largely through direct detection of their secondary eclipses. Moreover, I find that more than 50% of the planets it detects smaller than Neptune will be found around M dwarf hosts.
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2008-01-01
This catalog is a supplement to the "Five Millennium Canon of Solar Eclipses." It includes additional information for each eclipse that could not be included in the original 648-page publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Lunar Eclipse parameter, gamma, eclipse magnitude, geographic coordinates of greatest eclipse (latitude and longitude), and the circumstances at greatest eclipse (i.e., Sun altitude and azimuth, path width, and central line duration). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)-Revised
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "Five Millennium Canon of Lunar Eclipses. "It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse(latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
Observations and Thermochemical Calculations for Hot-Jupiter Atmospheres
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver; Cubillos, Patricio; Stemm, Madison
2015-01-01
I present Spitzer eclipse observations for WASP-14b and WASP-43b, an open source tool for thermochemical equilibrium calculations, and components of an open source tool for atmospheric parameter retrieval from spectroscopic data. WASP-14b is a planet that receives high irradiation from its host star, yet, although theory does not predict it, the planet hosts a thermal inversion. The WASP-43b eclipses have signal-to-noise ratios of ~25, one of the largest among exoplanets. To assess these planets' atmospheric composition and thermal structure, we developed an open-source Bayesian Atmospheric Radiative Transfer (BART) code. My dissertation tasks included developing a Thermochemical Equilibrium Abundances (TEA) code, implementing the eclipse geometry calculation in BART's radiative transfer module, and generating parameterized pressure and temperature profiles so the radiative-transfer module can be driven by the statistical module.To initialize the radiative-transfer calculation in BART, TEA calculates the equilibrium abundances of gaseous molecular species at a given temperature and pressure. It uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA, written in Python, is modular, documented, and available to the community via the open-source development site GitHub.com.Support for this work was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX12AL83H, by NASA through an award issued by JPL/Caltech, and through the Science Mission Directorate's Planetary Atmospheres Program, grant NNX12AI69G.
Griffith, Caitlin A
2014-04-28
Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey telescopes as well as ground-based efforts.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Tucson, AZ 2007
Gregg, Tracy K.P.; Tanaka, Kenneth L.; Saunders, R. Stephen; Bleamaster, Leslie F.
2007-01-01
Introduction Report of the Annual Mappers Meeting Planetary Science Institute Tucson, Arizona June 28 and 29, 2007 Approximately 22 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The 2007 meeting was convened by Tracy Gregg, Les Bleamaster, Steve Saunders, and Ken Tanaka and was hosted by David Crown and Les Bleamaster of the Planetary Science Institute (PSI) in Tucson, Arizona. Oral presentations and poster discussions took place on Thursday, June 28 and Friday, June 29. This year's meeting also included a unique opportunity to visit the operations centers of two active Mars missions; field trips to the University of Arizona took place on Thursday and Friday afternoons. Outgoing Geologic Mapping Subcommittee (GEMS) chairperson, Tracy Gregg, commenced the meeting with an introduction and David Crown followed with a discussion of logistics and the PSI facility; Steve Saunders (Planetary Geology and Geophysics Discipline Scientist) then provided a brief program update. Science presentations kicked off with Venus mapper Vicki Hansen and graduate students Eric Tharalson and Bhairavi Shankar of the University of Minnesota, Duluth, showing a 3-D animation of the global distribution of tesserae and discussing the implications, a progress report for V-45 quadrangle mapping, and a brief discussion of circular lows. Les Bleamaster (PSI) followed with a progress report on mapping of the V-50 quadrangle and the 1:10M Helen Planitia quadrangle. David Crown (PSI) concluded the Venus presentations with a discussion of progress made on the V-30 quadrangle. The remainder of Thursday's presentations jumped around the Solar System including Mars, Io, and Earth. Ken Tanaka of the U.S. Geological Survey (USGS) began the afternoon with a general discussion of the status of the planetary mapping program at USGS. Buck Janes (University of Arizona) provided background information about the Mars Odyssey Gamma Ray Spectrometer (GRS) and presented some new element maps, which may be useful for geologic mapping. Dave Williams of Arizona State University reported on the progress of his global Io map and James Dohm (University of Arizona) discussed results of terrestrial remote mapping studies. Thursday afternoon, the mappers were given a tour of the High Resolution Imaging Science Experiment (HiRISE) operations facility and were given some basic information about how the images are obtained, processed, and publicly released. With official GEMS transition completed at lunch on Thursday, incoming GEMS chair Leslie Bleamaster took the reigns of Friday's meeting. Science presentations began with Ken Tanaka discussing 1:20M-scale global and 1:2M-scale polar mapping of Mars. Jim Zimbelman (Smithsonian Institution) described his 1:1M Medusae Fossae map (MC-8 SE), which is nearing completion, and new mapping (MC-16 NW and MC-23 NW) to further evaluate the Medusae Fossae. Brent Garry, also of the Smithsonian Institution, presented work on Ascraeus Mons. Peter Mouginis-Mark (University of Hawai`i) reported progress on his 1:200K and larger maps of Tooting crater and of the Olympus Mons summit caldera. Laszlo Keszthelyi (USGS) presented mapping of Athabasca Valles, with much of the credit going to Windy Jaeger. Jim Skinner (USGS) introduced a new mapping project including nine MTM quadrangles in the Utopia Planitia region. Tracy Gregg finished off the day's science presentations with discussion of Hesperia Planum. After discussion was complete, the group once again traveled to the University of Arizona - this time for a tour of the Mars Phoenix operations center. Principal Investigator Peter Smith beamed as he led mappers through the multi-million dollar facility. A main topic of discussion throughout the entire meeting was that of nomenclature, specifically how to classify the individual depressions at the tops of volcanoes. Paterae, as has been used for Mars, Venus, and Io, was suggested, but i
NASA Technical Reports Server (NTRS)
Head, James W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Kumar, P. Senthil
2008-01-01
We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping [1,2]. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping [3]. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment," or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks [e.g., 4].
NASA Technical Reports Server (NTRS)
Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.
2008-01-01
Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.
a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization
NASA Astrophysics Data System (ADS)
Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.
2017-07-01
Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.
Public Outreach with NASA Lunar and Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Law, E.; Day, B
2017-01-01
NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.
Public Outreach with NASA Lunar and Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Law, E.; Day, B.
2017-09-01
NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.
Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Dylan; Cowan, Nicolas B.
The large day–night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature ofmore » 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day–night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.« less
Measuring and interpreting X-ray fluorescence from planetary surfaces.
Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard
2008-11-15
As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.
Robotic magnetic mapping with the Kapvik planetary micro-rover
NASA Astrophysics Data System (ADS)
Hay, A.; Samson, C.
2018-07-01
Geomagnetic data gathering by micro-rovers is gaining momentum both for future planetary exploration missions and for terrestrial applications in extreme environments. This paper presents research into the integration of a planetary micro-rover with a potassium total-field magnetometer. The 40 kg Kapvik micro-rover is an ideal platform due to an aluminium construction and a rocker-bogie mobility system, which provides good manoeuvrability and terrainability. A light-weight GSMP 35U (uninhabited aerial vehicle) magnetometer, comprised of a 0.65 kg sensor and 0.63 kg electronics module, was mounted to the chassis via a custom 1.21 m composite boom. The boom dimensions were optimized to be an effective compromise between noise mitigation and mechanical practicality. An analysis using the fourth difference method was performed estimating the magnetic noise envelope at +/-0.03 nT at 10 Hz sampling frequency from the integrated systems during robotic operations. A robotic magnetic survey captured the total magnetic intensity along three parallel 40 m long lines and a perpendicular 15 m long tie line over the course of 3.75 h. The total magnetic intensity data were corrected for diurnal variations, levelled by linear interpolation of tie-line intersection points, corrected for a regional gradient, and then interpolated using Delaunay triangulation to lead a residual magnetic intensity map. This map exhibited an anomalous linear feature corresponding to a magnetic dipole 650 nT in amplitude. This feature coincides with a storm sewer buried approximately 2 m in the subsurface. This work provides benchmark methodologies and data to guide future integration of magnetometers on board planetary micro-rovers.
A windowing and mapping strategy for gear tooth fault detection of a planetary gearbox
NASA Astrophysics Data System (ADS)
Liang, Xihui; Zuo, Ming J.; Liu, Libin
2016-12-01
When there is a single cracked tooth in a planet gear, the cracked tooth is enmeshed for very short time duration in comparison to the total time of a full revolution of the planet gear. The fault symptom generated by the single cracked tooth may be very weak. This study aims to develop a windowing and mapping strategy to interpret the vibration signal of a planetary gear at the tooth level. The fault symptoms generated by a single cracked tooth of the planet gear of interest can be extracted. The health condition of the planet gear can be assessed by comparing the differences among the signals of all teeth of the planet gear. The proposed windowing and mapping strategy is tested with both simulated vibration signals and experimental vibration signals. The tooth signals can be successfully decomposed and a single tooth fault on a planet gear can be effectively detected.
Mapping Sustainability Initiatives across a Region: An Innovative Survey Approach
ERIC Educational Resources Information Center
Somerville, Margaret; Green, Monica
2012-01-01
The project of mapping sustainability initiatives across a region is part of a larger program of research about place and sustainability education for the Anthropocene, the new geological age of human-induced planetary changes (Zalasiewicz, Williams, Steffen, & Crutzen, 2010). The study investigated the location, nature and type of…
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Interoperability In The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.
2015-12-01
As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.
The planetary spatial data infrastructure for the OSIRIS-REx mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.
2017-12-01
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity operations.The SPOC is a live system that handles inputs from spacecraft and science instrument telemetry, and science data producers. It includes multiple levels of validation, both automated and manual to process all data in a robust and reliable manner and eventually deliver it to the NASA Planetary Data System for archive.
Books and Other Resources for Education about the August 21, 2017, Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael
2017-06-01
As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP-1 on Solar Physics," AJP, 78, September, 890-901.
Scientists Develop Precision Maps for Other Planets
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2013-03-01
Earth and planetary scientists are united by their need for accurate maps. Without them, features studied have no reference point, attempts to understand how our and other planets evolved have no context, and missions flown to other planets lack purpose. "Making maps out of data is critical to further progress in our fields," explained Randolph Kirk of the U.S. Geological Survey's (USGS) Astrogeology Science Center, based in Flagstaff, Ariz. "Building maps helps other people find what's out there."
PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinetti, G.; Deroo, P.; Swain, M. R.
2010-04-01
We report here the first infrared spectrum of the hot-Jupiter XO-1b. The observations were obtained with the NICMOS instrument on board the Hubble Space Telescope during a primary eclipse of the XO-1 system. Near photon-noise-limited spectroscopy between 1.2 and 1.8 {mu}m allows us to determine the main composition of this hot-Jupiter's planetary atmosphere with good precision. This is the third hot-Jupiter's atmosphere for which spectroscopic data are available in the near-IR. The spectrum shows the presence of water vapor (H{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}), and suggests the possible presence of carbon monoxide (CO). We showmore » that the published IRAC secondary transit emission photometric data are compatible with the atmospheric composition at the terminator determined from the NICMOS spectrum, with a range of possible mixing ratios and thermal profiles; additional emission spectroscopy data are needed to reduce the degeneracy of the possible solutions. Finally, we note the similarity between the 1.2-1.8 {mu}m transmission spectra of XO-1b and HD 209458b, suggesting that in addition to having similar stellar/orbital and planetary parameters the two systems may also have a similar exoplanetary atmospheric composition.« less
The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability
NASA Astrophysics Data System (ADS)
Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.
2015-07-01
We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.
TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswaamy, G; Morrow, A; Kim, S
Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerancesmore » were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.« less
New MOST Photometry of the 55 Cancri System
NASA Astrophysics Data System (ADS)
Dragomir, Diana; Matthews, Jaymie M.; Winn, Joshua N.; Rowe, Jason F.
2014-04-01
Since the discovery of its transiting nature, the super-Earth 55 Cnc e has become one of the most enthusiastically studied exoplanets, having been observed spectroscopically and photometrically, in the ultraviolet, optical and infrared regimes. To this rapidly growing data set, we contribute 42 days of new, nearly continuous MOST photometry of the 55 Cnc system. Our analysis of these observations together with the discovery photometry obtained in 2011 allows us to determine the planetary radius (1.990+0.084 -0.080) and orbital period (0.7365417+0.0000025 -0.0000028) of 55 Cnc e with unprecedented precision. We also followed up on the out-of-transit phase variation first observed in the 2011 photometry, and set an upper limit on the depth of the planet's secondary eclipse, leading to an upper limit on its geometric albedo of 0.6.
Characteristics of the Time Variable Component of the Coronal Heating Process
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Poland, Art (Technical Monitor)
2001-01-01
The goal of the proposed study was to explore the non-steady nature of the coronal heating processes and its manifestations in the inner corona and interplanetary space by coordinating coronal SOHO observations in white light, ultraviolet, and extreme ultraviolet, with complementary radio occultation measurements during an unprecedented and rare coincidence of a total solar eclipse with the superior conjunction of a planetary spacecraft, Galileo, in February 1998. In addition, radio occultation measurements by the Mars Global Surveyor spacecraft in May 1998 spanned the inner heliosphere observed by coronal SOHO instruments and probing it to within 0.5 R(sub S), above the solar surface. Inferences of physical properties derived from these simultaneous observations were subsequently used in solar wind model computations to yield the range of plasma parameters characteristic of the fast and slow solar wind.
Planetary Data Archiving Activities of ISRO
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.
ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface composition & mineralogy of mars, Mars Exospheric Neutral Composition Analyser (MENCA) to study the composition and density of the Martian neutral atmosphere and Lyman Alpha Photometer (LAP) to investigate the loss process of water in Martian atmosphere, towards fulfilling the mission objectives. Active archive created in PDS for some of the instrument data during the earth phase of the mission is being analysed by the PIs. The Mars science data from the onboard instruments is expected during September 2014. The next planetary mission planned to moon is Chandrayaan-2 which consists of an orbiter having five instruments (http://www.isro.org) viz, (i) Imaging IR Spectrometer (IIRS) for mineral mapping, (ii) TMC-2 for topographic mapping, (iii) MiniSAR to detect water ice in the permanently shadowed regions on the Lunar poles, up to a depth of a few meters, (iv) Large Area Soft X-ray spectrometer (CLASS) & Solar X-ray Monitor (XSM) for mapping the major elements present on the lunar surface and (v)Neutral Mass Spectrometer (ChACE2) to carry out a detailed study of the lunar exosphere towards moon exploration; a rover for some specific experiments and a Lander for technology experiment and demonstration. The data is planned to be archived in PDS standards.
NASA Astrophysics Data System (ADS)
Helmboldt, Joseph; Schinzel, Frank K.; VLA Low-band Ionosphere and Transient Experiment (VLITE)
2018-01-01
Along with many Americans and several other observatories, the Karl G. Jansky Very Large Array (VLA) was observing the Sun before, during, and after the total solar eclipse on 21 August 2017. However, the VLA also simultaneously conducted a unique set of observations aimed at characterizing the effects of the eclipse on Earth’s ionosphere/plasmasphere. While most of the VLA antennas were pointed at the Sun, 12 were looking at the bright radio galaxy M87. These 12 antennas are part of the VLA Low-band Ionosphere and Transient Experiment (VLITE; http://vlite.nrao.edu), a dedicated backend that continuously captures, correlates, and analyzes data in the 320-384 MHz frequency range. In addition to traditional synthesis imaging, VLITE also characterizes fluctuations in ionospheric/plasmaspheric density via measured variations in visibility phases. When observing a bright cosmic source, this can be done with unmatched precision, the equivalent of ~1-10 ppm. To look for ionospheric/plasmaspheric disturbances tied to the eclipse, a specialized spectral decomposition was applied to the M87 VLITE data. This method exploits the fact that disturbed flux tubes within the plasmasphere appear as magnetic eastward-directed waves to the VLA because the plasmasphere is dynamically dominated by co-rotation. The phase speeds of these waves are proportional to distance, allowing for a reconstruction of the electron density gradient as a function of (slant) range and time. The time ranges spanned by the large-scale ionospheric depletion seen within concurrent Global Positioning System (GPS) data as a function of longitude were mapped to the flux tubes imaged with this method using the M87 observations. With the exception of some solar flare-induced fluctuations, the observed disturbances appear confined to this part of the range/time image. This strongly implies the disturbances resulted from the rapid depletion and slower recovery of the ionosphere/plasmasphere system brought on by the eclipse. It should be noted that these disturbances are not apparent within the GPS data, highlighting VLITE as a uniquely capable ionospheric/plasmaspheric disturbance hunter.
Photometric and spectral studies of the eclipsing polar CRTS CSS081231 J071126+440405
NASA Astrophysics Data System (ADS)
Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Kolbin, A. I.; Shugarov, S. Yu.; Goranskij, V. P.
2016-01-01
We present the results of the study of the eclipsing polar CRTS CSS081231 J071126+440405. Photometric observations allowed us to refine the orbital period of the system P_ circ = 0_ \\cdot ^d 0.08137673. Considerable changes in the appearance of the object's spectra have occurred over the period of September 20-21, 2001: the slope of the continuum changed from "red" to "blue", and the variability of the line profiles over the duration of the orbital period has also changed. Doppler maps have shown a shift of the emission line-forming region along the accretion stream closer to the white dwarf. We measured the duration of the eclipse of the system and imposed constraints on the inclination angle 78_ \\cdot ^ circ 7 < i < 79_ \\cdot ^ circ 3. The derived radial velocity amplitude was used to obtain the basic parameters of the system: M 1 = 0.86 ± 0.08 M ⊙, M 2 = 0.18 ± 0.02 M ⊙, q = 0.21 ± 0.01, R L2 = 0.20 ± 0.03 R ⊙, A = 0.80 ± 0.03 R ⊙. The spectra of the object exhibit cyclotron harmonics. Their comparison with model spectra allowed us to determine the parameters of the accretion column: B = 31-34 MG, T e = 10-12 keV, θ = 80-90°, and Λ = 105.
Spaceborne imaging radar research in the 90's
NASA Technical Reports Server (NTRS)
Elachi, Charles
1986-01-01
The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.
Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2017-12-01
The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Division of Atmospheric and Geospace Sciences of the National Science Foundation.
The Africa Initiative for Planetary and Space Sciences
NASA Astrophysics Data System (ADS)
Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.
2017-12-01
Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to initiate this process. References: [1] Baratoux, D., et al. (2017) Africa initiative for planetary and space sciences, Eos, 98, https://doi.org/10.1029/2017EO075935. [2] Baratoux, D., et al. (2017) The state of planetary and space sciences in Africa, Eos, 98, https://doi.org/10.1029/2017EO075833.
GIS Technologies For The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.
2015-12-01
Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.
NASA's Space Lidar Measurements of Earth and Planetary Surfaces
NASA Technical Reports Server (NTRS)
Abshire, James B.
2010-01-01
A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.
Satellite observations of surface temperature during the March 2015 total solar eclipse.
Good, Elizabeth
2016-09-28
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Eclipses and dust formation by WC9 type Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Williams, P. M.
2014-12-01
Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.
Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle
NASA Technical Reports Server (NTRS)
Abramyan, Lucy
2005-01-01
The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.
Addressing Students' Misconceptions about Eclipses
ERIC Educational Resources Information Center
Slater, Timothy F.; Gelderman, Richard
2017-01-01
The upcoming Aug. 21, 2017, total solar eclipse, with its 70-mile wide path of totality stretching across much of North America, provides us with a unique opportunity to teach students about eclipses. One might naturally assume that students have little difficulty understanding the nature of eclipses. After all, the notion that eclipses occur when…
Public outreach and education during the 2016 total solar eclipse in Palu and Malang
NASA Astrophysics Data System (ADS)
Rachmadian, A. P.; Kunjaya, C.; Wahono, W.; Anugrah, A. A.
2016-11-01
MAGIC (Ma Chung Galactic Club) of Ma Chung University, Malang, is one of the amateur astronomers club who did public outreach and education during the Total Solar Eclipse March 9, 2016. The motivation for doing this was the bad experience during Total Solar Eclipse 1983. At that time the Indonesian government forbid the people to observe the Total Solar Eclipse in a way to avoid blindness. We try to fix this misunderstanding by educating people the safe way to enjoy the partial and total solar eclipse. MAGIC team was divided into two teams, one team went to Palu and did the solar eclipse related education in six high schools before and during the eclipse. The other team did the observation on Ma Chung University campus, Malang, to accompany people who want to see the partial solar eclipse through filtered telescopes. The sky during the solar eclipse was clear both in Malang and Palu. People were very excited and satisfied with the solar eclipse, and their interest to astronomy is increased.
NASA Technical Reports Server (NTRS)
Doyle, Laurance R.
1998-01-01
During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.
The X-ray eclipse of the LMC binary CAL 87
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.
1993-01-01
ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.
The influence of Mars' magnetic topology on atmospheric escape
NASA Astrophysics Data System (ADS)
Curry, S.; Luhmann, J. G.; DiBraccio, G. A.; Dong, C.; Xu, S.; Mitchell, D.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; McFadden, J. P.; Ma, Y. J.; Brain, D.
2017-12-01
At weakly magnetized planets such as Mars and Venus, the solar wind directly interacts with the upper atmosphere where ions can be picked up and swept away by the background convection electric field. These pick-up ions have a gyroradius on the planetary scale that is largely dominated by the interplanetary magnetic field (IMF). But at Mars, their trajectory is also influenced by the existence of remanent crustal magnetic fields, which are thought to create a shielding effect for escaping planetary ions when they are on the dayside. Consequently, the magnetic topology changes at Mars as magnetic reconnection occurs between the draped (IMF) and the crustal magnetic fields (closed). The resulting topology includes open field lines in the solar wind with one footprint attached to the planet. Using magnetohydrodynamic (MHD) and test particle simulations, we will explore the influence of the magnetic topology on ion escape. We will present escape rates for planetary ions for different crustal field positions during different IMF configurations, with +/-BY and +/-BZ components in the Mars Sun Orbit (MSO) coordinate system. We will also compare global maps of ion outflow and escape with open / closed magnetic field line maps and compare our results with ion fluxes and magnetic field data from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. Our results relating the dynamic magnetic field topology at Mars and planetary ion escape are an important aspect of magnetospheric physics and planetary evolution, both of which have applications to our own solar system and the increasing number of exoplanets discovered every year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej
2014-02-01
We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less
NASA Astrophysics Data System (ADS)
Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo
2017-02-01
Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.
The Great American Eclipse: Lessons Learned from Public Education
NASA Astrophysics Data System (ADS)
Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory
2018-01-01
The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that emerged from the eclipse, there are valuable lessons that will be useful in helping the public prepare for future eclipses, in 2024 and beyond.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
Editors note:This week were in Boulder, Colorado at the47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Yesterdayspress conference was titled Preparing for the 2017 Great American Eclipse. Four speakers highlighted both outreach and research projects that are planned for the eclipse that will cross the continental United States on August 21st next year.Eclipse from High AltitudeFirst up, Angela Des Jardins (Montana Space Grant Consortium) introduced us to the nationwide Eclipse Ballooning Project.An eclipse as seen from the ISS. Being up high gives you a very different perspective on eclipses! [NASA]The last total solar eclipse in the continental United States was in 1979, and people were told to stay inside and watch from their TVs! For the next total solar eclipse in the US, we want the opposite: for everyone to be outdoors and in the path of totality to watch (with eclipse glasses lets be safe)! This eclipse is a fantastic educational opportunity, and a way to reach an enormous audience.And what better way to experience the eclipse than to be involved? The Eclipse Ballooning Project is involving more than 50 student teams from 30 states to fly high-altitude balloons at 20 locations along the total eclipse path. These balloons will send live videos and images from the edge of space to the NASA website.Why? Being someplace high up provides an entirely different view for an eclipse! Instead of looking up to watch the Moon slide in front of the Sun, you can look down to watch the Moons shadow race across the Earths surface at thousands of miles per hour. This unique perspective is rare, and has certainly never been covered live. This will be an awesome addition to other coverage of the eclipse!At Maximum TotalityThe next speaker, Gordon Emslie, described the outreach efforts planned at his institution, Western Kentucky University (WKU). The location where the eclipse totality will last the longest 2 minutes and 40 seconds is the small town of Hopkinsville, KY. WKU is located a little over an hour away, and both locations are prepared for a large influx of people on eclipse day!Partial solar eclipse as viewed by the space-based Solar Dynamics Observatory. [NASA/SDO]WKU is located just off the centerline of eclipse path, which has some advantages: this provides better viewing of some of the chromospheric features of the Sun during the eclipse, like priminences and solar loops. WKU is setting up a variety of educational and public outreach activities at their football stadium and the WKU farm, and they encourage you to come visit for the eclipse!In addition, they are participating in a nationwide experiment called Citizen CATE, short for the Continental American Telescopic Eclipse. This project will use 60 telescopes spanning the 2500 mile path of totality to record continuous data of the eclipse as it travels across the US. The result will be data of a remarkable 90 minutes of totality, revealing the activity of the solar corona and providing an extended view of the eclipse as has never been seen before.Science During the EclipseNext up was Shadia Habbal (University of Hawaii), who is a co-leader of the AAS 2017 Eclipse Task Force. In addition to her education and outreach efforts associated with the eclipse, however, Habbal is a solar eclipse researcher. She and her collaborators are known as the Solar Wind Sherpas, due to the fact that they hand-carry their science equipment around the world for solar eclipses!Solar corona during a 2008 eclipse, with color overlay indicating emission from highly ionized iron lines. [Habbal et al. 2010]The primary science done during solar eclipses is the study of the solar corona, the region that extends from the solar surface out to several solar radii. This region is too faint to observe normally, but when the light from the Suns disk is blocked out, we can examine it.Unfortunately, the space telescopes that observe the Sun all have relatively narrow fields of view. But during an eclipse, we can gain the larger context for the corona with ground-based observations, with the Moon conveniently blocking the light from the Suns disk! The cover photo is a spectacular example of this.Observations of the corona during eclipses can provide information on both enormous events, like coronal mass ejections, and faint dynamical features, like plasma instabilities and expanding loops. In addition, we can learn about the plasma properties by examining emission from highly charged ions. The upcoming eclipse should provide a great opportunity to do some coronal science!A Unique OpportunityThe final press-conference speaker for the meeting was Jay Pasachoff (Williams College and Caltech), a veteran solar eclipse observer who was able to speak to what we could expect if we make it into the path of totality next year.Path of totality across the continental US for the August 2017 eclipse. [Fred Espenak/NASA GSFC]Pasachoff pointed out that there are nearly 12 million people located within the band of totality. There are probably another 200 million within a days drive! He strongly encouraged anyone able to make it to the path of totality to do so, pointing out that the experience in person is completely unlike the experience of watching a video. The process of watching the world around you go dark, he says, is something that simply isnt captured when you watch an eclipse on TV.If you plan to travel for the eclipse, Pasachoffs recommendation is to aim for the northwest end of the path of totality, rather than the southeast end surprisingly, weather statistics suggest you have a better chance of not getting clouded out in the northwest.We now have a year left to educate everyone likely to view the eclipse on when and how to view it safely! Accordingly, Pasachoff concluded the conference by providing a series of links on where to find more information:eclipses.infototalsolareclipse.orgGreatAmericanEclipse.comeclipsophile.com
The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penn, James; Vallis, Geoffrey K, E-mail: jp492@exeter.ac.uk, E-mail: g.vallis@exeter.ac.uk
2017-06-20
Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension ofmore » the well-studied Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.« less
Eclipsing the Light...Fantastic! Teaching Science.
ERIC Educational Resources Information Center
Leyden, Michael B.
1995-01-01
Features the concepts of optics and geometry of eclipses. Presents the "eclipse rule," suggesting classroom activities in which students derive this rule. Includes some triangles activities for outdoors that illustrate eclipsing and sighting phenomena. (ET)
Bringing the Great American Solar Eclipse to West Virginia
NASA Astrophysics Data System (ADS)
Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.
2017-12-01
West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.
Testing geoscience data visualization systems for geological mapping and training
NASA Astrophysics Data System (ADS)
Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.
2008-09-01
Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed ADVISER (ADvanced VIsualization for Solar system Exploration) [1,2] as a tool for taking planetary geologists virtually "into the field" in the IVR Cave environment in support of several scientific themes and have assessed its application to geological mapping of Venus. ADVISER aims to create a field experience by integrating multiple data sources and presenting them as a unified environment to the scientist. Additionally, we have developed a virtual field kit, tailored to supporting research tasks dictated by scientific and mapping themes. Technically, ADVISER renders high-resolution topographic and image datasets (8192x8192 samples) in stereo at interactive frame-rates (25+ frames-per-second). The system is based on a state-of-the-art terrain rendering system and is highly interactive; for example, vertical exaggeration, lighting geometry, image contrast, and contour lines can be modified by the user in real time. High-resolution image data can be overlaid on the terrain and other data can be rendered in this context. A detailed description and case studies of ADVISER are available.
The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon
NASA Astrophysics Data System (ADS)
Ahn, Young Sook; Lee, Yong Sam
2004-12-01
The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Towne, Linda; Kaplan, George H.
2017-01-01
In anticipation of the 2017 August 21 total solar eclipse over the continental United States, the history of U.S. Naval Observatory eclipse observations illustrates the changes in science, technology, and policy over the past 148 years.USNO eclipse observations began in 1869, when staff traveled to Des Moines, Iowa and the Bering Strait to look for intra-mercurial planets and to observe the solar corona. During the golden age of eclipse expeditions, the USNO officially participated in a dozen expeditions between 1869 and 1929. Seven of these expeditions were to US locations: 1869 in Iowa; 1878 in Colorado, Wyoming, and Texas; 1880 in California; 1900 in Georgia and North Carolina; 1918 in Oregon; 1923 in California; and 1925 in New York. A total solar eclipse has not traced a path across the width of the continental US since 1918 although several eclipses have passed over parts of the US since then.A few official expeditions occurred later in the 20th century to measure the solar diameter, including a total eclipse in the northwest US in 1979 and an annular eclipse across the southeast in 1984. However, observations began transitioning to mostly personal adventures as individual astronomers arranged unofficial trips.Historians can use the USNO Multi-year Interactive Computer Almanac (MICA) to compute local circumstances for solar eclipses world-wide starting with the annual eclipse of 1800 April 24, which was visible from Alaska. Those looking to make history in 2017 may consult the USNO 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php).
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
2014-09-01
periodicity for many centuries but it was not until Johannes Kepler (1619), a German mathematician, developed his three laws of planetary motion in the early...ORBITS Johannes Kepler was a brilliant mathematician hired to map the orbit of Mars by the infamous elk owner, duelist, and astronomer Tycho Brahe...Dreyer & Brahe, 1890). Despite a difference in viewpoints ( Kepler supported Copernicus while Brahe developed his own model of planetary motion in
NASA Videofile of Solar Eclipse from Jefferson City, Missouri
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. During this event, NASA Glenn Research Center celebrates the eclipse at the capital eclipse event in Jefferson City, MO
Building on the US Eclipse Experience in Schools, with the Public, and Beyond the US
NASA Astrophysics Data System (ADS)
Simmons, Mike; Chee, Zoe; Bartolone, Lindsay
2018-01-01
Astronomers Without Borders (AWB) organized several programs for the August 21, 2017 total solar eclipse, both before and after the event, to increase participation, build on the inspiration of the eclipse, share the eclipse experience, and prepare for the eclipse in 2024.AWB focused on preparing institutions that were least likely to receive resources despite extensive nationwide efforts. AWB distributed more than 100,000 donated glasses, to isolated schools, children's cancer hospitals, abused women’s shelters, and other institutions without access to other resource providers.AWB’s Building on the Eclipse Education Program builds on the inspiration of the eclipse for STEM education. The program uses a small, personal spectroscope kit to study sunlight in different scientific fields and includes free classroom activities that meet NGSS standards.A program to collect eclipse observing glasses for schools in developing countries for future eclipses was announced around the time of the eclipse and quickly went viral, with coverage by national and innumerable local media outlets. This effort builds on AWB’s earlier programs for schools in Africa and in South America for past eclipses. Well over one million pairs are expected, as compared to the tens of thousands AWB provided through crowdfunding for previous efforts. Nearly 1000 glasses collection centers were created spontaneously, without a public call. Factors leading to widespread and diverse public participation will be presented.A program calling for first-time eclipse observers to share their experiences addresses a major issue in encouraging people to travel to the path of totality. Expert and eclipse-enthusiast testimony often fails to convince people of the value of the experience of totality as “a few minutes of darkness.” This program will share the disconnect between expectation and experience from first-time “ordinary” observers to encourage others to travel to the path of totality for the total solar eclipse in 2024.Analysis and planned follow-up and expanded programs will also be described.
Satellite observations of surface temperature during the March 2015 total solar eclipse
2016-01-01
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764
Symbolism and discovery: eclipses in art.
Blatchford, Ian
2016-09-28
There is a fascinating tradition of depicting solar eclipses in Western art, although these representations have changed over time. Eclipses have often been an important feature of Christian iconography, but valued as much for their biblical significance as for the splendour of the physical event. However, as Western culture passed through the Renaissance and Enlightenment the depictions of eclipses came to reflect new astronomical knowledge and a thirst for rational learning well beyond the confines of the church and other elites. Artists also played a surprisingly important role in helping scientists in the nineteenth century understand and record the full phenomena of an eclipse, even as the advent of photography also came to solve a number of scientific puzzles. In the most recent century, artists have responded to eclipses with symbolism, abstraction and playfulness.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Spectral irradiance curve calculations for any type of solar eclipse
NASA Technical Reports Server (NTRS)
Deepak, A.; Merrill, J. E.
1974-01-01
A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.
Horizon Based Orientation Estimation for Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.
2016-01-01
Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.
Interagency Report: Astrogeology 58, television cartography
Batson, Raymond M.
1973-01-01
The purpose of this paper is to illustrate the processing of digital television pictures into base maps. In this context, a base map is defined as a pictorial representation of planetary surface morphology accurately reproduced on standard map projections. Topographic contour lines, albedo or geologic overprints may be super imposed on these base maps. The compilation of geodetic map controls, the techniques of mosaic compilation, computer processing and airbrush enhancement, and the compilation of con tour lines are discussed elsewhere by the originators of these techniques. A bibliography of applicable literature is included for readers interested in more detailed discussions.
Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)
NASA Astrophysics Data System (ADS)
Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.
2006-12-01
Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.
Reconstruction of the accretion disk in six cataclysmic variable stars
NASA Astrophysics Data System (ADS)
Rutten, R. G. M.; van Paradijs, J.; Tinbergen, J.
1992-07-01
The maximum-entropy eclipse-mapping algorithm is used to reconstruct images of the accretion disks of the novalike variable stars RW Tri, UX UMa, SW Sex, LX Ser, V 1315 Aql, and V363 Aur. The 2D disk intensity maps deduced from the light curves reveal the size of the disk and its radial intensity dependence. Black-body temperature maps deduced from the intensity maps at different wavelengths show that the disks in RW Tri, UX UMa, and V363 Aur have a radial temperature dependence which closely matches the fundamental theoretical run of the effective temperature with radial distance from disk center: T(eff) varies as R exp -3/4. The system V1315 Aql and SW Sex exhibit a much flatter run of T(R) in the inner region of the disk, while LX Ser appears to hold a position in between these two extremes. The consequences of these results for accretion disk models are also discussed.
Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.
2017-12-01
The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon's node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon’s node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era. PMID:25075747
Extrasolar Planets Observed with JWST and the ELTs
NASA Technical Reports Server (NTRS)
Deming, L. Drake
2010-01-01
The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.
K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf
NASA Astrophysics Data System (ADS)
Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.
2018-03-01
We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.
Proper motion and secular variations of Keplerian orbital elements
NASA Astrophysics Data System (ADS)
Butkevich, Alexey G.
2018-05-01
High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku; Morse, Jon A.
2014-04-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 μm photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
NASA Technical Reports Server (NTRS)
Angerhausen, Daniel; Huber, Klaus F.; Mandell, Avi M.; McElwain, Michael W.; Czesla, Stefan; Madhusudhan, Nikku
2012-01-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5- meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micrometer photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPOFLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1.
NASA Astrophysics Data System (ADS)
Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury
2018-05-01
There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.
2018-04-01
It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.
Identification of cryovolcanism on Titan using fuzzy cognitive maps
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Kargel, Jeffrey S.; Lunine, Jonathan I.; Fink, Wolfgang; Bishop, Michael P.
2010-04-01
Future planetary exploration of Titan will require higher degrees of on-board automation, including autonomous determination of sites where the probability of significant scientific findings is the highest. In this paper, a novel Artificial Intelligence (AI) method for the identification and interpretation of sites that yield the highest potential of cryovolcanic activity is presented. We introduce the theory of fuzzy cognitive maps (FCM) as a tool for the analysis of remotely collected data in planetary exploration. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction of planetary scientists and AI experts. As an application example, we show how FCM can be employed to solve the challenging problem of recognizing cryovolcanism from Synthetic Aperture Radar (SAR) Cassini data. The fuzzy cognitive map is constructed using what is currently known about cryovolcanism on Titan and relies on geological mapping performed by planetary scientists to interpret different locales as cryovolcanic in nature. The system is not conceived to replace the human scientific interpretation, but to enhance the scientists' ability to deal with large amounts of data, and it is a first step in designing AI systems that will be able, in the future, to autonomously make decisions in situations where human analysis and interpretation is not readily available or could not be sufficiently timely. The proposed FCM is tested on Cassini radar data to show the effectiveness of the system in reaching conclusions put forward by human experts and published in the literature. Four tests are performed using the Ta SAR image (October 2004 fly-by). Two regions (i.e. Ganesa Macula and the lobate high backscattering region East of Ganesa) are interpreted by the designed FCM as exhibiting cryovolcanism in agreement with the initial interpretation of the regions by Stofan et al. (2006). Importantly, the proposed FCM is shown to be flexible and adaptive as new data and knowledge are acquired during the course of exploration. Subsequently, the FCM has been modified to include topographic information derived from SAR stereo data. With this additional information, the map concludes that Ganesa Macula is not a cryovolcanic region. In conclusion, the FCM methodology is shown to be a critical and powerful component of future autonomous robotic spacecraft (e.g., orbiter(s), balloon(s), surface/lake lander(s), rover(s)) that will be deployed for the exploration of Titan.
Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data
NASA Astrophysics Data System (ADS)
Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.
2017-12-01
This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode
Preliminary Correlations of Gravity and Topography from Mars Global Surveyor
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
Cognitive aspects of ancient Maya eclipse theory.
NASA Astrophysics Data System (ADS)
Closs, M. P.
This paper is concerned with determining the nature of eclipse phenomena as it was perceived by the ancient Maya. It approaches the problem by considering the linguistic information pertaining to eclipses and by exploring the traditional beliefs associated with the occurrence of eclipses among the postconquest Maya. These data yield a model of a native eclipse theory which is compatible with hieroglyphic and iconographic materials pertaining to the ancient Maya.
Notable Images of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry
2018-01-01
The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.
The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
NASA Astrophysics Data System (ADS)
Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.
2018-03-01
Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.
Scott, C J; Bradford, J; Bell, S A; Wilkinson, J; Barnard, L; Smith, D; Tudor, S
2016-09-28
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Visualizing Moon Data and Imagery with Google Earth
NASA Astrophysics Data System (ADS)
Weiss-Malik, M.; Scharff, T.; Nefian, A.; Moratto, Z.; Kolb, E.; Lundy, M.; Hancher, M.; Gorelick, N.; Broxton, M.; Beyer, R. A.
2009-12-01
There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Moon Web site was a limited series of maps and Apollo content. The new Moon in Google Earth feature provides a similar virtual planet experience for the Moon as we have for the Earth and Mars. We incorporated existing Clementine and Lunar Orbiter imagery for the basemaps and a combination of Kaguya LALT topography and some terrain created from Apollo Metric and Panoramic images. We also have information about the Apollo landings and other robotic landers on the surface, as well as historic maps and charts, and guided tours. Some of the first-released LROC imagery of the Apollo landing sites has been put in place, and we look forward to incorporating more data as it is released from LRO, Chandraayan-1, and Kaguya. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections — in geological context and within a single user interface — are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers. Screen shot of Moon in Google Earth, a freely downloadable application for visualizing Moon imagery and data.
78 FR 49908 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Eclipse Aerospace... Eclipse Aerospace, Inc., 26 East Palatine Road, Wheeling, Illinois 60090; telephone: (877) 373-7978...
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Turbet, Martin; Mandell, Avi; Kopparapu, Ravi Kumar; Arney, Giada; Domagal-Goldman, Shawn
2018-06-01
M-dwarfs are the most common type of stars in our galaxy. Ultra-cool dwarfs (T < 2700 K) are a sub-stellar class of late M-dwarfs and represent nearly ~ 15% of astronomical objects in the stellar neighborhood of the Sun. Their smaller size than regular M-dwarfs allows easier detection of rocky exoplanets in close orbits, and this potential was recently realized by the discovery of the TRAPPIST-1 system. Located about 12 pc away, TRAPPIST-1 has seven known planets, and it is one of the most promising rocky-planet systems for follow-up observations due to the depths of the transit signals. Transit-timing variation (TTVs) measurements of the TRAPPIST-1 planets suggest terrestrial or volatile-rich composition. Also, it has been found that three planets (TRAPPIST-1 e, f and g) are in the Habitable Zone (HZ) where surface temperatures would allow surface water to exist. These planets will be prime targets for atmospheric characterization with JWST owing to their relative proximity to Earth and frequent planetary transits.Atmospheric properties are major components of planet habitability. However, the detectability of gaseous features on rocky planets in the HZ may be severely impacted by the presence of clouds and/or hazes in their atmosphere. We have already seen this phenomenon in the “flat” transit transmission spectra of larger exoplanets such as GJ 1214b, WASP-31b, WASP-12b and HATP-12b.In this work, we use the LMDG global climate model to simulate several possibilities of atmospheres for TRAPPIST-1 e, f and 1g: 1) Archean Earth, 2) modern Earth and 3) CO2-dominated atmospheres. We also calculate synthetic transit spectra using the GSFC Planetary Spectrum Generator (PSG), and determine the number of transits needed to observe key spectral features for both JWST and future telescopes (ARIEL, LUVOIR, HabEx). We will identify differences in the spectra of cloudy vs non-cloudy, and determine how much information on spatial variability in atmosphere characteristics can be extracted from time-resolved transit and eclipse mapping. A particular attention will be given to the impact of the atmospheric variability when adding transit spectra, and how this may affect atmospheric parameter retrievals.
SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining
NASA Technical Reports Server (NTRS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2013-01-01
SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.
Research in volcanic geology, petrology and planetary science at MIT, 1969 to 1974
NASA Technical Reports Server (NTRS)
Mcgetchin, T. R.
1974-01-01
The behavior of volcanoes was studied by geologic mapping, petrologic investigations of lava and xenoliths, physical measurements, and theoretical modelling. Field observations were conducted in Alaska (Nunivak Island), Iceland, Hawaii (Mauna Kea), Italy (Etna, Stromboli), and Arizona. The results are discussed and compared with known data for lunar and planetary gelogy. Field methods used for the volcano research are cited and a list is given of all participating scientists and students. Publications and abstracts resulting from the research are also listed.
Transit Spectroscopy: new data analysis techniques and interpretation
NASA Astrophysics Data System (ADS)
Tinetti, Giovanna; Waldmann, Ingo P.; Morello, Giuseppe; Tessenyi, Marcell; Varley, Ryan; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; Hollis, Morgan
2014-11-01
Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. A key observable for planets is the chemical composition and state of their atmosphere. To date, two methods can be used to sound exoplanetary atmospheres: transit and eclipse spectroscopy, and direct imaging spectroscopy. Although the field of exoplanet spectroscopy has been very successful in past years, there are a few serious hurdles that need to be overcome to progress in this area: in particular instrument systematics are often difficult to disentangle from the signal, data are sparse and often not recorded simultaneously causing degeneracy of interpretation. We will present here new data analysis techniques and interpretation developed by the “ExoLights” team at UCL to address the above-mentioned issues. Said techniques include statistical tools, non-parametric, machine-learning algorithms, optimized radiative transfer models and spectroscopic line-lists. These new tools have been successfully applied to existing data recorded with space and ground instruments, shedding new light on our knowledge and understanding of these alien worlds.
Exoplanet Atmospheres: From Light-Curve Analyses to Radiative-Transfer Modeling
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Foster, Andrew S.; Loredo, Thomas J.
2015-01-01
Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the small planet-to-star constrast ratios demand a meticulous data analysis, and the limited available spectral bands can further restrain constraints, a Bayesian approach can robustly reveal what constraints can we set, given the data.We review the main aspects considered during the analysis of Spitzer time-series data by our group with an aplication to WASP-8b and TrES-1. We discuss the applicability and limitations of the most commonly used correlated-noise estimators. We describe our open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART calculates the planetary emission or transmission spectrum by solving a 1D line-by-line radiative-transfer equation. The generated spectra are integrated over determined bandpasses for comparison to the data. Coupled to our Multi-core Markov-chain Monte Carlo (MC3) statistical package, BART constrains the temperature profile and chemical abundances in the planet's atmosphere. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae
NASA Astrophysics Data System (ADS)
Hopkins, Jeff; Stencel, R. E.
2011-01-01
Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
Sky and Elemental Planetary Mapping Via Gamma Ray Emissions
NASA Technical Reports Server (NTRS)
Roland, John M.
2011-01-01
Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.
The eclipse of the Sun from 20 May 2015
NASA Astrophysics Data System (ADS)
Tiron, S. D.
2015-04-01
The interview of the Radio Moldova with astronomer about the coming Eclipse of the Sun, included the following topics: 1) The circumstances of the Total eclipse 2) The circumstances of the Partial Eclipse in the Republic of Moldova 3) Protection of eyes during Observations
Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong
2018-04-01
It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.
Outreach activities in anticipation of the 2016 solar eclipse in Sorong
NASA Astrophysics Data System (ADS)
Putra Raharja, Endra; Pramudya, Yudhiakto
2016-11-01
Sorong is located outside the narrow path of total solar eclipse on March 9th, 2016. The predicted obscuration of the sun was 94.2%. The public outreach to anticipate the solar eclipse was intended to educate students in junior and senior high school in Sorong Regency. Some of them are located in the remote area where the educational materials are difficult to find. The public outreach is unique, since it was run by the local person who is student of physics education. The student has both the ability to explain the solar eclipse phenomenon and able to adapt to knowledge level of students. The materials that were given to the schools are brochure and the eclipse glasses. Beside solar eclipse lectures in class, the pinhole workshop and observation practice were held. The limited materials and resources were faced during the public outreach. However, the enthusiasm was shown by the students and teachers. At least one of the schools held the solar eclipse observation on the day of the eclipse.
Visible Wavelength Exoplanet Phase Curves from Global Albedo Maps
NASA Astrophysics Data System (ADS)
Webber, Matthew; Cahoy, Kerri Lynn
2015-01-01
To investigate the effect of three-dimensional global albedo maps we use an albedo model that: calculates albedo spectra for each points across grid in longitude and latitude on the planetary disk, uses the appropriate angles for the source-observer geometry for each location, and then weights and sums these spectra using the Tschebychev-Gauss integration method. This structure permits detailed 3D modeling of an illuminated planetary disk and computes disk-integrated phase curves. Different pressure-temperature profiles are used for each location based on geometry and dynamics. We directly couple high-density pressure maps from global dynamic radiative-transfer models to compute global cloud maps. Cloud formation is determined from the correlation of the species condensation curves with the temperature-pressure profiles. We use the detailed cloud patterns, of spatial-varying composition and temperature, to determine the observable albedo spectra and phase curves for exoplanets Kepler-7b and HD189733b. These albedo spectra are used to compute planet-star flux ratios using PHOENIX stellar models, exoplanet orbital parameters, and telescope transmission functions. Insight from the Earthshine spectrum and solid surface albedo functions (e.g. water, ice, snow, rocks) are used with our planetary grid to determine the phase curve and flux ratios of non-uniform Earth and Super Earth-like exoplanets with various rotation rates and stellar types. Predictions can be tailored to the visible and Near-InfraRed (NIR) spectral windows for the Kepler space telescope, Hubble space telescope, and future observatories (e.g. WFIRST, JWST, Exo-C, Exo-S). Additionally, we constrain the effect of exoplanet urban-light on the shape of the night-side phase curve for Earths and Super-Earths.
NASA Astrophysics Data System (ADS)
Zender, Joe; Barnes, Rebecca; Zuidervaart, Huib; Benkhoff, Johannes; Martinez, Santa; Breitfellner, Michel; Almeida, Miguel
2017-04-01
On 9 May 2016 an intriguing and rare event occurred. Seen from most countries in Europe, Mercury, the planet nearest to the Sun, crossed the Sun's surface. Such a phenomenon is better known for the moon, for during such an eclipse it gets dark (or darker), so everyone will notice that something special is going on. But as Mercury is very, very small compared to the Sun, one will never remark such a Mercury-eclipse by oneself. It was the famous astronomer Johannes Kepler who realized in 1601 that Mercury (or Venus) transits could be observed from the Earth. Later in 1691, Edmund Halley published a mathematical algorithm to compute the solar parallax (from which one can determine the distance from Earth to the Sun) from observations made during the transit. It is sad to note that neither of the both scientists had the chance to witness a Mercury transit during their lifetime. Well before the event, the ESA Communication Office announced a school competition to observe the Mercury transit and repeat the measurements proposed by Edmund Halley and other scientists since then. Several hints were given on the observation possibilities (telescope, binoculars, solar glasses), and examples of the algorithms in form of written formulae or excel sheet formulae were given. All schools were encouraged to share their data with each other and the needed support was provided by ESA. After the transit, all school teams were asked to provided their results and an accompanying report to allow us to get a picture of the team's technical, mathematical, and social activities in preparation of the event and the event itself. In our presentation, we will give a short overview of the participants and their efforts. We analyze our school competition expectations against the results as seen from a scientist point of view (1st and 3rd author) and a scientific communicator point of view (2nd author), and give our perspective towards upcoming planetary eclipse opportunities, i.e. the Mercury transit on 11 November 2019.
Portraits of distant worlds: Characterizing the atmospheres of extrasolar planets
NASA Astrophysics Data System (ADS)
Knutson, Heather Ann
2009-06-01
This thesis presents observational studies of the atmospheres of extrasolar planets, including the first longitudinal temperature profile of an extrasolar planet and the first detection of a temperature inversion in the atmosphere of an extrasolar planet. Our observations target four eclipsing gas-giant planets known as "hot Jupiters"; as a result of their short orbital periods we expect these planets to be tidally locked, with day-night circulation patterns and atmospheric chemistries that differ significantly from those of Jupiter. The first two chapters of this thesis describe infrared observations of the secondary eclipses of HD 209458b and TrES-4 with the Spitzer Space Telescope . By measuring the decrease in flux as the planet passes behind its parent star, we can characterize the infrared emission spectra of these planets and from that learn something about their dayside pressure-temperature profiles. Our observations reveal that these two planets have spectra with water bands in emission, requiring the presence of an atmospheric temperature inversion between 0.1 - 0.01 bars. The third chapter describes a ground-based search for thermal emission from TrES-1 using L -band grism spectroscopy with the NIRI instrument on Gemini North. Unlike Spitzer photometry, which is limited to broad bandpasses at these wavelengths, grism spectroscopy offers the opportunity to resolve specific features in the planetary emission spectrum. We find that our precision is limited by our ability to correct for time-varying slit losses from pointing drift and seeing changes, and place an upper limit on the depth of the planet's secondary eclipse in this band. The fourth and fifth chapters describe observations of the infrared phase variations of the hot Jupiter HD 189733b in the 8 and 24 mm Spitzer bands. By monitoring the changes in the brightness of this planet as it rotates around its parent star we can determine how much energy is circulated from the perpetually-illuminated day side around to the night side. We then invert these data to produce a longitudinal temperature profile for the planet, allowing us to resolve the locations of prominent hot and cold regions in the planet's atmosphere.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
78 FR 30243 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Eclipse Aerospace, Inc. Model EA500 airplanes equipped with Avio, Avio with ETT, or Avio... identified in this proposed AD, contact Eclipse Aerospace, Inc. 26 East Palatine Road, Wheeling, Illinois...
Effects of the March 2015 solar eclipse on near-surface atmospheric electricity.
Bennett, A J
2016-09-28
Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Solar Eclipses Observed from Antarctica
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2013-01-01
Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.
The Death Spiral of the Hot Jupiter Exoplanet HD 189733b
NASA Astrophysics Data System (ADS)
Dowling Jones, Liam; Marchioni, Lucas; Guinan, Edward; Engle, Scott
2018-01-01
HD 189733 is a quintessential example of hot Jupiter-type exoplanet systems in which a gas giant planet with a mass similar to Jupiter is orbiting extremely close to its host star. HD 189733 is the nearest and brightest hot Jupiter system discovered so far and undergoes transit eclipses. Because of this, HD 189733 is well studied across the electromagnetic spectrum. It consists of a 7.7 mag K1.5 V host star and a Jupiter-size planet orbiting with a period of P =2.22 days, only located only 0.030 AU from its host star.About ten years ago HD 189733 system was discovered to be accompanied by gravitationally-bound red dwarf M4 V star companion (HD 189733 B). It was found previously by Guinan et al. (2017) that the age measurement (~0.7 Gyr) of the K-type star indicated by its 11.95 day rotation period and corresponding moderately high levels of coronal X-ray and chromospheric emissions do not agree with the much older age of ~6 - 9 Gyr indicated from the low X-ray activity of the dM companion star. This age discrepancy is can be resolved by assuming an increase in angular momentum or “spin-up” of the HD 189733A by its hosted planet. It is probable is that this extra angular momentum was acquired from the orbiting exoplanet from the tidal and magnetic interactions of the planet and host star.Photometric observations of the planetary transit eclipses of HD 189733b have been carried out for over 11 years. Using new transit timings that we have obtained with the 1.3-m Robotically Controlled Telescope (RCT) when combined with numerous timings available in the literature, we have discovered a very small decrease in the orbital period of the HD 189733b. The change in period is dP/dt = 0.87 sec/100 yrs. This finding support the transfer of orbital angular momentum of the planet to the host star - thus spinning-up the host star and shrinking the orbit of the planet. At this rate of period decrease, the planet will be tidally disrupted in less than 40 million years. However, this planetary disruption will likely occur much sooner because the decrease in the planet’s orbital period is expected to speed-up as the planet gets closer to the star.
NASA Astrophysics Data System (ADS)
Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.
2015-06-01
This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.
Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.
2016-01-01
Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.
Public education in developing countries on the occasions of eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
Total solar eclipses will cross southern Africa on June 21, 2001, and on December 4, 2002. Most of Africa will see partial phases. The total phase of the 2001 eclipse will be visible from parts of Angola, Zambia, Zimbabwe, Mozambique and Madagascar. The total phase of the 2002 eclipse will be visible from parts of Angola, Botswana, Zimbabwe, South Africa and Mozambique. Public education must be undertaken to tell the people how to look at the eclipse safely. We can take advantage of having the attention of the people and of news media to teach about not only eclipses but also the rest of astronomy. I am Chair of a "Public Education at Eclipses" subcommission of IAU Commission 46 on the Teaching of Astronomy, and we are able to advise educators and others about materials, procedures and information releases.
Solar Eclipse Effect on Shelter Air Temperature
NASA Technical Reports Server (NTRS)
Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.
1996-01-01
Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.
Mapping the Physical and Chemical Conditions of the Ring Nebula
NASA Astrophysics Data System (ADS)
Leal-Ferreira, Marcelo L.; Aleman, Isabel; Gaughan, Andrea; Ladjal, Djazia; Ueta, Toshiya; Kerber, Samuel; Conn, Blair; Gardiner, Rhiannon; Tielens, Alexander G. G. M.
2017-10-01
We observed the Planetary Nebula NGC 6720 with the Gemini Telescope and the Gemini Multi-Object Spectrographs. We obtained spatial maps of 36 emission-lines in the wavelength range between 3600 Å and 9400 Å. We derived maps of c(Hβ), electronic densities, electronic temperatures, ionic and elemental abundances, and Ionization Correction Factors (ICFs) in the source and investigated the mass-loss history of the progenitor. The elemental abundance results indicate the need for ICFs based on three-dimensional photoionization models.
Observing Solar Eclipses in the Developing World
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.
2006-08-01
The paths of totality of total solar eclipses cross the world, with each spot receiving such a view about every 300 years. The areas of the world from which partial eclipses are visible are much wider. For the few days prior to a total eclipse, the attention of a given country is often drawn toward the eclipse, providing a teachable moment that we can use to bring astronomy to the public's attention. Also, it is important to describe how to observe the partial phases of the eclipse safely. Further, it is important to describe to those people in the zone of totality that it is not only safe but also interesting to view totality. Those who are misled by false warnings that overstate the hazards of viewing the eclipse, or that fail to distinguish between safe and unsafe times for naked-eye viewing, may well be skeptical when other health warnings--perhaps about AIDS or malaria prevention or polio inoculations--come from the authorities, meaning that the penalties for misunderstanding the astronomical event can be severe. Through the International Astronomical Union's Working Group on Solar Eclipses and through the I.A.U.'s Program Group on Public Education at the Times of Eclipses, part of the Commission on Education and Development, we make available information to national authorities, to colleagues in the relevant countries, and to others, through our Websites at http://www.eclipses.info and http://www.totalsolareclipse.net and through personal communication. Among our successes at the 29 March 2006 total solar eclipse was the distribution through a colleague in Nigeria of 400,000 eye-protection filters.
NASA Astrophysics Data System (ADS)
Gövdeli, Nezafet; Karakaş, Duran
2018-07-01
Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.
Analysis of Repeatability and Reliability of Warm IRAC Observations of Transiting Exoplanets
NASA Astrophysics Data System (ADS)
Carey, Sean J.; Krick, Jessica; Ingalls, James
2015-12-01
Extracting information about thermal profiles and composition of the atmospheres of transiting exoplanets is extremely challenging due to the small differential signal of the atmosphere in observations of transits, secondary eclipses, and full phase curves for exoplanets. The relevant signals are often at the level of 100 ppm or smaller and require the removal of significant instrumental systematics in the two infrared instruments currently capable of providing information at this precision, WFC3 on HST and IRAC aboard the Spitzer Space Telescope. For IRAC, the systematics are due to the interplay of residual telescope pointing variation with intra-pixel gain variations in the moderately undersampled camera. There is currently a debate in the community on the reliability of repeated IRAC observations of exoplanets particularly those in eclipse from which inferences about atmospheric temperature and pressure profiles can made. To assess the repeatability and reliability of post-cryogenic observations with IRAC, the Spitzer Science Center in conjunction with volunteers from the astronomical community has performed a systematic analysis of the removal of systematics and repeatability of warm IRAC observations. Recently, a data challenge consisting of the measurement of ten secondary eclipses of XO-3b (see Wong et al. 2014) and a complementary analysis of a synthetic version of the XO-3b data was undertaken. We report on the results of this data challenge. Five different techniques were applied to the data (BLISS mapping [Stevenson et al. (2012)], kernel regression using the science data [Wong et al. (2015)] and calibration data [Krick et al. (2015)], pixel-level decorrelation [Deming et al. (2015)], ICA [Morello et al. (2015)] and Gaussian Processes [Evans et al. (2015)]) and found consistent results in terms of eclipse depth and reliability in both the actual and synthetic data. In addition, each technique obtained the input eclipse depth in the simulated data within the stated measurement uncertainty. The reported uncertainties for each measurement approach the photon noise limit. These findings generally refute the results of Hansen et al. (2014) and suggest that inferences about atmospheric properties can be reasonably made using warm IRAC data. Application of our test methods to future observations using JWST (in particular the MIRI instrument) will be discussed.
75 FR 45075 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... in the Federal Register on July 9, 2010 (75 FR 39472), and applies to certain Eclipse Aerospace, Inc... Federal holidays. For service information identified in this proposed AD, contact Eclipse Aerospace, Inc...
Decision-Theoretic Control of Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)
2003-01-01
Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.
The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science
NASA Astrophysics Data System (ADS)
Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.
2017-12-01
The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.
Dynamics of yield-stress droplets: Morphology of impact craters
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart
2017-11-01
Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.
The Totality App — General Lessons and Future Eclipses
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey
2018-06-01
With the excitement around the 2017 eclipse, I worked with an app development company to create the Totality app, which featured eclipse predictions from the code of Xavier Jubier. We have since updated the app for future eclipses, including a Spanish version given the upcoming eclipses in Chile/Argentina. I will briefly discuss the current app, the process through which we developed it, and relevant lessons learned along the way that may be useful to others interested in developing apps for astronomy education.
A spectroscopic investigation of the eclipsing binary Epsilon Aurigae
NASA Technical Reports Server (NTRS)
Balachandran, Suchitra
1991-01-01
The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.
Eclipses in Australian Aboriginal Astronomy
NASA Astrophysics Data System (ADS)
Hamacher, Duane W.; Norris, Ray P.
2011-07-01
We explore about fifty different Australian Aboriginal accounts of lunar and solar eclipses to determine how Aboriginal groups understood this phenomenon. We summarize the literature on Aboriginal references to eclipses. We show that many Aboriginal groups viewed eclipses negatively, frequently associating them with bad omens, evil magic, disease, blood and death. In many communities, elders or medicine men claimed to be able to control or avert eclipses by magical means, solidifying their roles as providers and protectors within their communities. We also show that some Aboriginal groups seem to have understood the motions of the Sun-Earth-Moon system, the connection between the lunar phases and tides, and acknowledged that solar eclipses were caused by the Moon blocking the Sun.
Eclipse Across America on This Week @NASA – August 25, 2017
2017-08-25
The Aug. 21 eclipse across America generated interest and excitement far and wide. Our coverage of the historic eclipse – the first coast-to-coast total solar eclipse for the U.S. in 99 years – was widespread … Anchored from the College of Charleston, in South Carolina – we showed you views of the eclipse that only NASA could. Views from space, from Earth’s atmosphere and from the ground – with expert observation and analysis provided from many of the 14 states around the country, situated along the path of totality. That’s where thousands of people flocked – for the ultimate eclipse experience – total darkness in the middle of the day!
Multi-Beam Surface Lidar for Lunar and Planetary Mapping
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Garvin, James B.
1998-01-01
Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.
The Monitor project: searching for occultations in young open clusters
NASA Astrophysics Data System (ADS)
Aigrain, S.; Hodgkin, S.; Irwin, J.; Hebb, L.; Irwin, M.; Favata, F.; Moraux, E.; Pont, F.
2007-02-01
The Monitor project is a photometric monitoring survey of nine young (1-200Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (<~10Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars. The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ~3 transiting planets with radial velocity signatures detectable with currently available facilities.
NASA Astrophysics Data System (ADS)
Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.
2018-01-01
The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.
The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Gaddis, L. R.
2017-12-01
An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa.gov/search/), the Orbital Data Explorers (http://ode.rsl.wustl.edu/), and the Planetary Image Locator Tool (PILOT, https://pilot.wr.usgs.gov/); the latter offers ties to the Integrated Software for Imagers and Spectrometers (ISIS), the premier planetary cartographic software package from USGS's Astrogeology Science Team.
KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, D. R.; Matson, R. A.; Guo, Z.
2015-12-15
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Vasileva, Doroteya L.
2018-02-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.
Fall 2011 Eclipse Season Begins
2017-12-08
The Fall 2011 eclipse season started on September 11. Here is an AIA 171 image from 0657 UT with the first eclipse! SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?
NASA Astrophysics Data System (ADS)
Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.
2018-02-01
In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.
High-speed photometry of the eclipsing dwarf nova OY Carinae
NASA Technical Reports Server (NTRS)
Cook, M. C.
1985-01-01
High-speed photometry of the eclipsing dwarf nova OY Car in the quiescent state is presented. OY Car becomes highly reddened during eclipse, with minimum flux colours inconsistent with optically thick emission in the U and B bandpasses. Mass ratios in the range 6.5 to 12 are required to reconcile the eclipse structure with theoretical gas stream trajectories. Primary eclipse timings reveal a significant decrease in the orbital period and the duration of primary eclipse indicates the presence of a luminous ring about the white dwarf. The hotspot eclipse reveals a hotspot which is elongated along the rim of the accretion disc, with optical emission being non-uniformly distributed along the rim. The location of the hotspot in the accretion disc implies a disc radius larger than that of an inviscid disc, with variation in the position of the hotspot being consistent with a fixed stream trajectory.
Eclipse 2017: Through the eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA/GSFC Heliophysics Education Consortium
2016-10-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation y for energy for this eclipse is off the charts. Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can. This talk will outline NASA's education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy; Lewis, Elaine; Reed, Shannon; Debebe, Asidesach; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Wright, Ernest
2017-01-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation and energy for this eclipse is off the charts! Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can.This talk will outline NASA’s education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon
NASA Astrophysics Data System (ADS)
Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.
2017-12-01
The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.
Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor
2008-12-01
Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.
The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE
NASA Astrophysics Data System (ADS)
Walsh, J. R.; Monreal-Ibero, A.; Barlow, M. J.; Ueta, T.; Wesson, R.; Zijlstra, A. A.
2016-04-01
Context. Dust plays a significant role in planetary nebulae. Dust ejected with the gas in the asymptotic giant branch (AGB) phase is subject to the harsh environment of the planetary nebula (PN) while the star is evolving towards a white dwarf. Dust surviving the PN phase contributes to the dust content of the interstellar medium. Aims: The morphology of the internal dust extinction has been mapped for the first time in a PN, the bright nearby Galactic nebula NGC 7009. The morphologies of the gas, dust extinction and dust-to-gas ratio are compared to the structural features of the nebula. Methods: Emission line maps in H Balmer and Paschen lines were formed from analysis of MUSE cubes of NGC 7009 observed during science verification of the instrument. The measured electron temperature and density from the same cube were employed to predict the theoretical H line ratios and derive the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal AV/NH has been mapped for the first time in a PN. Results: The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. The dust-to-gas ratio, AV/NH, increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated AV/NH is about 2× the mean ISM value. A large-scale feature in the extinction map is a wave, consisting of a crest and trough, at the rim of the inner shell. The nature of this feature is investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than AGB mass loss variations. Conclusions: Extinction mapping from H emission line imaging of PNe with MUSE provides a powerful tool for revealing the properties of internal dust and the dust-to-gas ratio. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 060.A-9347(A).
Coordinated weather balloon solar radiation measurements during a solar eclipse.
Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations
2016-01-01
The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767
Bradford, J.; Bell, S. A.; Wilkinson, J.; Smith, D.; Tudor, S.
2016-01-01
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth’s atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550766
Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse
NASA Astrophysics Data System (ADS)
Schad, Thomas A.; Penn, Matthew J.; Armstrong, James
2016-05-01
Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.
The first Doppler images of the eclipsing binary SZ Piscium
NASA Astrophysics Data System (ADS)
Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun
2016-02-01
We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.
NASA Astrophysics Data System (ADS)
Hameury, Jean-Marie
2001-01-01
Two techniques are frequently used to produce images of the accretion disc in an eclipsing binary: eclipse mapping and Doppler tomography. From the light curve, one can deduce the radial distribution of the effective temperature, assuming axial symmetry. On the other hand, from the variation of the line profile one can reconstruct an image in the velocity space, which can be converted into a real image if one knows the kinematics of the system. Deux techniques sont couramment utilisées pour obtenir des images des disques dans les systèmes binaires à éclipses. En utilisant la courbe de lumière, on peut remonter à la distribution radiale de la brillance de surface, en supposant que celle-ci a une symètrie axiale. D'autre part, les profils de raies renseignent sur la distribution de vitesse des régions émissives leur variation temporelle permet de réaliser une image dans l'espace des vitesses, que l'on peut ensuite transformer en carte dans l'espace (x,y) si on connaît la cinématique du système.
VizieR Online Data Catalog: OGLE: Gaia South Ecliptic Pole Field (Soszynski+, 2012)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Poleski, R.; Kozlowski, S.; Wyrzykowski, L.; Pietrukowicz, P.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Ulaczyk, K.; Skowron, J.
2013-03-01
We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. (9 data files).
NASA Astrophysics Data System (ADS)
Duncan, D. K.
2016-12-01
On Aug. 21, 2017 a Total Eclipse of the Sun will cross the US. For the first time in 40 years every state will have at least 80% of the sun covered by the moon, and lucky people from Oregon to South Carolina will see the beauty of the total eclipse and remember it all their lives. It is as difficult to convey the impression of a total eclilpse as it is to convey what the Grand Canyon is like. Words cannot do it justice. It looks like the end of the world as the flames of solar prominances rise from the edge of the "black hole" of the eclipsed sun, and silver streamers of the sun's corona stretch across the sky. People scream, applaud, or cry. Animals do strange things. At a total eclipse in the Galapagos dozens of whales and dolphins surfaced at the time of the total elcipse, surrounded our boat, and after the eclipse swam away. At a partial eclipse, even a 99% eclipse, those spectacular aspects are not seen, so it is a good idea to make plans to go to where the eclipse is total. This session will use examples from 10 total eclipses the author has viewed and made available to the public, since March 7, 1970, to suggest practical preparations for the evnt. Advice will be given on how and where to see the eclipse yourself, and how to help the public, teachers, and students where you live enjoy the spectacle and raise their interest in science. It is hoped that by the time of the AGU meeting "Kits" of educational materials and safe eclipse-watching glasses will be available to AGU members. This will be discussed. A Public Service Announcement suitable for use on television, the Internet, or in schools should also be available.
Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, P. D.
2011-05-01
The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.
Visualizing Mars data and imagery with Google Earth
NASA Astrophysics Data System (ADS)
Beyer, R. A.; Broxton, M.; Gorelick, N.; Hancher, M.; Lundy, M.; Kolb, E.; Moratto, Z.; Nefian, A.; Scharff, T.; Weiss-Malik, M.
2009-12-01
There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Mars Web site allowed users to view base maps of Mars via the Web, but it did not have the full features of the 3D Google Earth client. We have previously demonstrated the use of Google Earth to display Mars imagery, but now with the launch of Mars in Google Earth, there is a base set of Mars data available for anyone to work from and add to. There are a variety of global maps to choose from and display. The Terrain layer has the MOLA gridded data topography, and where available, HRSC terrain models are mosaicked into the topography. In some locations there is also meter-scale terrain derived from HiRISE stereo imagery. There is rich information in the form of the IAU nomenclature database, data for the rovers and landers on the surface, and a Spacecraft Imagery layer which contains the image outlines for all HiRISE, CTX, CRISM, HRSC, and MOC image data released to the PDS and links back to their science data. There are also features like the Traveler's Guide to Mars, Historic Maps, Guided Tours, as well as the 'Live from Mars' feature, which shows the orbital tracks of both the Mars Odyssey and Mars Reconnaissance Orbiter for a few days in the recent past. It shows where they have acquired imagery, and also some preview image data. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections—in geological context and within a single user interface—are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers.
Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.
2018-04-01
RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
Resource Letter OSE-1: Observing Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew
2017-07-01
This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.
Moon eclipse from 21 december 2010 in Romania
NASA Astrophysics Data System (ADS)
Gaina, Alex; Haus, Marian; Conovici, Matei; Vasiliu, Dan
2010-12-01
The authors discuss the Total Moon's eclipse from 21 december 2010, their circumstances for Romania and Central Europe. One notes that the informations from the NASA eclipses website do not inform correctly about the observability of the initial penumbral phase (P1-U1) of the eclipse. The same reffer to the Anuarul Astronomic Roman, published by the Institutul Astronomic Roman for 2010. By contrary the web site by Fred Espenac informed correctly the astronomical community. The Moon setted before the begining of the penumbral phase of the eclipse.
NASA Technical Reports Server (NTRS)
Mercer, R. D.
1973-01-01
The scientific and engineering findings are presented of the feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse. Included in the report is the computer program documentation of the solar eclipse determination; summary data on SR-71A type aircraft capabilities and limitations as an observing platform for solar eclipses; and the recordings of an informal conference on observations of solar eclipses using SR-71A type aircraft.
Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign
NASA Astrophysics Data System (ADS)
Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration
2013-06-01
We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.
A General Event Location Algorithm with Applications to Eclispe and Station Line-of-Sight
NASA Technical Reports Server (NTRS)
Parker, Joel J. K.; Hughes, Steven P.
2011-01-01
A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.
Reports of Planetary Geology Program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1981-01-01
Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.
Public Education Plans for the 2017 August 21 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2016-06-01
A total solar eclipse will cross the continental United States on 2017 August 21, the first such in 99 years and the first whose path of totality on land is entirely in the United States since 1776. People in the rest of the United States-as well as in Canada, Central America, and northern South America-will have a partial solar eclipse. Totality will range up to about 70 km in diameter, and will be visible from a path that extends from Oregon to South Carolina. Cloudiness statistics based on decades on satellite infrared imaging are more favorable for western sites. The sun's diameter will be 80% covered in Miami (south of totality) and New York (north of totality), and 70% covered in Los Angeles (south of totality). For the Working Group on Solar Eclipses of the International Astronomical Union, I maintain a website at http://eclipses.info that provides links to a wide variety of eclipse-related material and to useful websites run by others.Prior to this total eclipse, annular eclipses will cross Africa (from Gabon to Tanzania and Madagascar) and Isle de la Réunion on 2016 September 1, and Chile and Argentina on 2017 February 26, at which time we plan an eclipse workshop in Esquel, Argentina.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.
The 2017 Solar Eclipse Community Impacts through Public Library Engagement
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.
2017-12-01
More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.
Eclipse-induced wind changes over the British Isles on the 20 March 2015
2016-01-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office’s operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office’s land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20° under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilization during eclipse events. Wind direction changes have previously been attributed to a large-scale ‘eclipse-induced cold-cored cyclone’, mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550759
Is an eclipse described in the Odyssey?
Baikouzis, Constantino; Magnasco, Marcelo O
2008-07-01
Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.
Configuring Eclipse for GMAT Builds: Instructions for Windows Users, Rev. 0.3
NASA Technical Reports Server (NTRS)
Conway, Darrel J.
2007-01-01
This document provides instructions about how to configure the Eclipse IDE to build GMAT on Windows based PCs. The current instructions are preliminary; the Windows builds using Eclipse are currently a bit crude. These instructions are intended to give you enough information to get Eclipse setup to build wxWidgets based executables in general, and GMAT in particular.
NASA Technical Reports Server (NTRS)
Patterson, Joseph
1993-01-01
The status report covering the period from 1 June 1992 to 31 May 1993 is included. Areas of research include: (1) eclipsing cataclysmic variables; (2) deep eclipses in H0928+501; (3) YY Draconis, the Whirling Dervish; and (4) new x ray pulsar candidates from HEAO-1.
The Astrophysics of the Solar Corona at the August 21, 2017, American Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay
2017-01-01
The first total solar eclipse to cross the United States from coast to coast in 99 years will occur on August 21, 2017, with a 70-mile-wide path of totality from Oregon to South Carolina, with cloudiness statistics more favorable in the northwest than in the southeast. I will discuss a series of observations of the solar corona made during recent solar eclipses and related spacecraft observations. I will further discuss plans for using the 2017 eclipse for furthering our studies of the heating of the solar corona to millions of kelvins, of the dynamics of coronal mass ejections and polar plumes, and of the response of the corona to the solar magnetic field. I will conclude by discussing public-education plans for the eclipse, during which the whole U.S., Mexico, Central America, and Canada will enjoy a partial eclipse. My work at solar eclipses has recently been supported by the NSF and the Committee for Research and Exploration of the National Geographic Society, and I thank them both for research grants for our scientific studies of the 2017 total eclipse, including AGS-1602461 from the NSF and 987816 from National Geographic.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
2016-01-01
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763
NASA Technical Reports Server (NTRS)
Russell, C. T.; Metzger, A.; Pieters, C.; Elphic, R. C.; McCord, T.; Head, J.; Abshire, J.; Philips, R.; Sykes, M.; A'Hearn, M.;
1994-01-01
After many years of development, solar electric propulsion is now a practical low cost alternative for many planetary missions. In response to the recent Discovery AO, we and a number of colleagues have examined the scientific return from a missioon to map the Moon and then rendezvous with a small body. In planning this mission, we found that solar electric propulsion was quite affordable under the Discovery guidelines, that many targets could be reached more rapidly with solar electric propulsion than chemical propulsion, that a large number of planetary bodies were accessible with modest propulsion systems, and that such missions were quite adaptable, with generous launch windows which minimized mission risks. Moreover, solar electric propulsion is ideally suited for large payloads requiring a large amount of power.
Self-Directed Cooperative Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Morris, Robert (Technical Monitor)
2003-01-01
The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.
Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries
NASA Astrophysics Data System (ADS)
Clancy, Padraig
2018-01-01
HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.
Preparing for Eclipse 2017 on This Week @NASA – August 11, 2017
2017-08-11
The Aug. 21 total solar eclipse across America is generating a lot of interest – and a lot of questions. You’ll find answers to many of your eclipse questions at NASA’s Eclipse 2017 website -- eclipse2017.nasa.gov. The site is full of information to help you prepare for this rare celestial event – including eclipse-related activities, events, viewing safety tips, and other resources. Then, on the day of the eclipse, you can see the event “Through the Eyes of NASA” – during a special NASA TV broadcast that includes coast-to-coast coverage from the ground, from the air and from space. Coverage begins with a special pre-show at noon eastern – followed by in-depth coverage at 1pm. You can also watch on Aug. 21 at www.nasa.gov/eclipselive. Also, TDRS-M Update, Webb’s Sunshield Layers Installed, RS-25 Engine Testing Rolls On, and Chief Technologist Visits Industry Partner!
Two Commemorative Expeditions to Celebrate the Return to Totality
NASA Astrophysics Data System (ADS)
Thompson, Kristen; English, Tom
2018-01-01
Throughout history, total solar eclipses have generated excitement across the scientific community, as they provide a unique opportunity to study the Sun’s corona. Occurrences of such events have prompted many American astronomy programs to organize expeditions aimed at studying and photographing the eclipse. Only two observing stations from any of the major 19th and early 20th century eclipse expeditions were once again found in the path of totality of the 21 August 2017 Great American Eclipse. These stations, one in Newberry, SC and the other in Winnsboro, SC, were located in the shadow of the 28 May 1900 eclipse that passed through the southeastern United States from New Orleans to Norfolk. To celebrate this unique opportunity, we organized two expeditions that travelled to these towns to commemorate their return to totality. In this talk, I will describe the circumstances of the 1900 solar eclipse, our modern expeditions, and our effort to bring this eclipse history to life for the community.
Application of Interferometric Radars to Planetary Geologic Studies
NASA Technical Reports Server (NTRS)
Mouginis-Mark, P. J.; Rosen, P.; Freeman, A.
2005-01-01
Radar interferometry is rapidly becoming one of the major applications of radar systems in Earth orbit. So far the 2000 flight of the Shuttle Radar Topographic Mission (SRTM) is the only dedicated U.S. radar to be flown for the collection of interferometric data, but enough has been learned from this mission and from the use of foreign partner radars (ERS-1/2, Radarsat, ENIVISAT and JERS-1) for the potential planetary applications of this technique to be identified. A recent workshop was organized by the Jet Propulsion Laboratory and the Southern California Earthquake Center (SCEC), and was held at Oxnard, CA, from October 20th - 22nd, 2004. At this meeting, the major interest was in terrestrial radar systems, but approx. 20 or the approx. 250 attendees also discussed potential applications of interferometric radar for the terrestrial planets. The primary foci were for the detection of planetary water, the search for active tectonism and volcanism and the improved topographic mapping. This abstract provides a summary of these planetary discussions at the Oxnard meeting.
Applied photo interpretation for airbrush cartography
NASA Technical Reports Server (NTRS)
Inge, J. L.; Bridges, P. M.
1976-01-01
Lunar and planetary exploration has required the development of new techniques of cartographic portrayal. Conventional photo-interpretive methods employing size, shape, shadow, tone, pattern, and texture are applied to computer-processed satellite television images. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The portrayal of tonal densities in a relief illustration is performed using a unique airbrush technique derived from hill-shading of contour maps. The control of tone and line quality is essential because the mid-gray to dark tone densities must be finalized prior to the addition of highlights to the drawing. This is done with an electric eraser until the drawing is completed. The drawing density is controlled with a reflectance-reading densitometer to meet certain density guidelines. The versatility of planetary photo-interpretive methods for airbrushed map portrayals is demonstrated by the application of these techniques to the synthesis of nonrelief data.
HF Band Observations and Modeling of the 2017 Eclipse
NASA Astrophysics Data System (ADS)
Earle, G. D.; Kordella, L.; Han, X.; Moses, M. L.; Sweeney, D.; McGwier, R. W.; Lloyd, W.; Ruohoniemi, J. M.
2017-12-01
A nationwide network of observatories has been created to study the effects of the 2017 eclipse on the F-region of the ionosphere. These include the SuperDARN HF radars in Oregon and Kansas, software defined radios in Oregon, Kansas, and South Carolina, and scintillation receivers placed northward of the central eclipse line across the continent. In this talk we will present data obtained by these systems during the eclipse, and interpret these data using a ray-tracing numerical code in conjunction with the SAMI-3 first principles model. Comparisons to results from the CORS network of GPS-TEC receivers will be made, and the F-region density and altitude perturbations observed during the eclipse will be contrasted with ionosonde data from an eclipse that occurred over the United Kingdom in 1999.
Constructing 'Black Sun': the Documentary Film of the 2012 Eclipses
NASA Astrophysics Data System (ADS)
Holbrook, Jarita
2014-06-01
2012 offered an opportunity that was not to be missed: two solar eclipses. Drs Alphonse Sterling and Hakeem Oluseyi began doing collaborative research during total solar eclipses in 2006 in Ghana. Since then they have continued to do eclipse observation when funds and whether permitted. As a filmmaker, the opportunity to film Sterling and Oluseyi during the 2012 eclipses in Tokyo and Cairns fulfilled the goal of showing the excitement of time-sensitive research, the lives of astrophysicists, and diversity within the astronomy community. As an astrophysicist who did not specialize in solar astrophysics, it was an opportunity for me both to learn and to solidify for the audience what we know about the sun and the importance of eclipse observation. Clips of the film will be included.
Preparing a Nation for the Eclipse of a Generation -
NASA Astrophysics Data System (ADS)
Speck, Angela; Habbal, Shadia; Tresch Fienberg, Richard; Kentrianakis, Michael; Fraknoi, Andrew; Nordgren, Tyler; Penn, Matthew; Pasachoff, Jay M.; Bakich, Michael; Winter, Henry; Gay, Pamela; Motta, Mario
2018-01-01
On August 21st 2017, there was a total solar eclipse visible from a vast swath of the US.In preparation for that event, the American Astronomical society created a taskforce charged with planning for the eclipse for the entire nation. The preparations included interfacing with the public, the media, non-profit organizations and governmental organizations. Preliminary data suggests that nearly 90% of American adults watched the eclipse either directly or via live streams. Moreover, there were no major problems associated with the event, in spite of valiant attempts from, e.g. imprope solar viewing materials. The eclipse offered opportunities for many scientific experiments within and ebyond astronomy. Here we present on the work of the taskforce, and the lessons learned as well as lesser known science experiments undertaken during the eclipse.
STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Law, E. S.; Day, B. H.
2018-01-01
This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.
Road map points US to beyond the Moon
NASA Astrophysics Data System (ADS)
Banks, Michael
2008-12-01
The new US administration under President Barack Obama should focus on sending humans to Mars and plan a manned voyage to a near-Earth asteroid. That is the conclusion of a road map published last month by the Planetary Society - a US non-governmental, non-profit organization. The report also says that any future manned missions to the Moon, including a potential lunar base, should instead be funded and performed internationally.
The 'surf zone' in the stratosphere
NASA Astrophysics Data System (ADS)
McIntyre, M. E.; Palmer, T. N.
Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.
NASA Astrophysics Data System (ADS)
Datta-Barua, S.; Gachancipa, J. N.; Deshpande, K.; Herrera, J. A.; Lehmacher, G. A.; Su, Y.; Gyuk, G.; Bust, G. S.; Hampton, D. L.
2017-12-01
High concentration of free electrons in the ionosphere can cause fluctuations in incoming electromagnetic waves, such as those from the different Global Navigation Satellite Systems (GNSS). The behavior of the ionosphere depends on time and location, and it is highly influenced by solar activity. The purpose of this study is to determine the impact of a total solar eclipse on the local ionosphere in terms of ionospheric scintillations, and on the global ionosphere in terms of TEC (Total Electron Content). The studied eclipse occurred on 21 August 2017 across the continental United States. During the eclipse, we expected to see a decrease in the scintillation strength, as well as in the TEC values. As a broader impact part of our recently funded NSF proposal, we temporarily deployed two GNSS receivers on the eclipse's totality path. One GNSS receiver was placed in Clemson, SC. This is a multi-frequency GNSS receiver (NovAtel GPStation-6) capable of measuring high and low rate scintillation data as well as TEC values from four different GNSS systems. We had the receiver operating before, during, and after the solar eclipse to enable the comparison between eclipse and non-eclipse periods. A twin receiver collected data at Daytona Beach, FL during the same time, where an 85% partial solar eclipse was observed. Additionally, we set up a ground receiver onsite in the path of totality in Perryville, Missouri, from which the Adler Planetarium of Chicago launched a high-altitude balloon to capture a 360-degree video of the eclipse from the stratosphere. By analyzing the collected data, this study looks at the effects of partial and total solar eclipse periods on high rate GNSS scintillation data at mid-latitudes, which had not been explored in detail. This study also explores the impact of solar eclipses on signals from different satellite constellations (GPS, GLONASS, and Galileo). Throughout the eclipse, the scintillation values did not appear to have dramatic changes. However, we observed lower scintillation activity on several satellites from different constellations. For example, between 16 UTC and 22 UTC, there was a slight drop in the S4 scintillation Index (amplitude) values, reaching a local minimum during the time of eclipse totality ( 18:30 UTC). Regarding the Total Electron Content (TEC), which measures the quantity of electrons in the ionosphere, there was a more drastic decrease in the values throughout the partial and total solar eclipse. Additionally, σφ (sigma-phi) values for phase scintillation showed the similar behavior compared to previous few days. This reveals that the solar eclipse did not have a major effect on the phase scintillation. In any case, the totality path was entirely in mid-latitude regions, where phase scintillations are expected to be lower compared to high latitudes.
First Results from the August 21, 2017, Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-08-01
I report on the observations planned and, weather permitting, made from our site in Salem, Oregon, at the August 21, 2017, total solar eclipse. I also give a first report on collaborators' successes, including Megamovie and simultaneous space observations. We also describe our participation in PBS's NOVA on the eclipse that was to be aired on public television on eclipse night. Our eclipse expedition is supported in large part by grants from the Solar Terrestrial Program of the Atmospheric Sciences Division of NSF and by the Committee for Research and Exploration of the National Geographic Society.
Solar diameter measurements from eclipses as a solar variability proxy
NASA Astrophysics Data System (ADS)
Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David
The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
Approaches for Promoting Lunar and Planetary Science in Higher Education Curricula
NASA Astrophysics Data System (ADS)
Hurtado, J. M.; CenterLunar Science Education; Higher Education Consortium
2011-12-01
The Center for Lunar Science and Exploration (CLSE) at the Lunar and Planetary Institute has formed a higher-education consortium comprising a group of educators throughout the states of Texas and Oklahoma, all of who are committed to furthering the inclusion of lunar and planetary science in university-level curricula. Members of the Consortium represent the spectrum of higher-educational venues, from research universities to small colleges. They also teach planetary science in a range of settings, from specialized graduate/undergraduate courses to introductory undergraduate courses in general science that incorporate a wide range of other topics. One of the top-level goals of the Consortium is to provide an online forum and a network of educators that can share teaching materials, including: illustrations and animations of scientific concepts; syllabi and lesson plans; and laboratory and other exercises. These materials are being shared with the entire community through the CLSE website (http://www.lpi.usra.edu/nlsi/), and a series of workshops has been held with participating members of the Consortium to continue to develop and solicit content. A specific avenue of bringing lunar and planetary content into the classroom that has been discussed and experimented with over the past two years involves planetary analogs. Participatory exercises developed around the author's work with NASA analog field tests has been used in several classroom lab exercises in a planetary science course, a remote sensing course, and a introductory geologic mapping course. These efforts have proven fruitful in engaging the students in lunar and planetary exploration science.
2017-08-21
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Monday, Aug. 21, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
2017-08-22
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Tuesday, Aug. 22, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
Solar Eclipse from NASA Goddard
2017-08-21
View of the partial solar eclipse from NASA's Goddard Space Flight Center in Greenbelt, Md on Monday, August 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Credit: NASA/Goddard/Rebecca Roth
2017-08-21
Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)
2017-08-21
This composite image of nine pictures shows the progression of a partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
In the Shadow of the Moon, What Type of Solar Eclipse Will We See?
ERIC Educational Resources Information Center
Brown, Todd; Brown, Katrina
2017-01-01
Solar eclipses occur several times a year, but most people will be lucky if they see one total solar eclipse in their lifetime. There are two upcoming total solar eclipses that can be seen from different parts of the United States (August 21, 2017 and April 8, 2024), and they provide teachers with an amazing opportunity to engage students with a…
Lessons from Distributing Eclipse Glasses: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer Lynn; Wilson, Teresa; Chizek Frouard, Malynda R.; Phlips, Alan
2018-01-01
In preparation for the 2017 August 21 total solar eclipse across the continental United States, a multifaceted effort encouraged safe public observation of this spectacular event. However, we experienced mixed results distributing free ISO 12312-2 compliant eclipse glasses.On the positive side, we successfully dispensed several hundred in Virginia through in-school programs about the eclipse. We created a 2017-eclipse information sheet to accompany a safe-viewing handout. To facilitate sending glasses home in student backpacks, we wrapped each pair in a double-sided flyer and sealed the bundle in an individual envelope. We also passed out glasses during evening and weekend activities at a planetarium. Religious, business, and educational groups were all excited to receive them as were co-workers, family, and friends.On the negative side, planetarium staff declined to give eclipse glasses to students without a parent due to safety and liability concerns. Then, a day camp returned 200 pairs less than 72 hours before the event for the same reasons. However, we also received several requests from groups that had waited until too late to be accommodated easily.During the week before the eclipse, demand for eclipse glasses in New York, Michigan, Indiana, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, and Missouri was less than anticipated. While many people were well prepared, the recalls and reported counterfeiting made others suspicious. Concurrently, vendors were offering their remaining stock for $1–10 each.The experiences of the 2017 total solar eclipse, both good and bad, will not completely fade before preparations for 2024 begin. We look forward enthusiastically to sharing that event with as many people as possible and hope that the overall distribution of eclipse glasses goes more smoothly.We thank the AAS for providing 1,000+ of the eclipse glasses we shared, which were donated to them by Google to promote the Eclipse Megamovie project; Rainbow Symphony was the manufacturer. The authors supplemented these with a few personal purchases. AAS, NASA, NSF, American Academies of Ophthalmology and Optometry, and the American Optometric Association jointly disseminated the safe-viewing handout.
Solar Eclipse-Induced Changes in the Ionosphere over the Continental US
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.
2017-12-01
For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT Haystack Madrigal system. Alongside a summary of observations, we will also present preliminary quantitative comparisons with several ongoing modeling efforts.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne
2018-07-01
AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.
Mapping planetary caves with an autonomous, heterogeneous robot team
NASA Astrophysics Data System (ADS)
Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.
Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.
Geographically Distributed Citizen Scientist Training for the 2017 Citizen CATE Experiment
NASA Astrophysics Data System (ADS)
Gelderman, Richard; Penn, Matt; Baer, Robert; Isberner, Fred; Pierce, Michael; Walter, Donald K.; Yanamandra-Fisher, Padma; Sheeley, Neil R.
2016-01-01
The solar eclipse of 21 August 2017 will be visible to over a half billion people across the entire North American continent. The roughly 100-mile wide path of totality, stretching from Oregon to South Carolina, will be the destination for tens of millions of people. In the decades since 1979, when the last total solar eclipse was visible from the continental USA, the phenomenon of Internet enabled citizen science has grown to be an accepted mode for science. The Citizen Continental-America Telescopic Eclipse (Citizen CATE) experiment has been funded as one of the three 2017 eclipse related NASA STEM agreements to engage citizen scientists in a unique, cutting-edge solar physics experiment. Teams across the USA will be trained to use standardized refracting telescope and digital imager set-ups to observe the solar corona during the eclipse, acquiring multiple exposures to create one high dynamic range image. After observing during the eclipse, the CATE volunteers will upload the combined image to a cloud-storage site and the CATE team will then work to properly orient and align all the images collected from across the continent to produce a continuous 90-minutes movie. A time-compressed first cut of the entire sequence will be made available to media outlets on the same afternoon of the eclipse, with hope that high quality images will encourage the most accurate coverage of this Great American Eclipse. We discuss overall the project, as well as details of the initial tests of the prototype set-up (including in the Faroe Islands during the March 2015 total solar eclipse) and plans for the future night-time and day-time observing campaigns, and for a handful of observing teams positioned for overlapping observations of the March 2016 total solar eclipse in the South Pacific.
Short- and Long-Term Propagation of Spacecraft Orbits
NASA Technical Reports Server (NTRS)
Smith, John C., Jr.; Sweetser, Theodore; Chung, Min-Kun; Yen, Chen-Wan L.; Roncoli, Ralph B.; Kwok, Johnny H.; Vincent, Mark A.
2008-01-01
The Planetary Observer Planning Software (POPS) comprises four computer programs for use in designing orbits of spacecraft about planets. These programs are the Planetary Observer High Precision Orbit Propagator (POHOP), the Planetary Observer Long-Term Orbit Predictor (POLOP), the Planetary Observer Post Processor (POPP), and the Planetary Observer Plotting (POPLOT) program. POHOP and POLOP integrate the equations of motion to propagate an initial set of classical orbit elements to a future epoch. POHOP models shortterm (one revolution) orbital motion; POLOP averages out the short-term behavior but requires far less processing time than do older programs that perform long-term orbit propagations. POPP postprocesses the spacecraft ephemeris created by POHOP or POLOP (or optionally can use a less accurate internal ephemeris) to search for trajectory-related geometric events including, for example, rising or setting of a spacecraft as observed from a ground site. For each such event, POPP puts out such user-specified data as the time, elevation, and azimuth. POPLOT is a graphics program that plots data generated by POPP. POPLOT can plot orbit ground tracks on a world map and can produce a variety of summaries and generic ordinate-vs.-abscissa plots of any POPP data.
Lunar Terrain and Albedo Reconstruction from Apollo Imagery
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach
2010-01-01
Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.
Solar Eclipse: Concept of “Science” and “Language” Literacy
NASA Astrophysics Data System (ADS)
Haristiani, N.; Zaen, R.; Nandiyanto, A. B. D.; Rusmana, A. N.; Azis, F.; Danuwijaya, A. A.; Abdullah, A. G.
2018-02-01
The purpose of this study was to evaluate the concept of science and language literacy of solar eclipse. The study was conducted through a survey to 250 students with different ages (from 17 to 23 years old), grades, and majors in Universitas Pendidikan Indonesia. The survey was completed with a questionnaire consisting of 41 questions. In the case of the language literacy, experimental results showed that various expressions in facing the solar eclipse phenomenon are found. Relating to the science literacy, most students have good science understanding to the solar eclipse phenomenon. In conclusion, the understanding about the solar eclipse is affected by formal science education and religion understanding that they have been accepted since their childhood. These factors have also influenced the belief of Indonesian people to the solar eclipse myth and the way of expressions a language literacy.
Strategies for the public communication of eclipses
NASA Astrophysics Data System (ADS)
Bretones, P. S.
2015-03-01
Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.
SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser
None
2017-12-09
The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Agata, H.; Maeda, K.; Okyudo, M..; Yamazaki, Y.
A total solar eclipse was observed on 2001 June 21 in Angola, Zambia, and Zimbabwe in Africa. For the purpose of promotion of science education using a solar eclipse as an educational project, the whole image and an enlarged image of the Sun, that showed the process of an eclipse and how things went in the observation area, were broadcast to the world through the Internet (Live Eclipse). Such images were distributed to four primary schools in Hiroshima and the Science and Technology Museum in Tokyo to give a remote lecture through computers. To find the effectiveness of the lecture, the learning effect on the participating children was examined two times before and after the remote lecture on the solar eclipse.
The Unique Scientific Assets of Multi-Wavelength Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Habbal, S. R.; Druckmuller, M.; Ding, A.
2017-12-01
Total solar eclipses continue to yield new discoveries regarding the dynamics and thermodynamics of the corona, due to the radial span of the field of view available during totality, starting from the solar surface out to several solar radii, and due to the diagnostic potential provided by coronal emission lines. Scientific highlights from past eclipse observations as well as from the 21 August 2017 eclipse, now spanning a solar cycle, will be presented. These include white light and spectral line imaging as well as imaging spectrometry. Emphasis will be placed on the unique insights into the origin of dynamic structures captured in eclipse images, and the temperature distribution in the corona derived from these eclipse observations. Implications of these results for the general problem of coronal heating, as well as for the next generation of space instrumentation will be discussed.
Analysis of ionospheric irregularities during total solar eclipse 2016 based on GNSS observation
NASA Astrophysics Data System (ADS)
Husin, A.; Jiyo; Anggarani, S.; Ekawati, S.; Dear, V.
2016-11-01
A total solar eclipse occurred over Indonesia in the morning hours on 9 March 2016. Ionisations in the ionosphere which is associated with the solar radiation during the total eclipse provided a good opportunity to study the ionospheric irregularities. Using global navigation satellite system (GNSS) data taken from dual-frequency receivers in Manado, we investigated and analysed the total electron content (TEC) perturbations with a time resolution of 60 s to reveal ionospheric irregularities during total eclipse. Result showed that TEC conditions based on IPP were decreased during solar eclipse on March 9, comparing with the neighbour day. The maximum percentage deviation (DTEC) from the average value during eclipse period, 00:00 - 02:40 UT reach -41.5%. The duration of maximum decrement in TEC occurs were around 2-30 minutes after the maximum obscuration.