Science.gov

Sample records for planetary exploration programs

  1. Planetary exploration through year 2000, a core program: Mission operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1980 the NASA Advisory Council created the Solar System Exploratory Committee (SSEC) to formulate a long-range program of planetary missions that was consistent with likely fiscal constraints on total program cost. The SSEC had as its primary goal the establishment of a scientifically valid, affordable program that would preserve the nation's leading role in solar system exploration, capitalize on two decades of investment, and be consistent with the coordinated set of scientific stategies developed earlier by the Committe on Planetary and Lunar Exploration (COMPLEX). The result of the SSEC effort was the design of a Core Program of planetary missions to be launched by the year 2000, together with a realistic and responsible funding plan. The Core Program Missions, subcommittee activities, science issues, transition period assumptions, and recommendations are discussed.

  2. Planetary exploration through year 2000: A core Program, part 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Core Program, goals for planetary exploration, continuity and expansion, core program missions, mission implementation, anticipated accomplishments, resource requirements, and near term budget decisions are discussed.

  3. Planetary programs

    NASA Technical Reports Server (NTRS)

    Mills, R. A.; Bourke, R. D.

    1985-01-01

    The goals of the NASA planetary exploration program are to understand the origin and evolution of the solar system and the earth, and the extent and nature of near-earth space resources. To accomplish this, a number of missions have been flown to the planets, and more are in active preparation or in the planning stage. This paper describes the current and planned planetary exploration program starting with the spacecraft now in flight (Pioneers and Voyagers), those in preparation for launch this decade (Galileo, Magellan, and Mars Observer), and those recommended by the Solar System Exploration Committee for the future. The latter include a series of modest objective Observer missions, a more ambitious set of Mariner Mark IIs, and the very challenging but scientifically rewarding sample returns.

  4. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  5. Teaching, Learning, and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  6. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  7. The role of small missions in planetary and lunar exploration

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  8. Micro-technology for planetary exploration and education

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Varsi, Giulio

    1991-01-01

    The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.

  9. Planetary Protection Technologies: Technical Challenges for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2005-01-01

    The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

  10. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  11. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  12. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  13. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  14. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  15. Teaching, learning, and planetary exploration

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  16. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  17. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  18. Curie-Montgolfiere Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Taylor, Chris Y.; Hansen, Jeremiah

    2007-01-01

    Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.

  19. Tested Tools and Techniques for Promoting STEM Programming in Libraries: Fifteen Years of the Lunar and Planetary Institute's Explore Program

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shipp, S.; Shupla, C.; Shaner, A.; Buxner, S.; Canipe, M.; Jaksha, A.

    2015-11-01

    Libraries are evolving to serve the changing needs of their communities—and many now encompass science, technology, engineering, and mathematics (STEM) programming. For 15 years, the Lunar and Planetary Institute (LPI) has partnered with library staff to create over 100 hands-on Earth and space science and engineering activities. In-person and online librarian training has prepared a vibrant network of over 1000 informal educators. Program evaluation has shown that Explore! training increases participants' knowledge, and that participants actively use Explore! materials and feel more prepared to offer science and engineering experiences and more comfortable using related resources. Through training, participants become more committed to providing and advocating for science and engineering programming. Explore! serves as a model for effective product development and training practices for serving library staff, increasingly our partners in the advancement of STEM education. Specific approaches and tools that contributed to the success of Explore! are outlined here for adoption by community STEM experts—including professionals and hobbyists in STEM fields and STEM educators who are seeking to share their passion and experience with others through partnerships with libraries.

  20. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  1. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  2. Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    NASA Astrophysics Data System (ADS)

    Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.

    2017-04-01

    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

  3. Explorers Program Management

    NASA Technical Reports Server (NTRS)

    Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)

    2001-01-01

    The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.

  4. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.

    2012-01-01

    The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).

  5. Airships for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  6. Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.

  7. Public Outreach Program of the Planetary society of Japan

    NASA Astrophysics Data System (ADS)

    Iyori, Tasuku

    2002-01-01

    The Planetary Society of Japan, TPS/J, was founded on October 6, 1999 as the first international wing of The Planetary Society. The Society's objectives are to support exploration of the solar system and search for extraterrestrial life at the grass-roots level in terms of enhancing Japanese people's concern and interest in them. With close-knit relationships with the Institute of Space and Astronautical Science, ISAS, and The Planetary Society, TPS/J has been trying to fulfil its goal. Introduced below are major public outreach programs. Planetary Report in Japanese The key vehicle that reaches members. The publication is offered to members together with the English issue every two months. Reprint of Major Texts from The Planetary Report for Science Magazine Major texts from The Planetary Report are reprinted in Nature Science, the science magazine with monthly circulation of 20,000. The science monthly has been published with an aim to provide an easier access to science. Website: http://www.planetary.or.jp A mainstay of the vehicle to reach science-minded people. It covers planetary news on a weekly basis, basics of the solar system and space exploring missions. In order to obtain support of many more people, the weekly email magazine is also provided. It has been enjoying outstanding popularity among subscribers thanks to inspiring commentaries by Dr. Yasunori Matogawa, the professor of ISAS. Public Outreach Events TPS/J's first activity of this kind was its participation in the renowned open-house event at ISAS last August. The one-day event has attracted 20,000 visitors every summer. TPS/J joined the one-day event with the Red Rover, Red Rover project for children, exhibition of winning entries of the international space art contest and introduction of SETI@home. TPS/J also participated in a couple of other planetary events, sponsored by local authorities. TPS/J will continue to have an opportunity to get involved in these public events Tie-up with the

  8. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  9. Ambler - An autonomous rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  10. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  11. Planetary Exploration in the Classroom

    NASA Astrophysics Data System (ADS)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  12. The History of Planetary Exploration Using Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  13. Robots and Humans in Planetary Exploration: Working Together?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  14. Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.

    2010-01-01

    In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.

  15. China's roadmap for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  16. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  17. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Astrophysics Data System (ADS)

    Cezzar, Ruknet

    1993-08-01

    The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.

  18. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1993-01-01

    The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.

  19. Surface penetrators for planetary exploration: Science rationale and development program

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.

    1981-01-01

    Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.

  20. An online planetary exploration tool: ;Country Movers;

    NASA Astrophysics Data System (ADS)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  1. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  2. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  3. Robot Manipulator Technologies for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.

    1999-01-01

    NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.

  4. Russian Planetary Program: Phobos and the Moon

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Marov, M. Ya.; Politshuk, G. M.; Zeleniy, L. M.

    2006-08-01

    Planetary exploration is a cornerstone of space science and technology development. Russia has a great legacy of the world recognized former space missions to the Moon and planets. Strategy of the Russian Federal Space Agency and the Russian Academy of Sciences planetary program for the coming decade is focused on space vehicle of new generation. The basic concept of this spacecraft development is the modern technology utilization, significant cost reduction and meeting objectives of the important science return. The bottom line is the use of middle class Soyuz-type launcher, which places the principal constraint on mass of the vehicle and mission profile. Flexibility in the design of space vehicle, including a possibility of SEP technology utilization, facilitates its adaptability for extended program of the solar system exploration. As the first step, the project is optimized around sample return mission from satellite of Mars Phobos ("Phobos-Grunt" or PSR) which is in the list of the Russian Federal Space Program for 2006 to 2015. It is to be launched in 2009 and completed in 2012. The experience gained from the former Russian "Phobos 88" serves as a clue to provide an important basis for the mission concept enabling solution of many problems of the project design and its implementation. There is a challenge to return relic matter from such small body like Phobos for the ground labs comprehensive study. The payload is also targeted for in-flight and extended remote sensing and in situ measurements using the capable instrument packages. The project is addressed as a milestone in the Russian program of the solar system study, with a potential for future ambitious missions to asteroids and comets pooling international efforts. Also endorsed by the Russian Federal Space Program is "Luna-Glob" mission to the Moon tentatively scheduled for 2011. The goal is to advance lunar science with the well instrumented orbiter, lander, and the network of penetrators. Return back

  5. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  6. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Kring, D. A.

    2015-12-01

    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills

  7. Robots and humans: synergy in planetary exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  8. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  9. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  10. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  11. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  12. Automation and Robotics for space operation and planetary exploration

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  13. The Moon as a way station for planetary exploration

    NASA Technical Reports Server (NTRS)

    Duke, M. B.

    1994-01-01

    The Moon can be on the pathway to the exploration of other planets in the solar system in three distinct ways: science, systems and technology experience, and as a fuel depot. The most important of these from the point of view of near term potential is to provide systems and technology development that increases capability and reduces the cost and risk of Mars exploration. The development of capability for a lunar program, if planned properly, can significantly influence strategies for sending humans to Mars. In conclusion, the exploration of the Moon should come before the exploration of Mars. This is a statement of developmental and operational logic that is almost self evident. Technological advancement could, however, make a different strategy reasonable. Principally, the development of a propulsion capability that could substantially reduce round trip mission times to Mars (to say 6 to 12 months) could eliminate much of the argument that the Moon is an essential stepping stone. This would reduce the problem to one of similitude with current space station program concepts. However, for any reasonably near term program, such technology does not appear likely to be available. Thus, the answer remains that lunar exploration should come first, and the expectation that it will make Mars exploration much more affordable and safe. The use of lunar propellant in an Earth-Mars transportation system is not practical with current propulsion systems; however, the discovery of caches of water ice at a lunar pole could change considerably the strategy for utilization of lunar resources in planetary exploration.

  14. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  15. Revised planetary protection policy for solar system exploration.

    PubMed

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  16. United States and Western Europe cooperation in planetary exploration

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Hunten, Donald M.; Masursky, Harold; Scarf, Frederick L.; Solomon, Sean C.; Wilkening, Laurel L.; Fechtig, Hugo; Balsiger, Hans; Blamont, Jacques; Fulchignoni, Marcello

    1989-01-01

    A framework was sought for U.S.-European cooperation in planetary exploration. Specific issues addressed include: types and levels of possible cooperative activities in the planetary sciences; specific or general scientific areas that seem most promising as the main focus of cooperative efforts; potential mission candidates for cooperative ventures; identification of special issues or problems for resolution by negotiation between the agencies, and possible suggestions for their resolutions; and identification of coordinated technological and instrumental developments for planetary missions.

  17. Evolution of space drones for planetary exploration: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  18. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  19. Communication System Architecture for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  20. Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor)

    2002-01-01

    Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

  1. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  2. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  3. Ethical Considerations for Planetary Protection in Space Exploration: A Workshop

    PubMed Central

    Rummel, J.D.; Horneck, G.

    2012-01-01

    Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments

  4. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  5. 2016 Summer Series - Terry Fong - Planetary Exploration Reinvented

    NASA Image and Video Library

    2016-07-07

    The allure of deep space drives humanity’s curiosity to further explore the universe, but the risks associated with spaceflight are still limiting. Technological advancements in robotics and data processing are pushing the envelope of Human planetary exploration and habitation. Dr. Terry Fong from the NASA Ames’ Intelligent Robotics Group will describe how we are reinventing the approach to explore the universe.

  6. Overview of Innovative Aircraft Power and Propulsion Systems and Their Applications for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Landis, Geoffrey; Lyons, Valerie

    2003-01-01

    Planetary exploration may be enhanced by the use of aircraft for mobility. This paper reviews the development of aircraft for planetary exploration missions at NASA and reviews the power and propulsion options for planetary aircraft. Several advanced concepts for aircraft exploration, including the use of in situ resources, the possibility of a flexible all-solid-state aircraft, the use of entomopters on Mars, and the possibility of aerostat exploration of Titan, are presented.

  7. Intelligent robots for planetary exploration and construction

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1992-01-01

    Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.

  8. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  9. Planetary Pits and Caves: Targets for Science Exploration

    NASA Astrophysics Data System (ADS)

    Whittaker, W. L.; Boston, P. J.; Cushing, G.; Titus, T. N.; Wagner, R. V.; Colaprete, A.; Haruyama, J.; Jones, H. L.; Blank, J. G.; Mueller, R. P.; Stopar, J. D.; Tabib, W.; Wong, U.

    2017-02-01

    Planetary pits, caves, and voids are compelling mission destinations for science, exploration, and habitation throughout the solar system. Questions of origins, geology, mineralogy, stratigraphy, gravimetry, aging, and astrobiology abound.

  10. Autonomous Sample Acquisition for Planetary and Small Body Explorations

    NASA Technical Reports Server (NTRS)

    Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.

    2000-01-01

    Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.

  11. SPEX: the Spectropolarimeter for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  12. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  13. Contemporary Planetary Science.

    ERIC Educational Resources Information Center

    Belton, Michael J. S.; Levy, Eugene H.

    1982-01-01

    Presents an overview of planetary science and the United States program for exploration of the planets, examining the program's scientific objectives, its current activities, and the diversity of its methods. Also discusses the program's lack of continuity, especially in personnel. (Author/JN)

  14. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  15. NASA Planetary Science Summer School: Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Giron, Jennie M.; Sohus, A.

    2006-12-01

    NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

  16. Ethical considerations for planetary protection in space exploration: a workshop.

    PubMed

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  17. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  18. Sharing Planetary Exploration: The Education and Public Outreach Program for the NASA MESSENGER Mission to Orbit Mercury

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.

    2003-12-01

    are active partners in each of the public outreach efforts. MESSENGER fully leverages other NASA EPO programs, including the Solar System Exploration EPO Forum and the Solar System Ambassadors. The overarching goal of the MESSENGER EPO program is to convey the excitement of planetary exploration to students and the lay public throughout the nation.

  19. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-02-01

    Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.

  20. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  1. The planetary quarantine program: Origins and achievements, 1956 - 1973

    NASA Technical Reports Server (NTRS)

    Phillips, C. R.

    1974-01-01

    United States effort in planetary quarantine is outlined, beginning with the expressions of alarm by biologists, then discussing how a program was put together and implemented, and finally indicating the academic, governmental, institutional, and industrial agencies and people involved. It ends with a brief summary of the accomplishments and present status of the Planetary Quarantine Program and will serve as a partial explanation of how the planetary quarantine effort evolved and reached its present position.

  2. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  3. Information architecture for a planetary 'exploration web'

    NASA Technical Reports Server (NTRS)

    Lamarra, N.; McVittie, T.

    2002-01-01

    'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

  4. Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M. (Editor); Banerdt, Bruce; Barmatz, M.; Chung, Sang; Chui, Talso; Hamell, R.; Israelsson, Ulf; Jerebets, Sergei; Le, Thanh; Litchen, Stephen

    2004-01-01

    The conference was held April 20-22, 2004, the NASA/JPL Workshop on Physics for Planetary Exploration focused on NASA's new concentration on sending crewed missions to the Moon by 2020 and then to Mars and beyond. However, our ground-based physics experiments are continuing to be funded, and it will be possible to compete for $80-90 million in new money from the NASA exploration programs. Papers presented at the workshop related how physics research can help NASA to prepare for and accomplish this grand scheme of exploration. From sensors for water on the Moon and Mars, to fundamental research on those bodies, and to aids for navigating precisely to landing sites on distant planets, diverse topics were addressed by the Workshop speakers.

  5. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  6. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  7. Human-Robot Planetary Exploration Teams

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  8. A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

    1993-01-01

    An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

  9. Galileo Avionica's technologies and instruments for planetary exploration.

    PubMed

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  10. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  11. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  12. Autonomous localisation of rovers for future planetary exploration

    NASA Astrophysics Data System (ADS)

    Bajpai, Abhinav

    Future Mars exploration missions will have increasingly ambitious goals compared to current rover and lander missions. There will be a need for extremely long distance traverses over shorter periods of time. This will allow more varied and complex scientific tasks to be performed and increase the overall value of the missions. The missions may also include a sample return component, where items collected on the surface will be returned to a cache in order to be returned to Earth, for further study. In order to make these missions feasible, future rover platforms will require increased levels of autonomy, allowing them to operate without heavy reliance on a terrestrial ground station. Being able to autonomously localise the rover is an important element in increasing the rover's capability to independently explore. This thesis develops a Planetary Monocular Simultaneous Localisation And Mapping (PM-SLAM) system aimed specifically at a planetary exploration context. The system uses a novel modular feature detection and tracking algorithm called hybrid-saliency in order to achieve robust tracking, while maintaining low computational complexity in the SLAM filter. The hybrid saliency technique uses a combination of cognitive inspired saliency features with point-based feature descriptors as input to the SLAM filter. The system was tested on simulated datasets generated using the Planetary, Asteroid and Natural scene Generation Utility (PANGU) as well as two real world datasets which closely approximated images from a planetary environment. The system was shown to provide a higher accuracy of localisation estimate than a state-of-the-art VO system tested on the same data set. In order to be able to localise the rover absolutely, further techniques are investigated which attempt to determine the rover's position in orbital maps. Orbiter Mask Matching uses point-based features detected by the rover to associate descriptors with large features extracted from orbital

  13. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  14. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    NASA Astrophysics Data System (ADS)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  15. A perception system for a planetary explorer

    NASA Technical Reports Server (NTRS)

    Hebert, M.; Krotkov, E.; Kanade, T.

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.

  16. Partnering to Enhance Planetary Science Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  17. The Lunar and Planetary Institute Summer Intern Program in Planetary Science

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.

    2017-12-01

    Since 1977, the Lunar and Planetary Institute (LPI) Summer Intern Program brings undergraduate students from across the world to Houston for 10 weeks of their summer where they work one-on-one with a scientist at either LPI or Johnson Space Center on a cutting-edge research project in the planetary sciences. The program is geared for students finishing their sophomore and junior years, although graduating seniors may also apply. It is open to international undergraduates as well as students from the United States. Applicants must have at least 50 semester hours of credit (or equivalent sophomore status) and an interest in pursuing a career in the sciences. The application process is somewhat rigorous, requiring three letters of recommendation, official college transcripts, and a letter describing their background, interests, and career goals. The deadline for applications is in early January of that year of the internship. More information about the program and how to apply can be found on the LPI website: http://www.lpi.usra.edu/lpiintern/. Each advisor reads through the applications, looking for academically excellent students and those with scientific interest and backgrounds compatible with the advisor's specific project. Interns are selected fairly from the applicant pool - there are no pre-arranged agreements or selections based on who knows whom. The projects are different every year as new advisors come into the program, and existing ones change their research interest and directions. The LPI Summer Intern Program gives students the opportunity to participate in peer-reviewed research, learn from top-notch planetary scientists, and preview various careers in science. For many interns, this program was a defining moment in their careers - when they decided whether or not to follow an academic path, which direction they would take, and how. While past interns can be found all over the world and in a wide variety of occupations, all share the common bond of

  18. NASA's Lunar and Planetary Mapping and Modeling Program

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  19. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  20. Significant achievements in the planetary geology program

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1984-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes active on other planetary bodies, to techniques and instrument development for exploration.

  1. Rovers as Geological Helpers for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  2. Planetary exploration, Horizon 2061: A joint ISSI-EUROPLANET community foresight exercisse

    NASA Astrophysics Data System (ADS)

    Blanc, Michel

    2017-04-01

    We will present the preliminary results of a foresight exercise jointly implemented by the Europlanet Research Infrastructure project of the European Union and by the International Space Science Institute (ISSI) to produce a community Vision of Planetary Exploration up to the 2061 horizon, named H2061 for short. 2061 was chosen as a symbolic date corresponding to the return of Halley's comet into the inner Solar System and to the centennial of the first Human space flight. This Vision will be built on a con-current analysis of the four "pillars" of planetary exploration: (1) The key priority questions to be addressed in Solar System science; (2) The representative planetary missions that need to be flown to address and hopefully answer these questions; (3) The enabling technologies that will need to be available to fly this set of ambitious mis-sions; (4) The supporting infrastructures, both space-based and ground-based, to be made available. In this science-driven approach, we will build our Horizon 2061 Vision in three following steps. In step 1, an international community forum convened in Bern, Switzerland on September 13th to 15th, 2016 by ISSI and Europlanet identified the first two pillars: key questions and representative planetary missions. The outputs of step 1 will be used as inputs to step 2, an open community meeting focusing on the identification of pillars 3 and 4 which will be hosted by the EPFL in Lausanne, Switzerland, on Jan. 29th to Feb. 1st, 2018. Ultimately, the four pillars identified by steps 1 and 2 will be discussed and compared in the "synthesis" meeting of step 3, which will take place in Toulouse, France, on the occasion of the European Open Science Forum 2018 (ESOF 2018). Planetary Exploration Horizon 2061: scientific approach. Since 1995 and the discovery of the first exoplanet orbiting a main sequence star, we are living a revolution in planetary science: as of today, over 3000 exoplanets have been identified by a diversity of

  3. Mission-directed path planning for planetary rover exploration

    NASA Astrophysics Data System (ADS)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  4. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  5. An Antarctic research outpost as a model for planetary exploration.

    PubMed

    Andersen, D T; McKay, C P; Wharton, R A; Rummel, J D

    1990-01-01

    During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than symbolically appropriate to an international endeavor of unprecedented scientific and social significance--planetary exploration by humans. Potential uses of such a facility include: 1) studying human factors in an isolated environment (including long-term interactions among an international crew); 2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced analytical and sample acquisition instrumentation and equipment, etc.); and 3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for human exploration. (Research of this type is already ongoing in Antarctica).

  6. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  7. New Paradigms for Human-Robotic Collaboration During Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Parrish, J. C.; Beaty, D. W.; Bleacher, J. E.

    2017-02-01

    Human exploration missions to other planetary bodies offer new paradigms for collaboration (control, interaction) between humans and robots beyond the methods currently used to control robots from Earth and robots in Earth orbit.

  8. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the

  9. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  10. TOPS: Toward Other Planetary Systems. A report by the solar system exploration division

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes a general plan and the pertinent technological requirements for TOPS (Toward Other Planetary Systems), a staged program to ascertain the prevalence and character of other planetary systems and to construct a definitive picture of the formation of stars and their planets. The first stages focus on discovering and studying a significant number of fully formed planetary systems, as well as expanding current studies of protoplanetary systems. As the TOPS Program evolves, emphasis will shift toward intensive study of the discovered systems and of individual planets. Early stages of the TOPS Program can be undertaken with ground-based observations and space missions comparable in scale to those now being performed. In the long term, however, TOPS will become an ambitious program that challenges our capabilities and provides impetus for major space initiatives and new technologies.

  11. Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)

    2012-01-01

    Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.

  12. Reports of planetary geology program, 1980. [Bibliography

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Kosters, E. C. (Compiler)

    1980-01-01

    This is a compilation of abstracts of reports which summarize work conducted in the Planetary Geology Program. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  13. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  14. Planetary explorer liquid propulsion study

    NASA Technical Reports Server (NTRS)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  15. Reports of planetary geology and geophysics program, 1989

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1990-01-01

    Abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program are compiled. The research conducted under this program during 1989 is summarized. Each report includes significant accomplishments in the area of the author's funded grant or contract.

  16. Lessons Learned in Science Operations for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.

    2017-01-01

    The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.

  17. Planetary Protection Issues in the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  18. Planetary Protection Issues in the Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-06-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  19. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  20. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  1. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  2. Planetary protection issues in advance of human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Davis, Wanda L.

    1989-01-01

    The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

  3. The Spectropolarimeter for Planetary Exploration: SPEX

    NASA Astrophysics Data System (ADS)

    Laan, Erik; Stam, Daphne; Snik, Frans; Karalidi, Theodora; Keller, Christoph; ter Horst, Rik; Navarro, Ramon; Oomen, Gijsbert; de Vries, Johan; Hoogeveen, Ruud

    2017-11-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact remotesensing instrument for measuring and characterizing aerosols in the atmosphere. The shoebox size instrument is capable of accurate full linear spectropolarimetry without moving parts or liquid crystals. High precision polarimetry is performed through encoding the degree and angle of linear polarization of the incoming light in a sinusoidal modulation of the spectrum. Measuring this intensity spectrum thus provides the spectral dependence of the degree and angle of linear polarization. Polarimetry has proven to be an excellent tool to study microphysical properties of atmospheric particles. Such information is essential to better understand the weather and climate of a planet. Although SPEX can be used to study any planetary atmosphere, including the Earth's, the current design of SPEX is tailored to study Martian dust and clouds from an orbiting platform. SPEX' 9 entrance pupils can simultaneously measure intensity spectra from 0.4 to 0.8 microns, in different directions along the flight direction (including two limb viewing directions). This way, the scattering phase functions of dust and cloud particles within a ground pixel are sampled while flying over it. SPEX can provide synergy with instruments on rovers and landers, as it provides an overview of spatial and temporal variations of the Martian atmosphere.

  4. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  5. Cost estimation model for advanced planetary programs, fourth edition

    NASA Technical Reports Server (NTRS)

    Spadoni, D. J.

    1983-01-01

    The development of the planetary program cost model is discussed. The Model was updated to incorporate cost data from the most recent US planetary flight projects and extensively revised to more accurately capture the information in the historical cost data base. This data base is comprised of the historical cost data for 13 unmanned lunar and planetary flight programs. The revision was made with a two fold objective: to increase the flexibility of the model in its ability to deal with the broad scope of scenarios under consideration for future missions, and to maintain and possibly improve upon the confidence in the model's capabilities with an expected accuracy of 20%. The Model development included a labor/cost proxy analysis, selection of the functional forms of the estimating relationships, and test statistics. An analysis of the Model is discussed and two sample applications of the cost model are presented.

  6. Objectives and models of the planetary quarantine program

    NASA Technical Reports Server (NTRS)

    Werber, M.

    1975-01-01

    The objectives of the planetary quarantine program are presented and the history of early contamination prevention efforts is outlined. Contamination models which were previously established are given and include: determination of parameters; symbol nomenclature; and calculations of contamination and hazard probabilities. Planetary quarantine is discussed as an issue of national and international concern. Information on international treaty and meetings on spacecraft sterilization, quarantine standards, and policies is provided. The specific contamination probabilities of the U.S.S.R. Venus 3 flyby are included.

  7. Reports of Planetary Geology Program, 1982

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1982-01-01

    Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.

  8. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  9. Reports of Planetary Geology and Geophysics Program, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Abstracts compiled from reports from Principal Investigators of the NASA Planetary Geology and Geophysics Program, Office of Space Science and Applications are presented. The purpose is to document in summary form work conducted in this program during 1986. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  10. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  11. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  12. Reports of planetary geology and geophysics program, 1988

    NASA Technical Reports Server (NTRS)

    Holt, Henry E. (Editor)

    1989-01-01

    This is a compilation of abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1988. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  13. Reports of planetary geology and geophysics program, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is a compilation of abstracts of reports from Principal Investigators of NASA's PLanetary Geology and Geophysics program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1987. Each report reflects significant accomplishments in the area of the author's funded grant or contract.

  14. Reports of Planetary Geology Program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1981-01-01

    Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.

  15. Planetary exploration with optical imaging systems review: what is the best sensor for future missions

    NASA Astrophysics Data System (ADS)

    Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.

    2017-11-01

    When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.

  16. Towards terrain interaction prediction for bioinspired planetary exploration rovers.

    PubMed

    Yeomans, Brian; Saaj, Chakravathini M

    2014-03-01

    Deployment of a small legged vehicle to extend the reach of future planetary exploration missions is an attractive possibility but little is known about the behaviour of a walking rover on deformable planetary terrain. This paper applies ideas from the developing study of granular materials together with a detailed characterization of the sinkage process to propose and validate a combined model of terrain interaction based on an understanding of the physics and micro mechanics at the granular level. Whilst the model reflects the complexity of interactions expected from a walking rover, common themes emerge which enable the model to be streamlined to the extent that a simple mathematical representation is possible without resorting to numerical methods. Bespoke testing and analysis tools are described which reveal some unexpected conclusions and point the way towards intelligent control and foot geometry techniques to improve thrust generation.

  17. Spatial Coverage Planning and Optimization for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and scheduling technology to enable in situ robotic explorers, such as rovers and aerobots, to more effectively assist scientists in planetary exploration. In our current work, we are focusing on situations in which the robot is exploring large geographical features such as craters, channels or regional boundaries. In to develop valid and high quality plans, the robot must take into account a range of scientific and engineering constraints and preferences. We have developed a system that incorporates multiobjective optimization and planning allowing the robot to generate high quality mission operations plans that respect resource limitations and mission constraints while attempting to maximize science and engineering objectives. An important scientific objective for the exploration of geological features is selecting observations that spatially cover an area of interest. We have developed a metric to enable an in situ explorer to reason about and track the spatial coverage quality of a plan. We describe this technique and show how it is combined in the overall multiobjective optimization and planning algorithm.

  18. DPS Planetary Science Graduate Programs Database for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2017-10-01

    Planetary science is a topic that covers an extremely diverse set of disciplines; planetary scientists are typically housed in a departments spanning a wide range of disciplines. As such it is difficult for undergraduate students to find programs that will give them a degree and research experience in our field as Department of Planetary Science is a rare sighting, indeed. Not only can this overwhelm even the most determined student, it can even be difficult for many undergraduate advisers.Because of this, the DPS Education committee decided several years ago that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. We present here a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  19. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements

  20. Investments by NASA to build planetary protection capability

    NASA Astrophysics Data System (ADS)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  1. Reports of Planetary Geology and Geophysics Program, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts of reports from NASA's Planetary Geology and Geophysics Program are presented. Research is documented in summary form of the work conducted. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  2. SPEX: a multi-angle Spectropolarimeter for Planetary EXploration

    NASA Astrophysics Data System (ADS)

    Smit, J. M.; Hasekamp, O. P.; Rietjens, J.; Stam, D.; Snik, F.; Van Harten, G.; Verlaan, A.; Voors, R.; Moon, S.; Wielinga, K.

    2011-12-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass multi-viewing angle spectropolarimeter designed to operate from an orbiting satellite platform. Its purpose is to simultaneously measure, with high accuracy, the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere or reflected by a planetary surface. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This results in a modulation of the radiance spectrum in both amplitude and phase by the degree and angle of the linear polarization spectrum, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an a-thermal multiple-order retarder, and a polarizing beam splitter. Such a configuration is implemented for a range of viewin directions, which allows sampling the full scattering phase function of each ground pixel under investigation, while orbiting the planetary body. The present design of SPEX is tuned to a Mars mission, as a payload on a satellite in a low orbit. However, the concept is perfectly applicable for Earth remote sensing from an orbiting platform like ISS or a dedicated mission, for which we are developing a breadboard. A similar concepts is under study for a mission to the Jovian system including the Galilean Moons. We will show first test results obtained with recently developed prototype of the SPEX instrument

  3. A Three-Line Stereo Camera Concept for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon

    1997-01-01

    This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.

  4. A six-legged rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Krotkov, Eric; Bares, John

    1991-01-01

    To survive the rigors and isolation of planetary exploration, an autonomous rover must be competent, reliable, and efficient. This paper presents the Ambler, a six-legged robot featuring orthogonal legs and a novel circulating gait, which has been designed for traversal of rugged, unknown environments. An autonomous software system that integrates perception, planning, and real-time control has been developed to walk the Ambler through obstacle strewn terrain. The paper describes the information and control flow of the walking system, and how the design of the mechanism and software combine to achieve competent walking, reliable behavior in the face of unexpected failures, and efficient utilization of time and power.

  5. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  6. Significant achievements in the planetary geology program, 1980

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Editor)

    1980-01-01

    Recent developments in planetology research as reported at the 1980 NASA Planetology Program Principal Investigators meeting are summarized. Important developments are summarized in topics ranging from solar system evolution and comparative planetology to geologic processes active on other planetary bodies.

  7. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  8. From H.G. Wells to Unmanned Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Boyd, John W.

    2005-01-01

    The possibility of planetary exploration has been a dream of the human race since Galileo discovered the moons of Jupiter in 1610. Visual sightings of bodies entering Earth s atmosphere have been made by Earth s inhabitants over the centuries. Over time, the many meteor showers (Leonid, Perseid) have provided dramatic evidence of the intense heat generated by a body entering Earth s atmosphere at hypervelocity speeds. More recently (in 1908), few viewed the Tunguska meteor that impacted in Siberia, but the destructive power on the countryside was awesome.

  9. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  10. DPS Planetary Science Graduate Programs Database for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2016-10-01

    Several years ago the DPS Education committee decided that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. The reason for such a list is that "planetary science" is a heading that covers an extremely diverse set of disciplines. The usual case is that planetary scientists are housed in a discipline-placed department so that finding them is typically not easy—undergraduates cannot look for a Planetary Science department, but must (somehow) know to search for them in all their possible places. This can overwhelm even determined undergraduate student, and even many advisers!We present here the updated site and a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  11. A Modular Habitation System for Human Planetary and Space Exploration

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2015-01-01

    A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.

  12. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.

    PubMed

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip.

  13. Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain

    PubMed Central

    Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

    2014-01-01

    The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582

  14. Directory of research projects: Planetary geology and geophysics program

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1990-01-01

    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided, including the proposal summary sheet from each proposal funded under the program during fiscal year 1990. Information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations is also provided.

  15. Discovery Planetary Mission Operations Concepts

    NASA Technical Reports Server (NTRS)

    Coffin, R.

    1994-01-01

    The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.

  16. Planetary exploration with nanosatellites: a space campus for future technology development

    NASA Astrophysics Data System (ADS)

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  17. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  18. Directory of research projects: Planetary geology and geophysics program

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1992-01-01

    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided. The directory consists of the proposal summary sheet from each proposal funded under the program during Fiscal Year 1992. The sheets provide information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations.

  19. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  20. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  1. Robosphere: Self Sustaining Robotic Ecologies as Precursors to Human Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    2003-01-01

    The present sequential mission oriented approach to robotic planetary exploration, could be changed to an infrastructure building approach where a robotic presence is permanent, self sustaining and growing with each mission. We call this self-sustaining robotic ecology approach robosphere and discuss the technological issues that need to be addressed before this concept can be realized. One of the major advantages of this approach is that a robosphere would include much of the infrastructure required by human explorers and would thus lower the preparation and risk threshold inherent in the transition from robotic to human exploration. In this context we discuss some implications for space architecture.

  2. Planetary protection issues and human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1991-01-01

    A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial microbes which could interfere with exobiological analyses; and (2) back contamination of Earth by species that may be present in returned Mars samples. The United States is also signatory to an international treaty designed to protect Earth and planets from harmful cross-contamination during exploration. Therefore, it is timely to assess the necessity for, and impact of, PP procedures on the mission set comprising the human exploration of Mars. The ground-rules adopted at a recent workshop which addressed PP questions of this type are presented. In addition, the workshop produced several recommendations for dealing with forward and back contamination concerns for non-scientific perspectives, including public relations, legal, regulatory, international, and environmental.

  3. First results in terrain mapping for a roving planetary explorer

    NASA Technical Reports Server (NTRS)

    Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.

  4. Budgeting for Exploration: the History and Political Economy of Planetary Science

    NASA Astrophysics Data System (ADS)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  5. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  6. Directory of research projects, 1991. Planetary geology and geophysics program

    NASA Technical Reports Server (NTRS)

    Maxwell, Ted A. (Editor)

    1991-01-01

    Information is provided about currently funded scientific research within the Planetary Geology and Geophysics Program. The directory consists of the proposal summary sheet from each proposal funded by the program during fiscal year 1991. Information is provided on the research topic, principal investigator, institution, summary of research objectives, past accomplishments, and proposed investigators.

  7. Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system

    NASA Technical Reports Server (NTRS)

    Bruston, P.; Mumma, M. J.

    1994-01-01

    An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.

  8. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  9. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  10. DPS Planetary Science Graduate Programs Listing: A Resource for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie

    2015-11-01

    We began a web page on the DPS Education site in 2013 listing all the graduate programs we could find that can lead to a PhD with a planetary science focus. Since then the static page has evolved into a database-driven, filtered-search site. It is intended to be a useful resource for both undergraduate students and undergraduate advisers, allowing them to find and compare programs across a basic set of search criteria. From the filtered list users can click on links to get a "quick look" at the database information and follow links to the program main site.The reason for such a list is because planetary science is a heading that covers an extremely diverse set of disciplines. The usual case is that planetary scientists are housed in a discipline-placed department so that finding them is typically not easy—undergraduates cannot look for a Planetary Science department, but must (somehow) know to search for them in all their possible places. This can overwhelm even determined undergraduate student, and even many advisers!We present here the updated site and a walk-through of the basic features. In addition we ask for community feedback on additional features to make the system more usable for them. Finally, we call upon those mentoring and advising undergraduates to use this resource, and program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  11. Exploring Visual Evidence of Human Impact on the Environment with Planetary-Scale Zoomable Timelapse Video

    NASA Astrophysics Data System (ADS)

    Sargent, R.; Egge, M.; Dille, P. S.; O'Donnell, G. D.; Herwig, C.

    2016-12-01

    Visual evidence ignites curiosity and inspires advocacy. Zoomable imagery and video on a planetary scale provides compelling evidence of human impact on the environment. Earth Timelapse places the observable impact of 30+ years of human activity into the hands of policy makers, scientists, and advocates, with fluidity and speed that supports inquiry and exploration. Zoomability enables compelling narratives and ready apprehension of environmental changes, connecting human-scale evidence to regional and ecosystem-wide trends and changes. Leveraging the power of Google Earth Engine, join us to explore 30+ years of Landset 30m RGB imagery showing glacial retreat, agricultural deforestation, irrigation expansion, and the disappearance of lakes. These narratives are enriched with datasets showing planetary forest gain/loss, annual cycles of agricultural fires, global changes in the health of coral reefs, trends in resource extraction, and of renewable energy development. We demonstrate the intuitive and inquiry-enabling power of these planetary visualizations, and provide instruction on how scientists and advocates can create and share or contribute visualizations of their own research or topics of interest.

  12. Public Engagement with the Lunar and Planetary Institute

    NASA Astrophysics Data System (ADS)

    Shaner, Andrew; Shupla, Christine; Smith Hackler, Amanda; Buxner, Sanlyn; Wenger, Matthew; Joseph, Emily C. S.

    2016-10-01

    The Lunar and Planetary Institute's (LPI) public engagement programs target audiences of all ages and backgrounds; in 2016 LPI has expanded its programs to reach wider, more diverse audiences. The status, resources, and findings of these programs, including evaluation results, will be discussed in this poster. LPI's Cosmic Explorations Speaker Series (CESS) is an annual public speaker series to engage the public in space science and exploration. Each thematic series includes four to five presentations held between September and May. Past series' titles have included "Science" on the Silver Screen, The Universe is Out to Get Us and What We Can (or Can't) Do About It, and A User's Guide to the Universe: You Live Here. Here's What You Need to Know. While the presentations are available online after the event, they are now being livestreamed to be accessible to a broader national, and international, audience. Sky Fest events, held four to five times a year, have science content themes and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. Themes include both planetary and astronomy topics as well as planetary exploration topics (e.g., celebrating the launch or landing of a spacecraft). Elements of the Sky Fest program are being conducted in public libraries serving audiences underrepresented in STEM near LPI. These programs take place as part of existing hour-long programs in the library. During this hour, young people, typically 6-12 years old, move through three stations where they participate in hands-on activities. Like Sky Fest, these programs are thematic, centered on one over-arching topic such as the Moon or Mars. Beginning in Fall 2016, LPI will present programs at a revitalized park in downtown Houston. Facilities at this park will enable LPI to bring both the Sky Fest and CESS programs into the heart of Houston, which is one of the most diverse cities in the US and the world.

  13. Planetary protection program for Mars 94/96 mission.

    PubMed

    Rogovski, G; Bogomolov, V; Ivanov, M; Runavot, J; Debus, A; Victorov, A; Darbord, J C

    1996-01-01

    Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.

  14. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  15. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  16. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  17. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  18. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    . Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  19. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  1. Mission operations systems for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.; Wolff, Donna M.

    1988-01-01

    The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

  2. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  3. A bibliography of planetary geology and geophysics principal investigators and their associates, 1983 - 1984

    NASA Technical Reports Server (NTRS)

    Witbeck, N. E. (Editor)

    1984-01-01

    A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.

  4. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  5. Publications of the planetary biology program for 1976: A special bibliography

    NASA Technical Reports Server (NTRS)

    Bradley, F. D. (Compiler); Young, R. S. (Compiler)

    1977-01-01

    An annual listing of current publications resulting from research pursued under the auspices of NASA's Planetary Biology Program is presented. To stimulate the exchange of information and ideas among scientists working in the different areas of the program. To facilitate the exchange process. The author of each publication who is presently participating in the program is identified by asterisk. Current addresses for all principal investigators are given in the appendix.

  6. Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.

  7. An integrated strategy for the planetary sciences: 1995 - 2010

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.

  8. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.

  9. Scientific exploration of low-gravity planetary bodies using the Highland Terrain Hopper

    NASA Astrophysics Data System (ADS)

    Mège, D.; Grygorczuk, J.; Gurgurewicz, J.; Wiśniewski, Ł.; Rickman, H.; Banaszkiewicz, M.; Kuciński, T.; Skocki, K.

    2013-09-01

    Field geoscientists need to collect three-dimensional data in order characterise the lithologic succession and structure of terrains, recontruct their evolution, and eventually reveal the history of a portion of the planet. This is achieved by walking up and down mountains and valleys, interpreting geological and geophysical traverses, and reading measures made at station located at key sites on mountain peaks or rocky promontories. These activities have been denied to conventional planetary exploration rovers because engineering constraints for landing are strong, especially in terms of allowed terrain roughness and slopes. The Highland Terrain Hopper, a new, light and robust locomotion system, addresses the challenge of accessing most areas on low-gravity planetary body for performing scientific observations and measurements, alone or as part of a hopper commando. Examples of geological applications on Mars and the Moon are given.

  10. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  11. Overview of current capabilities and research and technology developments for planetary protection

    NASA Astrophysics Data System (ADS)

    Frick, Andreas; Mogul, Rakesh; Stabekis, Pericles; Conley, Catharine A.; Ehrenfreund, Pascale

    2014-07-01

    The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.

  12. NASA's Planetary Geology and Geophysics Undergraduate Research Program (PGGURP): The Value of Undergraduate Geoscience Internships

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.

    2008-12-01

    NASA's Planetary Geology and Geophysics Program began funding PGGURP in 1978, in an effort to help planetary scientists deal with what was then seen as a flood of Viking Orbiter data. Each subsequent year, PGGURP has paired 8 - 15 undergraduates with NASA-funded Principal Investigators (PIs) around the country for approximately 8 weeks during the summer. Unlike other internship programs, the students are not housed together, but are paired, one-on-one, with a PI at his or her home institution. PGGURP interns have worked at sites ranging from the Jet Propulsion Laboratory to the University of Alaska, Fairbanks. Through NASA's Planetary Geology and Geophysics Program, the interns' travel and lodging costs are covered, as are a cost-of-living stipend. Approximately 30% of the undergraduate PGGURP participants continue on to graduate school in the planetary sciences. We consider this to be an enormous success, because the participants are among the best and brightest undergraduates in the country with a wide range of declared majors (e.g., physics, chemistry, biology, as well as geology). Furthermore, those students that do continue tend to excel, and point to the internship as a turning point in their scientific careers. The NASA PIs who serve as mentors agree that this is a valuable experience for them, too, and many of them have been hosting interns annually for well over a decade. The PI obtains enthusiastic and intelligent undergraduate, free of charge, for a summer, while having the opportunity to work closely with today's students who are the future of planetary science. The Lunar and Planetary Institute (LPI) in Houston, TX, also sponsors a summer undergraduate internship. Approximately 12 students are selected to live together in apartments located near the Lunar and Planetary Institute and the Johnson Space Center. Similar to PGGURP, the LPI interns are carefully selected to work one-on-one for ~10 weeks during the summer with one of the LPI staff scientists

  13. Solar System Exploration, 1995-2000

    NASA Technical Reports Server (NTRS)

    Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.

    1994-01-01

    Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.

  14. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  15. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  16. Possible applications of time domain reflectometry in planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Heckendorn, S.

    1982-01-01

    The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.

  17. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  18. Developing Tools and Technologies to Meet MSR Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2013-01-01

    This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.

  19. NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Eppler, Dean; Gruener, John; Horz, Fred; Ming, Doug; Yingst, R. Aileen

    2012-01-01

    NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth.

  20. Planetary Protection Bioburden Analysis Program

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.

    2013-01-01

    This program is a Microsoft Access program that performed statistical analysis of the colony counts from assays performed on the Mars Science Laboratory (MSL) spacecraft to determine the bioburden density, 3-sigma biodensity, and the total bioburdens required for the MSL prelaunch reports. It also contains numerous tools that report the data in various ways to simplify the reports required. The program performs all the calculations directly in the MS Access program. Prior to this development, the data was exported to large Excel files that had to be cut and pasted to provide the desired results. The program contains a main menu and a number of submenus. Analyses can be performed by using either all the assays, or only the accountable assays that will be used in the final analysis. There are three options on the first menu: either calculate using (1) the old MER (Mars Exploration Rover) statistics, (2) the MSL statistics for all the assays, or This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software

  1. The Potential of Phased Arrays for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Pogorzelski, Ronald J.

    2000-01-01

    Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable

  2. Planetary surface exploration using Raman spectroscopy for minerals and organics

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.; Shkolyar, S.; Farmer, J. D.

    2013-12-01

    Raman spectroscopy has been identified as one of the primary techniques for planetary surface mineralogy. It is widely used as a laboratory technique since it can identify nearly all crystalline mineral phases. Using a small spot size on the surface (on the order of a micron), mineral phases can be mapped onto microscopic images preserving information about surface morphology. As a result, this technique has been steadily gaining support for in situ exploration of a variety of target bodies, for example Mars, the Moon, Venus, asteroids, and comets. In addition to in situ exploration, Raman spectroscopy has been identified as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. This is in part due to the fact that Raman can detect many organics in addition to minerals. As a result, the most relevant rock samples containing organics (potentially fossil biosignatures) may potentially be selected for return to Earth. We present a next-generation instrument that builds on the widely used 532 nm Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. We use time-resolved laser spectroscopy to eliminate this fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns temporal resolution. We will address the challenges of analyzing surface materials, often organics, that exhibit short-lifetime fluorescence. We will present result on planetary analog samples to demonstrate the instrument performance including fluorescence rejection.

  3. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  4. Mars Sample Return in the Context of the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.

    2002-05-01

    The scientific priorities developed for the scientific exploration of Mars by the Mars Exploration Program Assessment Group [MEPAG, 2001] and as part of the Committee on Planetary and Lunar Exploration (COMPLEX) recent assessment of the NASA Mars Exploration Program [COMPLEX, 2001] all involve a campaign of Mars Sample Return (MSR) missions. Such MSR missions are required to address in a definitive manner most of the highest priority investigations within overarching science themes which include: (1) biological potential (past or present); (2) climate (past or present); (3) solid planet (surface and interior, past and present); (4) knowledge necessary to prepare for eventual human exploration of Mars. NASA's current Mars Exploration Program (MEP) contains specific flight mission developments and plans only for the present decade (2002-2010), including a cascade of missions designed to set the stage for an inevitable campaign of MSR missions sometime in the second decade (2011-2020). Studies are presently underway to examine implementation options for a first MSR mission in which at least 500g of martian materials (including lithic fragments) would be returned to Earth from a landing vicinity carefully selected on the basis of the comprehensive orbital and surface-based remote sensing campaign that is ongoing (MGS, ODYSSEY) and planned (MER, MRO, 2009 MSL). Key to the first of several MSR's is attention to risk, cost, and enabling technologies that facilitate access to most scientifically-compelling martian materials at very local scales. The context for MSR's in the upcoming decade remains a vital part of NASA's scientific strategy for Mars exploration.

  5. Future NASA solar system exploration activities: A framework for international cooperation

    NASA Technical Reports Server (NTRS)

    French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

    1992-01-01

    The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

  6. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  7. Back to the future: the role of the ISS and future space stations in planetary exploration.

    NASA Astrophysics Data System (ADS)

    Muller, Christian; Moreau, Didier

    2010-05-01

    Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.

  8. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  9. Our Solar System 2050: Advancing the Science, Technology, and Societal Relevance of Planetary Exploration Through Public Participation

    NASA Astrophysics Data System (ADS)

    Kaminski, A. P.; Bowman, C. D.; Buquo, L. E.; Conrad, P. G.; Davis, R. M.; Domagal-Goldman, S.; Pirtle, Z. T.; Skytland, N. G.; Tahu, G. J.; Thaller, M. L.; Viotti, M. A.

    2017-02-01

    We show how citizen science, crowdsourcing, prize competitions, and other modalities can expand public participation and prove valuable for enhancing the science, technology, and societal relevance of planetary exploration over the next few decades.

  10. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.

  11. Space and planetary environment criteria guidelines for use in space vehicle development, 1971 revision

    NASA Technical Reports Server (NTRS)

    Smith, R. E. (Editor)

    1971-01-01

    A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.

  12. Toward a global space exploration program: A stepping stone approach

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  13. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  14. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  15. Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions

    NASA Technical Reports Server (NTRS)

    Isaacman, R.; Sagan, C.

    1976-01-01

    The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.

  16. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    SciTech Connect

    Not Available

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.

  17. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  18. Planetary boundaries: exploring the safe operating space for humanity

    Treesearch

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  19. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  20. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  1. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  2. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  3. Biologically-Inspired Control for a Planetary Exploration Tensegrity Robot

    NASA Technical Reports Server (NTRS)

    Leroy, Marc

    2017-01-01

    Tensegrity structures are becoming increasingly popular as mechanical structures for robots. Their inherent compliance makes them extremely robust to environmental disturbances, and their design allows them to have a high strength-to-weight ratio whilst being lightweight compared to traditional robots. For these reasons they would be of interest to the aerospace industry, particularly for planetary exploration. However, being such compliant structures thanks to their network of elastic elements also means that their control is not an easy task. Relying solely on traditional control strategies to generate efficient locomotion would surely be near impossible due to the complex oscillatory motions and nonlinear interactions of its members. The goal of this project was to use bio-inspired control techniques to generate locomotion for a tensegrity icosahedron, namely the SUPERball project of the Intelligent Robotics Group of NASA Ames Research Center.

  4. A Planetary Park system for the Moon and beyond

    NASA Astrophysics Data System (ADS)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  5. Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

    2012-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  6. Lunar and Planetary Robotic Exploration Missions in the 20th Century

    NASA Astrophysics Data System (ADS)

    Huntress, W. T., Jr.; Moroz, V. I.; Shevalev, I. L.

    2003-07-01

    The prospect of traveling to the planets was science fiction at the beginning of the 20th Century and science fact at its end. The space age was born of the Cold War in the 1950s and throughout most of the remainder of the century it provided not just an adventure in the exploration of space but a suspenseful drama as the US and USSR competed to be first and best. It is a tale of patience to overcome obstacles, courage to try the previously impossible and persistence to overcome failure, a tale of both fantastic accomplishment and debilitating loss. We briefly describe the history of robotic lunar and planetary exploration in the 20th Century, the missions attempted, their goals and their fate. We describe how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation.

  7. NASA's Small Explorer program

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Rasch, Nickolus O.

    1989-01-01

    This paper describes a new component of the NASA's Explorer Program, the Small Explorer program, initiated for the purpose of providing research opportunities characterized by quick and frequent small turn-around space missions. The objective of the Small Explorer program is to launch one to two payloads per year, depending on the mission cost and the availability of funds and launch vehicles. In the order of tentative launch date, the flight missions considered by the Small Explorer program are the Solar, Anomalous, and Magnetospheric Explorer; the Submillimeter Wave Astronomy Satellite; the Fast Auroral Snapshot Explorer; and the Total Ozone Mapping Spectrometer.

  8. Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

  9. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  10. Reports of planetary geology program, 1977-1978

    NASA Technical Reports Server (NTRS)

    Strom, R. (Compiler); Boyce, J. (Compiler); Boss, A. P.; Peale, S. J.; Alfven, H.; Cameron, A. G. W.; Sonett, C. P.; Shoemaker, E. M.; Helin, E. F.; Carusi, A.

    1978-01-01

    A compilation of abstracts of reports which summarizes work conducted by Planetary Geology Principal Investigators and their associates is presented. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at the Universtiy of Arizona, Tucson, Arizona, May 31, June 1 and 2, 1978.

  11. A bibliography of planetary geology and geophysics principal investigators and their associates, 1986-1987

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A compilation is presented of selected bibliographic data relating to recent publications submitted by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program

  12. MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions

    NASA Astrophysics Data System (ADS)

    Zinzi, A.; Capria, M. T.; Palomba, E.; Giommi, P.; Antonelli, L. A.

    2016-04-01

    The increasing number and complexity of planetary exploration space missions require new tools to access, visualize and analyse data to improve their scientific return. ASI Science Data Center (ASDC) addresses this request with the web-tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration), allowing the visualization of single observation or real-time computed high-order products, directly projected on the three-dimensional model of the selected target body. Using MATISSE it will be no longer needed to download huge quantity of data or to write down a specific code for every instrument analysed, greatly encouraging studies based on joint analysis of different datasets. In addition the extremely high-resolution output, to be used offline with a Python-based free software, together with the files to be read with specific GIS software, makes it a valuable tool to further process the data at the best spatial accuracy available. MATISSE modular structure permits addition of new missions or tasks and, thanks to dedicated future developments, it would be possible to make it compliant to the Planetary Virtual Observatory standards currently under definition. In this context the recent development of an interface to the NASA ODE REST API by which it is possible to access to public repositories is set.

  13. Software Architecture of Sensor Data Distribution In Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo

    2006-01-01

    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.

  14. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    NASA Technical Reports Server (NTRS)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  15. Ultra-Compact Raman Spectrometer for Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  16. A bibliography of planetary geology and geophysics principal investigators and their associates, 1990-1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of selected bibliographic data specifically relating to recent publications submitted by principal investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program is presented.

  17. A bibliography of planetary geology and geophysics principal investigators and their associates, 1989-1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a compilation of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program.

  18. Program options to explore ocean worlds

    NASA Astrophysics Data System (ADS)

    Sherwood, B.; Lunine, J.; Sotin, C.; Cwik, T.; Naderi, F.

    2018-02-01

    coherence. In only 15 years, the Mars Exploration Program (MEP) has transformed humanity's view of Mars as a once and future habitable place, a world quite possibly holding relict evidence of life. Finding such evidence, we would study it to know if that life shared an origin common with Earth life. However, life in the ocean worlds could not have shared our origin, so exploring them opens another level in our quest to understand life in the universe: not only to places with vast salt-water seas known to contain organics and hydrothermal seafloors active today, but to places where anything alive cannot be related to us. MEP's success - from its presence in the public consciousness to its rewriting of planetary habitability - make it an obvious template and source of lessons learned for a viable ocean worlds exploration program (OWEP). Six attributes of the MEP are analyzed for application to a potential OWEP. From this, five hypothetical programmatic scenarios are compared to the default case, and conclusions drawn. A coherent OWEP should have several parts: first, dedicated continuous investment in enabling technologies; and second, two directed-purpose, medium-class (∼1 B) missions per decade that conduct pivotal investigations on a documented roadmap. Science could start in 2035, informing development of decadal flagship missions after Europa Clipper, to the places revealed to hold the most promise. The fastest pace of scientific discoveries would require access to high-performance propulsion infrastructure, e.g., the Space Launch System, Falcon Heavy, and high-power in-space solar electric propulsion, all capable of halving trip time. Not including these boosts, such a program would cost about a half-billion dollars more per year than NASA's existing mission portfolio; the program architecture funded today cannot deliver a strategic OWEP while also sustaining balance among other solar system exploration priorities and opportunities. Follow the Water. Yes, into the

  19. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.

  20. A Science Rationale for Mobility in Planetary Environments

    NASA Technical Reports Server (NTRS)

    1999-01-01

    For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?

  1. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  2. Getting Planetary Data into the Hands of Educators: Recommendations from a Community Discussion

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Lowes, L.; Hammon, A.; Higbie, M.; Klug, S.; Lindstrom, M.; Stockman, S.; Wise, J.

    2004-12-01

    In March 2004 a community of approximately 60 researchers, formal and informal education specialists, classroom educators, data archivists, and educational product developers came together for a day-long conference to discuss the challenges in bringing planetary data into the classroom. The conference was hosted by the Solar System Exploration Education Forum and the South Central Organization of Researchers and Educators of NASA's Office of Space Science Support Network. The workshop was intended to: initiate a dialog among those interested in identifying paths for bringing planetary data to educators; better understand key challenges facing educators who are working with planetary data and issues with gaining access to data; identify common aspects of success of programs and products developed to make data accessible in educational venues; and finally, identify the remaining challenges and make recommendations for how the community should move forward to bring these data into the classroom. Presentations by researchers and educational specialists encompassed the facilitation of accessing data, effective use of data in the classroom, availability of data for use by the educational community, and paths for accessing and using mission data. Panel discussions explored the experiences of researchers, educators, and product developers in creating and implementing programs and products and the challenges remaining for integrating planetary data into educational environments. Discussion among participants resulted in a series of recommendations for the development and implementation of successful programs, including: 1) the intended audience should play an active role in the design and development process; 2) program and product implementation should incorporate adequate training and support for intended users; 3) data access needs to be made easier, perhaps requiring the filtering of raw data and new user interfaces; 4) product developers should present data within the

  3. Environmental Test Program for the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; VanVelzer, Paul L.

    2004-01-01

    On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.

  4. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  5. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  6. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    NASA Astrophysics Data System (ADS)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  7. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  8. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  9. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  10. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  11. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  12. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  13. The Evolution and Disruption of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Planetary systems that encounter passing stars can experience severe orbital disruption, and the efficiency of this process is greatly enhanced when the impinging systems are binary pairs rather than single stars. Using a Monte Carlo approach, we have performed nearly half a million numerical experiments to examine the long term ramifications of planetary scattering on planetary systems. We have concluded that systems which form in dense environments such as Orion's Trapezium cluster have roughly a ten percent chance of being seriously disrupted. We have also used our programs to explore the long-term prospects for our own Solar system. Given the current interstellar environment, we have computed the odds that Earth will find its orbit seriously disrupted prior to the emergence of a runaway greenhouse effect driven by the Sun's increasing luminosity. This estimate includes both direct disruption events and scattering processes that seriously alter the orbits of the Jovian planets, which then force severe changes upon the Earth's orbit. We then explore the consequences of the Earth being thrown into deep space. The surface biosphere would rapidly shut down under conditions of zero insolation, but the Earth's radioactive heat is capable of maintaining life deep underground, and perhaps in hydrothermal vent communities, for some time to come. Although unlikely for the Earth, this scenario may be common throughout the universe, since many environments where liquid water could exist (e.g., Europa and Callisto) must derive their energy from internal (rather than external) heating.

  14. The challenges and benefits of lunar exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  15. ANTS: Applying A New Paradigm for Lunar and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.

    2002-01-01

    ANTS (Autonomous Nano- Technology Swarm), a mission architecture consisting of a large (1000 member) swarm of picoclass (1 kg) totally autonomous spacecraft with both adaptable and evolvable heuristic systems, is being developed as a NASA advanced mission concept, and is here examined as a paradigm for lunar surface exploration. As the capacity and complexity of hardware and software, demands for bandwidth, and the sophistication of goals for lunar and planetary exploration have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent human contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves and survive when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of development of new mission architectures which involve the use of Intelligent Software Agents (ISAs), performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft weighing tens, instead of hundreds, of kilograms to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments onboard. Such missions will be characterizing rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of autonomous systems at the strategic level, to explore the remote terranes, potentially involving large surveys or detailed reconnaissance.

  16. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  17. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  18. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  19. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    NASA Astrophysics Data System (ADS)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  20. Creating a Road Map for Planetary Data Spatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.

    2017-09-01

    There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.

  1. Automatic control in planetary exploration in the 1980s. [onboard spacecraft

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1973-01-01

    Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.

  2. Planetary quarantine computer applications

    NASA Technical Reports Server (NTRS)

    Rafenstein, M.

    1973-01-01

    The computer programs are identified pertaining to planetary quarantine activities within the Project Engineering Division, both at the Air Force Eastern Test Range and on site at the Jet Propulsion Laboratory. A brief description of each program and program inputs are given and typical program outputs are shown.

  3. Mars Soil-Based Resource Processing and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Mueller, R. P.

    2015-01-01

    The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.

  4. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  5. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  6. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  7. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  8. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  9. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    NASA Technical Reports Server (NTRS)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  10. Significant achievements in the planetary geology program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Editor)

    1981-01-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.

  11. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  12. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  13. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  14. Planetary protection policy (U.S.A.)

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    Through existing treaty obligations of the United States, NASA is committed to exploring space while avoiding biological contamination of the planets, and to the protection of the earth against harm from materials returned from space. Because of the similarities between Mars and earth, plans for the exploration of Mars evoke discussions of these Planetary Protection issues. U.S. Planetary Protection Policy will be focused on the preservation of these goals in an arena that will change with the growth of scientific knowledge about the Martian environment. Early opportunities to gain the appropriate data will be used to guide later policy implementation. Because human presence on Mars will result in the end of earth's separation from the Martian environment, it is expected that precursor robotic missions will address critical planetary protection concerns before humans arrive.

  15. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  16. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  17. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  18. Exploit and ignore the consequences: A mother of planetary issues.

    PubMed

    Moustafa, Khaled

    2016-07-01

    Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Exploit and ignore the consequences: A mother of planetary issues

    NASA Astrophysics Data System (ADS)

    Moustafa, K.

    2016-07-01

    Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. (C) 2016 Elsevier B.V. All rights reserved.

  20. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  1. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  2. Flash LIDAR Systems for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

    2009-01-01

    Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

  3. Planetary quarantine: Principles, methods, and problems

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1975-01-01

    Requirements for planetary quarantine programs focus on microbial life forms as the primary contamination threat carried by spacecraft to a planet, or back to earth from another planet or outer space. Constraints on planetary flight missions and forthcoming Martian landings are depicted.

  4. Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Barnes, D. P.

    2007-08-01

    Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study

  5. ESA Planetary Science Archive Architecture and Data Management

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Barbarisi, I.; Besse, S.; Barthelemy, M.; de Marchi, G.; Docasal, R.; Fraga, D.; Grotheer, E.; Heather, D.; Laantee, C.; Lim, T.; Macfarlane, A.; Martinez, S.; Montero, A.; Osinde, J.; Rios, C.; Saiz, J.; Vallat, C.

    2018-04-01

    The Planetary Science Archive is the European Space Agency repository of science data from all planetary science and exploration missions. This paper presents PSA's content, architecture, user interfaces, and the relation between the PSA and IPDA.

  6. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  7. In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Mantovani, James; Dominquez, Jesus

    2011-01-01

    The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.

  8. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  9. A new methodology to integrate planetary quarantine requirements into mission planning, with application to a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Howard, R. A.; North, D. W.; Pezier, J. P.

    1975-01-01

    A new methodology is proposed for integrating planetary quarantine objectives into space exploration planning. This methodology is designed to remedy the major weaknesses inherent in the current formulation of planetary quarantine requirements. Application of the methodology is illustrated by a tutorial analysis of a proposed Jupiter Orbiter mission. The proposed methodology reformulates planetary quarantine planning as a sequential decision problem. Rather than concentrating on a nominal plan, all decision alternatives and possible consequences are laid out in a decision tree. Probabilities and values are associated with the outcomes, including the outcome of contamination. The process of allocating probabilities, which could not be made perfectly unambiguous and systematic, is replaced by decomposition and optimization techniques based on principles of dynamic programming. Thus, the new methodology provides logical integration of all available information and allows selection of the best strategy consistent with quarantine and other space exploration goals.

  10. Federal Funding and Planetary Astronomy, 1950-75: A Case Study.

    ERIC Educational Resources Information Center

    Tatarewicz, Joseph N.

    1986-01-01

    Discusses the role and resources of planetary astronomy in planetary exploration. Identifies the categories of support made available by the National Aeronautics and Space Administration and reviews the impacts of these findings on planetary researches. Analyzes the publishing habits of American astronomers. (ML)

  11. Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration

    NASA Technical Reports Server (NTRS)

    Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.

    1993-01-01

    The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.

  12. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  13. Far Travelers: The Exploring Machines.

    ERIC Educational Resources Information Center

    Nicks, Oran W.

    The National Aeronautics and Space Administration (NASA) program of lunar and planetary exploration produced a flood of scientific information about the moon, planets and the environment of interplanetary space. This book is an account of the people, machines, and the events of this scientific enterprise. It is a story of organizations,…

  14. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  15. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  16. Planetary geology and terrestrial analogs in Asia

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Namiki, Noriyuki

    2012-04-01

    2011 PERC Planetary Geology Field Symposium;Kitakyushu City, Japan, 5-6 November 2011 In spite of the extremely diverse geological settings that exist in Asia, relatively little attention has previously been paid to this region in terms of terrestrial analog studies for planetary application. Asia is emerging as a major center of studies in planetary geology, but no attempt had been made in the past to organize a broadly based meeting that would allow planetary geologists in Asia to meet with ones from more advanced centers, such as the United States and Europe, and that would include the participation of many geologists working primarily on terrestrial research. The Planetary Exploration Research Center (PERC) of the Chiba Institute of Technology hosted the first planetary geology field symposium in Asia to present results from recent planetary geology studies and to exchange ideas regarding terrestrial analogs (http://www.perc.it-chiba.ac.jp/meetings/pgfs2011/index.html).

  17. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  18. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  19. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  20. Report of the December 2009 Titan Planetary Protection workshop

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale

    The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are

  1. Flash Lidars for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Weimer, C.; Masciarelli, J.; Weinberg, J.; Miller, K. L.; Rohrschneider, R.

    2012-10-01

    Ball Aerospace has developed multiple flash lidar technologies which can benefit planetary exploration missions. This paper describes these developments, culminating in a successful flight demonstration on STS-134.

  2. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  3. Planetary exploration with electrically propelled vehicles.

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1972-01-01

    The characteristics of propulsion systems required for carrying out flight missions within the solar system, as desired by planetary physicists and astronomers, are reviewed. It is shown that an encouraging answer to these requirements is available in the form of electrostatic or ion propulsion systems. The design and performance characteristics of an electrostatic thrustor employing an ion source, accelerating electrode, beam neutralizer, and power source are discussed, together with those of the Kaufmann engine (electrostatic thrustor employing bombardment type ionization). More demanding missions which will become feasible with the advent of nuclear-electric power sources (such as the incore thermionic reactor) may include close orbiters around all the planets, and asteroid and cometary missions.

  4. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  5. Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; Shearer, C. K.; McCubbin, F. M.; Bell, A. S.; Agee, C. B.

    2016-01-01

    Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature

  6. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  7. Interoperability in the Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  8. An ecological compass for planetary engineering.

    PubMed

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  9. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  10. Solution of the equation of heat conduction with time dependent sources: Programmed application to planetary thermal history

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1975-01-01

    A computer program (Program SPHERE) solving the inhomogeneous equation of heat conduction with radiation boundary condition on a thermally homogeneous sphere is described. The source terms are taken to be exponential functions of the time. Thermal properties are independent of temperature. The solutions are appropriate to studying certain classes of planetary thermal history. Special application to the moon is discussed.

  11. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a

  12. Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

    2013-10-01

    Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog

  13. Attitude determination of planetary exploration rovers using solar panels characteristics and accelerometer

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Takahashi, Masaki

    2014-12-01

    In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.

  14. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  15. Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Toups, Larry

    2007-01-01

    One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human

  16. Integrated Software Systems for Crew Management During Extravehicular Activity in Planetary Terrain Exploration

    NASA Technical Reports Server (NTRS)

    Kuznetz, Lawrence; Nguen, Dan; Jones, Jeffrey; Lee, Pascal; Merrell, Ronald; Rafiq, Azhar

    2008-01-01

    Initial planetary explorations with the Apollo program had a veritable ground support army monitoring the safety and health of the 12 astronauts who performed lunar surface extravehicular activities (EVAs). Given the distances involved, this will not be possible on Mars. A spacesuit for Mars must be smart enough to replace that army. The next generation suits can do so using 2 software systems serving as virtual companions, LEGACI (Life support, Exploration Guidance Algorithm and Consumable Interrogator) and VIOLET (Voice Initiated Operator for Life support and Exploration Tracking). The system presented in this study integrates data inputs from a suite of sensors into the MIII suit s communications, avionics and informatics hardware for distribution to remote managers and data analysis. If successful, the system has application not only for Mars but for nearer term missions to the Moon, and the next generation suits used on ISS as well. Field tests are conducted to assess capabilities for next generation spacesuits at Johnson Space Center (JSC) as well as the Mars and Lunar analog (Devon Island, Canada). LEGACI integrates data inputs from a suite of noninvasive biosensors in the suit and the astronaut (heart rate, suit inlet/outlet lcg temperature and flowrate, suit outlet gas and dewpoint temperature, pCO2, suit O2 pressure, state vector (accelerometry) and others). In the Integrated Walkback Suit Tests held at NASA-JSC and the HMP tests at Devon Island, communication and informatics capabilities were tested (including routing by satellite from the suit at Devon Island to JSC in Houston via secure servers at VCU in Richmond, VA). Results. The input from all the sensors enable LEGACI to compute multiple independent assessments of metabolic rate, from which a "best" met rate is chosen based on statistical methods. This rate can compute detailed information about the suit, crew and EVA performance using test-derived algorithms. VIOLET gives LEGACI voice activation

  17. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  18. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  19. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  20. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  1. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  2. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  3. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  4. Europlanet-RI IDIS - A Data Network in Support of Planetary Research

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gérard

    2010-05-01

    The "Europlanet Research Infrastructure - Europlanet RI", supported by the European Commission's Framework Program 7, aims at integrating major parts of the distributed European Planetary Research infrastructure with as diverse components as space exploration, ground-based observations, laboratory experiments and numerical modeling teams. A central part of Europlanet RI is the "Integrated and Distributed Information Service" (IDIS), a network of data and information access facilities in Europe via which information relevant for planetary research can be easily found and retrieved. This covers the wide range from contact addresses of possible research partners, laboratories and test facilities to the access of data collected with space missions or during laboratory or simulation tests and to model software useful for their interpretation. During the following three years the capabilities of the network will be extended to allow the combination of many different data sources for comperative studies including the results of modeling calculations and simulations of instrument observations. Together with the access to complex databases for spectra of atmospheric molecules and planetary surface material IDIS will offer a versatile working environment for making the scientific exploitation of the resources put into planetary research in the past and future more effective. Many of the mentioned capabilities are already available now. List of contact web-sites: Technical node for support and management aspects: http://www.idis.europlanet-ri.eu/ Planetary Surfaces and Interiors node: http://www.idis-interiors.europlanet-ri.eu/ Planetary Plasma node: http://www.idis-plasma.europlanet-ri.eu/ Planetary Atmospheres node: http://www.idis-atmos.europlanet-ri.eu/ Small Bodies and Dust node: http://www.idis-sbdn.europlanet-ri.eu/ Planetary Dynamics and Extraterrestrial Matter node: http://www.idis-dyn.europlanet-ri.eu/

  5. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  6. Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden

    2014-11-01

    The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).

  7. Planetary Magnetic Fields: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team

    2016-06-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for

  8. Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    2012-07-01

    As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

  9. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    NASA Technical Reports Server (NTRS)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  10. Horses for courses: analytical tools to explore planetary boundaries

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. P.; Lucas, P. L.; Häyhä, T.; Cornell, S. E.; Stafford-Smith, M.

    2015-09-01

    There is a need for further integrated research on developing a set of sustainable development objectives, based on the proposed framework of planetary boundaries indicators. The relevant research questions are divided in this paper into four key categories, related to the underlying processes and selection of key indicators, understanding the impacts of different exposure levels and influence of connections between different types of impacts, a better understanding of different response strategies and the available options to implement changes. Clearly, different categories of scientific disciplines and associated models exist that can contribute to the necessary analysis, noting that the distinctions between them are fuzzy. In the paper, we both indicate how different models relate to the four categories of questions but also how further insights can be obtained by connecting the different disciplines (without necessarily fully integrating them). Research on integration can support planetary boundary quantification in a credible way, linking human drivers and social and biophysical impacts.

  11. An Overview of Wind-Driven Rovers for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  12. Planetary mission summaries. Volume 1: Introduction and overview

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Tabular synopses of twelve missions are presented along with the Mariner Jupiter/Saturn 1977 mission for comparison. Mission definitions considered include: Mars Polar Orbiter; Mars Surface Sample Return; Mars Rover; Marine Jupiter/Uranus 1979 with Uranus Entry Probe; Mariner Jupiter Orbiter; Mariner Mercury Orbiter 1978; Early Mariner Comet Flyby Solar Electric Encke Slow Flyby; Mariner Encke Ballistic Flyby; Solar Electric Encke Rendezvous 1981; Venus Orbital Imaging Radar; Solar Electric Out-of-the-Eliptic Probe 1979. Technical conclusions of mission studies are given in order that these results may interact with the broader questions of scope, pace, and priorities in the planetary exploration program.

  13. NASA's Discovery Program: Moving Toward the Edge (of the Solar System)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Gilbert, Paul

    2007-01-01

    NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion

  14. Concepts and Approaches for Mars Exploration. Part 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains extended abstracts that have been accepted for presentation at the Concepts and Approaches for Mars Exploration (Part 2) workshop, July 18-20, 2000. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.

  15. Foundations of planetary quarantine.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  16. Overview of NASA FINESSE (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Results

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Lim, Darlene S. S.; Hughes, S.; Kobs, S.; Garry, B.; Osinski, G. R.; Hodges, K.; Kobayashi, L.; Colaprete, A.

    2015-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  17. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  18. An enhanced Planetary Radar Operating Centre (PROC)

    NASA Astrophysics Data System (ADS)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  19. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  20. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2016-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.

  1. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2017-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.

  2. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  3. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  4. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  5. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    NASA Technical Reports Server (NTRS)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  6. Precise Chemical Analyses of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  7. Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2004-11-01

    NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

  8. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  9. New NASA Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  10. United States planetary rover status: 1989

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna L. S.; Dias, William C.

    1990-01-01

    A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.

  11. AS12-AS101-3 Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.

    2011-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  12. Identifying mechanical property parameters of planetary soil using in-situ data obtained from exploration rovers

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun

    2015-12-01

    Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.

  13. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  14. Implementing planetary protection requirements for sample return missions.

    PubMed

    Rummel, J D

    2000-01-01

    NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  15. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  16. Sonar equations for planetary exploration.

    PubMed

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  17. Publications of the planetary biology program for 1978: A special bibliography

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G. (Compiler); Young, R. S. (Compiler)

    1979-01-01

    The planetary events which are responsible for, or related to, the origin, evolution, and distribution of life in the universe are investigated. Bibliographies from chemical evolution, organic geochemistry, life detection, biological adaptation, bioinstrumentation, planetary environments, and origin of life studies are presented.

  18. Development of a mass spectrometer for planetary exosphere exploration: from simulations to a flight like design

    NASA Astrophysics Data System (ADS)

    Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2017-04-01

    The exploration of habitable environments around the gas giants in the Solar System is of major interest in upcoming planetary missions. Exactly this theme is addressed by the Jupiter Icy Moons Explorer (JUICE) mission of ESA, which will characterise Ganymede, Europa and Callisto as planetary objects and potential habitats [1], [2]. We developed a prototype of the Neutral gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission intended for composition measurements of neutral gas and thermal plasma [3]. NIM/PEP will be used to measure the chemical composition of the exospheres of the icy Jovian moons. Besides direct ion measurement, the NIM instrument is able to measure the inflowing neutral gas in two different modes: in neutral mode the gas enters directly the ion source (open source) and in thermal mode, the gas gets thermally accommodated to wall temperature by several collisions inside an equilibrium sphere before entering the ion source (closed source). We started the development of NIM with detailed ion-optical simulations and optimisations using SIMION software. Based on the ion-optical design we developed a prototype of NIM with several iterations. We tested the prototype NIM under realistic mission conditions and thereby successfully verified its required functionality. We will present the development process from ion-optical simulation up to NIM prototype test results and the concluded flight like design. Furthermore, we will provide an insight into the working principle of NIM and its performance, based on measurement data. References: 1) ESA, "JUICE assessment study report (Yellow Book)", ESA/SRE(2011)18, 2012. 2) O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.-P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T. Van Hoolst, "JUpiter Icy moons Explorer (JUICE): An ESA mission to orbit Ganymede

  19. Exploration Medical Capability (ExMC) Program

    NASA Technical Reports Server (NTRS)

    Kalla, Elizabeth

    2006-01-01

    This document reviews NASA's Exploration Medical Capability (ExMC) program. The new space exploration program, outlined by the President will present new challenges to the crew's health. The project goals are to develop and validate requirements for reliable, efficient, and robust medical systems and treatments for space exploration to maximize crew performance for mission objectives.

  20. Getting Involved with the Discovery Program

    NASA Technical Reports Server (NTRS)

    Asplund, Shari

    2000-01-01

    NASA's Discovery Program represents the implementation of NASA Administrator Daniel Goldin's vision of 'faster, better, cheaper' planetary missions; encompasses a series of low-cost solar system exploration missions intended to accomplish high quality, focused planetary science investigations using innovative, streamlined, and efficient approaches to assure the highest science value for the cost; and aims to enhance our understanding of the solar system by exploring the planets, their moons and other small bodies, either by traveling to them or remotely from the vicinity of Earth. The objectives of this program include the following: (1) Provide exciting and important scientific data to the global community; (2) Pursue new and innovative ways of doing business; (3) Encourage technological development by designing and testing new technologies and transferring them to the private sector; (4) Increase public awareness of, and appreciation for, solar system exploration through exciting education and public outreach activities; (5) Support national education initiatives through mission-specific programs; and (6) Ensure participation of small disadvantaged businesses, women-owned businesses, HBCUs, and other minority educational institutions in procurements.

  1. Passengers on Voyages of Exploration: The Beautiful and Surprising Work Amateurs Can do with Raw Image Data from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Lakdawalla, E. S.

    2008-11-01

    Many recent planetary science missions, including the Mars Exploration Rovers, Cassini-Huygens, and New Horizons, have instituted a policy of the rapid release of ``raw'' images to the Internet within days or even hours of their acquisition. The availability of these data, along with the increasing power of home computers and availability of high-bandwidth Internet connections, have stimulated the development of a worldwide community of armchair planetary scientists, who are able to participate in the everyday drama of exploratory missions' encounters with new worlds and new landscapes. Far from passive onlookers, many of these enthusiasts have taught themselves image processing techniques and have even written software to perform automated processing and mosaicking of these raw data sets. They rapidly produce stunning visualizations and then post them to their own blogs or online forums, where they also engage in discussing scientific observations and inferences about the data sets, broadening missions' public outreach efforts beyond their direct reach. These amateur space scientists feel a deep sense of involvement in and connection to space missions, which makes them enthusiastic (and occasionally demanding) supporters of space exploration.

  2. Planetary science questions for the manned exploration of Mars

    NASA Technical Reports Server (NTRS)

    Blanchard, Douglas P.

    1986-01-01

    A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest analogy to the manned Mars mission is the Apollo program and manned missions to the Moon, but the analogy is limited. The case is argued here that Mars may have to be explored far more systematically than was the pre-Apollo Moon to provide the detailed information necessary if plans are made to use any of the resources available on Mars. Viking missions provided a wealth of information, yet there are great gaps in the fundamental knowledge of essential facts such as the properties of the Martian surface materials and their interaction with the atmosphere. Building on a strong data base of precursor missions, human exploration will allow great leaps in understanding the Martian environment and geologic history and its evolutionary role in the solar system.

  3. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  4. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  6. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  7. The Moon is a Planet Too: Lunar Science and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2008-01-01

    The first decades of the 21st century will be marked by major lunar science and exploration activities. The Moon is a witness to 4.5 billion years of solar system history, recording that history more completely and more clearly than any other planetary body. Lunar science encompasses early planetary evolution and differentiation, lava eruptions and fire fountains, impact scars throughout time, and billions of years of volatile input. I will cover the main outstanding issues in lunar science today and the most intriguing scientific opportunities made possible by renewed robotic and human lunar exploration. Barbara is a planetary scientist at NASA s Marshall Space Flight Center. She studies meteorites from the Moon, Mars and asteroids and has been to Antarctica twice to hunt for them. Barbara also works on the Mars Exploration Rovers Spirit and Opportunity and has an asteroid named after her. She is currently helping the Lunar Precursor Robotics Program on the Lunar Mapping and Modeling Project, a project tasked by the Exploration System Mission Directorate (ESMD) to develop maps and tools of the Moon to benefit the Constellation Program lunar planning. She is also supporting the Science Mission Directorate s (SMD) lunar flight projects line at Marshall as the co-chair of the Science Definition Team for NASA s next robotic landers, which will be nodes of the International Lunar Network, providing geophysical information about the Moon s interior structure and composition.

  8. The Solar Connections Observatory for Planetary Environments

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Harris, W. M.

    2002-05-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  9. The Solar Connections Observatory for Planetary Environments

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  10. Lay and Expert Perceptions of Planetary Protection

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  11. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  12. Quality Assurance Specifications for Planetary Protection Assays

    NASA Astrophysics Data System (ADS)

    Baker, Amy

    As the European Space Agency planetary protection (PP) activities move forward to support the ExoMars and other planetary missions, it will become necessary to increase staffing of labo-ratories that provide analyses for these programs. Standardization of procedures, a comprehen-sive quality assurance program, and unilateral training of personnel will be necessary to ensure that the planetary protection goals and schedules are met. The PP Quality Assurance/Quality Control (QAQC) program is designed to regulate and monitor procedures performed by labora-tory personnel to ensure that all work meets data quality objectives through the assembly and launch process. Because personnel time is at a premium and sampling schedules are often de-pendent on engineering schedules, it is necessary to have flexible staffing to support all sampling requirements. The most productive approach to having a competent and flexible work force is to establish well defined laboratory procedures and training programs that clearly address the needs of the program and the work force. The quality assurance specification for planetary protection assays has to ensure that labora-tories and associated personnel can demonstrate the competence to perform assays according to the applicable standard AD4. Detailed subjects included in the presentation are as follows: • field and laboratory control criteria • data reporting • personnel training requirements and certification • laboratory audit criteria. Based upon RD2 for primary and secondary validation and RD3 for data quality objectives, the QAQC will provide traceable quality assurance safeguards by providing structured laboratory requirements for guidelines and oversight including training and technical updates, standardized documentation, standardized QA/QC checks, data review and data archiving.

  13. Cytochemical studies of planetary microorganisms explorations in exobiology

    NASA Technical Reports Server (NTRS)

    Levinthal, E. C.

    1980-01-01

    Experiments to identify free living organisms in soils that may be substantially simpler in genetic content, and mirroring a more primitive stage of evolution than the species with which we are familiar to date, were designed. Organic chemical studies on the composition and disposition of elementary carbon leave nothing wanting as an aboriginal substrate for the original of life and early chemical evolution. Such studies were missed when it came to the interpretation of the Viking lander data, and needed for conceptual planning of future planetary missions.

  14. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B

    2017-01-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  15. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  16. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  17. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoude spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described. A list of all papers published under support of this grant is included at the end.

  18. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    NASA Astrophysics Data System (ADS)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  19. Review of NASA's Planned Mars Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The exploration of Mars has long been a prime scientific objective of the U.S. planetary exploration program. Yet no U.S. spacecraft has successfully made measurements at Mars since the Viking missions of the late 1970s. Mars Observer, which was designed to conduct global observations from orbit, failed just before orbit insertion in 1993. The Russian spacecraft Phobos 2 did succeed in making some observations of the planet in 1989, but it was designed primarily to observe Phobos, the innermost satellite of Mars; the spacecraft failed 2 months after insertion into Mars orbit during the complex maneuvers required to rendezvous with the martian satellite. In fall 1996 NASA plans to launch Mars Pathfinder for a landing on the martian surface in mid-1997. This spacecraft is one of the first two missions in NASA's Discovery program that inaugurates a new style of planetary exploration in which missions are low-cost (less than $150 million) and have very focused science objectives. As can be seen in the comparative data presented in Box 1, this mission is considerably smaller in terms of cost, mass, and scope than NASA's previous Mars missions. NASA's FY 1995 budget initiated a continuing Mars exploration program, called Mars Surveyor, that involves multiple launches of spacecraft as small as or smaller than Mars Pathfinder to Mars over the next several launch opportunities, which recur roughly every 26 months. The first mission in the program, Mars Global Surveyor, set for launch late in 1996, is intended to accomplish many of the objectives of the failed Mars Observer. Like the Discovery program, Mars Surveyor is a continuing series of low-cost missions, each of which has highly focused science objectives. See Box 1 for comparative details of those Surveyor missions currently defined. Around the same time that the Mars Surveyor series was chosen as the centerpiece of NASA's solar system exploration program, the Committee on Planetary and Lunar Exploration (COMPLEX

  20. Artist's Concept of Wide-field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Artist's concept of Wide-field Infrared Survey Explorer.

    A new NASA mission will scan the entire sky in infrared light in search of nearby cool stars, planetary construction zones and the brightest galaxies in the universe.

    Called the Wide-field Infrared Survey Explorer, the mission has been approved to proceed into the preliminary design phase as the next in NASA's Medium-class Explorer program of lower cost, highly focused, rapid-development scientific spacecraft. It is scheduled to launch in 2008.

  1. An Introduction to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nishiyama, Jason J.

    2018-05-01

    In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.

  2. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  3. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science

  4. Planetary Science Research Discoveries (PSRD) www.psrd.hawaii.edu

    NASA Astrophysics Data System (ADS)

    Martel, L.; Taylor, J.

    2010-12-01

    NASA's Year of the Solar System is celebrating not only Solar System mission milestones but also the collective data reduction and analysis that happens here on Earth. The Cosmochemistry Program of NASA's Science Mission Directorate takes a direct approach to enhance student learning and engage the public in the latest research on meteorites, asteroids, planets, moons, and other materials in our Solar System with the website known as PSRD. The Planetary Science Research Discoveries (PSRD) website at www.psrd.hawaii.edu explores the science questions that researchers are actively pursuing about our Solar System and explains how the answers are discovered and what they mean. The site helps to convey the scientific basis for sample study to the broader scientific community and the excitement of new results in cosmochemistry to the general public. We share with our broad audience the fascinating discoveries made by cosmochemists, increasing public awareness of the value of sample-focused research in particular and of fundamental scientific research and space exploration in general. The scope of the website covers the full range of cosmochemical research and highlights the investigations of extraterrestrial materials that are used to better understand the origin of the Solar System and the processes by which planets, moons, and small bodies evolve. We relate the research to broader planetary science themes and mission results. Articles are categorized into: asteroids, comets, Earth, instruments of cosmochemistry, Jupiter system, Mars, Mars life issues, Mercury, meteorites, Moon, origins, and space weathering. PSRD articles are based on peer-reviewed, journal publications. Some PSRD articles are based on more than one published paper in order to present multiple views and outcomes of research on a topic of interest. To date, 150 PSRD articles have been based on 184 journal articles (and counting) written by some of the most active cosmochemists and planetary scientists

  5. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  6. Strategy for exploration of the outer planets: 1986-1996

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.

  7. Research in planetary studies and operation of the Mauna Kea Observatory

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1986-01-01

    The research programs are highlighted in the following areas: major planets; planetary satellites and rings; asteroids; comets; dark organic matter; theoretical and analytical structures; extrasolar planetary; and telescopes.

  8. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  9. Reports of planetary astronomy - 1991

    NASA Technical Reports Server (NTRS)

    Rahe, Jurgen (Editor)

    1993-01-01

    This publication provides information about currently funded scientific research projects conducted in the Planetary Astronomy Program during 1991, and consists of two main sections. The first section gives a summary of research objectives, past accomplishments, and projected future investigations, as submitted by each principal investigator. In the second section, recent scientifically significant accomplishments within the Program are highlighted.

  10. NASA's Discovery Program

    NASA Astrophysics Data System (ADS)

    Kicza, Mary; Bruegge, Richard Vorder

    1995-01-01

    NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.

  11. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoud6 spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described below. A list of all papers published under support of this grant is included at the end.

  12. Development of Training Programs to Optimize Planetary Ambulation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.

    2007-01-01

    Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six

  13. Reports of planetary geology program, 1979 - 1980. [bibliographies

    NASA Technical Reports Server (NTRS)

    Wirth, P.; Greeley, R.; Dalli, R.

    1980-01-01

    Abstracts of 145 reports are compiled addressing the morphology, geochemistry, and stratigraphy of planetary surfaces with some specific examinations of volcanic, aeolian, fluvial, and periglacial processes and landforms. In addition, reports on cartography and remote sensing of planet surfaces are included.

  14. Horses for courses: analytical tools to explore planetary boundaries

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  15. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  16. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  17. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  18. Planetary Cartography - Activities and Current Challenges

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  19. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  20. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  1. DE-STARLITE: A directed energy planetary defense mission

    NASA Astrophysics Data System (ADS)

    Kosmo, Kelly; Pryor, Mark; Lubin, Philip; Hughes, Gary B.; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Griswold, Janelle; Cook, Brianna V.; Johansson, Isabella E.; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Bible, Johanna; Motta, Caio; Brashears, Travis; Mathew, Shana; Bollag, Justin

    2014-09-01

    This paper presents the motivation behind and design of a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. The proposed system is called DE-STARLITE for Directed Energy System for Targeting of Asteroids and ExploRation - LITE as it is a small, stand-on unit of a larger standoff DE-STAR system. Pursuant to the stand-on design, ion engines will propel the spacecraft from low-Earth orbit (LEO) to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself becomes the "propellant"; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 15-year targeting time. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size and has much greater capability for planetary defense than current proposals and is readily scalable to the threat. It can deflect all known threats with sufficient warning.

  2. Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

    2006-01-01

    exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology.

  3. Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Gernhardt, Michael L.

    2010-01-01

    Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced

  4. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  5. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  6. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  7. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  8. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions.

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Barbarisi, Isa; Arviset, Christophe; de Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Martinez, Santa; Rios, Carlos

    2016-04-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  9. Selected highlights from the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1995-01-01

    We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.

  10. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  11. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  12. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    NASA Technical Reports Server (NTRS)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  13. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  14. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  15. Intelligence for Human-Assistant Planetary Surface Robots

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  16. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  17. Adaptive multisensor fusion for planetary exploration rovers

    NASA Technical Reports Server (NTRS)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  18. Automation and Robotics for Human Mars Exploration (AROMA)

    NASA Technical Reports Server (NTRS)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  19. Automation and Robotics for Human Mars Exploration (AROMA).

    PubMed

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  20. Remote sensor support requirements for planetary missions

    NASA Technical Reports Server (NTRS)

    Weddell, J. B.; Wheeler, A. E.

    1971-01-01

    The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.

  1. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  2. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  3. Space and Planetary Resources

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  4. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration

  5. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  6. Microsystems, Space Qualified Electronics and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer

    2007-01-01

    NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.

  7. Approaches for Promoting Lunar and Planetary Science in Higher Education Curricula

    NASA Astrophysics Data System (ADS)

    Hurtado, J. M.; CenterLunar Science Education; Higher Education Consortium

    2011-12-01

    The Center for Lunar Science and Exploration (CLSE) at the Lunar and Planetary Institute has formed a higher-education consortium comprising a group of educators throughout the states of Texas and Oklahoma, all of who are committed to furthering the inclusion of lunar and planetary science in university-level curricula. Members of the Consortium represent the spectrum of higher-educational venues, from research universities to small colleges. They also teach planetary science in a range of settings, from specialized graduate/undergraduate courses to introductory undergraduate courses in general science that incorporate a wide range of other topics. One of the top-level goals of the Consortium is to provide an online forum and a network of educators that can share teaching materials, including: illustrations and animations of scientific concepts; syllabi and lesson plans; and laboratory and other exercises. These materials are being shared with the entire community through the CLSE website (http://www.lpi.usra.edu/nlsi/), and a series of workshops has been held with participating members of the Consortium to continue to develop and solicit content. A specific avenue of bringing lunar and planetary content into the classroom that has been discussed and experimented with over the past two years involves planetary analogs. Participatory exercises developed around the author's work with NASA analog field tests has been used in several classroom lab exercises in a planetary science course, a remote sensing course, and a introductory geologic mapping course. These efforts have proven fruitful in engaging the students in lunar and planetary exploration science.

  8. Reports of planetary astronomy, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1985. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  9. Reports of planetary astronomy, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications, is presented. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1986. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  10. Reports of Planetary Geology and Geophysics Program, 1984

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Watters, T. R. (Compiler)

    1985-01-01

    Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.

  11. Capability 9.1 Exploration

    NASA Technical Reports Server (NTRS)

    Eckelkamp, Rick; Blacic, Jim

    2005-01-01

    The exploration challenge are: To build an efficient, cost effective exploration infrastructure, To coordinate exploration robots & crews from multiple. earth sites to accomplish science and exploration objectives. and To maximize self-sufficiency of the lunar/planetary exploration team.

  12. X-ray remote sensing and in-situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in-situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. A calibration facility is being constructed at Schlumberger-Doll Research for gamma and x ray detectors. With this facility the detector response can be determined in an invariant and reproducible fashion. Initial use of the facility is expected for the MARS94 detectors. Work is continuing to better understand the rare earth oxyorthosilicates and to define their characteristics. This will allow a better use of these scintillators for planetary missions. In a survey of scintillating materials two scintillators were identified as promising candidates besides GSO, LSO, and YSO. These are CdWO4 and CsI(Tl). It will be investigated if a detector with a better overall performance can be assembled with various photon converters. Considerable progress was achieved in photomultiplier design. The length of an 1 inch diameter PMT could be reduced from 4.2 to 2.5 inches without performance degradation. This technology is being employed in the gamma ray detector for the NEAR project. A further weight and size reduction of the detector package can be achieved with miniaturized integrated power supplies.

  13. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  14. Planetary cartography in the next decade: Digital cartography and emerging opportunities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Planetary maps being produced today will represent views of the solar system for many decades to come. The primary objective of the planetary cartography program is to produce the most complete and accurate maps from hundreds of thousands of planetary images in support of scientific studies and future missions. Here, the utilization of digital techniques and digital bases in response to recent advances in computer technology are emphasized.

  15. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  16. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  17. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  18. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  19. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  20. Scientific Assessment of NASA's Solar System Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

  1. Non-planetary Science from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  2. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with

  3. Bringing Terramechanics to bear on Planetary Rover Design

    NASA Astrophysics Data System (ADS)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  4. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  5. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  6. Earth-based analogs of lunar and planetary facilities

    NASA Technical Reports Server (NTRS)

    Bell, Larry; Trotti, Guillermo

    1992-01-01

    Antarctica contains areas where the environment and terrain are more similar to regions on the Moon and Mars than any other place on Earth. These features offer opportunities for simulations to determine performance capabilities of people and machines in harsh, isolated locales. The Sasakawa International Center for Space Architecture (SICSA) plans to create a facility on Antarctica for research, planning, and demonstrations in support of planetary exploration. The Antarctic Planetary Testbed (APT) will be financed and utilized by public and private organizations throughout the world. Established on a continent owned by no country, it can serve as a model for cooperation between spacefaring nations. APT science and technology programs will expand knowledge about the nature and origin of our solar system, and will support preparations for human settlements beyond Earth that may occur within the first quarter of the next century. The initial APT facility, conceived to be operational by the year 1992, will be constructed during the summer months by a crew of approximately 12. Six to eight of these people will remain through the winter. As in space, structures and equipment systems will be modular to facilitate efficient transport to the site, assembly, and evolutionary expansion. State-of-the-art waste recovery/recycling systems are also emphasized due to their importance in space.

  7. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  8. From Planetary Intelligence to Planetary Wisdom

    NASA Astrophysics Data System (ADS)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  9. Sixteenth Lunar and Planetary Science Conference. Press abstracts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A broad range of topics concerned with lunar and planetary science are discussed. Topics among those included are, the sun, the planets, comets, meteorities, asteroids, satellites, space exploration, and the significance of these to Earth.

  10. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  11. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration.

    PubMed

    Moreno-Paz, Mercedes; Gómez-Cifuentes, Ana; Ruiz-Bermejo, Marta; Hofstetter, Oliver; Maquieira, Ángel; Manchado, Juan M; Morais, Sergi; Sephton, Mark A; Niessner, Reinhard; Knopp, Dietmar; Parro, Victor

    2018-04-11

    Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth. Key Words: Planetary exploration

  12. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    NASA Astrophysics Data System (ADS)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  13. Autonomous planetary rover

    NASA Astrophysics Data System (ADS)

    Krotkov, Eric; Simmons, Reid; Whittaker, William

    1992-02-01

    This report describes progress in research on an autonomous robot for planetary exploration performed during 1991 at the Robotics Institute, Carnegie Mellon University. The report summarizes the achievements during calendar year 1991, and lists personnel and publications. In addition, it includes several papers resulting from the research. Research in 1991 focused on understanding the unique capabilities of the Ambler mechanism and on autonomous walking in rough, natural terrain. We also designed a sample acquisition system, and began to configure a successor to the Ambler.

  14. Publications of the exobiology program for 1989: A special bibliography

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A listing of 1989 publications resulting from research supported by the Exobiology Program is presented. Research supported by the Exobiology Program is explored in the following areas: (1) cosmic evolution of biogenic compounds; (2) prebiotic evolution; (3) early evolution of life; (4) and evolution of advanced life. Pre-mission and pre-project activities supporting these areas are supported in the areas of solar system exploration and search for extraterrestrial intelligence. The planetary protection subject area is included here because of its direct relevance to the Exobiology Program.

  15. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  16. Lunar and Planetary Science XXXIII

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 33rd Lunar and Planetary Science Conference held in Houston, TX, March 11-15, 2002. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  17. Lunar and Planetary Science XXXII

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  18. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    NASA Technical Reports Server (NTRS)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  19. Deep UV Raman spectroscopy for planetary exploration: The search for in situ organics

    NASA Astrophysics Data System (ADS)

    Abbey, William J.; Bhartia, Rohit; Beegle, Luther W.; DeFlores, Lauren; Paez, Veronica; Sijapati, Kripa; Sijapati, Shakher; Williford, Kenneth; Tuite, Michael; Hug, William; Reid, Ray

    2017-07-01

    Raman spectroscopy has emerged as a powerful, non-contact, non-destructive technique for detection and characterization of in situ organic compounds. Excitation using deep UV wavelengths (< 250 nm), in particular, offers the benefits of spectra obtained in a largely fluorescence-free region while taking advantage of signal enhancing resonance Raman effects for key classes of organic compounds, such as the aromatics. In order to demonstrate the utility of this technique for planetary exploration and astrobiological applications, we interrogated three sets of samples using a custom built Raman instrument equipped with a deep UV (248.6 nm) excitation source. The sample sets included: (1) the Mojave Mars Simulant, a well characterized basaltic sample used as an analog for Martian regolith, in which we detected ∼0.04 wt% of condensed carbon; (2) a suite of organic (aromatic hydrocarbons, carboxylic acids, and amino acids) and astrobiologically relevant inorganic (sulfates, carbonates, phosphates, nitrates and perchlorate) standards, many of which have not had deep UV Raman spectra in the solid phase previously reported in the literature; and (3) Mojave Mars Simulant spiked with a representative selection of these standards, at a concentration of 1 wt%, in order to investigate natural 'real world' matrix effects. We were able to resolve all of the standards tested at this concentration. Some compounds, such as the aromatic hydrocarbons, have especially strong signals due to resonance effects even when present in trace amounts. Phenanthrene, one of the aromatic hydrocarbons, was also examined at a concentration of 0.1 wt% and even at this level was found to have a strong signal-to-noise ratio. It should be noted that the instrument utilized in this study was designed to approximate the operation of a 'fieldable' spectrometer in order to test astrobiological applications both here on Earth as well as for current and future planetary missions. It is the foundation of

  20. The Moon Beyond 2002: Next Steps in Lunar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the conference on The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, September 12-14, 2002, in Taos, New Mexico. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  1. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  2. Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration

    NASA Technical Reports Server (NTRS)

    Marshall, John (Editor); Weitz, Cathy (Editor)

    1999-01-01

    The Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration was held on October 2-4, 1999, at the Lunar and Planetary Institute in Houston, Texas. The workshop was sponsored by the Lunar and Planetary Institute, the Mars Program Office of the Jet Propulsion Laboratory, and the National Aeronautics and Space Administration. The three-day meeting was attended by 133 scientists whose purpose was to share results from recent missions, to share plans for the 2001 mission, and to come to an agreement on a landing site for this mission.

  3. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  4. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  5. Developing the Planetary Science Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Henry, Florence; Chauvin, Cyril; Berthier, Jérôme; André, Nicolas; Génot, Vincent; Schmitt, Bernard; Capria, Teresa; Chanteur, Gérard

    2015-08-01

    In the frame of the Europlanet-RI program, a prototype Virtual Observatory dedicated to Planetary Science has been set up. Most of the activity was dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), and space archive services (IPDA).The current architecture connects existing data services with IVOA or IPDA protocols whenever relevant. However, a more general standard has been devised to handle the specific complexity of Planetary Science, e.g. in terms of measurement types and coordinate frames. This protocol, named EPN-TAP, is based on TAP and includes precise requirements to describe the contents of a data service (Erard et al Astron & Comp 2014). A light framework (DaCHS/GAVO) and a procedure have been identified to install small data services, and several hands-on sessions have been organized already. The data services are declared in standard IVOA registries. Support to new data services in Europe will be provided during the proposed Europlanet H2020 program, with a focus on planetary mission support (Rosetta, Cassini…).A specific client (VESPA) has been developed at VO-Paris (http://vespa.obspm.fr). It is able to use all the mandatory parameters in EPN-TAP, plus extra parameters from individual services. A resolver for target names is also available. Selected data can be sent to VO visualization tools such as TOPCAT or Aladin though the SAMP protocol.Future steps will include the development of a connection between the VO world and GIS tools, and integration of heliophysics, planetary plasma and reference spectroscopic data.The EuroPlaNet-RI project was funded by the European

  6. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  7. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  8. The four hundred years of planetary science since Galileo and Kepler.

    PubMed

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  9. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  10. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  11. Planetary Evolution, Habitability and Life

    NASA Astrophysics Data System (ADS)

    Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz

    A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.

  12. Planetary Missions of the 20th Century*

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  13. Europa Planetary Protection for Juno Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  14. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.

  15. Exploring Poetry through Interactive Computer Programs.

    ERIC Educational Resources Information Center

    Nimchinsky, Howard; Camp, Jocelyn

    The goal of a project was to design, test, and evaluate several computer programs that allow students in introductory literature and poetry courses to explore a poem in detail and, through a dialogue with the program, to develop their own interpretation of it. Computer programs were completed on poems by Robert Frost and W.H. Auden. Both programs…

  16. The Past, Present, and Future of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew

    2017-01-01

    We are searching for planets using the Kepler spacecraft in its extended K2 mission. K2 data processing is more challenging than Kepler, but new techniques have permitted the discovery of hundreds of planet candidates. Our discoveries are yielding intriguing insights about the past, present, and future of planetary systems -- that is, the history of how planets might form and migrate, their present-day characteristics, and the ultimate fate of planetary systems. I will discuss what we have learned, in particular from the discovery of a hot Jupiter with close planetary companions, planets orbiting nearby bright stars, and a disintegrating minor planet transiting a white dwarf. This work was supported by the National Science Foundation Graduate Research Fellowship Program.

  17. Planetary Rover Robotics Experiments in Education: HUSAR-5, the NXT-Based Rover Model for Measuring the Planetary Surface

    NASA Astrophysics Data System (ADS)

    Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.

    2014-11-01

    We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.

  18. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    PubMed Central

    Shaukat, Affan; Blacker, Peter C.; Spiteri, Conrad; Gao, Yang

    2016-01-01

    In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation. PMID:27879625

  19. Integrated optics implementation of a fiber optic rotation sensor - Analysis and development. [for Mariner Mark II planetary explorer

    NASA Technical Reports Server (NTRS)

    Bartman, R. K.; Youmans, B. R.; Nerheim, N. M.

    1987-01-01

    The Jet Propulsion Laboratory is developing a fiber optic rotation sensor (FORS) for use on the Mariner Mark II series of planetary explorer craft and in other space applications. FORS is a closed-loop phase-nulling device and embodies a number of interesting innovations. Chief among these are the incorporation of the device's couplers, phase modulators, and polarizer on a single lithium niobate (LinbO3) integrate optics chip and a novel means of reading out angular position and rotation rate based on optical beat detection. Various aspects of the FORS design and operation are described and discussed. Particular attention is paid to analyzing errors attributable to polarizer imperfection and the so-called residual Michelson effect.

  20. Reconfigurable Autonomy for Future Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  1. The cosmopolitan contradictions of planetary urbanization.

    PubMed

    Millington, Gareth

    2016-09-01

    This paper explores the empirical, conceptual and theoretical gains that can be made using cosmopolitan social theory to think through the urban transformations that scholars have in recent years termed planetary urbanization. Recognizing the global spread of urbanization makes the need for a cosmopolitan urban sociology more pressing than ever. Here, it is suggested that critical urban sociology can be invigorated by focusing upon the disconnect that Henri Lefebvre posits between the planetarization of the urban - which he views as economically and technologically driven - and his dis-alienated notion of a global urban society. The first aim of this paper is to highlight the benefits of using 'cosmopolitan' social theory to understand Lefebvre's urban problematic (and to establish why this is also a cosmopolitan problematic); the second is to identify the core cosmopolitan contradictions of planetary urbanization, tensions that are both actually existing and reproduced in scholarly accounts. The article begins by examining the challenges presented to urban sociology by planetary urbanization, before considering how cosmopolitan sociological theory helps provide an analytical 'grip' on the deep lying social realities of contemporary urbanization, especially in relation to questions about difference, culture and history. These insights are used to identify three cosmopolitan contradictions that exist within urbanized (and urbanizing) space; tensions that provide a basis for a thoroughgoing cosmopolitan investigation of planetary urbanization. © London School of Economics and Political Science 2016.

  2. Directed energy missions for planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  3. Advancing the dual reciprocating drill design for efficient planetary subsurface exploration

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig

    Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be

  4. Galactic planetary science

    PubMed Central

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  5. Open source software integrated into data services of Japanese planetary explorations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Otake, H.; Imai, K.; Masuda, K.

    2015-12-01

    Scientific data obtained by Japanese scientific satellites and lunar and planetary explorations are archived in DARTS (Data ARchives and Transmission System). DARTS provides the data with a simple method such as HTTP directory listing for long-term preservation while DARTS tries to provide rich web applications for ease of access with modern web technologies based on open source software. This presentation showcases availability of open source software through our services. KADIAS is a web-based application to search, analyze, and obtain scientific data measured by SELENE(Kaguya), a Japanese lunar orbiter. KADIAS uses OpenLayers to display maps distributed from Web Map Service (WMS). As a WMS server, open source software MapServer is adopted. KAGUYA 3D GIS (KAGUYA 3D Moon NAVI) provides a virtual globe for the SELENE's data. The main purpose of this application is public outreach. NASA World Wind Java SDK is used to develop. C3 (Cross-Cutting Comparisons) is a tool to compare data from various observations and simulations. It uses Highcharts to draw graphs on web browsers. Flow is a tool to simulate a Field-Of-View of an instrument onboard a spacecraft. This tool itself is open source software developed by JAXA/ISAS, and the license is BSD 3-Caluse License. SPICE Toolkit is essential to compile FLOW. SPICE Toolkit is also open source software developed by NASA/JPL, and the website distributes many spacecrafts' data. Nowadays, open source software is an indispensable tool to integrate DARTS services.

  6. Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd

    2005-01-01

    Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.

  7. The Africa Initiative for Planetary and Space Sciences

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  8. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  9. A Bootstrap Approach to an Affordable Exploration Program

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2011-01-01

    This paper examines the potential to build an affordable sustainable exploration program by adopting an approach that requires investing in technologies that can be used to build a space infrastructure from very modest initial capabilities. Human exploration has had a history of flight programs that have high development and operational costs. Since Apollo, human exploration has had very constrained budgets and they are expected be constrained in the future. Due to their high operations costs it becomes necessary to consider retiring established space facilities in order to move on to the next exploration challenge. This practice may save cost in the near term but it does so by sacrificing part of the program s future architecture. Human exploration also has a history of sacrificing fully functional flight hardware to achieve mission objectives. An affordable exploration program cannot be built when it involves billions of dollars of discarded space flight hardware, instead, the program must emphasize preserving its high value space assets and building a suitable permanent infrastructure. Further this infrastructure must reduce operational and logistics cost. The paper examines the importance of achieving a high level of logistics independence by minimizing resource consumption, minimizing the dependency on external logistics, and maximizing the utility of resources available. The approach involves the development and deployment of a core suite of technologies that have minimum initial needs yet are able expand upon initial capability in an incremental bootstrap fashion. The bootstrap approach incrementally creates an infrastructure that grows and becomes self sustaining and eventually begins producing the energy, products and consumable propellants that support human exploration. The bootstrap technologies involve new methods of delivering and manipulating energy and materials. These technologies will exploit the space environment, minimize dependencies, and

  10. First Year PIDDP Report on gamma-ray and x-ray spectroscopy: X-ray remote sensing and in situ spectroscopy for planetary exploration missions and gamma-ray remote sensing and in situ spectroscopy for planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.

    1994-01-01

    Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.

  11. VESPA: A community-driven Virtual Observatory in Planetary Science

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Génot, V.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Määttänen, A.; Thuillot, W.; Carry, B.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Fernique, P.; Beigbeder, L.; Millour, E.; Rousseau, B.; Andrieu, F.; Chauvin, C.; Minin, M.; Ivanoski, S.; Longobardo, A.; Bollard, P.; Albert, D.; Gangloff, M.; Jourdane, N.; Bouchemit, M.; Glorian, J.-M.; Trompet, L.; Al-Ubaidi, T.; Juaristi, J.; Desmars, J.; Guio, P.; Delaa, O.; Lagain, A.; Soucek, J.; Pisa, D.

    2018-01-01

    The VESPA data access system focuses on applying Virtual Observatory (VO) standards and tools to Planetary Science. Building on a previous EC-funded Europlanet program, it has reached maturity during the first year of a new Europlanet 2020 program (started in 2015 for 4 years). The infrastructure has been upgraded to handle many fields of Solar System studies, with a focus both on users and data providers. This paper describes the broad lines of the current VESPA infrastructure as seen by a potential user, and provides examples of real use cases in several thematic areas. These use cases are also intended to identify hints for future developments and adaptations of VO tools to Planetary Science.

  12. Exploring Burnout in Batterer Intervention Programs

    ERIC Educational Resources Information Center

    Bahner, Angela D.; Berkel, LaVerne A.

    2007-01-01

    This study used the Maslach Burnout Inventory (MBI) to explore burnout in a sample of 115 batterer intervention program (BIP) workers (56% female, 44% male) from four midwestern states. The purpose of this study was to explore the role that demographic variables, job-setting variables, supervisor support, and personality characteristics played in…

  13. 20 CFR 632.259 - Vocational exploration program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Vocational exploration program. 632.259 Section 632.259 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INDIAN AND NATIVE AMERICAN EMPLOYMENT AND TRAINING PROGRAMS Summer Youth Employment and Training Programs § 632.259...

  14. 20 CFR 632.259 - Vocational exploration program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Vocational exploration program. 632.259 Section 632.259 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INDIAN AND NATIVE AMERICAN EMPLOYMENT AND TRAINING PROGRAMS Summer Youth Employment and Training Programs § 632.259...

  15. 20 CFR 632.259 - Vocational exploration program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Vocational exploration program. 632.259 Section 632.259 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INDIAN AND NATIVE AMERICAN EMPLOYMENT AND TRAINING PROGRAMS Summer Youth Employment and Training Programs § 632.259...

  16. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects

  17. Virtual Planetary Analysis Environment for Remote Science

    NASA Technical Reports Server (NTRS)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  18. Planetary submillimeter spectroscopy

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  19. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  20. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.