Sample records for planetary geochemical cycles

  1. DETECTING PLANETARY GEOCHEMICAL CYCLES ON EXOPLANETS: ATMOSPHERIC SIGNATURES AND THE CASE OF SO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltenegger, L.; Sasselov, D., E-mail: lkaltene@cfa.harvard.ed

    2010-01-10

    We study the spectrum of a planetary atmosphere to derive detectable features in low resolution of different global geochemical cycles on exoplanets-using the sulfur cycle as our example. We derive low-resolution detectable features for first generation space- and ground-based telescopes as a first step in comparative planetology. We assume that the surfaces and atmospheres of terrestrial exoplanets (Earth-like and super-Earths) will most often be dominated by a specific geochemical cycle. Here we concentrate on the sulfur cycle driven by outgassing of SO{sub 2} and H{sub 2}S followed by their transformation to other sulfur-bearing species, which is clearly distinguishable from themore » carbon cycle, which is driven by outgassing of CO{sub 2}. Due to increased volcanism, the sulfur cycle is potentially the dominant global geochemical cycle on dry super-Earths with active tectonics. We calculate planetary emission, reflection, and transmission spectrum from 0.4 mum to 40 mum with high and low resolution to assess detectable features using current and Archean Earth models with varying SO{sub 2} and H{sub 2}S concentrations to explore reducing and oxidizing habitable environments on rocky planets. We find specific spectral signatures that are observable with low resolution in a planetary atmosphere with high SO{sub 2} and H{sub 2}S concentration. Therefore, first generation space- and ground-based telescopes can test our understanding of geochemical cycles on rocky planets and potentially distinguish planetary environments dominated by the carbon and sulfur cycles.« less

  2. Long-Term Planetary Habitability and the Carbonate-Silicate Cycle

    NASA Astrophysics Data System (ADS)

    Rushby, Andrew J.; Johnson, Martin; Mills, Benjamin J. W.; Watson, Andrew J.; Claire, Mark W.

    2018-05-01

    The potential habitability of an exoplanet is traditionally assessed by determining if its orbit falls within the circumstellar `habitable zone' of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long term concentration controlled by the balance between volcanic outgassing and the sequestration of CO2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation and biological (microbial) productivity. We develop a model incorporating key aspects of Earth's short and long-term biogeochemical carbon cycle to explore the potential changes in the CO2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets results in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 to 2 R_earth the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability.

  3. Long-Term Planetary Habitability and the Carbonate-Silicate Cycle.

    PubMed

    Rushby, Andrew J; Johnson, Martin; Mills, Benjamin J W; Watson, Andrew J; Claire, Mark W

    2018-05-01

    The potential habitability of an exoplanet is traditionally assessed by determining whether its orbit falls within the circumstellar "habitable zone" of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013 ). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long-term concentration controlled by the balance between volcanic outgassing and the sequestration of CO 2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation, and biological (microbial) productivity. We developed a model that incorporates key aspects of Earth's short- and long-term biogeochemical carbon cycle to explore the potential changes in the CO 2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets result in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 and 2 R ⊕ , the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability. Key Words: Planets-Atmospheres-Carbon dioxide-Biogeochemistry. Astrobiology 18, 469-480.

  4. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  5. Geochemical cycles of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Drever, J. I.

    1988-01-01

    The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.

  6. Long-term climate change and the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

    1988-01-01

    The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

  7. Small-scale geochemical cycles and the distribution of uranium in central and north Florida organic deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, P.A.

    1993-03-01

    The global geochemical cycle for an element tracks its path from its various sources to its sinks via processes of weathering and transportation. The cycle may then be quantified in a necessarily approximate manner. The geochemical cycle (thus quantified) reveals constraints (known and unknown) on an element's behavior imposed by the various processes which act on it. In the context of a global geochemical cycle, a continent becomes essentially a source term. If, however, an element's behavior is examined in a local or regional context, sources and their related sinks may be identified. This suggests that small-scale geochemical cycles maymore » be superimposed on global geochemical cycles. Definition of such sub-cycles may clarify the distribution of an element in the earth's near-surface environment. In Florida, phosphate minerals of the Hawthorn Group act as a widely distributed source of uranium. Uranium is transported by surface- and ground-waters. Florida is the site of extensive wetlands and peatlands. The organic matter associated with these deposits adsorbs uranium and may act as a local sink depending on its hydrogeologic setting. This work examines the role of organic matter in the distribution of uranium in the surface and shallow subsurface environments of central and north Florida.« less

  8. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  9. Role of Mineral Deposits in Global Geochemical Cycles

    NASA Astrophysics Data System (ADS)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural

  10. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  11. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  12. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  13. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  14. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  15. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    NASA Technical Reports Server (NTRS)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  16. Linking the climatic and geochemical controls on global soil carbon cycling

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-04-01

    Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are

  17. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  18. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu

    2015-12-01

    Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.

  19. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.

  20. The search for signs of life on exoplanets at the interface of chemistry and planetary science.

    PubMed

    Seager, Sara; Bains, William

    2015-03-01

    The discovery of thousands of exoplanets in the last two decades that are so different from planets in our own solar system challenges many areas of traditional planetary science. However, ideas for how to detect signs of life in this mélange of planetary possibilities have lagged, and only in the last few years has modeling how signs of life might appear on genuinely alien worlds begun in earnest. Recent results have shown that the exciting frontier for biosignature gas ideas is not in the study of biology itself, which is inevitably rooted in Earth's geochemical and evolutionary specifics, but in the interface of chemistry and planetary physics.

  1. Effects of the seasonal cycle on superrotation in planetary atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jonathan L.; Vallis, Geoffrey K.; Potter, Samuel F.

    2014-05-20

    The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the absence of a seasonal cycle. This case is somewhat unrealistic as it applies only ifmore » the planet has zero obliquity or if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn) all have obliquities of ∼25° and varying degrees of seasonality due to their differing thermal inertias and orbital periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars, and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the relevant parameter regimes, our seasonal model simulations compare

  2. Evidence for Milankovitch periodicities in Cenomanian-Turonian lithologic and geochemical cycles, western interior U.S.A.

    USGS Publications Warehouse

    Sageman, B.B.; Rich, J.; Arthur, M.A.; Birchfield, G.E.; Dean, W.E.

    1997-01-01

    The limestone/marlstone bedding couplets of the Bridge Creek Limestone Member, Cenomanian-Turonian Greenhorn Formation, were analyzed by applying spectral techniques to high-resolution lithologic and geochemical data from a core. The results suggest that the Bridge Creek contains a complex record of orbital cyclicity. The dominant signal appears to be obliquity, but signals corresponding to precession and eccentricity were also observed. The development of the bedding couplets is interpreted to have resulted from a combination of factors, including insolation-controlled changes in higher-latitude precipitation leading to dilution/redox cycles, and in lower-latitude evaporation, leading to changes in surface water conditions and productivity cycles in the calcareous plankton. The data interpreted to reflect redox cycles appear to be more strongly influenced by obliquity, and show a weak precessional signal. In contrast, trends in the carbonate record show the opposite response. The complex bedding pattern observed in the Bridge Creek Limestone is interpreted to result from the competing influences of different orbital cycles expressed through different pathways of the depositional system, and was also affected by changes in sedimentation rates related to relative sea level fluctuations, aperiodic dilution by volcanic ash, and changes in organic-matter production and redox conditions related to a global "oceanic anoxic event". These factors complicate cycle analysis in the lower part of the member but leave a relatively undisturbed record in the upper Bridge Creek Limestone. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  3. Geobiochemistry: Placing Biochemistry in Its Geochemical Context

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.

    2014-12-01

    Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.

  4. The search for signs of life on exoplanets at the interface of chemistry and planetary science

    PubMed Central

    Seager, Sara; Bains, William

    2015-01-01

    The discovery of thousands of exoplanets in the last two decades that are so different from planets in our own solar system challenges many areas of traditional planetary science. However, ideas for how to detect signs of life in this mélange of planetary possibilities have lagged, and only in the last few years has modeling how signs of life might appear on genuinely alien worlds begun in earnest. Recent results have shown that the exciting frontier for biosignature gas ideas is not in the study of biology itself, which is inevitably rooted in Earth’s geochemical and evolutionary specifics, but in the interface of chemistry and planetary physics. PMID:26601153

  5. The planetary waves dynamics and interannual course of meteorological parameters of the high latitude stratosphere and mesosphere of the Northern and Southern Hemispheres during the 20th and 21st solar cycles and different phases of QBO

    NASA Technical Reports Server (NTRS)

    Kidiyarova, V. G.; Fomina, N. N.

    1989-01-01

    The part of energy of the planetary waves which enters the stratosphere depends on conditions of planetary wave generation and propagation through the tropopause, and the part of planetary wave energy which enters the mesosphere depends on conditions of planetary wave propagation through the stratopause. An attempt is made to estimate connections between extratropical middle atmosphere temperature long term variations and portions of energy of planetary waves which enter the mesosphere and stratosphere during winter seasons in Northern and Southern Hemispheres. Interannual variations of temperatures at the 30 km and 70 km levels are investigated for the central winter months of the period 1970 to 1986. This period includes the descending branch of the 20th solar cycle and the whole 21st cycle. Calculations are made on the basis of measurements at Heiss Island and Molodezhnaya.

  6. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  7. Mineralogical and geochemical anomalous data of the K-T boundary samples

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.

    1988-01-01

    Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).

  8. Laboratory simulation of organic geochemical processes.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1972-01-01

    Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.

  9. A Model for Siderophile Element Distribution in Planetary Differentiation

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.

    2005-01-01

    Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.

  10. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution.

    PubMed

    Sala, Serenella; Goralczyk, Malgorzata

    2013-10-01

    The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In

  11. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    NASA Astrophysics Data System (ADS)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  12. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  13. Impactor core disruption by high-energy planetary collisions

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Phillips, D.; Deguen, R.; Neufeld, J.; Dalziel, S.; Olson, P.

    2017-12-01

    Understanding the fate of impactor cores during large planetary collisions is key for predicting metal-silicate equilibration during Earth's accretion. Accretion models and geochemical observations indicate that much of Earth's mass accreted through high-energy impacts between planetary embryos already differentiated into a metallic core and a silicate mantle. Previous studies on core formation assume that the metallic core of the impactor is left intact by the impact, but it mixes with silicates during the post-impact fall in the magma ocean. Recent impact simulations, however, suggest that the impact cratering process induces significant core disruption and metal-silicate mixing. Unlike existing impact simulations, experiments can produce turbulence, a key ingredient to investigate disruption of the impactor core. Here we use laboratory experiments where a volume of salt solution (representing the impactor core) vertically impacts a pool of water (representing the magma ocean) to quantify impact-induced mixing between the impactor and the target as a function of impact velocity, impactor size and density difference. We find that the ratio between the impactor inertia and its weight controls mixing. Extrapolated to planetary accretion, our results suggest that the impact process induces no significant mixing for impactors of comparable size as the protoplanet whereas the impactor core is highly disrupted by impacts involving impactors much smaller than the protoplanet.

  14. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1988-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approximately 10 meters/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar-type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this investigation is to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight are made in the near infrared (approximately 2 micrometer), using the Kitt Peak McMath Fourier transform spectrometer, with an N2O gas absorption cell for calibration. Researchers currently achieve an accuracy of approximately 5 meters/sec. Solar rotation velocities vary by plus or minus 2000 meters/sec across the solar disk, and imperfect optical integration of these velocities is the principal source of error. We have been monitoring the apparent velocity of integrated sunlight since 1983. They initially saw a decrease of approximately 30 meters/sec in the integrated light velocity from 1983 through 1985, but in 1987 to 1988 the integrated light velocity returned to its 1983 level. It is too early to say whether these changes are solar-cycle related. Although the FTS, unlike a slit spectrograph, has a large field of view, researchers are always looking for ways to improve the optical integration of the solar disk. They recently made an improvement in the method used to optically collimate the FTS, and this has reduced the error level, eliminating some systematic effects seen earlier.

  15. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  16. A new geochemical instrument for the precise measurement of isotopic ratios and trace species in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Sarda, Ph.; Agrinier, P.

    2003-04-01

    The technique of GCMS analysis, which has been used with a great success on several past planetary missions, is not adapted for precise measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation, and chemical trapping, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. This technique allows to reach a precision on isotopic ratios of the order of a few 0.1 ppm for a typical amount of gas of a few micromoles. We are presently studying an instrument based on the same principle for space exploration applications. The PALOMA instrument (PAyload for Local Observation of Mars Atmosphere) will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. The miniaturization of major key elements, like the cryogenic device, the mass spectrometer, the line and its ensemble of valves, is presently led in our laboratories under CNES funding. The instrument consists of : (i) a gas purification and separation line, using techniques of cryogenic and chemical trapping, and possibly membrane permeation for molecular hydrogen analysis, (ii) a mass spectrometer working in static mode, without carrier gas (both time-of-flight and magnetic solutions are studied), (iii) a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer. In the specific case of Mars, it is designed to work during typically 2 years (about 1000 measurement cycles), in order to perform accurate measurements of molecular, elemental and isotopic composition and of their diurnal/seasonal variations. The gas is sampled directly from the ambient atmosphere, without need

  17. Comments on the BLAG model: the carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1984-01-01

    A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 my (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 my ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.

  18. Comments on the BLAG model - The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1984-01-01

    A self-consistent method of determining initial conditions for the model presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG model) is derived, based on the assumption that the CO2 geochemical cycle was in steady state at t = -100 m.y. (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 m.y. ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG model, such as the neglect of the cycles of organic carbon and sulfur.

  19. Fluvial geomorphology on Earth-like planetary surfaces: A review

    PubMed Central

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  20. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    PubMed

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  1. A hybrid model of the CO2 geochemical cycle and its application to large impact events

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.

    1986-01-01

    The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.

  2. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.

    1986-01-01

    The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.

  3. Global geochemical problems

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.

    1980-01-01

    Application of remote sensing techniques to the solution of geochemical problems is considered with emphasis on the 'carbon-cycle'. The problem of carbon dioxide sinks and the areal extent of coral reefs are treated. In order to assess the problems cited it is suggested that remote sensing techniques be utilized to: (1)monitor globally the carbonate and bicarbonate concentrations in surface waters of the world ocean; (2)monitor the freshwater and oceanic biomass and associated dissolved organic carbon; (3) inventory the coral reef areas and types and the associated oceanographic climatic conditions; and (4)measure the heavy metal fluxes from forested and vegetated areas, from volcanos, from different types of crustal rocks, from soils, and from sea surfaces.

  4. Planetary Evolution, Habitability and Life

    NASA Astrophysics Data System (ADS)

    Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz

    A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.

  5. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  6. Robot Manipulator Technologies for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.

    1999-01-01

    NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.

  7. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.

    PubMed

    Martin, Derek; Cockell, Charles S

    2015-02-01

    Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.

  8. Lunar and Planetary Surface Dynamics and Early History

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This document, submitted as part of this proposal renewal represents the Final Report required by NASA for Grant NAGS-9442. It should be emphasized that, while this work statement in the original proposal outlined anticipated directions of our research, the specific activities we carried out during this period differed slightly from those proposed, capitalizing on new unexpected results and new advances in analytical capability. The thrust of all the work we completed were completely within the stated research goals of the proposal and significantly advanced our knowledge of planetary processes and our understanding of the early solar system. The following summary outlines our achievements in the different areas of research. These include: A) Early solar system processes and time scales using I-Xe chronometry; B) The Active Capture of Volatiles: A new mechanism for the capture of heavy noble gases, possible implications for phase Q and planetary heavy noble gases; C) Separation of Xe-L from Xe-H: Physically selective experiments; D) Abundances of Presolar grains; E) Studies of Neon and Helium from single interstellar SiC and graphite grains; F) Pre-compaction exposure of meteoritic grains and chondrules; G) Geochemically Measured Half-Lives: Double beta-decay of Te and Ba isotopes; H) Noble gases in stratospheric interplanetary dust particles; I) New Analytical Instrument.

  9. Long Term Planetary Habitability and the Carbonate-Silicate Cycle: The Effect of Planet Size

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Johnson, M.; Mills, B.; Watson, A. J.; Claire, M.

    2017-12-01

    The potential habitability of exoplanets is traditionally assessed by determining whether or not its orbit falls within the circumstellar `habitable zone' of its star [1]. However, this metric does not readily account readily for changes in the abundance of greenhouse gases and their associated radiative forcing as a result of the action of the carbonate-silicate cycle. We develop a model of the carbon cycle on Earth, coupled with a stellar evolution model and a 1-D radiative-convective climate model with an Earth-like atmospheric water vapour profile [1], to explore the potential changes in the CO2 greenhouse under conditions of varying planet size (0.5 - 2 R⊕) and stellar flux (0.75 to 1.25 S⊕).We find that likely changes in global topography, tectonic outgassing and uplift, and the hydrological cycle on larger planets results in proportionally greater surface temperatures and pCO2 for a given incident flux. For planets between 0.5 and 2 R⊕ the effect of these changes results in average global surface temperature deviations of up to 15 K, which suggests that these relationships be considered in future studies of planetary habitability.Furthermore, by coupling this model with the stellar evolution scheme presented in [2] and setting an upper temperature limit of 343 K, the habitable period of the Earth-sized world around the Sun can be quantified. For a 1 R⊕ planet, this limit is approximately 6.35 Gyr after planet formation, or 1.81 Gyr from present day. Additionally, atmospheric CO2 falls below the limit at which C3 and C4 plants can effectively photosynthesize after 5.38 Gyr and 6.1 Gyr respectively, which may initiate a significant reorganization of the biosphere of the planet well before average surface temperatures render it uninhabitable.References: [1] Kopparapu et al. (2013) The Astrophysical Journal 765(2) [2] Rushby et al. (2013) Astrobiology, 13(9), 833-849.

  10. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    NASA Astrophysics Data System (ADS)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  11. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  12. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    NASA Astrophysics Data System (ADS)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  13. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.; Kastner, J. H.; Montez, R. Jr.

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted allmore » (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.« less

  14. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  15. Advanced planetary analyses. [for planetary mission planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.

  16. From Planetary Intelligence to Planetary Wisdom

    NASA Astrophysics Data System (ADS)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  17. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  18. Leveraging Knowledge: Impact on Low Cost Planetary Mission Design.

    ERIC Educational Resources Information Center

    Momjian, Jennifer

    This paper discusses innovations developed by the Jet Propulsion Laboratory (JPL) librarians to reduce the information query cycle time for teams planning low-cost, planetary missions. The first section provides background on JPL and its library. The second section addresses the virtual information environment, including issues of access, content,…

  19. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  20. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  2. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  3. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer V.; Antler, Gilad; Turchyn, Alexandra V.

    2016-11-01

    Cryptic sulfur cycling is an enigmatic process in which sulfate is reduced to some lower-valence state sulfur species and subsequently quantitatively reoxidized; the rate and microbial energetics of this process and how prevalent it may be in the environment remain controversial. Here we investigate sulfur cycling in salt marsh sediments from Norfolk, England where we observe high ferrous iron concentrations with no depletion of sulfate or change in the sulfur isotope ratio of that sulfate, but a 5‰ increase in the oxygen isotope ratio in sulfate, indicating that sulfate has been through a reductive cycle replacing its oxygen atoms. This cryptic sulfur cycle was replicated in laboratory incubations using 18O-enriched water, demonstrating that the field results do not solely result from mixing processes in the natural environment. Numerical modeling of the laboratory incubations scaled to represent the salt marsh sediments suggests that the uptake rate of sulfate during this cryptic sulfur cycling is similar to the uptake rate of sulfate during the fastest microbial sulfate reduction that has been measured in the natural environment. The difference is that during cryptic sulfur cycling, all of the sulfur is subsequently reoxidized to sulfate. We discuss mechanisms for this pathway of sulfur cycling including the possible link to the subsurface iron cycle.

  4. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  5. Rocky Planetary Debris Around Young WDs

    NASA Astrophysics Data System (ADS)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  6. The Star–Planet Connection. I. Using Stellar Composition to Observationally Constrain Planetary Mineralogy for the 10 Closest Stars

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Unterborn, Cayman T.

    2018-01-01

    The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.

  7. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  8. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  9. Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate

    NASA Astrophysics Data System (ADS)

    Melott, Adrian L.; Pivarunas, Anthony; Meert, Joseph G.; Lieberman, Bruce S.

    2018-01-01

    The record of reversals of the geomagnetic field has played an integral role in the development of plate tectonic theory. Statistical analyses of the reversal record are aimed at detailing patterns and linking those patterns to core-mantle processes. The geomagnetic polarity timescale is a dynamic record and new paleomagnetic and geochronologic data provide additional detail. In this paper, we examine the periodicity revealed in the reversal record back to 375 million years ago (Ma) using Fourier analysis. Four significant peaks were found in the reversal power spectra within the 16-40-million-year range (Myr). Plotting the function constructed from the sum of the frequencies of the proximal peaks yield a transient 26 Myr periodicity, suggesting chaotic motion with a periodic attractor. The possible 16 Myr periodicity, a previously recognized result, may be correlated with `pulsation' of mantle plumes and perhaps; more tentatively, with core-mantle dynamics originating near the large low shear velocity layers in the Pacific and Africa. Planetary magnetic fields shield against charged particles, which can give rise to radiation at the surface and ionize the atmosphere, which is a loss mechanism particularly relevant to M stars. Understanding the origin and development of planetary magnetic fields can shed light on the habitable zone.

  10. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  11. Lunar and Planetary Science XXXV: Mars Volcanology and Tectonics

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session, "Mars Volcanology and Tectonics" include:Martian Shield Volcanoes; Estimating the Rheology of Basaltic Lava Flows; A Model for Variable Levee Formation Rates in an Active Lava Flow; Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion; Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification; Burfellshraun:A Terrestrial Analogue to Recent Volcanism on Mars; Lava Domes of the Arcadia Region of Mars; Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints; Vent Geology of Low-Shield Volcanoes from the Central Snake River Plain, Idaho: Lessons for Mars and the Moon; Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars; Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae; A Volcano Composed of Light-colored Layered Deposits on the Floor of Valles Marineris; Analysis of Alba Patera Flows: A Comparison of Similarities and Differences Geomorphologic Studies of a Very Long Lava Flow in Tharsis, Mars; Radar Backscatter Characteristics of Basaltic Flow Fields: Results for Mauna Ulu, Kilauea Volcano, Hawaii;and Preliminary Lava Tube-fed Flow Abundance Mapping on Olympus Mons.

  12. The Importance of Planetary Rotation Period for Ocean Heat Transport

    PubMed Central

    Stevens, D.; Joshi, M.

    2014-01-01

    Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658

  13. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  14. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  15. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  16. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  17. How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology.

    PubMed

    Ryberg, Morten W; Owsianiak, Mikołaj; Clavreul, Julie; Mueller, Carina; Sim, Sarah; King, Henry; Hauschild, Michael Z

    2018-09-01

    The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Impact cratering: The process and its effects on planetary evolution. [and silicate-carbonate reactions on Venus

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.

    1984-01-01

    The potential for silicate-carbon dioxide reactions as a geochemical weathering agent on Venus was studied. A tholetitic basalt close to the composition determined by the XRF experiment at the Venera 14 sites was subjected to high temperature and pressure (with pure CO2 as the pressure medium) for varying time durations. The starting basalt material and the run products were examined optically and by X-ray diffraction and electron microscopy. The kinetics of the silicate-carbonate reactions is discussed. A study to elucidate details of impact processes and to assess the effects of impact cratering on planetary evolution is mentioned.

  19. The complex planetary synchronization structure of the solar system

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  20. Methods for geochemical analysis

    USGS Publications Warehouse

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  1. Scientific and technical services for development of planetary quarantine measures for automated spacecraft

    NASA Technical Reports Server (NTRS)

    Bacon, E. J.

    1972-01-01

    The progress is reported for all 13 tasks of the program to develop planetary quarantine measures. Results of analyses of the following are included: activities of the SSB, Viking sterilization cycle, Jovian parameters, and review of the Martian data.

  2. Planetary resonances, bi-stable oscillation modes, and solar activity cycles

    NASA Technical Reports Server (NTRS)

    Sleeper, H. P., Jr.

    1972-01-01

    The natural resonance structure of the planets in the solar system yields resonance periods of 11.08 and 180 years. The 11.08 year period is due to resonance of the sidereal periods of the three inner planets. The 180-year period is due to synodic resonances of the four major planets. These periods are also observed in the sunspot time series. The 11-year sunspot cycles from 1 to 19 are separated into categories of positive and negative cycles, Mode 1 and Mode 2 cycles, and typical and anomalous cycles. Each category has a characteristic shape, magnitude, or duration, so that statistical prediction techniques are improved when a cycle can be classified in a given category. These categories provide evidence for bistable modes of solar oscillation. The next minimum is expected in 1977 and the next maximum in 1981 or later. These epoch values are 2.5 years later than those based on typical cycle characteristics.

  3. Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas

    1996-01-01

    This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.

  4. Impact of lunar and planetary missions on the space station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

  5. Analysis of Co-spatial UV-Optical STIS Spectra of Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2015-01-01

    We present an analysis of five spatially resolved planetary nebulae (PNe), NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HST STIS. Details of the observations and data are presented in the poster by Dufour et al. in this session. These five observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wide slits, and are co-spatial to 0.1 arcsec along a 25 arcsec length across each nebula. This unprecedented resolution in both wavelength and spatial coverage enabled detailed studies of physical conditions and abundances from UV line ion emissions (compared to optical lines). We first analyzed the low- and moderate-resolution UV emission lines of carbon using the resolved lines of C III] 1906.68 and 1908.73, which yielded a direct measurement of the density within the volume occupied by doubly-ionized carbon and other similar co-spatial ions. Next, each PN spectrum was divided into spatial sub-regions in order to assess inferred density variations among the sub-regions along the entire slit. Variations in electron temperature and chemical abundances were also probed. Lastly, these nebulae were modeled in detail with the photoionization code CLOUDY. This modeling tested different density profiles in order to reproduce the observed density variations and temperature fluctuations, and constrain central star parameters. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, as well as from the University of Oklahoma.

  6. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  7. Planetary Surface Instruments Workshop

    NASA Astrophysics Data System (ADS)

    Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,

    1996-01-01

    This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)

  8. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  9. Wildfires and geochemical change in a subalpine forest over the past six millennia

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Higuera, Philip E.; McLauchlan, Kendra K.; Dunnette, Paul V.

    2016-12-01

    The frequency of large wildfires in western North America has been increasing in recent decades, yet the geochemical impacts of these events are poorly understood. The multidecadal timescales of both disturbance-regime variability and ecosystem responses make it challenging to study the effects of fire on terrestrial nutrient cycling. Nonetheless, disturbance-mediated changes in nutrient concentrations could ultimately limit forest productivity over centennial to millennial time scales. Here, we use a novel approach that combines quantitative elemental analysis of lake sediments using x-ray fluorescence to assess the geochemical impacts of high-severity fires in a 6200 year long sedimentary record from a small subalpine lake in Rocky Mountain National Park, Colorado, USA. Immediately after 17 high-severity fires, the sedimentary concentrations of five elements increased (Ti, Ca, K, Al, and P), but returned to pre-fire levels within three decades. Multivariate analyses indicate that erosion of weathered mineral material from the catchment is a primary mechanism though which high-severity fires impact element cycling. A longer-term trend in sediment geochemistry was also identified over millennial time scales. This decrease in the concentrations of six elements (Al, Si, K, Ti, Mn, and Fe) over the past 6200 years may have been due to a decreased rate of high-severity fires, long-term ecosystem development, or changes in precipitation regime. Our results indicate that high-severity fire events can determine elemental concentrations in subalpine forests. The degree of variability in geochemical response across time scales suggests that shifting rates of high-severity burning can cause significant changes in key rock-derived nutrients. To our knowledge, these results are the first to reveal repeated loss of rock-derived nutrients from the terrestrial ecosystem due to high-severity fires. Understanding the future of fire-prone coniferous forests requires further

  10. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  11. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  12. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  13. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  14. The Influence of Planetary Mass on the Dynamical Lifetime of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent numerical and analytic studies of planetary orbits have demonstrated the importance of resonances and chaos in destabilizing planetary systems. Newton's "clockwork" description of regular, predictable planetary orbits has been replaced by a view in which many systems can have long but finite lifetimes. This new knowledge has altered our perceptions of the later stages of planetary growth and of the stability of planetary systems. Stability criteria are inexact and time dependent. Most previous studies have focused on the effects in initial planetary orbits on the stability of the system. We are conducting an investigation which focuses on the dependence of stability criteria on planetary mass. Synthetic systems are created by increasing the masses of the planets in our Solar System or of the moons of a particular planet; these systems are then integrated until orbit crossing occurs. We have found that over some ranges, the time until orbit crossing varies to a good approximation as a power clothe factor by which the masses of the secondaries arc increased; some scatter occurs as a consequence of vie chaotic nature of orbital evolution. The slope of this power law varies substantially from system to system, and for moons it is mildly dependent on the inclusion of the planet's quadrupole moment in the gravitational potential.

  15. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  16. Planetary Magnetic Fields: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Shkolnik, Evgenya; Hallinan, Gregg; Planetary Habitability Study Team

    2016-06-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the Planetary Magnetic Fields: Planetary Interiors and Habitability Study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection. There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process. This report presents the findings from the Study, including potential mission concepts that emerged and future work in both modeling and observations. There was also an identification of that radio wavelength observations would likely be key to making significant progress in this field. The entire Study program would not have been possible without the generous support of the W. M. Keck Foundation. We thank Michele Judd, Tom Prince, and the staff of the W. M. Keck Institute for

  17. Planetary Moon Cycler Trajectories

    NASA Technical Reports Server (NTRS)

    Russell, Ryan P.; Strange, Nathan J.

    2007-01-01

    Free-return cycler trajectories repeatedly shuttle a spacecraft between two bodies using little or no fuel. Here, the cycler architecture is proposed as a complementary and alternative method for designing planetary moon tours. Previously applied enumerative cycler search and optimization techniques are generalized and specifically implemented in the Jovian and Saturnian moon systems. In addition, the algorithms are tested for general use to find non-Earth heliocentric cyclers. Overall, hundreds of ideal model ballistic cycler geometries are found and several representative cases are documented and discussed. Many of the ideal model solutions are found to remain ballistic in a zero radius sphere of influence patched conic ephemeris model, and preliminary work in a high-fidelity fully integrated model demonstrates near-ballistic cycles for several example cases.

  18. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  19. SUSTAINABILITY. Response to Comment on "Planetary boundaries: Guiding human development on a changing planet".

    PubMed

    Gerten, Dieter; Rockström, Johan; Heinke, Jens; Steffen, Will; Richardson, Katherine; Cornell, Sarah

    2015-06-12

    Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases. Copyright © 2015, American Association for the Advancement of Science.

  20. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  1. Analysis of Co-spatial UV-Optical STIS Spectra of Six Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Reid Miller, Timothy; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2015-08-01

    We present an analysis of six spatially resolved planetary nebulae (PNe), NGC 3242, NGC 5315, NGC5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HSTSTIS. These six observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wideslits, and are co-spatial to 0.1 arcsec along a 25 arcsec length across each nebula. The wavelength andspatial coverage enabled this detailed study of physical conditions and abundances from UV and opticalline emissions (compared to only optical lines) for these six PNe. The first UV lines of interest are thoseof carbon. The resolved lines of C III] 1906.68 and 1908.73 yielded a direct measurement of the densitywithin the volume occupied by doubly-ionized carbon and other similar co-spatial ions as well ascontributed to an accurate measurement of the carbon abundance. Each PN spectrum was divided intosmaller spatial regions in order to assess inferred density variations among the regions along the entireslit. There is a clear difference in the inferred density for several regions of each PNe. Variations inelectron temperature and chemical abundances were also probed and shown to be nearly completelyhomogeneous within the errors. Lastly, these nebulae were modeled in detail with the photoionizationcode CLOUDY. This modeling tested different density profiles in order to reproduce the observed densityvariations and temperature fluctuations, and constrain central star parameters. We gratefullyacknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, aswell as from the University of Oklahoma.

  2. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    NASA Astrophysics Data System (ADS)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  3. Assessing the Role of Seafloor Weathering in Global Geochemical Cycling

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2015-12-01

    Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.

  4. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    PubMed Central

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  5. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    PubMed

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  6. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  7. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  8. Comparative studies of the interaction between the Sun and planetary near space environments with the Solar Connections Observatory for Planetary Environments (SCOPE)

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Scope Team

    2003-04-01

    The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.

  9. Geochemical and Mineralogical Analyses of Cold Spring Deposits at Borup Fiord Pass, a Sulfur-Dominated Arctic Analog for Planetary Environments on Mars and Europa

    NASA Astrophysics Data System (ADS)

    Lau, Graham Elliot

    Sulfur is one of the most ubiquitous elements in the universe and one of those that is crucial for life, as we know it. This graduate dissertation presents the culmination of work conducted to better understand biological and geochemical processes related to sulfur cycling at a sulfur-dominated field site in the Canadian High Arctic. This site, situated in a valley called Borup Fiord Pass, provides a unique environment where sulfide-rich fluids emerge from a glacier and form large deposits of ice that become covered in elemental sulfur. The role of biology is compelling and yet challenging to define in each step of sulfur cycling at Borup Fiord pass, whether one considers the origin of the sulfide (presumed biological sulfate reduction in the subsurface) or one focuses on the processes driving sulfur oxidation and stabilization at the glacier's surface. This dissertation presents results from a field expedition in 2014 as well as detailed mineralogical and spectroscopic analyses of sulfur-rich materials returned from the field. The importance of sulfur and carbonate minerals at this site is considered. Also, analyses of materials within pyrite alteration features in the valley are explored. These features appear to represent emplaced subsurface sulfide ores, which have been subsequently leached near the surface, forming gossanous structures. The geochemistry and mineralogy of these features is explored, as well as is their potential to serve as analogs for the exploration of Mars. The dissertation then concludes with some consideration of potential future work to be considered as well as a recapitulation of the current state of knowledge of processes at Borup Fiord Pass.

  10. A compendium of geochemical information from the Saanich Inlet water column

    NASA Astrophysics Data System (ADS)

    Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.

    2017-10-01

    Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.

  11. Chemical kinetics and modeling of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  12. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  13. Marine geochemical cycles of the alkali elements and boron: the role of sediments

    NASA Astrophysics Data System (ADS)

    James, Rachael H.; Palmer, Martin R.

    2000-09-01

    We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH 4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH 4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ˜3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.

  14. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  15. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle

    NASA Astrophysics Data System (ADS)

    Canovas, Peter A.; Shock, Everett L.

    2016-12-01

    Integrating microbial metabolism into geochemical modeling allows assessments of energy and mass transfer between the geosphere and the microbial biosphere. Energy and power supplies and demands can be assessed from analytical geochemical data given thermodynamic data for compounds involved in catabolism and anabolism. Results are reported here from a critique of the available standard state thermodynamic data for organic acids and acid anions involved in the citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle). The development of methods for estimating standard state data unavailable from experiments is described, together with methods to predict corresponding values at elevated temperatures and pressures using the revised Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous species. Internal consistency is maintained with standard state thermodynamic data for organic and inorganic aqueous species commonly used in geochemical modeling efforts. Standard state data and revised-HKF parameters are used to predict equilibrium dissociation constants for the organic acids in the citric acid cycle, and to assess standard Gibbs energies of reactions for each step in the cycle at elevated temperatures and pressures. The results presented here can be used with analytical data from natural and experimental systems to assess the energy and power demands of microorganisms throughout the habitable ranges of pressure and temperature, and to assess the consequences of abiotic organic compound alteration processes at conditions of subsurface aquifers, sedimentary basins, hydrothermal systems, meteorite parent bodies, and ocean worlds throughout the solar system.

  16. Evolution of modern eukaryotes in the context of Cryogenian geochemical, tectonic and climatic changes (Invited)

    NASA Astrophysics Data System (ADS)

    Bosak, T.; MacDonald, F. A.; Pruss, S. B.; Lahr, D.

    2010-12-01

    The Cryogenian period (850-635 Ma) is one of the most dynamic periods in Earth history; its strata host evidence of the break-up of a super-continent, multiple low-latitude glaciations, the reorganization of geochemical cycles, the radiation of eukaryotes, and the origin of animals. However, relationships between the evolving ecosystems during this time, global glaciations and the cycling of carbon, sulfur and oxygen remain poorly understood. This is due to the lack of studies that couple geochemical and micropaleontological records in a stratigraphic and sedimentological context and the paucity of studies of sections that span the entire interval. Here we describe our current work on the recently discovered microfossil record from carbonate rocks deposited between the two Cryogenian low-latitude glaciations (710-635 million years ago) including the Tayshir Formation in Mongolia and cap carbonates from the Rasthof Formation in Namibia. This record provides constraints on the severity of Sturtian low-latitude glaciation and shows the presence of various modern eukaryotic lineages in late Cryogenian ecosystems and the first occurrences of various shell-building organisms. These biological changes gave rise to an increasing complexity of food webs that may have fed the first animals and influenced the sinking and burial of organic matter, ushering the Neoproterozoic revolution in biogeochemical cycling.

  17. The OpenPlanetary initiative

    NASA Astrophysics Data System (ADS)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  18. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  19. Wet Tectonics: A New Planetary Synthesis

    NASA Astrophysics Data System (ADS)

    Grimm, K. A.

    2005-12-01

    interdependent and co-evolving phenomena. The concept of autocatalytic hypercycles has been adapted from molecular biology to resolve the apparent paradox of circular causality amongst the coupled phenomena of liquid water oceans and `plate tectonics'. This new planetary synthesis presents fundamental implications for geological, geophysical, Earth system and planetary sciences, as well as novel hypotheses concerning plate drive (gravity sliding ± slab pull), origin of plate tectonics (Hadean, >=4.4Ga), biogeochemical cycling (balanced global fluxes of water into and out of the tectosphere; is the asthenosphere continuously rehydrated via lateral advection) and planetary geomorphology (simple contrasts between Mars, Earth and Venus).

  20. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  1. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to

  2. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2

  3. Geochemical Astro- and Geochronological Constraints on the Early Jurassic

    NASA Astrophysics Data System (ADS)

    Storm, M.; Condon, D. J.; Ruhl, M.; Jenkyns, H. C.; Hesselbo, S. P.; Al-Suwaidi, A. H.; Percival, L.

    2017-12-01

    The Early Jurassic Hettangian and Sinemurian time scales are poorly defined due to the lack of continuous geochemical records, and the temporal constrain of the Toarcian Oceanic Anoxic Event and associated global carbon cycle perturbation is afflicted by geochemical and biostratigraphical uncertainties of the existing radiometric dates from various volcanic ash bearing sections. Here we present a continuous, orbitally paced Hettangian to Pliensbachian carbon-isotope record of the Mochras drill-core (Cardigan bay Basin, UK). The record generates new insights into the evolution and driving mechanisms of the Early Jurassic carbon cycle, and is contributing to improve the Hettangian and Sinemurian time scale. Furthermore, we introduce a new high-resolution carbon-isotope chemostratigraphy, integrated with ammonite biostratigraphy and new U/Pb single zircon geochronology of the Las Overas section (Neuquén Basin, Argentina). The studied section comprises sediments from the tenuicostatum to Dumortiera Andean Ammonite zone (tenuicostatum to levesqui European standard zones). A stratigraphically expanded negative shift in d13Corg values, from -24‰ down to -32­‰, appears in the tenuicostatum and hoelderi ammonite zone, coeval to the negative excursion in European realm which is associated with the Toarcian Oceanic Anoxic Event. The negative isotope excursion appears concomitant with an increase in sedimentary mercury levels, indicating enhanced volcanic activity. TOC values and elemental data suggest a high sedimentation dilution in the tenuicostatum to pacificum zone. The new geochronological data from several volcanic ash beds throughout the section are further improving the temporal correlation between the Early Toarcian isotope event and causal mechanisms

  4. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE PAGES

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...

    2018-06-20

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  5. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  6. Analysis of Co-spatial UV-Optical STIS Spectra of Seven Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2016-01-01

    We present an analysis of seven spatially resolved planetary nebulae (PNe), NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HST STIS. These seven observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wide slits, and are co-spatial to within 0.1 arcsec along a 25 arcsec length across each nebula. The wavelength and spatial coverage enabled a detailed study of physical conditions and abundances from UV and optical line emissions (compared to only optical lines) for these seven PNe. The first UV lines of interest are those of carbon. The resolved lines of C III] 1906.68 and 1908.73 yielded a direct measurement of the density within the volume occupied by doubly-ionized carbon and other similar co-spatial ions as well as contributed to an accurate measurement of the carbon abundance. Each PN spectrum was divided into smaller spatial regions or segments in order to assess inferred density variations among the regions along the entire slit. There is a clear difference in the inferred density for several regions of each PNe. Variations in electron temperature and chemical abundances were also probed and shown to be completely homogeneous within the errors. Lastly, these nebulae were modeled in detail with the photoionization code CLOUDY. This modeling constrained the central star parameters of temperature and luminosity and tested the effects different density profiles have on these parameters. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, as well as from the University of Oklahoma.

  7. Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1995-01-01

    The formation of a blocking anticyclone over the North Atlantic has been examined over its entire life-CyCle using the Zwack-Okossi (Z-O) equation as the diagnostic tool. This blocking anticyclone occurred in late October and early November of 1985. The data used were provided by the NASA Goddard Laboratory for Atmospheres on a global 2.O degree latitude by 2.5 degree longitudinal grid. The horizontal distribution of the atmospheric forcing mechanisms that were important to 500 mb block formation, maintenance and decay were examined. A scale-partitioned form of the Z-O equation was then used to examine the relative importance of forcing on the planetary and synoptic scales, and their interactions. As seen in previous studies, the results presented here show that upper tropospheric anticyclonic vorticity advection was the most important contributor to block formation and maintenance. However, adiabatic warming, and vorticity tilting were also important at various times during the block lifetime. In association with precursor surface cyclogenesis, the 300 mb jet streak in the downstream (upstream) from a long-wave trough (ridge) amplified significantly. This strengthening of the jet streak enhanced the anti-cyclonic vorticity advection field that aided the amplification of a 500 mb short-wave ridge. Tile partitioned height tendency results demonstrate that the interactions between the planetary and sn,noptic-scale through vorticity advection was the most important contributor to block formation. Planetary-scale, synoptic-scale. and their interactions contributed weakly to the maintenance of the blocking anticyclone with the advection of synoptic-scale vorticity by the planetary-scale flow playing a more important role. Planetary-scale decay ofthe long-wave ridge contributed to the demise of this blocking event.

  8. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  9. Spectral and diurnal variations in clear sky planetary albedo

    NASA Technical Reports Server (NTRS)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  10. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator mission concepts for airless planets/satellites, geology orbiter payload adaptability, lunar mission performance, and advanced planning activities. Study reports and related publications are included in a bibliography section.

  11. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowballmore » climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.« less

  12. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces

  13. Thermal Modeling on Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Hapke, B.W.

    2002-01-01

    The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.

  14. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  15. Twenty-Second Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  16. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  17. Lunar Science Conference, 8th, Houston, Tex., March 14-18, 1977, Proceedings. Volume 1 - The moon and the inner solar system. Volume 2 - Petrogenetic studies of mare and highland rocks. Volume 3 - Planetary and lunar surfaces

    NASA Technical Reports Server (NTRS)

    Merril, R. B.

    1977-01-01

    Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.

  18. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  19. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Michel, F. C.

    1975-01-01

    Space-probe observations of planetary magnetospheres are discussed. Three different categories of planetary magnetospheres are identified (intrinsic slowly rotating, intrinsic rapidly rotating, and induced), and the characteristics of each type are outlined. The structure and physical processes of the magnetospheres of Mercury, Mars, and Jupiter are described, and possible configurations are presented for the Martian and Jovian ones. Expected magnetic moments are derived for Saturn, Uranus, and Neptune. Models are constructed for possible induced magnetospheres of the moon, Mercury, Venus, Mars, and Io.

  20. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  1. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  2. Use of Geochemical Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable

    NASA Astrophysics Data System (ADS)

    Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie

    2016-04-01

    application of geochemical indices without an understanding of site specific conditions could result in significant underestimation of anthropogenic impacts to soil and potential risks to the environment. The reliability and application of geochemical indices for estimation of background concentrations will be discussed, including comment on statistical limitations, (such as management of censored results and the behaviour of composition data) and miss-use/miss-interpretation of geochemical indices within the environmental assessment industry, including inferences of causation based on empirical relationships. HAMON, R. E., MCLAUGHLIN, M. J., GILKES, R. J., RATE, A. W., ZARCINAS, B., ROBERTSON, A., COZENS, G., RADFORD, N. & BETTENAY, L. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18, GB1014. MYERS, J. & THORBJORNSEN, K. 2004. Identifying Metals Contamination in Soil: A Geochemical Approach. Soil & Sediment Contamination, 13, 1-16.

  3. Planetary life: why and how?

    NASA Astrophysics Data System (ADS)

    Pratt, Andy; Kerr, William

    2012-07-01

    Understanding life in an astrobiological context requires that we understand why and how life emerged on earth. We report on the elaboration and preliminary testing of our recent model for the origin of life (Pratt, 2011). This model identifies key components, including availability of chemicals and geochemical energy sources, required for the emergence of planetary life. The model is based on the theory (Russell and Kanik, 2010) that life emerged as a mechanism for the dissipation of the intrinsic geochemical energy gradient of the planet. It proposes that life is founded on an ongoing chemical energy flux that can be harnessed more efficiently by autocatalytic networks of reactions than by direct chemical processes. Feedback and selection mechanisms are required to foster the apparently irreducible complexity found in cells. We posit that selective solubilisation in a hydrothermal flow system was a key mechanism that underpinned the emergence of life. Amongst other things, earthly cells are dependent on a combination of organic molecules, iron (for electron-transfer and catalysis) and phosphate (e.g. for digital information). Soluble aqueous systems that include all these components are constrained by precipitation chemistry (de Zwart et al., 2004). We propose that in situ abiological carbon fixation produced organic molecules that, in turn, led to more active carbon fixation catalysts and hence more efficient reduction of carbon oxides. By encapsulating free iron ions, these organic molecules also facilitated the solubilisation of phosphate species which thereby became integrated within this expanding autocatalytic network. We have evaluated the competitive solubility of phosphate species in the presence of iron and organic moieties to test this theory and provide evidence that this could act as positive feedback loop for a form of prebiological evolution that underpinned the emergence of complex cells. References, Pratt, A. J. (2011) Prebiological Evolution and

  4. Design of Virtual Environments for the Comprehension of Planetary Phenomena Based on Students' Ideas.

    ERIC Educational Resources Information Center

    Bakas, Christos; Mikropoulos, Tassos A.

    2003-01-01

    Explains the design and development of an educational virtual environment to support the teaching of planetary phenomena, particularly the movements of Earth and the sun, day and night cycle, and change of seasons. Uses an interactive, three-dimensional (3D) virtual environment. Initial results show that the majority of students enthused about…

  5. Preparing Planetary Scientists to Engage Audiences

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  6. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  7. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  8. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  9. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts

    NASA Astrophysics Data System (ADS)

    de Vries, Wim; Kros, Hans; Kroeze, Carolien; Seitzinger, Sybil

    2014-05-01

    In this presentation, we first discuss the concept of -, governance interest in- and criticism on planetary boundaries, specifically with respect to the nitrogen (N) cycle. We then systematically evaluate the criticism and argue that planetary N boundaries need to include both the benefits and adverse impacts of reactive N (Nr) and the spatial variability of Nr impacts, in terms of shortage and surplus, being main arguments for not deriving such boundaries. Next, we present an holistic approach for an updated planetary N boundary by considering the need to: (i) avoid adverse impacts of elevated Nr emissions to water, air and soils, and (ii) feed the world population in an adequate way. The derivation of a planetary N boundary, in terms of anthropogenic fixation of di-nitrogen (N2) by growing legumes and production of N fertilizer, is illustrated by (i) identification of multiple threat N indicators and setting critical limits for them, (ii) back calculating critical N losses from critical limits for N indicators, while accounting for the spatial variability of indicators and their exceedance and (iii) back calculating critical N fixation rates from critical N losses. The derivation of the needed planetary N fixation is assessed from the global population, the recommended dietary N consumption per capita and the N use efficiency in the complete chain from N fixation to N consumption. Results of example applications show that the previously suggested planetary N boundary of 25% of the current value is too low in view of needed N fixation and also unnecessary in view of most environmental impacts. We also illustrate the impacts of changes in the N use efficiency on planetary boundaries in terms of critical N fixation rates.

  10. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  11. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    NASA Astrophysics Data System (ADS)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  12. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  13. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  14. Cosmological Effects in Planetary Science

    NASA Technical Reports Server (NTRS)

    Blume, H. J.; Wilson, T. L.

    2010-01-01

    In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.

  15. Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland.

    PubMed

    Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong

    2018-06-01

    The geochemical model PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7  mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  17. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  18. A new planetary structure fabrication process using phosphoric acid

    NASA Astrophysics Data System (ADS)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  19. Planetary Data Archiving Plan at JAXA

    NASA Astrophysics Data System (ADS)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  20. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  1. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  2. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  3. Ordinary planetary systems - Architecture and formation

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1993-01-01

    Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.

  4. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  5. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  6. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  7. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  8. The Influence of Eccentricity Cycles on Exoplanet Habitability

    NASA Astrophysics Data System (ADS)

    Baskin, N. J. K.; Fabrycky, D. C.; Abbot, D. S.

    2015-12-01

    In our search for habitable exoplanets, it is important to understand how planetary habitability is influenced by orbital configurations that differ from those of the terrestrial planets in our Solar system. In particular, observational surveys have revealed the prevalence of planetary systems around binary stars. Within these systems, the gravitational influence of a companion star can induce libration in the eccentricity of the planet's orbit (referred to as Kozai Cycles) on timescales as short as thousands of years. The resulting fluctuations in stellar flux at the top of the atmosphere can potentially induce dramatic variations in surface temperatures, with direct implications for the planet's habitability prospects. We investigate this research problem using two steps. First, we utilize the MERCURY N-body integrator in order to calculate the eccentricity of a hypothetical Earth-analogue under the gravitational influence of a stellar companion. Second, we run a coupled Global Climate Model (GCM) at various stages of a cycle provided by the MERCURY runs in order to examine if the increase in insolation renders the planet uninhabitable. This work will allow us to better understand how Kozai cycles influence the boundaries of a planet's habitable zone.

  9. Rise of planetary bodies.

    NASA Astrophysics Data System (ADS)

    Czechowski, Z.; Leliwa-Kopystyński, J.; Teisseyre, R.

    Contents: 1. On the probability of the formation of planetary systems. 2. Condensation triggered by supernova explosion and tidal capture theory. 3. Foundations of accretion theory. 4. The structure and evolution of the protoplanetary disk. 5. Coagulation of orbiting bodies. 6. Collision phenomena related to planetology: accretion, fragmentation, cratering. 7. Dynamics of planetesimals: Introduction, Safronov's approach, elements of the kinetic theory of gases, Nakagawa's approach, approaches considering inelastic collisions and gravitational encounters of planetesimals, Hämeen-Anttila approach, planetesimals with different masses. 8. Growth of the planetary embryo: Basic equations, model of growth of planetary embryos. 9. Origin of the Moon and the satellites.

  10. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  11. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    NASA Astrophysics Data System (ADS)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  12. Planetary science comes to Nantes

    NASA Astrophysics Data System (ADS)

    Massey, Robert

    2011-12-01

    MEETING REPORT Robert Massey reports on highlights of the first joint meeting of the European Planetary Science Congress (EPSC) and the AAS Division of Planetary Scientists (DPS) in Nantes in October.

  13. Planetary sample rapid recovery and handling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.

  14. Process engineering with planetary ball mills.

    PubMed

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  15. Planetary geology and terrestrial analogs in Asia

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Namiki, Noriyuki

    2012-04-01

    2011 PERC Planetary Geology Field Symposium;Kitakyushu City, Japan, 5-6 November 2011 In spite of the extremely diverse geological settings that exist in Asia, relatively little attention has previously been paid to this region in terms of terrestrial analog studies for planetary application. Asia is emerging as a major center of studies in planetary geology, but no attempt had been made in the past to organize a broadly based meeting that would allow planetary geologists in Asia to meet with ones from more advanced centers, such as the United States and Europe, and that would include the participation of many geologists working primarily on terrestrial research. The Planetary Exploration Research Center (PERC) of the Chiba Institute of Technology hosted the first planetary geology field symposium in Asia to present results from recent planetary geology studies and to exchange ideas regarding terrestrial analogs (http://www.perc.it-chiba.ac.jp/meetings/pgfs2011/index.html).

  16. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  17. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  18. A Centimeter-Scale Investigation of Geochemical Hotspots in a Soil Lysimeter

    NASA Astrophysics Data System (ADS)

    Umanzor, M.; Wang, Y.; Dontsova, K.; Chorover, J.; Troch, P. A. A.

    2016-12-01

    Studying the co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative for improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. Hotspots may form in porous media that is undergoing biogeochemical weathering at locations where reactants accumulate to threshold values along hydrologic flow paths. This is expected to occur in weatherable silicate media, like granular basalt. To examine such processes during incipient soil formation, we constructed a sloping weighing lysimeter 2-m in length, 0.5-m in width and 1-m in depth. Mini-LEO was filled with crushed granular basalt rock with a known initial chemical composition. After 18 months of irrigation and intensive hydrological study, the model "landscape" was divided into a 3D matrix of 324 voxels and excavated. Collected samples were subjected to detailed hydro-bio-geochemical analysis to assess the formation of geochemical heterogeneity. A five-step sequential extraction was employed to characterize incongruent mineral weathering, and its relation to the spatial distribution of microbial composition (in a related study). The changes in Fe and Mn concentration and speciation along the lysimeter length and depth (as measured by each step of the sequential extraction) was quantified to characterize spatial distribution of weathering processes. Results are being used to assist in understanding not only spatial and temporal distribution of basalt weathering on the slope, but also, connections between hydrological and biogeochemical cycles that lead to formation of hotspots.

  19. Induction heating of planetary interiors

    NASA Astrophysics Data System (ADS)

    Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.

    2017-09-01

    We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.

  20. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration

  1. Use of partial dissolution techniques in geochemical exploration

    USGS Publications Warehouse

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  2. Planetary mass function and planetary systems

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  3. Managing Science Operations During Planetary Surface: The 2010 Desert RATS Test

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Ming, D. W.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities. Desert RATS is a venue where new ideas can be tested, both individually and as part of an operation with multiple elements. By conducting operations over multiple yearly cycles, ideas that make the cut can be iterated and tested during follow-on years. This ultimately gives both the hardware and the personnel experience in the kind of multi-element integrated operations that will be necessary in future human planetary exploration.

  4. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  5. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  6. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  7. Planetary Hypothesis, sub-Milankovitch frequencies and Holocene cold events

    NASA Astrophysics Data System (ADS)

    Compagnucci, R. H.; Cionco, R. G.; Agosta, E.; Wanner, H.

    2013-05-01

    The Planetary Hypothesis of solar cycles proposes that the movement of the Sun around the solar system barycenter modulates the solar cycles at several times scales. Using a 3-D model of the solar system (Cionco and Compagnucci, 2012) we derived the solar barycentric motion and various dynamic parameters such as the angular momentum (L= Lx, Ly, Lz) for the Holocene. Angular momentum inversions are sporadic and important events in the dynamics of the MSB: Lz becomes negative and giant planets are nearly aligned. These episodes are related to some grand solar grand minima such as Maunder and Dalton, and also to the recent deep minimum 2007-2010 which was preceded by a Lz inversion in 1990. During the Holocene several negative Lz episodes occur that are grouped in approximately millennia to centuries long periods. Each group is separated by ~2000 years where the Lz values remain positive, both generating a cycle between 1500 and 2500 years. The spectral analysis shows significant peaks at sub-Milankovitch frequencies. Furthermore, the analysis of the spatiotemporal variability of temperature defined six specific cold events (8200, 6300, 4700, 2700, 1550 and 550 years BP) during the Holocene (Wanner et al, 2011). During, and /or before, of these major climates cooling, a group of negative Lz episodes were presented. Oppositely the resulted during the warms periods were the lack of the angular movement inversion together with the extremes of positive Lz . Therefore, the origin of Holocene cold events seems to be linked to the gravitational influence of the planets, that is to say the planetary torque that has a non-negligible effect on the causes of the solar magnetic cycle. Acknowledgements:The support of the Grants PID-UTN1351, UBACYT N_:20020100101049, CONICET PIP PIP 114-201001-00250 and MINCYT-MEYS ARC/11/09. References Cionco, R.G.; Compagnucci,R.H. (2012) Dynamical characterization of the last prolonged solar minima , Advances in Space Research 50(10), 1434

  8. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Tang, Song; Xiao, Tangfu; Ning, Zengping; Lan, Xiaolong; Sun, Weimin

    2016-08-01

    Mining activities have introduced various pollutants to surrounding aquatic and terrestrial environments, causing adverse impacts to the environment. Indigenous microbial communities are responsible for the biogeochemical cycling of pollutants in diverse environments, indicating the potential for bioremediation of such pollutants. Antimony (Sb) has been extensively mined in China and Sb contamination in mining areas has been frequently encountered. To date, however, the microbial composition and structure in response to Sb contamination has remained overlooked. Sb and As frequently co-occur in sulfide-rich ores, and co-contamination of Sb and As is observed in some mining areas. We characterized, for the first time, the microbial community profiles and their responses to Sb and As pollution from a watershed heavily contaminated by Sb tailing pond in Southwest China. The indigenous microbial communities were profiled by high-throughput sequencing from 16 sediment samples (535,390 valid reads). The comprehensive geochemical data (specifically, physical-chemical properties and different Sb and As extraction fractions) were obtained from river water and sediments at different depths as well. Canonical correspondence analysis (CCA) demonstrated that a suite of in situ geochemical and physical factors significantly structured the overall microbial community compositions. Further, we found significant correlations between individual phylotypes (bacterial genera) and the geochemical fractions of Sb and As by Spearman rank correlation. A number of taxonomic groups were positively correlated with the Sb and As extractable fractions and various Sb and As species in sediment, suggesting potential roles of these phylotypes in Sb biogeochemical cycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Geochemical cycles in sediments deposited on the slopes of the Guaymas and Carmen Basins of the Gulf of California over the last 180 years

    USGS Publications Warehouse

    Dean, W.; Pride, C.; Thunell, R.

    2004-01-01

    Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.

  10. Fictitious Supercontinent Cycles

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    "Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid

  11. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. [for Martian surface materials

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Christian, R. P.; Baird, A. K.; Evans, P. H.; Clark, B. C.; Keil, K.; Kelliher, W. C.

    1977-01-01

    The current status of geochemical, mineralogical, petrological interpretation of refined Viking Lander data is reviewed, and inferences that can be drawn from data on the composition of Martian surface materials are presented. The materials are dominantly fine silicate particles admixed with, or including, iron oxide particles. Both major element and trace element abundances in all samples are indicative of mafic source rocks (rather than more highly differentiated salic materials). The surface fines are nearly identical in composition at the two widely separated Lander sites, except for some lithologic diversity at the 100-m scale. This implies that some agency (presumably aeolian processes) has thoroughly homogenized them on a planetary scale. The most plausible model for the mineralogical constitution of the fine-grained surface materials at the two Lander sites is a fine-grained mixture dominated by iron-rich smectites, or their degradation products, with ferric oxides, probably including maghemite and carbonates (such as calcite), but not such less stable phases as magnesite or siderite.

  12. Coupling of carbon and silicon geochemical cycles in rivers and lakes

    PubMed Central

    Wang, Baoli; Liu, Cong-Qiang; Maberly, Stephen C.; Wang, Fushun; Hartmann, Jens

    2016-01-01

    Carbon (C) and silicon (Si) biogeochemical cycles are important factors in the regulation of atmospheric CO2 concentrations and hence climate change. Theoretically, these elements are linked by chemical weathering and organism stoichiometry, but this coupling has not been investigated in freshwaters. Here we compiled data from global rivers and lakes in the United States of America and the United Kingdom, in order to characterize the stoichiometry between the biogeochemical cycles of C and Si. In rivers this coupling is confirmed by a significant relationship between HCO3−/Na+ and DSi/Na+, and DSi:HCO3− ratio can reflect the mineral source of chemical weathering. In lakes, however, these characteristic ratios of chemical weathering are altered by algal activity. The lacustrine Si:C atomic ratio is negative feedback regulation by phytoplankton, which may result in this ratio in algal assemblages similar to that in water column. And this regulation suggests lacustrine photosynthetic C fixation in this equilibrium state is quantitative and depends on the DSi concentration. These findings provide new insights into the role of freshwaters in global C and Si biogeochemical cycles. PMID:27775007

  13. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  14. A Rover Operations Protocol for Maintaining Compliance with Planetary Protection Requirements

    NASA Astrophysics Data System (ADS)

    Jones, Melissa; Vasavada, Ashwin

    2016-07-01

    The Mars Science Laboratory (MSL) mission, with its Curiosity rover, arrived at Gale Crater in August 2012 with the scientific objective of assessing the past and present habitability of the landing site area. It is not a life detection mission, but one that uses geological, geochemical, and environmental measurements to understand whether past and present conditions could have supported life. The MSL mission is designated Planetary Protection Category IVa, with specific restrictions on the landing site and surface operations. In particular, the mission is prohibited from introducing any hardware into a Mars Special Region, as defined by COSPAR policy and in NASA document NPR 8020.12D. Fluid-formed features such as recurring slope lineae are included in this prohibition. Finally, any evidence suggesting the presence of Special Regions or flowing liquid at the actual MSL landing site shall be communicated to the NASA Planetary Protection Officer immediately, and physical contact by the rover with such features shall be entirely avoided. The MSL Project has recently developed and instituted a protocol in daily rover operations to ensure ongoing compliance with its planetary protection categorization. A particular challenge comes from the fact that the characteristics of potential Special Regions may not be obvious in the rover downlink data (e.g., landscape images, chemical measurements, or meteorology), or easily distinguishable from characteristics of other processes that do not imply Special Regions. For this reason, the first step in the process would be for the lead scientist for that day of operations (a role that rotates through senior scientists on the mission) to scrutinize all the targets that may receive interaction by rover hardware, such as targets for arm contact, or paths for wheel contact. Based on the expertise of the lead scientist, and definitions of Mars Special Regions, if any features of concern are identified, the other scientists on duty that

  15. Biological life support systems for a Mars mission planetary base: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  16. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  17. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  18. Formation and Detection of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  19. Convective stirring efficiency in strongly temperature-dependent, infinite Prandtl number fluids: application to planetary mantles.

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Samuel, H.

    2017-12-01

    Many rocky planetary bodies currently exhibit solid-state convection, or have experienced this process during their histories.Such a style of convection is characterized by the negligible influence of inertia, and a rheology known to be strongly temperature-dependent. Convective motion within such planetary envelopes determine their ability to preserve or to homogenize compositional heterogeneities.Therefore, understanding the efficiency of convective stirring is key to the interpretation of petrological, geochemical, and cosmochemical data originating on the Earth from sampled erupted lava, or inferred from meteorite analysis (e.g., Mars). In order to study this problem we have conducted series of numerical experiments in 2D and 3D Cartesian domains heated from below and cooled from above. We varied systematically the Rayleigh number and the activation energy using a strongly temperature-dependent viscosity based on the Arrhenius law for diffusion creep. Given the large values of activation energy considered, all our experiments fall into the stagnant lid regime. Stirring efficiency is determined by computing the finite-time Lyapunov exponents, which provide a measure of the Lagrangian deformation.This systematic exploration allows the degree of heterogeneity and its spatial variability to be quantified, and yields mixing times for both 2D and 3D geometries.Our results indicate significant differences between geometries: 2D cases lead more frequently to steady solutions, for which stirring efficiency is spatially heterogeneous and mostly weak. On the other hand, 3D cases show more time dependence of the velocity field and generally yield more efficient convective stirring, even for cases with a weak time-dependence of the flow. Scaling laws for stirring efficiencies are derived, and will serve as a basis to discuss the application to planetary mantles.

  20. Exploring Visual Evidence of Human Impact on the Environment with Planetary-Scale Zoomable Timelapse Video

    NASA Astrophysics Data System (ADS)

    Sargent, R.; Egge, M.; Dille, P. S.; O'Donnell, G. D.; Herwig, C.

    2016-12-01

    Visual evidence ignites curiosity and inspires advocacy. Zoomable imagery and video on a planetary scale provides compelling evidence of human impact on the environment. Earth Timelapse places the observable impact of 30+ years of human activity into the hands of policy makers, scientists, and advocates, with fluidity and speed that supports inquiry and exploration. Zoomability enables compelling narratives and ready apprehension of environmental changes, connecting human-scale evidence to regional and ecosystem-wide trends and changes. Leveraging the power of Google Earth Engine, join us to explore 30+ years of Landset 30m RGB imagery showing glacial retreat, agricultural deforestation, irrigation expansion, and the disappearance of lakes. These narratives are enriched with datasets showing planetary forest gain/loss, annual cycles of agricultural fires, global changes in the health of coral reefs, trends in resource extraction, and of renewable energy development. We demonstrate the intuitive and inquiry-enabling power of these planetary visualizations, and provide instruction on how scientists and advocates can create and share or contribute visualizations of their own research or topics of interest.

  1. Gondola for High Altitude Planetary Science (GHAPS)

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica

    2017-01-01

    Description of the NASA Gondola for High Altitude Planetary Science (GHAPS) balloon project and its planetary science capabilities provided in a poster or fact sheet format as needed. The ability of GHAPS to provide a re-useable platform to collect planetary information is described.

  2. The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and CO2 Mixing Ratios at a Low-Altitude Mountaintop

    NASA Astrophysics Data System (ADS)

    Lee, Temple R.; De Wekker, Stephan F. J.; Pal, Sandip

    2018-02-01

    Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley-PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009-31 December 2012) of CO and CO2 mixing-ratio measurements and supporting meteorological observations from Pinnacles (38.61°N , 78.35°W , 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional O3 mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and CO2 mixing ratios vary as a function of the daytime maximum valley-PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley-PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.

  3. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  4. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  5. Geochemical response to hydrologic change along land-sea interfaces

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Yu, X.; LeMonte, J. J.; Sparks, D. L.; Kim, K. H.; Heiss, J.; Ullman, W. J.; Guimond, J. A.; Seyfferth, A.

    2016-12-01

    Coastal groundwater-surface water interfaces are hotspots of geochemical activity, where reactants contributed by different sources come in contact. Reactions that occur along these land-sea boundaries have important effects on fluxes and cycling of carbon, nutrients, and contaminants. Hydrologic perturbations can alter interactions by promoting mixing, changing redox state, and altering subsurface residence times during which reactions may occur. We present examples from field and modeling investigations along the Delaware coastline that illustrate the impacts of hydrologic fluctuations on geochemical conditions and fluxes in different coastal environments. Along the highly populated Wilmington coastline, soils are contaminated with heavy metals from legacy industrial practices. We show with continuous redox monitoring and sampling over tidal to seasonal timescales that arsenic is mobilized and immobilized in response to hydrologic change. Along a beach, modeling and long-term monitoring show the influence of tidal to seasonal changes in the mixing zone between discharging fresh groundwater and seawater in the intertidal beach aquifer and associated impacts on biogeochemical reactivity and denitrification. In a saltmarsh, hydrologic changes alter carbon dynamics, with implications for the discharge of dissolved organic carbon to the ocean and export of carbon dioxide and methane to the atmosphere. Understanding the impacts of hydrologic changes on both long and short timescales is essential for improving our ability to predict the global biogeochemical impacts of a changing climate.

  6. Planetary programs

    NASA Technical Reports Server (NTRS)

    Mills, R. A.; Bourke, R. D.

    1985-01-01

    The goals of the NASA planetary exploration program are to understand the origin and evolution of the solar system and the earth, and the extent and nature of near-earth space resources. To accomplish this, a number of missions have been flown to the planets, and more are in active preparation or in the planning stage. This paper describes the current and planned planetary exploration program starting with the spacecraft now in flight (Pioneers and Voyagers), those in preparation for launch this decade (Galileo, Magellan, and Mars Observer), and those recommended by the Solar System Exploration Committee for the future. The latter include a series of modest objective Observer missions, a more ambitious set of Mariner Mark IIs, and the very challenging but scientifically rewarding sample returns.

  7. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  8. The IUGS/IAGC Task Group on Global Geochemical Baselines

    USGS Publications Warehouse

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  9. Stability and self-organization of planetary systems.

    PubMed

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  10. Stability and self-organization of planetary systems

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  11. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  12. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  13. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  14. Detection techniques for tenuous planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.

    1974-01-01

    The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.

  15. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    ERIC Educational Resources Information Center

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  16. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    NASA Astrophysics Data System (ADS)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  17. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  18. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  19. Jovian Planetary Waves

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.

    1997-07-01

    We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are zonally-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby waves, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the waves driven? How are waves at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby waves. We are in the process of correlating wave detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby waves propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.

  20. Envisioning a Planetary Spatial Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Laura, J. R.; Fergason, R. L.; Skinner, J.; Gaddis, L.; Hare, T.; Hagerty, J.

    2017-02-01

    We present a vision of a codified Planetary Spatial Data Infrastructure to support vertical and horizontal data integration and reduce the burden of spatial data expertise from the planetary science expert.

  1. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  2. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder

  3. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  4. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  5. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data

    NASA Astrophysics Data System (ADS)

    Hagerty, J. J.

    2017-12-01

    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for

  6. Concerning evaluation of eco-geochemical background in remediation strategy

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  7. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  8. Role of Dissolved Organic Matter and Geochemical Controls on Arsenic Cycling from Sediments to Groundwater along the Meghna River, Bangladesh: Tracking possible links to permeable natural reactive barrier

    NASA Astrophysics Data System (ADS)

    Datta, S.; Berube, M.; Knappett, P.; Kulkarni, H. V.; Vega, M.; Jewell, K.; Myers, K.

    2017-12-01

    Elevated levels of dissolved arsenic (As), iron (Fe) and manganese (Mn) are seen in the shallow groundwaters of southeast Bangladesh on the Ganges Brahmaputra Meghna River delta. This study takes a multi disciplinary approach to understand the extent of the natural reactive barrier (NRB) along the Meghna River and evaluate the role of the NRB in As sequestration and release in groundwater aquifers. Shallow sediment cores, and groundwater and river water samples were collected from the east and west banks of the Meghna. Groundwater and river water samples were tested for FeT, MnT, and AsT concentrations. Fluorescence spectroscopic characterization of groundwater dissolved organic matter (DOM) provided insight into the hydro geochemical reactions active in the groundwater and the hyporheic zones. Eight sediment cores of 1.5 m depth were collected 10 m away from the edge of the river. Vertical solid phase concentration profiles of Fe, Mn and As were measured via 1.2 M HCl digestion which revealed solid phase As accumulation along the riverbanks up to concentrations of 1500 mg/kg As. Microbial interactions with DOM prompts the reduction of Fe3+ to Fe2+, causing As to mobilize into groundwater and humic-like DOM present in the groundwater may catalyze this process. The extent to which microbially mediated release of As occurs is limited by labile dissolved organic carbon (DOC) availability. Aqueous geochemical results showed the highest dissolved As concentrations in shallow wells (<30 m depth), where organic matter was fresh, humic-like, and aromatic. Based on fluorescence characterization, shallow groundwater was found to contain microbial and terrestrial derived DOC, and decomposed, humified and aromatic DOM. Deeper aquifers had a significantly larger microbial OM signature than the shallower aquifers and was less aromatic, decomposed and humified. The results from this study illustrate the potential for humic substances to contribute to As cycling and quantify the

  9. An ecological compass for planetary engineering.

    PubMed

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  10. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.

  11. An Early Prediction of Sunspot Cycle 25

    NASA Astrophysics Data System (ADS)

    Nandy, D.; Bhowmik, P.

    2017-12-01

    The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.

  12. Fourier spectroscopy in planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1975-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, The Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered. The prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  13. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  14. Toward a unifying model for the late Neoproterozoic sulfur cycle

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Gill, B. C.; Ries, J. B.; OBrien, T.; Macdonald, F. A.

    2011-12-01

    The latest Proterozoic has always fascinated Earth historians. Between the long identified enigmas surrounding the sudden appearance of animals and the more recent infatuation with large-sale geochemical anomalies (i.e. the Shuram - Wonaka event), the closing 90 million years of the Proterozoic - the Ediacaran - houses a number of important and unanswered questions. Detailed redox geochemistry and stable isotope reconstructions of stratigraphic units covering this time interval have begun to unravel some of it's mysteries, however much remains to be explained. The sulfur cycle, with it's intimate links to both the marine carbon cycle (through remineralization reactions) and overall oxidant budgets (via seawater sulfate), sits poised to provide a sharp tool to track environmental change. Previous work has recognized this potential, and serves as a point of entrance for our current work. However what is lacking - and the goal of this study - is to place quantitative constraints the geochemical evolution of marine basins through this interval. Here we will present multiple sulfur isotope data from pyrite and sulfates through Ediacaran stratigraphy from the Yukon, Russia and Namibia. To maximize the utility of sulfur isotope studies, we have focused on Ediacaran stratigraphic sections from multiple continents that record both the Shuram anomaly and contain rich fossil records. These sections provide, when interpreted together, a fresh opportunity to revisit the geochemical setting that gave rise to animals. Importantly, the inclusion of multiple sulfur isotope data allows us to place further constraints on the mechanisms underpinning isotopic variability. For instance, when coupled with new experimental data, tighter constraints are provided on how fractionation scales with sulfate concentrations. This may allow for decoupling changes in biological fractionations from modifications to the global sulfur cycle (i.e. changes in seawater sulfate concentrations or the vigor

  15. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  16. A highly dynamical debris disc in an evolved planetary system

    NASA Astrophysics Data System (ADS)

    Manser, Christopher

    2017-08-01

    Our HST/COS survey for the photospheric pollution by planetary debris undisputably demonstrates that at least 25% of white dwarfs host an evolved planetary system. The debris discs holding the material that accretes onto the white dwarf are produced by the tidal disruption of asteroids, and are observed in nearly 40 systems by infrared excess emission from micron-sized dust. In a small number of cases, we have also detected double-peaked Ca II 860 nm emission lines from a metal-rich gaseous disc in addition to photospheric pollution and circumstellar dust. Our ground-based monitoring of the brightest of these systems, SDSS J1228+1040, over the last eleven years shows a dramatic morphological change in the emission line profiles on the time-scale of years. The evolution of the line profiles is consistent with the precession of an eccentric disc on a period of 25 years, indicating a recent dynamical interaction within the underlying dust disc. This could either be related to the initial circularisation of the disc, or a secondary impact onto an existing disc. We expect that the accretion rate onto the white dwarf varies on the same timescale as the Ca II emission lines, and there is the tantalising possibility to detect changes in the bulk abundances, if the impact of a planetesimal with a different bulk abundance stirred up the disc. We request a small amount of COS time to monitor the debris abundances over the next three HST Cycles to test this hypothesis, and bolster our understanding of the late evolution of planetary systems.

  17. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    USGS Publications Warehouse

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (<0.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, geochemical signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the <0.063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The geochemical property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow

  18. Confronting unknown planetary boundary threats from chemical pollution.

    PubMed

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  19. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Planetary quarantine strategies for advanced spacecraft consider effects of satellite encounter, Jupiter atmosphere entry, space radiation, and cleaning and decontamination techniques on microbiological growth probability. Analytical restructuring is developed for microbial burden prediction and planetary contamination.

  20. In-situ Density and Thermal Expansion Measurements of Fe and Fe-S Alloying Liquids Under Planetary Core Conditions

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Chantel, J.; Yu, T.; Sakamaki, T.; Wang, Y.

    2015-12-01

    Liquid iron is likely the dominant constituent in the cores of terrestrial planets and icy satellites such as Earth, Mars, Mercury, the Moon, Ganymede, and Io. Suggested by geophysical and geochemical observations, light elements such as S, C, Si, etc., are likely present in planetary cores. These light elements can significantly reduce the density and melting temperature of the Fe cores, and hence their abundances are crucial to our understanding of the structure and thermal history of planetary cores, as well as the generation of intrinsic magnetic fields. Knowledge on the density of Fe-light element alloying liquids at high pressures is critical to place constraints on the composition of planetary cores. However, density data on liquid Fe-light element alloys at core pressures are very limited in pressure and composition and are sometimes controversial. In this study, we extend the density dataset for Fe-rich liquids by measuring the density of Fe, Fe-10wt%S, Fe-20wt%S, Fe-27wt%S, and FeS liquids using the X-ray absorption technique in a DIA-type multianvil apparatus up to 7 GPa and 2173 K. An ion chamber (1D-detector) and a CCD camera (2D-detector) were used to measure intensities of transmitted monochromatic X-rays through molten samples, with the photon energy optimized at 40 keV. The densities were then determined from the Beer-Lambert law using the mass absorption coefficients, calibrated by solid standards using X-ray diffraction. At each pressure, density measurements were conducted at a range of temperatures above the liquidus of the samples, enabling the determination of thermal expansion. Combined with our previous results on the sound velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), these data provide tight constraints on the equation of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-S liquids. We will discuss these results with implications to planetary

  1. Foundations of planetary quarantine.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  2. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  3. Non-planetary Science from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  4. Planetary System Physics

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2002-01-01

    Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.

  5. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  6. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.

  7. Lessons learned from planetary science archiving

    NASA Astrophysics Data System (ADS)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  8. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  9. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  10. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  11. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  12. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  13. The survival of geochemical mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Albarede, F.

    2004-12-01

    The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km

  14. The History of Planetary Exploration Using Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  15. Comment on "The Predicted Size of Cycle 23 Based on the Inferred three-cycle Quasiperiodicity of the Planetary Index Ap"

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    1999-01-01

    Recently, Ahluwalia reviewed the solar and geomagnetic data for the last 6 decades and remarked that these data "indicate the existence of a three-solar-activity-cycle quasiperiodicity in them." Furthermore, on the basis of this inferred quasiperiodicity, he asserted that cycle 23 represents the initial cycle in a new three-cycle string, implying that it "will be more modest (a la cycle 17) with an annual mean sunspot number count of 119.3 +/- 30 at the maximum", a prediction that is considerably below the consensus prediction of 160 +/- 30 by Joselin et al. and of similar predictions by others based on a variety of predictive techniques. Several major sticking points of Ahluwalia's presentation, however, must be readdressed, and these issues form the basis of this comment. First, Ahluwalia appears to have based his analysis on a data set of Ap index values that is erroneous. For example, he depicts for the interval of 1932-1997 the variation of the Ap index in terms of annual averages, contrasting them against annual averages of sunspot number (SSN), and he lists for cycles 17-23 the minimum and maximum value of each, as well as the years in which they occur and a quantity which he calls "Amplitude" (defined as the numeric difference between the maximum and minimum values). In particular, he identifies the minimum Ap index (i.e., the minimum value of the Ap index in the vicinity of sunspot cycle minimum, which usually occurs in the year following sunspot minimum and which will be called hereafter, simply, Ap min) and the year in which it occur for cycles 17 - 23 respectively.

  16. Creating a Road Map for Planetary Data Spatial Infrastructure

    NASA Astrophysics Data System (ADS)

    Naß, A.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S.; Mazarico, E.; Patthoff, A.; Radebaugh, J.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.

    2017-09-01

    There currently exists a clear need for long-range planning in regard to planetary spatial data and the development of infrastructure to support its use. Planetary data are the hard-earned fruits of planetary exploration, and the Mapping and Planetary Spatial Infrastructure Team (MAPSIT) mission is to ensure their availability for any conceivable investigation, now or in the future.

  17. Planetary quarantine: Principles, methods, and problems

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1975-01-01

    Requirements for planetary quarantine programs focus on microbial life forms as the primary contamination threat carried by spacecraft to a planet, or back to earth from another planet or outer space. Constraints on planetary flight missions and forthcoming Martian landings are depicted.

  18. Geochemical and isotopic characterization of groundwater origins in a Mediterranean karst system (southern France)

    NASA Astrophysics Data System (ADS)

    Seidel, J. L.; Ladouche, B.; Batiot-Guilhe, C.

    2013-12-01

    Geochemical and isotopic ratio (11B/10B and 87Sr/86Sr) results are reported for better determining the groundwater origins in the Lez Karst system (southern France). The Lez spring is the main perennial outlet of the system and supplies with drinking water the metropolitan area of Montpellier. According to the hydrodynamic conditions, five water-types discharge at the Lez spring with important mineralization fluctuations (Caetano Bicalho et al., 2012). This geochemical response suggests that hydrodynamics targets groundwater circulation, resulting from different water end-member solicitation and mixing. Previous studies using conventional natural tracers do not succeed to identify all the water compartments supporting the flow during the hydrologic cycle (Marjolet & Salado, 1977; Joseph et al., 1988) and to explain the mineralization variation of the Lez spring. The present study combines a basic geochemical survey data with boron and strontium isotope ratio data for a better characterization of the Lez spring geochemical functioning. Groundwater samples were collected at the Lez spring and surrounding springs and wells under different hydrologic conditions from 2009 to 2011. Major, trace and rare earth elements were determined at AETE analytical platform (OREME, Univ. Montpellier 2) by ionic chromatography and Q-ICP-MS respectively. d11B and 87Sr/86Sr were determined at BRGM/MMA Orleans by TIMS. The geochemical survey has been extended at a larger scale by sampling the main geochemical end- members already identified to replace the Lez spring waters in the regional geochemical context. From this geochemical study, valuable informations have been provided on the reservoir types and water origins flowing in high and low stage periods. For the highly mineralized waters occurring in the fall first rainy events or severe low stages, a deep contribution is highlighted but B and Sr isotopic data do not ascertain the two Triassic end-members (halite or gypsum) as possible

  19. Ultraviolet observations of close-binary and pulsating nuclei of planetary nebulae; Winds and shells around low-mass supergiants; The close-binary nucleus of the planetary nebula HFG-1; A search for binary nuclei of planetary nebulae; UV monitoring of irregularly variable planetary nuclei; and The pulsating nucleus of the planetary nebula Lo 4

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1992-01-01

    A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.

  20. Precise Chemical Analyses of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  1. Commentary. H. Harde: "Scrutinizing the carbon cycle and CO2residence time in the atmosphere". Global and Planetary Change 152 (2017), 19-26.

    NASA Astrophysics Data System (ADS)

    Grosjean, Martin; Guiot, Joel; Yu, Zicheng

    2018-05-01

    The publication of the paper by Harde (2017) in Global and Planetary Change has concerned many researchers and experts in the field. We, the authors of this Commentary, all being members of the Editorial Board of Global and Planetary Change share these concerns and see our personal reputations and the reputation of the journal at risk. The acceptance of this paper has exposed potential weaknesses in the implementation of the peer review system, and quality control mechanisms have failed in this particular case.

  2. Interdisciplinary research produces results in understanding planetary dunes

    USGS Publications Warehouse

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  3. Modeling Low-temperature Geochemical Processes

    NASA Astrophysics Data System (ADS)

    Nordstrom, D. K.

    2003-12-01

    Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for

  4. Adjustment of geochemical background by robust multivariate statistics

    USGS Publications Warehouse

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  5. The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.

  6. Planetary Protection Technologies: Technical Challenges for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2005-01-01

    The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

  7. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  8. Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle.

    PubMed

    Van Mooy, B A S; Krupke, A; Dyhrman, S T; Fredricks, H F; Frischkorn, K R; Ossolinski, J E; Repeta, D J; Rouco, M; Seewald, J D; Sylva, S P

    2015-05-15

    Phosphorus in the +5 oxidation state (i.e., phosphate) is the most abundant form of phosphorus in the global ocean. An enigmatic pool of dissolved phosphonate molecules, with phosphorus in the +3 oxidation state, is also ubiquitous; however, cycling of phosphorus between oxidation states has remained poorly constrained. Using simple incubation and chromatography approaches, we measured the rate of the chemical reduction of phosphate to P(III) compounds in the western tropical North Atlantic Ocean. Colonial nitrogen-fixing cyanobacteria in surface waters played a critical role in phosphate reduction, but other classes of plankton, including potentially deep-water archaea, were also involved. These data are consistent with marine geochemical evidence and microbial genomic information, which together suggest the existence of a vast oceanic phosphorus redox cycle. Copyright © 2015, American Association for the Advancement of Science.

  9. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  10. Planetary missions as lab experiments in the introductory classroom

    NASA Astrophysics Data System (ADS)

    Collins, G. C.

    2011-12-01

    As is the case at many liberal arts colleges, at Wheaton we require all of our students to take a class in the natural sciences. Our introductory classes must include some type of experimental or laboratory component that allows students to directly experience the scientific cycle of asking a question, collecting data, and analyzing the data to either answer the question or to ask new ones. We want them to use their creativity and deal with ambiguity, so they can break out of the idea that science is something that is already written down in a book. This can be a challenge in planetary science, which draws on so many different disciplines and has so many targets of interest that one could spend the entire semester on background material without getting to the experiment cycle. For the past several years, I have been developing a structure for integrating experimentation into the introductory planetary science classroom, alongside some of the more traditional background material. We spend the first half of the semester getting used to asking questions about planets, and then finding and using simple types of data that have already been collected by spacecraft to answer those questions. Along the way, we track a current planetary mission to examine the questions it was designed to investigate, and how its instruments work together to address those questions. By the second half of the semester, the students are ready for two more challenging group projects. In the first project, the class (36 students) is divided in half, and each group must write a plan for the first day of operations of a robotic rover. The opposite group then goes out to an undisclosed field location and collects the data according to the first group's operations plan. After the field trips, the groups receive the data back from their rovers, still without knowing exactly where they landed, and have to hold a press conference discussing the important scientific discoveries at their landing site

  11. Airships for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  12. Planetary Geomorphology.

    ERIC Educational Resources Information Center

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  13. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  14. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  15. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  16. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  17. Planetary ecology; Proceedings of the Sixth International Symposium on Environmental Biogeochemistry, Santa Fe, NM, October 10-14, 1983

    NASA Technical Reports Server (NTRS)

    Caldwell, D. E. (Editor); Brierley, J. A. (Editor); Brierley, C. L. (Editor)

    1985-01-01

    Topics presented include biological evolution and planetary chemistry; C-1 compounds; transport, deposition, and weathering; sulfur transformations; ground water; transformation processes for nitrogen oxides; and soils. Papers are presented on immunological studies on the organic matrix of recent and fossil invertebrate shells; biogenic gases in sediments deposited since Miocene times on the Walvis Ridge, South Atlantic Ocean; aspects of the biogeochemistry of Big Soda Lake, NV; mesophilic manganese-oxidizing bacteria from hydrothermal discharge areas at 21 deg North on the East Pacific Rise; and autotrophic growth and iron oxidation and inhibition kinetics of Leptospirillum ferrooxidans. Consideration is also given to thermophilic archaebacteria occurring in submarine hydrothermal areas; fate of sulfate in a soft-water, acidic lake; geochemical conditions in the ground water environment; microbial transformations as sources and sinks for nitrogen oxides; and the biogeochemistry of soil phosphorus.

  18. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  19. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  20. A vigorous activity cycle mimicking a planetary system in HD 200466

    NASA Astrophysics Data System (ADS)

    Carolo, E.; Desidera, S.; Gratton, R.; Martinez Fiorenzano, A. F.; Marzari, F.; Endl, M.; Mesa, D.; Barbieri, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Scuderi, S.

    2014-07-01

    Stellar activity can be a source of radial velocity (RV) noise and can reproduce periodic RV variations similar to those produced by an exoplanet. We present the vigorous activity cycle in the primary of the visual binary HD 200466, a system made of two almost identical solar-type stars with an apparent separation of 4.6 arcsec at a distance of 44 ± 2 pc. High precision RV over more than a decade, adaptive optics (AO) images, and abundances have been obtained for both components. A linear trend in the RV is found for the secondary. We assumed that it is due to the binary orbit and once coupled with the astrometric data, it strongly constrains the orbital solution of the binary at high eccentricities (e ~ 0.85) and quite small periastron of ~21 AU. If this orbital motion is subtracted from the primary radial velocity curve, a highly significant (false alarm probability <0.1%) period of about 1300 d is obtained, suggesting in a first analysis the presence of a giant planet, but it turned out to be due to the stellar activity cycle. Since our spectra do not include the Ca II resonance lines, we measured a chromospheric activity indicator based on the Hα line to study the correlation between activity cycles and long-term activity variations. While the bisector analysis of the line profile does not show a clear indication of activity, the correlation between the Hα line indicator and the RV measurements identify the presence of a strong activity cycle. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the Istituto Nazionale di Astrofisica (INAF) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Tables 5 and 6 are available in electronic form at http://www.aanda.org

  1. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  2. A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey

    USGS Publications Warehouse

    Sutphin, David M.

    2005-01-01

    National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.

  3. Planetary Data Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The community of planetary scientists addresses two general problems regarding planetary science data: (1) important data sets are being permanently lost; and (2) utilization is constrainted by difficulties in locating and accessing science data and supporting information necessary for its use. A means to correct the problems, provide science and functional requirements for a systematic and phased approach, and suggest technologies and standards appropriate to the solution were explored.

  4. Near-equinox spectro-imaging of Uranus aurorae sampling two planetary rotations

    NASA Astrophysics Data System (ADS)

    Lamy, Laurent

    2012-10-01

    A quarter of century after their discovery by Voyager 2 in 1986, HST sucessfully re-detected Uranus aurorae in 2011 {and also in 1998}, providing the first images of these emissions. Overall, they differ from other well-known planetary aurorae, and their characteristics vary at very different timescales, from minutes to decades. These results have provided the first insights on the poorly known Uranian magnetosphere in 26 years, and opened a rich field of investigation, together with a set of open questions. In addition, while solstice conditions prevailed in 1986, Uranus lay close to equinox in 2011, with the S and N magnetic poles alternately facing the Sun every half a rotation. This unique configuration of an asymmetric magnetosphere, extremely variable over a single rotation, had never been investigated before and deserved to be fully analyzed. New observations of the Uranian aurorae are therefore vital for our understanding of planetary magnetospheres, and HST is the only tool able to remotely investigate these emissions. We thus propose to re-observe Uranus with STIS spectro-imaging at next opposition {29 Sept. 2012} over two planetary rotations, in order to enlarge the set of positive detections and to sample the rotational dynamics of auroral processes and magnetosphere/solar wind interaction. To increase the probability of any possible auroral brightening triggered by magnetospheric compressions, observations will be scheduled in advance during active solar wind conditions at Uranus, near the maximum of solar cycle 24. Additional objectives will include the characterization of the extended neutral corona and the spectral response of atmospheric species.

  5. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  6. Effects of orography on planetary scale flow

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.

  7. Mineralogical and Geochemical Analysis of Howardite DaG 779: understanding geological evolution of asteroid (4) Vesta

    NASA Astrophysics Data System (ADS)

    Marcel Müller, Christian; Mengel, Kurt; Singh Thangjam, Guneshwar; Weckwerth, Gerd

    2016-04-01

    metasomatic reactions were observed between clinopyroxene (pigeonite) and a sulphide-bearing agent, according to the principal reaction Pigeonite (Fe-rich) + S2 ↔ FeS + Augit (Mg-rich) + SiO2. This type of metasomatism (Zhang et al. (2013)) is not well understood yet. References: Grossman, J. N. (2000): The Meteoritical Bulletin, No. 84, 2000 August. Meteoritics & Planetary Science, 35: A119-A225. doi: 10.1111/j.1945-5100.2000.tb01797.x. Toplis, M.J. et al. (2013): Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48: 2300-2315. doi: 10.1111/maps.12195. Zhang, A. et al. (2013): Record of S-rich vapors on asteroid 4 Vesta: Sulfurization in the Northwest Africa 2339 eucrite. Geochim. Cosmochim. Acta 109, 1-13. Mittlefehldt, D.W., (2015): Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie Erde-Geochem. 75, 2, 155-183. Prettyman, T.H. et al. (2013): Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science 48:2211-2236.

  8. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  9. A new catalog of planetary maps

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Inge, J. L.

    1991-01-01

    A single, concise reference to all existing planetary maps, including lunar ones, is being prepared that will allow map users to identify and locate maps of their areas of interest. This will be the first such comprehensive listing of planetary maps. Although the USGS shows index maps on the collar of each map sheet, periodically publishes index maps of Mars, and provides informal listings of the USGS map database, no tabulation exists that identifies all planetary maps, including those published by DMA and other organizations. The catalog will consist of a booklet containing small-scale image maps with superimposed quadrangle boundaries and map data tabulations.

  10. Blue Marble Matches: Using Earth for Planetary Comparisons

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  11. Evaluating the role of sulfur and hyporheic exchange in biogeochemical cycling in riparian wetlands

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; O'Hara, P. A.; Santelli, C. M.; Rosenfeld, C.; Yourd, A.

    2017-12-01

    Although the mixing of surface water and groundwater is well-recognized to support hotspots of redox activities such as denitrification, few hyporheic zone studies have examined sulfur reactions. Because sulfate concentrations in wetlands, lake beds, and stream beds are low compared to in marine settings, the hierarchical redox tower dictates that sulfate reduction should play a substantially lesser role in biogeochemical cycling than nitrate or iron reduction when these sediments become anoxic. However, recent experiments challenge the classically held redox sequence by revealing "cryptic" sulfur cycling that can support unexpectedly high sulfate reduction rates and could be driving iron and carbon cycling through coupled reactions. Sulfur biogeochemical processes remain poorly understood in field settings, where little is known about the impact of hydrologic fluxes. Our study examines how hyporheic flux can "kick" forward cryptic sulfur cycling and related iron and carbon reactions by perturbing geochemical gradients to which microbial communities respond. We evaluate field-scale cycling of iron, sulfur, and carbon through a combination of hydrologic monitoring, microbial and geochemical analyses, and reactive-transport modeling at a riparian wetland site in northeastern Minnesota that is impacted by mining practices. In particular, we assess how varying fluxes between high sulfate concentration surface water and lower sulfate concentration groundwater over a season could be (1) facilitating intensified sulfur cycling coupled to abiotic iron reduction and (2) altering methane release possibly through anaerobic methane oxidation. Our findings can help clarify the importance of sulfur in non-marine biogeochemical cycling and provide better understanding of how anthropogenic activities can impact critical freshwater systems.

  12. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    USGS Publications Warehouse

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  13. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  14. Mercury's Geochemical Terranes Revisited

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Stockstill-Cahill, K. R.

    2018-05-01

    We applied analytical tools to redefine Mercury's major geochemical terranes. The composition and petrology of each terrane will be discussed, along with analyses of gamma-ray data aimed at deriving absolute abundances of Si and Mg in each terrane.

  15. Special Software for Planetary Image Processing and Research

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.

    2016-06-01

    The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).

  16. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  17. Planetary Photojournal Home Page Graphic

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  18. Plastic deformation of FeSi at high pressures: implications for planetary cores

    NASA Astrophysics Data System (ADS)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  19. Analysis of mineral matrices of planetary soil analogues from the Utah Desert

    NASA Astrophysics Data System (ADS)

    Kotler, J. M.; Quinn, R. C.; Foing, B. H.; Martins, Z.; Ehrenfreund, P.

    2011-07-01

    Phyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth-Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illite-smectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at ˜17 Å. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier-Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships

  20. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  1. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  2. Experimental study of planetary gases with applications to planetary interior models

    NASA Technical Reports Server (NTRS)

    Bell, Peter M.; Mao, Ho-Kwang

    1988-01-01

    High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.

  3. Revised planetary protection policy for solar system exploration.

    PubMed

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  4. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  5. Physical studies of the planetary rings

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1980-01-01

    In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modeling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.

  6. New Design and Improvement of Planetary Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  7. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.

  8. Engaging Audiences in Planetary Science Through Visualizations

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  9. Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Donges, Jonathan F.; Lucht, Wolfgang

    2016-10-01

    The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.

  10. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  11. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  12. An Introduction to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nishiyama, Jason J.

    2018-05-01

    In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.

  13. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  14. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  15. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  16. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR): Variability and Correlation in Biomarker and Mineralogy Measurements from Icelandic Mars Analogues

    NASA Technical Reports Server (NTRS)

    Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; hide

    2018-01-01

    In situ exploration of planetary environments allows biochemical analysis of sub-centimeter-scale samples; however, landing sites are selected a priori based on measurable meter- to kilometer-scale geological features. Optimizing life detection mission science return requires both understanding the expected biomarker distributions across sample sites at different scales and efficiently using first-stage in situ geochemical instruments to justify later-stage biological or chemical analysis. Icelandic volcanic regions have an extensive history as Mars analogue sites due to desiccation, low nutrient availability, and temperature extremes, in addition to the advantages of geological youth and isolation from anthropogenic contamination. Many Icelandic analogue sites are also rugged and remote enough to create the same type of instrumentation and sampling constraints typically faced by robotic exploration.

  17. Disequilibrium in planetary atmospheres and the search for habitability

    NASA Astrophysics Data System (ADS)

    Simoncini, E.

    It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important for its potential role in the detection of life on other suitable planets \\citep{Lovelock_1965,Kleidon_2010,Simoncini_2015}. We developed a methodology to calculate the extent of atmospheric chemical disequilibrium\\citep{Simoncini_2015,Kondepudi_1996}. This tool allows us to understand, on a thermodynamic basis, how life affected - and still affects - geochemical processes on Earth, and if other planetary atmospheres are habitable or have a disequilibrium similar to the Earth's one. A new computational framework called KROME has been applied to atmospheric models in order to give a correct computation of reactions´ kinetics \\citep{Grassi_2015}. In this work we present a first computation of the extent of disequilibrium for the present Earth atmosphere, considering the specific contribution of the different atmospheric processes, such as thermochemical reactions, eddy diffusion, photochemistry, deposition, and the effect of the biosphere. We then assess the effect of life on atmospheric disequilibrium of the Earth and provide a useful discussion about how the study of atmospheric disequilibrium can help in finding habitable (exo)planets. We finally compare the chemical disequilibrium of Earth and Mars atmospheres, for present and early conditions.

  18. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  19. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  20. Meteoritics and Planetary Science Supplement. Volume 35

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G. (Editor); Binzel, Richard P. (Editor); Gaffey, Michael J. (Editor); Kraehenbuehl, Urs (Editor); Pieters, Carle M. (Editor); Shaw, Denis (Editor); Wieler, Rainer (Editor); Brownlee, Donald E. (Editor); Goldstein, Joseph I. (Editor); Lyon, Ian C. (Editor)

    2000-01-01

    This special supplement of the Meteoritics and Planetary Science Society Journal contains the abstracts of 324 technical presentations, and the presentations of awards during the Annual meeting of the Meteoritical Society. The abstracts review current research on meteors and planetary sciences.

  1. Life Support and Habitation and Planetary Protection Workshop

    NASA Technical Reports Server (NTRS)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  2. The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Perets, Hagai B.; Schubert, Gerald

    2017-06-01

    The New Horizons mission to the Kuiper belt has recently revealed intriguing features on the surface of Charon, including a network of chasmata, cutting across or around a series of high topography features, conjoining to form a belt. It is proposed that this tectonic belt is a consequence of contraction/expansion episodes in the moon's evolution associated particularly with compaction, differentiation and geochemical reactions of the interior. The proposed scenario involves no need for solidification of a vast subsurface ocean and/or a warm initial state. This scenario is based on a new, detailed thermo-physical evolution model of Charon that includes multiple processes. According to the model, Charon experiences two contraction/expansion episodes in its history that may provide the proper environment for the formation of the tectonic belt. This outcome remains qualitatively the same, for several different initial conditions and parameter variations. The precise orientation of Charon's tectonic belt, and the cryovolcanic features observed south of the tectonic belt may have involved a planetary-scale impact, that occurred only after the belt had already formed.

  3. A geochemical examination of humidity cell tests

    USGS Publications Warehouse

    Maest, Ann; Nordstrom, D. Kirk

    2017-01-01

    Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use

  4. Path planning for planetary rover using extended elevation map

    NASA Technical Reports Server (NTRS)

    Nakatani, Ichiro; Kubota, Takashi; Yoshimitsu, Tetsuo

    1994-01-01

    This paper describes a path planning method for planetary rovers to search for paths on planetary surfaces. The planetary rover is required to travel safely over a long distance for many days over unfamiliar terrain. Hence it is very important how planetary rovers process sensory information in order to understand the planetary environment and to make decisions based on that information. As a new data structure for informational mapping, an extended elevation map (EEM) has been introduced, which includes the effect of the size of the rover. The proposed path planning can be conducted in such a way as if the rover were a point while the size of the rover is automatically taken into account. The validity of the proposed methods is verified by computer simulations.

  5. Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.

    2002-12-01

    Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data

  6. Planetary Science with Balloon-Borne Telescopes

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  7. Comparative Planetary Mineralogy: Co, Ni Systematics in Chromite from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Shearer, C. K.; Papike, J. J.; Righter,K.

    2005-01-01

    Spinel is a minor but important phase in planetary basalts because its variable composition often reflects basalt petrogenesis. For example, complicated zoning trends in spinel can give clues to melt evolution [1], and V concentrations in chromite lend insight into magma oxygen fugacity (fO2) conditions [2]. Nickel and Co are two elements that are commonly used as a measure of melt fractionation, and their partitioning between olivine and melt is fairly well understood. Less clear is their partitioning into spinel, although [3] has explored Ni and Co systematics in experimental charges. This study documents Ni and Co behavior in early crystallizing spinel (chromite) from several planetary basalts in an attempt to compare our results with [3], and also gain insight into basalt evolution on the three planets.

  8. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  9. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  10. Curie-Montgolfiere Planetary Explorers

    NASA Astrophysics Data System (ADS)

    Taylor, Chris Y.; Hansen, Jeremiah

    2007-01-01

    Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.

  11. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  12. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1993-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  13. Post Viking planetary protection requirements study

    NASA Technical Reports Server (NTRS)

    Wolfson, R. P.

    1977-01-01

    Past planetary quarantine requirements were reviewed in the light of present Viking data to determine the steps necessary to prevent contamination of the Martian surface on future missions. The currently used term planetary protection reflects a broader scope of understanding of the problems involved. Various methods of preventing contamination are discussed in relation to proposed projects, specifically the 1984 Rover Mission.

  14. Lunar and Planetary Science XXXV: Education

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Education" includes the following topics: 1) Convection, Magnetism, Orbital Resonances, Impacts, and Volcanism: Energies and Processes in the Solar System: Didactic Activities; 2) Knowledge Management in Aerospace-Education and Training Issues; 3) Creating Easy-to-Understand Planetary Maps; 4) Planetary Environment comparison in the Education of Astrobiology; and 5) Design and Construction of a Mechanism for the Orbital Resonances Simulation.

  15. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  16. The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.

  17. Galactic planetary science.

    PubMed

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  18. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  19. An online planetary exploration tool: ;Country Movers;

    NASA Astrophysics Data System (ADS)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  20. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  1. Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.

    2013-07-01

    MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the

  2. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  3. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  4. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  5. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed methodologies and procedures for the reduction of microbial burden on an assembled spacecraft at the time of encapsulation or terminal sterilization are reported. This technology is required for reducing excessive microbial burden on spacecraft components for the purposes of either decreasing planetary contamination probabilities for an orbiter or minimizing the duration of a sterilization process for a lander.

  6. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The overall objective is to identify those areas of future missions which will be impacted by planetary quarantine (PQ) constraints. The objective of the phase being described was to develop an approach for using decision theory in performing a PQ analysis for a Mariner Jupiter Uranus Mission and to compare it with the traditional approach used for other missions.

  7. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  8. Viking planetary quarantine procedures and implementation

    NASA Technical Reports Server (NTRS)

    Howell, R.

    1974-01-01

    Some of the techniques and methodology that were used on Viking to implement planetary quarantine requirements are reported. Special attention was given to techniques and approaches used to implement sterilization of the Viking probe. Quarantine procedures for unmanned planetary missions and procedures for microbiological contamination of space hardware are included. A probability of contamination of the biological instruments onboard by terrestrial organisms was examined.

  9. Modeling low-temperature geochemical processes: Chapter 2

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Campbell, Kate M.

    2014-01-01

    This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.

  10. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  11. The role of small missions in planetary and lunar exploration

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  12. The Anthropocene: A Planetary Perspective

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  13. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    NASA Astrophysics Data System (ADS)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  14. Planetary protection policy (U.S.A.)

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    Through existing treaty obligations of the United States, NASA is committed to exploring space while avoiding biological contamination of the planets, and to the protection of the earth against harm from materials returned from space. Because of the similarities between Mars and earth, plans for the exploration of Mars evoke discussions of these Planetary Protection issues. U.S. Planetary Protection Policy will be focused on the preservation of these goals in an arena that will change with the growth of scientific knowledge about the Martian environment. Early opportunities to gain the appropriate data will be used to guide later policy implementation. Because human presence on Mars will result in the end of earth's separation from the Martian environment, it is expected that precursor robotic missions will address critical planetary protection concerns before humans arrive.

  15. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  16. A Science Rationale for Mobility in Planetary Environments

    NASA Technical Reports Server (NTRS)

    1999-01-01

    For the last several decades, the Committee on Planetary and Lunar Exploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan2 and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap,3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4-5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: (1) What are the practical methods for achieving mobility? (2) For surface missions, what are the associated needs for sample acquisition? (3) What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? (4) What terrestrial field demonstrations are required prior to spaceflight missions?

  17. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  18. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  19. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  20. Preface: New challenges for planetary protection

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard

    2016-05-01

    Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.

  1. Contemporary Planetary Science.

    ERIC Educational Resources Information Center

    Belton, Michael J. S.; Levy, Eugene H.

    1982-01-01

    Presents an overview of planetary science and the United States program for exploration of the planets, examining the program's scientific objectives, its current activities, and the diversity of its methods. Also discusses the program's lack of continuity, especially in personnel. (Author/JN)

  2. Federal Funding and Planetary Astronomy, 1950-75: A Case Study.

    ERIC Educational Resources Information Center

    Tatarewicz, Joseph N.

    1986-01-01

    Discusses the role and resources of planetary astronomy in planetary exploration. Identifies the categories of support made available by the National Aeronautics and Space Administration and reviews the impacts of these findings on planetary researches. Analyzes the publishing habits of American astronomers. (ML)

  3. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  4. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  5. The biogeochemistry of metal cycling

    NASA Technical Reports Server (NTRS)

    Nealson, Kenneth H. (Editor); Nealson, Molly (Editor); Dutcher, F. Ronald (Editor)

    1990-01-01

    The results of the Planetary Biology and Microbial Ecology's summer 1987 program are summarized. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The 1987 program examined various aspects of the biogeochemistry of metal cycling, and included such areas as limnology, metal chemistry, metal geochemistry, microbial ecology, and interactions with metals. A particular area of focus was the use of remote sensing in the study of biogeochemistry. Abstracts and bibliographies of the lectures and reports of the laboratory projects are presented.

  6. Global water cycle and the coevolution of the Earth's interior and surface environment.

    PubMed

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14  g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  7. Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.

    1993-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have

  8. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  9. Galactic planetary science

    PubMed Central

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets—mainly radial velocity and transit—or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even ‘just’ in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current ‘understanding’. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy. PMID:24664916

  10. Lay and Expert Perceptions of Planetary Protection

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  11. Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1975-01-01

    Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.

  12. Standards-Based Open-Source Planetary Map Server: Lunaserv

    NASA Astrophysics Data System (ADS)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.

    2018-04-01

    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  13. ESA Planetary Science Archive Architecture and Data Management

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Barbarisi, I.; Besse, S.; Barthelemy, M.; de Marchi, G.; Docasal, R.; Fraga, D.; Grotheer, E.; Heather, D.; Laantee, C.; Lim, T.; Macfarlane, A.; Martinez, S.; Montero, A.; Osinde, J.; Rios, C.; Saiz, J.; Vallat, C.

    2018-04-01

    The Planetary Science Archive is the European Space Agency repository of science data from all planetary science and exploration missions. This paper presents PSA's content, architecture, user interfaces, and the relation between the PSA and IPDA.

  14. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  15. Reports of planetary geology program, 1977-1978

    NASA Technical Reports Server (NTRS)

    Strom, R. (Compiler); Boyce, J. (Compiler); Boss, A. P.; Peale, S. J.; Alfven, H.; Cameron, A. G. W.; Sonett, C. P.; Shoemaker, E. M.; Helin, E. F.; Carusi, A.

    1978-01-01

    A compilation of abstracts of reports which summarizes work conducted by Planetary Geology Principal Investigators and their associates is presented. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at the Universtiy of Arizona, Tucson, Arizona, May 31, June 1 and 2, 1978.

  16. Study on Cracking Mechanism of Hardened Planetary frame

    NASA Astrophysics Data System (ADS)

    Li, Xinghui

    2017-09-01

    Planetary carrier made by 45 steel appear quenching crack, which is analyzed in chemical composition, hardness test and metallographic microscopic structure. The reasons of quenching crack of planetary gear include the unreasonable structure of the planetary carrier, thinner annular wall on the base of the upper part, and in dangerous area of the 45 steel in the process of quenching. The faster cooling rate of quenching results in a centripetal stress with the thick-wall part, which is greater than the ultimate bearing capacity of the material.

  17. Planetary Cartography - Activities and Current Challenges

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  18. Planetary Exploration in the Classroom

    NASA Astrophysics Data System (ADS)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  19. Honey I Shrunk the Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist conception compares the KOI-961 planetary system to Jupiter and the largest four of its many moons. The KOI-961 planetary system hosts the three smallest planets known to orbit a star beyond our sun.

  20. A combined geodynamical-geochemical modelling approach to investigating the Lu-Hf isotopic evolution of the terrestrial mantle and crust

    NASA Astrophysics Data System (ADS)

    Jones, R.; Van Keken, P. E.; Hauri, E.; Vervoort, J. D.; Ballentine, C. J.

    2017-12-01

    values into the HIMU region of the terrestrial array. We go on to use this geodynamic-geochemical model to investigate different models of continental growth, by observing the effects on the coupled crustal-mantle reservoirs. Brandenburg, J.P., Hauri, E.H., van Keken, P.E., Ballentine, C.J., 2008. Earth and Planetary Science Letters 276, 1-13.

  1. Geochemical and mineralogical methods of prospecting for mineral deposits

    USGS Publications Warehouse

    Fersman, A. Ye; Borovik, S. A.; Gorshkov, G.V.; Popov, S.D.; Sosedko, A.F.; Hartsock, Lydia; Pierce, A.P.

    1952-01-01

    Fersman's book "Geochemical and mineralogical methods of prospecting for mineral deposits" (Geokhimicheskiye i mineralogicheskiye metody poiskov poleznykh iskopayemykh) covers all petrographic, mineralogical, and geochemical techniques that are used either directly or indirectly in mineral exploration. Chapter IV is of particular interest because it describes certain geochemical methods and principles that have not been widely applied outside of the Soviet Union. The original contained a number of photographs that have been omitted; the titles of the photographs are given in the body of the text. Wherever possible, bibliographic references have been checked, and the full titles given. References given in footnotes in the original have been collected and added at the end of each section as a bibliography.

  2. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  3. A mineralogical instrument for planetary applications

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Vaniman, David T.; Bish, David L.

    1994-01-01

    The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies.

  4. Planetary quarantine: Principles, methods, and problems.

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1971-01-01

    Microbial survival in deep space environment, contamination of planets by nonsterile flight hardware, and hazards of back contamination are among the topics covered in papers concerned with the analytical basis for planetary quarantine. The development of the technology and policies of planetary quarantine is covered in contributions on microbiologic assay and sterilization of space flight hardware and control of microbial contamination. A comprehensive subject index is included. Individual items are abstracted in this issue.

  5. Planetary Data Systems (PDS) Imaging Node Atlas II

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  6. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.

  7. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  8. Visualization of Kepler's Laws of Planetary Motion

    ERIC Educational Resources Information Center

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  9. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  10. Mission-directed path planning for planetary rover exploration

    NASA Astrophysics Data System (ADS)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  11. Planetary atmospheres and aurorae

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Encrenaz, TH.

    1987-01-01

    Observations of planetary atmospheres and auroras obtained by the IUE satellite observatory during the first 10 years of its operation are reviewed. Topics examined include the value of UV studies of atmospheric phenomena, the kinds of observations available prior to the launch of IUE in 1978, the composition and structure of the upper atmospheres below the homopause, the effects of the magnetosphere on the atmosphere above the homopause, excitation processes, and fundamental questions and scientific goals. Data on Jupiter, Saturn, Neptune and Uranus, and the Io plasma torus are presented in tables and graphs and briefly characterized. It is pointed out that the IUE has greatly advanced knowledge of the plantary atmospheres, despite the fact that its design was not optimized for planetary observations.

  12. Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): Interpretation of flow and recharge using multiple geochemical parameters

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.

    2011-01-01

    The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.

  13. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE

    EPA Science Inventory

    The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...

  14. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    PubMed Central

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  15. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  16. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  17. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  18. Effects of Planetary Gear Ratio on Mean Service Life

    NASA Technical Reports Server (NTRS)

    Savage, M.; Rubadeux, K. L.; Coe, H. H.

    1996-01-01

    Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.

  19. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  20. Principles of landscape-geochemical studies in the zones contaminated by technogenical radionuclides for ecological and geochemical mapping

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2013-04-01

    Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.

  1. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  2. NASA Regional Planetary Image Facility

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    2001-01-01

    The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.

  3. Interoperability in the Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  4. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  5. Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Morrison, David (Technical Monitor)

    1994-01-01

    The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  6. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  7. Volcanic Metal Emissions and Implications for Geochemical Cycling and Mineralization

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Mather, T. A.

    2016-12-01

    Volcanoes emit substantial fluxes of metals to the atmosphere in volcanic gas plumes in the form of aerosol, adsorbed onto silicate particles and even in some cases as gases.. A huge database of metal emissions has been built over the preceding decades, which shows that volcanoes emit highly volatile metals into the atmosphere, such as As, Bi, Cd, Hg, Re, Se, Tl, among others. Understanding the cycling of metals through the Solid Earth system has importance for tackling a wide range of Earth Science problems, e.g. (1) the environmental impacts of metal emissions; (2) the sulfur and metal emissions of volcanic eruptions; (3) the behavior of metals during subduction and slab devolatilization; (4) the influence of redox on metal behavior in subduction zones; (5) the partitioning of metals between magmatic vapor, brines and melts; and (6) the relationships between volcanism and ore deposit formation. It is clear, when comparing the metal composition and flux in the gases and aerosols emitted from volcanoes, that they vary with tectonic setting. These differences allow insights into how the magmatic vapor was generated and how it interacted with melts and sulfides during magma differentiation and decompression. Hotspot volcanoes (e.g. Kilauea, Hawaii; volcanoes in Iceland) outgas a metal suite that mirrors the sulfide liquid-silicate melt partitioning behaviors reconstructed from experiments (as far as they are known), suggesting that the aqueous fluids (that will later be outgassed from the volcano) receive metals directly from oxidation of sulfide liquids during degassing and ascent of magmas towards the surface. At arc volcanoes, the gaseous fluxes of metals are typically much higher; and there are greater enrichments in elements that partition strongly into vapor or brine from silicate melts such as Cu, Au, Zn, Pb, W. We collate and present data on volcanic metal emissions from volcanoes worldwide and review the implications of the data array for metal cycling

  8. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  9. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  10. Passage of a ''Nemesis''-like object through the planetary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1985-09-01

    The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lackmore » of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.« less

  11. Understanding the Carbon Cycle : A Jigsaw Approach

    NASA Astrophysics Data System (ADS)

    Hastings, D. W.

    2006-12-01

    A thorough understanding of the carbon cycle is fundamental to understanding the eventual fate of CO2. To achieve this, students must understand individual processes, such as photosynthesis and respiration, as well as an integrated knowledge of how these processes relate to each other. In this "jigsaw" exercise, each student is assigned one five fundamental geochemical processes in the short- term carbon cycle to research and fully understand. In class, students first meet with others who have studied the same process to strengthen and deepen their understanding of this process. They then form teams of five students and explain to other students their particular process. In exchange, other students explain the other aspects of the carbon cycle. At the end of class all students will know about each of the five processes, and thus develop an integrated understanding of the entire carbon cycle. This approach is an efficient method for students to learn the material. As in a jigsaw puzzle, each student's part is essential for the full understanding of the carbon cycle. Since each student's part is essential, then each student is essential, which is what makes this strategy effective The jigsaw approach encourages listening, engagement, and collaboration by giving each member of the group an essential part to play in the academic activity.

  12. Planetary protection principles used for Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Martynov, M. B.; Alexashkin, S. N.; Khamidullina, N. M.; Orlov, O. I.; Novikova, N. D.; Deshevaya, E. A.; Trofimov, V. I.

    2011-12-01

    The article presents an analysis of the Phobos-Grunt mission, a classification of its phases in terms of planetary protection, and the main principles of activities management and definition of actions for fulfilling the planetary-protection requirements developed by Committee on Space Research.

  13. Planetary rings - Theory

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  14. Oscillations in land surface hydrological cycle

    NASA Astrophysics Data System (ADS)

    Labat, D.

    2006-02-01

    Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.

  15. The planetary quarantine program: Origins and achievements, 1956 - 1973

    NASA Technical Reports Server (NTRS)

    Phillips, C. R.

    1974-01-01

    United States effort in planetary quarantine is outlined, beginning with the expressions of alarm by biologists, then discussing how a program was put together and implemented, and finally indicating the academic, governmental, institutional, and industrial agencies and people involved. It ends with a brief summary of the accomplishments and present status of the Planetary Quarantine Program and will serve as a partial explanation of how the planetary quarantine effort evolved and reached its present position.

  16. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  17. Infrastructure for Planetary Sciences: Universal planetary database development project

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  18. Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: implications for reach scales and beyond

    USGS Publications Warehouse

    Tobias, Craig; Böhlke, John Karl

    2011-01-01

    Movement of dissolved inorganic carbon (DIC) through the hydrologic cycle is an important component of global carbon budgets, but there is considerable uncertainty about the controls of DIC transmission from landscapes to streams, and through river networks to the oceans. In this study, diel measurements of DIC, d13C-DIC, dissolved oxygen (O2), d18O-O2, alkalinity, pH, and other parameters were used to assess the relative magnitudes of biological and geochemical controls on DIC cycling and flux in a nutrient-rich, net autotrophic stream. Rates of photosynthesis (P), respiration (R), groundwater discharge, air–water exchange of CO2, and carbonate precipitation/dissolution were quantified through a time-stepping chemical/isotope (12C and 13C, 16O and 18O) mass balance model. Groundwater was the major source of DIC to the stream. Primary production and carbonate precipitation were equally important sinks for DIC removed from the water column. The stream was always super-saturated with respect to carbonate minerals, but carbonate precipitation occurred mainly during the day when P increased pH. We estimated more than half (possibly 90%) of the carbonate precipitated during the day was retained in the reach under steady baseflow conditions. The amount of DIC removed from the overlying water through carbonate precipitation was similar to the amount of DIC generated from R. Air–water exchange of CO2 was always from the stream to the atmosphere, but was the smallest component of the DIC budget. Overall, the in-stream DIC reactions reduced the amount of CO2 evasion and the downstream flux of groundwater-derived DIC by about half relative to a hypothetical scenario with groundwater discharge only. Other streams with similar characteristics are widely distributed in the major river basins of North America. Data from USGS water quality monitoring networks from the 1960s to the 1990s indicated that 40% of 652 stream monitoring stations in the contiguous USA were at or above

  19. Global water cycle and the coevolution of the Earth’s interior and surface environment

    PubMed Central

    Planavsky, Noah J.; Evans, David A. D.

    2017-01-01

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416728

  20. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  1. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    NASA Astrophysics Data System (ADS)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  2. Reconfigurable Autonomy for Future Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  3. SPEX: the Spectropolarimeter for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  4. The cosmopolitan contradictions of planetary urbanization.

    PubMed

    Millington, Gareth

    2016-09-01

    This paper explores the empirical, conceptual and theoretical gains that can be made using cosmopolitan social theory to think through the urban transformations that scholars have in recent years termed planetary urbanization. Recognizing the global spread of urbanization makes the need for a cosmopolitan urban sociology more pressing than ever. Here, it is suggested that critical urban sociology can be invigorated by focusing upon the disconnect that Henri Lefebvre posits between the planetarization of the urban - which he views as economically and technologically driven - and his dis-alienated notion of a global urban society. The first aim of this paper is to highlight the benefits of using 'cosmopolitan' social theory to understand Lefebvre's urban problematic (and to establish why this is also a cosmopolitan problematic); the second is to identify the core cosmopolitan contradictions of planetary urbanization, tensions that are both actually existing and reproduced in scholarly accounts. The article begins by examining the challenges presented to urban sociology by planetary urbanization, before considering how cosmopolitan sociological theory helps provide an analytical 'grip' on the deep lying social realities of contemporary urbanization, especially in relation to questions about difference, culture and history. These insights are used to identify three cosmopolitan contradictions that exist within urbanized (and urbanizing) space; tensions that provide a basis for a thoroughgoing cosmopolitan investigation of planetary urbanization. © London School of Economics and Political Science 2016.

  5. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg

    NASA Astrophysics Data System (ADS)

    Fantle, Matthew S.; Higgins, John

    2014-10-01

    The Ca, Mg, O, and C isotopic and trace elemental compositions of marine limestones and dolostones from ODP Site 1196A, which range in depth (∼58 to 627 mbsf) and in depositional age (∼5 and 23 Ma), are presented. The objectives of the study are to explore the potential for non-traditional isotope systems to fingerprint diagenesis, to quantify the extent to which geochemical proxies are altered during diagenesis, and to investigate the importance of diagenesis within the global Ca and Mg geochemical cycles. The data suggest that Ca, which has a relatively high solid to fluid mass ratio, can be isotopically altered during diagenesis. In addition, the alteration of Ca correlates with the alteration of Mg in such a way that both can serve as useful tools for deciphering diagenesis in ancient rocks. Bulk carbonate δ44Ca values vary between 0.60 and 1.31‰ (SRM-915a scale); the average limestone δ44Ca is 0.97 ± 0.24‰ (1SD), identical within error to the average dolostone (1.03 ± 0.15 1SD ‰). Magnesium isotopic compositions (δ26Mg, DSM-3 scale) range between -2.59‰ and -3.91‰, and limestones (-3.60 ± 0.25‰) and dolostones (-2.68 ± 0.07‰) are isotopically distinct. Carbon isotopic compositions (δ13C, PDB scale) vary between 0.86‰ and 2.47‰, with average limestone (1.96 ± 0.31‰) marginally offset relative to average dolostone (1.68 ± 0.57‰). The oxygen isotopic compositions (δ18O, PDB scale) of limestones (-1.22 ± 0.94‰) are substantially lower than the dolostones measured (2.72 ± 1.07‰). The isotopic data from 1196A suggest distinct and coherent trends in isotopic and elemental compositions that are interpreted in terms of diagenetic trajectories. Numerical modeling supports the contention that such trends can be interpreted as diagenetic, and suggests that the appropriate distribution coefficient (KMg) associated with limestone diagenesis is ∼1 to 5 × 10-3, distinctly lower than those values (>0.015) reported in laboratory

  6. Geochemistry of Upper Cretaceous non-marine - marine cycles (Gosau Group, Austria)

    NASA Astrophysics Data System (ADS)

    Hofer, G.; Wagreich, M.; Draganits, E.; Neuhuber, S.; Grundtner, M. L.; Bottig, M.

    2012-04-01

    Early Campanian non-marine - marine cycles of the Grünbach Formation (Gosau Group, Northern Calcareous Alps, Austria) within the Grünbach Syncline have been investigated geochemically. The succession of the Grünbach Formation comprises clay, marl, siltstone, sandstone as well as rare conglomerate and coal deposited in a marginal marine to terrestrial environment. We sampled a 45 m section of an artificial trench at Maiersdorf, Lower Austria. Additionally, cored sections of equivalent boreholes of the Glinzendorf and Gießhübl Syncline and Slovakia have been investigated for their stable isotopic composition. Based on geochemical proxies (whole rock geochemistry and bulk carbon and oxygen isotopy) as well as microfossil data, five marine to non-marine cycles are reconstructed for the profile of the Grünbach Formation. Marine intervals were identified basically by the presence of nannofossils and by higher mean δ13C ratios (-4.5 ‰ VPDB), boron contents (165.8 ppm) and B/Al* ratios (167.2) compared to non-marine interpreted sections (mean δ13C: -6.3 ‰, B: 139.0 ppm, B/Al*: 149.4). A statistically significant differentiation between marine and non-marine samples is possible using the aluminium-normalized boron ratio and, to a lower degree, the absolute boron values. Generally non-marine samples of the various Gosau synclines have significantly lower mean δ13C values (-5.3 ‰ ) compared to the mean (-1.4 ‰ ) of marine samples. The discrimination between a marine and non-marine group using δ18O is also statistically highly significant. A duration of a few 100 kyrs is estimated for single non-marine - marine cycle of the Grünbach Formation. Both eustatic sea-level changes due to climate cycles and tectonically induced subsidence may have controlled the depositional cyclicity. Low subsidence rates and uniform provenance data argue against a purely tectonic origin of the cycles and are in favor for a mainly climatic control of these transgressive

  7. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  8. Estimation of the geochemical threshold and its statistical significance

    USGS Publications Warehouse

    Miesch, A.T.

    1981-01-01

    A statistic is proposed for estimating the geochemical threshold and its statistical significance, or it may be used to identify a group of extreme values that can be tested for significance by other means. The statistic is the maximum gap between adjacent values in an ordered array after each gap has been adjusted for the expected frequency. The values in the ordered array are geochemical values transformed by either ln(?? - ??) or ln(?? - ??) and then standardized so that the mean is zero and the variance is unity. The expected frequency is taken from a fitted normal curve with unit area. The midpoint of an adjusted gap that exceeds the corresponding critical value may be taken as an estimate of the geochemical threshold, and the associated probability indicates the likelihood that the threshold separates two geochemical populations. The adjusted gap test may fail to identify threshold values if the variation tends to be continuous from background values to the higher values that reflect mineralized ground. However, the test will serve to identify other anomalies that may be too subtle to have been noted by other means. ?? 1981.

  9. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  10. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  11. Northeast Regional Planetary Data Center

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Saunders, Stephen (Technical Monitor)

    2005-01-01

    In 1980, the Northeast Planetary Data Center (NEPDC) was established with Tim Mutch as its Director. The Center was originally located in the Sciences Library due to space limitations but moved to the Lincoln Field Building in 1983 where it could serve the Planetary Group and outside visitors more effectively. In 1984 Dr. Peter Schultz moved to Brown University and became its Director after serving in a similar capacity at the Lunar and Planetary Institute since 1976. Debbie Glavin has served as the Data Center Coordinator since 1982. Initially the NEPDC was build around Tim Mutch's research collection of Lunar Orbiter and Mariner 9 images with only partial sets of Apollo and Viking materials. Its collection was broadened and deepened as the Director (PHS) searched for materials to fill in gaps. Two important acquisitions included the transfer of a Viking collection from a previous PI in Tucson and the donation of surplused lunar materials (Apollo) from the USGS/Menlo Park prior to its building being torn down. Later additions included the pipeline of distributed materials such as the Viking photomosaic series and certain Magellan products. Not all materials sent to Brown, however, found their way to the Data Center, e.g., Voyager prints and negatives. In addition to the NEPDC, the planetary research collection is separately maintained in conjunction with past and ongoing mission activities. These materials (e.g., Viking, Magellan, Galileo, MGS mission products) are housed elsewhere and maintained independently from the NEPDC. They are unavailable to other researchers, educators, and general public. Consequently, the NEPDC represents the only generally accessible reference collection for use by researchers, students, faculty, educators, and general public in the Northeast corridor.

  12. Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective

    NASA Astrophysics Data System (ADS)

    Halsey, David G.; Fox, David A.

    2006-01-01

    Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s

  13. United States and Western Europe cooperation in planetary exploration

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Hunten, Donald M.; Masursky, Harold; Scarf, Frederick L.; Solomon, Sean C.; Wilkening, Laurel L.; Fechtig, Hugo; Balsiger, Hans; Blamont, Jacques; Fulchignoni, Marcello

    1989-01-01

    A framework was sought for U.S.-European cooperation in planetary exploration. Specific issues addressed include: types and levels of possible cooperative activities in the planetary sciences; specific or general scientific areas that seem most promising as the main focus of cooperative efforts; potential mission candidates for cooperative ventures; identification of special issues or problems for resolution by negotiation between the agencies, and possible suggestions for their resolutions; and identification of coordinated technological and instrumental developments for planetary missions.

  14. Spatial studies of planetary nebulae with IRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, G.W.; Zuckerman, B.

    1991-06-01

    The infrared sizes at the four IRAS wavelengths of 57 planetaries, most with 20-60 arcsec optical size, are derived from spatial deconvolution of one-dimensional survey mode scans. Survey observations from multiple detectors and hours confirmed (HCON) observations are combined to increase the sampling to a rate that is sufficient for successful deconvolution. The Richardson-Lucy deconvolution algorithm is used to obtain an increase in resolution of a factor of about 2 or 3 from the normal IRAS detector sizes of 45, 45, 90, and 180 arcsec at wavelengths 12, 25, 60, and 100 microns. Most of the planetaries deconvolve at 12more » and 25 microns to sizes equal to or smaller than the optical size. Some of the planetaries with optical rings 60 arcsec or more in diameter show double-peaked IRAS profiles. Many, such as NGC 6720 and NGC 6543 show all infrared sizes equal to the optical size, while others indicate increasing infrared size with wavelength. Deconvolved IRAS profiles are presented for the 57 planetaries at nearly all wavelengths where IRAS flux densities are 1-2 Jy or higher. 60 refs.« less

  15. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  16. Terrain Model Registration for Single Cycle Instrument Placement

    NASA Technical Reports Server (NTRS)

    Deans, Matthew; Kunz, Clay; Sargent, Randy; Pedersen, Liam

    2003-01-01

    This paper presents an efficient and robust method for registration of terrain models created using stereo vision on a planetary rover. Our approach projects two surface models into a virtual depth map, rendering the models as they would be seen from a single range sensor. Correspondence is established based on which points project to the same location in the virtual range sensor. A robust norm of the deviations in observed depth is used as the objective function, and the algorithm searches for the rigid transformation which minimizes the norm. An initial coarse search is done using rover pose information from odometry and orientation sensing. A fine search is done using Levenberg-Marquardt. Our method enables a planetary rover to keep track of designated science targets as it moves, and to hand off targets from one set of stereo cameras to another. These capabilities are essential for the rover to autonomously approach a science target and place an instrument in contact in a single command cycle.

  17. Geochemical and Sm-Nd isotope-geochemical patterns of metavolcanic rocks, diabase, and metagabbroids on the northeastern flank of the South Mongolian-Khingan orogenic belt

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.

    2017-05-01

    The first results of geochemical and Sm-Nd isotope-geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian-Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin "block" of the South Mongolian-Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.

  18. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  19. Leveling data in geochemical mapping: scope of application, pros and cons of existing methods

    NASA Astrophysics Data System (ADS)

    Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe

    2017-04-01

    Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.

  20. Planetary Nomenclature: An Overview and Update for 2017

    NASA Astrophysics Data System (ADS)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  1. Exploring Planetary Analogs With an Ultracompact Near-Infrared Reflectance Instrument

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Wang, A.

    2017-12-01

    Orbital reflectance spectrometers provide unique measurements of mineralogical features globally and repeatedly on planets and moons of our solar system. Mounted on landed spacecraft, reflectance sensors enable fine-scale investigations and can provide ground truth analyses to assess the validity of spectral remote sensing. We have developed a miniaturized, field-ready, active source NIR (1.14-4.76 μm) reflectance spectrometer (WIR) WIR enables in-situ, near real-time identification of water (structural or adsorbed), carbonates, sulfates, hydrated silicates, as well as C-H & N-H bonds in organic species. WIR is suited for lander/rover deployment in two modes: 1) In Traverse Survey Mode WIR is integrated into a rover wheel and performs nonstop synchronized data collection with every revolution of the wheel; large amounts of data points can be collected during a rover traverse that inform the spatial distribution of mineral phases; 2) In Point-Check Mode WIR is mounted on a robotic arm of a rover/lander and deployed on selected targets at planetary surfaces, or installed inside an analytical lab where samples from a drill/scoop are delivered for detailed analysis. Over the past 10 years we have deployed WIR in planetary analog settings, including hydrothermal springs in Svalbard (Norway) and High Andes (Chile); Arctic volcanoes in Svalbard; Arctic springs and permafrost in Axel Heiberg (Canada); Antarctic ice-covered lakes; saline playas in hyperarid deserts in the Tibetan Plateau (China) and the Atacama; high elevation ore deposits in the Andes and the Abitibi gold belt region (Canada); lava tubes in California; and acidic waters in Rio Tinto (Spain). We have recorded in-situ NIR reflectance spectra from these analogues and used improved spectral unmixing algorithms to determine the mineralogical composition at these sites. We have observed minerals consistent with sedimentary, mineralogical, morphological, and geochemical processes, some of which have been

  2. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Origin of Planetary Systems" included the following reports: (12753) Povenmire - Standard Comparison Small Main Belt Asteroid?; Gravitational Frequencies of Extra-Solar Planets; 'Jumping Jupiters' in Binary Star Systems; Hermes, Asteroid 2002 SY50 and the Northern Cetids - No Link Found!; What Kind of Accretion Model is Required for the Solar System; and Use of an Orbital Phase Curve of Extrasolar Planet for Specification of its Mass.

  3. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  4. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  5. Identifying chemicals that are planetary boundary threats.

    PubMed

    MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

    2014-10-07

    Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects.

  6. On the structure of climate variability near the tropopause and its relationship to equatorial planetary waves

    NASA Astrophysics Data System (ADS)

    Grise, Kevin M.

    The tropopause is an important interface in the climate system, separating the unique dynamical, chemical, and radiative regimes of the troposphere and stratosphere. Previous studies have demonstrated that the long-term mean structure and variability of the tropopause results from a complex interaction of stratospheric and tropospheric processes. This project provides new insight into the processes involved in the global tropopause region through two perspectives: (1) a high vertical resolution climatology of static stability and (2) an observational analysis of equatorial planetary waves. High vertical resolution global positioning system radio occultation profiles are used to document fine-scale features of the global static stability field near the tropopause. Consistent with previous studies, a region of enhanced static stability, known as the tropopause inversion layer (TIL), exists in a narrow layer above the extratropical tropopause and is strongest over polar regions during summer. However, in the tropics, the TIL possesses a unique horizontally and vertically varying structure with maxima located at ˜17 and ˜19 km. The upper feature peaks during boreal winter and has its largest magnitude between 10º and 15º latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The spatial structure of both features resembles the equatorial planetary wave response to the climatological distribution of deep convection. Equatorial planetary waves not only dominate the climatological-mean general circulation near the tropical tropopause but also play an important role in its intraseasonal and interannual variability. The structure of the equatorial planetary waves emerges as the leading pattern of variability of the zonally asymmetric tropical atmospheric circulation. Regressions on an index of the equatorial planetary waves reveal that they are associated with a distinct pattern of equatorially symmetric climate

  7. Image Processing for Planetary Limb/Terminator Extraction

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.

    1995-01-01

    A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.

  8. Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight

    NASA Astrophysics Data System (ADS)

    Akinlua, Akinsehinwa; Torto, Nelson

    2011-09-01

    A geochemical evaluation of Niger Delta organic matter was carried out using supercritical fluid extraction (SFE) sample preparation procedure. Comparison of geochemical significance of gas chromatographic data of rock extracts of SFE with those of Soxhlet extraction method from previous studies was made in order to establish the usefulness of SFE in geochemical exploration. The assessment of geochemical character of the rock samples from the comparison and interpretation of other geochemical parameters were used to give more insights into understanding the source rocks characteristics of onshore and shelf portions of the Niger Delta Basin. The results of the gas chromatographic (GC) analysis of the rock extracts across the lithostratigraphic units show that Pr/Ph, Pr/nC17, Pr/nC18, CPI and odd/even preference ranged from 0.07 to 12.39, 0.04 to 6.66, 0.05 to 13.80, 0.12 to 8.4 and 0.06 to 8.12, respectively. The Rock-Eval pyrolysis data and geochemical ratios and parameters calculated from the GC data showed that most of the samples are mature and have strong terrestrial provenance while a few samples have strong marine provenance. The few marine source rocks are located in the deeper depth horizon. Pr/Ph and standard geochemical plots indicate that most of samples were derived from organic matter deposited in less reducing conditions, i.e. more of oxidizing conditions while a few samples have predominantly influence of reducing conditions. The results of trace metal analysis of older samples from Agbada Formation also indicate marine and mixed organic matter input deposited in less reducing conditions. The results obtained in this study are comparable with those obtained from previous studies when Soxhlet extraction method was used and also indicated the presence of more than one petroleum systems in the Niger Delta.

  9. Community-Based Development of Standards for Geochemical and Geochronological Data

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.

    2007-12-01

    The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.

  10. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Maindl, T. I.; Varvoglis, H.; Dvorak, R.

    2017-03-01

    Along the subject line of this workshop, the common topic of the submissions is the field of extrasolar planetary systems with its multitude of facets ? from orbital dynamics to mutually destructive collisions, from binary star systems to Trojan planets to exocomets, from captured free-floating objects to artificial satellites. Despite the comparatively small number of participants ? ranging from graduate student to senior professor level ? we are proud of the submitted papers covering this wide range of aspects. In order to work towards a consistent quality-level, each of the manuscripts went through an independent review process before being accepted as a paper contribution to this volume. We would like to cordially thank the referees for their timely response-cycles, which helped tremendously in keeping our ambitious schedule.

  11. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  12. Papers presented to the Conference on Origins of Planetary Magnetism. [magnetic properties of meteorites and solar, lunar, and planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Abstracts of 63 papers accepted for publication are presented. Topics cover geomagnetism in the context of planetary magnetism, lunar magnetism, the dynamo theory and nondynamo processes, comparative planetary magnetism (terrestrial and outer planets), meteoritic magnetism, and the early solar magnetic field. Author and subject indexes are provided.

  13. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements

  14. Report of the December 2009 Titan Planetary Protection workshop

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale

    The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are

  15. Chlorination processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.

    1989-01-01

    The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.

  16. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Those areas of future missions which will be impacted by planetary quarantine (PQ) constraints were identified. The specific objectives for this reporting period were (1) to perform an analysis of the effects of PQ on an outer planet atmospheric probe, and (2) to prepare a quantitative illustration of spacecraft microbial reduction resulting from exposure to space environments. The Jupiter Orbiter Probe mission was used as a model for both of these efforts.

  17. Planetary Defense

    DTIC Science & Technology

    2016-05-01

    is very likely that they may develop a solution for planetary defense. 8 United States is leading in space private investments. SpaceX , for...technology, with the ultimate goal of enabling people to live on other planets.5 SpaceX is the only private company ever to return a spacecraft from low...a technically challenging feat previously accomplished only by governments.6 Contracted by NASA and commercial companies, SpaceX already did 50

  18. Remote sensor support requirements for planetary missions

    NASA Technical Reports Server (NTRS)

    Weddell, J. B.; Wheeler, A. E.

    1971-01-01

    The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.

  19. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  20. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into

  1. Time-dependent simulations of disk-embedded planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  2. An analytical theory of planetary rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1977-01-01

    An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.

  3. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1973-01-01

    The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.

  4. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  5. Technology for return of planetary samples

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological requirements of a planetary return sample mission were studied. The state-of-the-art for problems unique to this class of missions was assessed and technological gaps were identified. The problem areas where significant advancement of the state-of-the-art is required are: life support for the exobiota during the return trip and within the Planetary Receiving Laboratory (PRL); biohazard assessment and control technology; and quarantine qualified handling and experimentation methods and equipment for studying the returned sample in the PRL. Concepts for solving these problems are discussed.

  6. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  7. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  8. Biologically mediated isotope fractionations - Biochemistry, geochemical significance and preservation in the earth's oldest sediments

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1983-01-01

    Preferential metabolization of isotopically light carbon and sulfur has resulted in a fractionation of the stable isotopes of these elements on a global scale, with the light species (C-12, S-32) markedly concentrated in biogenic materials. Since the biological effects are basically retained when carbon and sulfur are incorporated in sediments, the respective fractionations are propagated into the rock section of the geochemical cycle, this having consequently caused a characteristic bipartition of both elements between 'light' and 'heavy' crustal reservoirs. Preservation of the biological isotope effects in sedimentary rocks makes it possible to trace the underlying biochemical processes back over most of the geological record. According to the available evidence, biological (autotrophic) carbon fixation arose prior to 3.5(if not 3.8) billion years ago, while the emergence of dissimilatory sulfate reduction antedates the appearance of the oldest presumably bacteriogenic sulfur isotope patterns in rocks between 2.7 and 2.8 billion years old. Hence, biological control of the terrestrial carbon and sulfur cycles has been established very early in the earth's history.

  9. MoonDB: Restoration and Synthesis of Lunar Petrological and Geochemical Data

    NASA Technical Reports Server (NTRS)

    Lehnert, Kerstin A.; Cai, Yue; Mana, Sara; Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.

    2016-01-01

    About 2,200 samples were collected from the Moon during the Apollo missions, forming a unique and irreplaceable legacy of the Apollo program. These samples, obtained at tremendous cost and great risk, are the only samples that have ever been returned by astronauts from the surface of another planetary body. These lunar samples have been curated at NASA Johnson Space Center and made available to the global research community. Over more than 45 years, a vast body of petrological, geochemical, and geochronological studies of these samples have been amassed, which helped to expand our understanding of the history and evolution of the Moon, the Earth itself, and the history of our entire solar system. Unfortunately, data from these studies are dispersed in the literature, often only available in analog format in older publications, and/or lacking sample metadata and analytical metadata (e.g., information about analytical procedure and data quality), which greatly limits their usage for new scientific endeavors. Even worse is that much lunar data have never been published, simply because no forum existed at the time (e.g., electronic supplements). Thousands of valuable analyses remain inaccessible, often preserved only in personal records, and are in danger of being lost forever, when investigators retire or pass away. Making these data and metadata publicly accessible in a digital format would dramatically help guide current and future research and eliminate duplicated analyses of precious lunar samples.

  10. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-02

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.

  11. Architectures of planetary systems and implications for their formation

    PubMed Central

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  12. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  13. Planetary Quarantine Activities

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities of the Planetary Quarantine Department at Sandia Laboratories during the period April 1965 through June 1972 are summarized. Included are the rationale, the methods, and the results of modeling and experimentation used in dry heat, radiation, thermoradiation, and chemical sterilization studies. Publications describing these activities and accounts of closely related research are also furnished.

  14. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  15. Universal planetary tectonics (supertectonics)

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  16. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients.

    PubMed

    Spitzer, Jan

    2013-04-01

    The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.

  17. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  18. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach.

    PubMed

    Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan

    2015-07-15

    Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  20. Analyses from Near (Meteorites) and Far (Spacecraft): Complementary Approaches to Planetary Geochemistry

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.

    2013-12-01

    Spacecraft missions have transformed planets from astronomical objects into geologic worlds, but geochemical remote sensing has limits. Considerably greater geologic insights are possible for a few bodies to which we can confidently assign meteorite samples. Mars and asteroid 4 Vesta demonstrate the advances provided by coupling spacecraft remote sensing data and laboratory analyses of meteorites. Martian meteorites sample at least 7 as-yet unidentified sites but are strongly biased towards young crystallization ages compared to Martian surface ages. Geochemical comparison with generally older rocks analyzed by Mars rovers APXS reveals evolutionary differences [1] that might be explained by water or redox state. Trace elements and radiogenic isotopes, readily measured in Martian meteorites but not yet possible by remote sensing, constrain the planet's volatile inventory, the chronology of magmatism, and the compositions of mantle source regions and the bulk planet [2]. The origin and geochemical cycling of water that orbiters indicate once sculpted Mars' geomorphology and now resides in the Martian subsurface is revealed by measurements of stable isotopes and of apatite OH in meteorites. Although sedimentary rocks are nearly absent from the Martian meteorite collection, determining the processes that produced the regolith and the nature and source of organic matter on Mars are facilitated by comparing rover analyses of soils with meteorite data. In a similar way, analyses of Vesta by the Dawn orbiting spacecraft [3] are leveraged by laboratory analyses of the howardite, eucrite, diogenite (HED) meteorites [4]. Visible/near-infrared spectra of HEDs provide the calibration necessary for lithologic mapping of Vesta's surface, revealing an ancient eucrite crust, diogenite excavated from a huge crater, and a pervasive regolith of howardite. Gamma-ray and neutron data from Vesta are similarly interpreted by comparison with meteorite elemental abundances. The unexpected

  1. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  2. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.; Carm, O.

    1973-01-01

    This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.

  3. Spin of Planetary Probes in Atmospheric Flight

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  4. LBT observations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.

    2013-09-01

    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.

  5. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  6. Flash Lidars for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Weimer, C.; Masciarelli, J.; Weinberg, J.; Miller, K. L.; Rohrschneider, R.

    2012-10-01

    Ball Aerospace has developed multiple flash lidar technologies which can benefit planetary exploration missions. This paper describes these developments, culminating in a successful flight demonstration on STS-134.

  7. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  8. Molecules of significance in planetary aeronomy

    NASA Technical Reports Server (NTRS)

    Mohan, H.

    1979-01-01

    This monograph is basically devoted to spectroscopic information of the molecules of planetary interest. Only those molecules have been dealt with which have been confirmed spectroscopically to be present in the atmosphere of major planets of our solar system and play an important role in the aeronomy of the respective planets. An introduction giving the general conditions of planets and their atmospheres including the gaseous molecules is given. Some typical planetary spectra is presented and supported with a discussion on some basic concepts of optical absorption and molecular parameters that are important to the study of planetary atmospheres. Quantities like dipole moments, transition probabilities, Einstein coefficients and line strengths, radiative life times, absorption cross sections, oscillator strengths, line widths and profiles, equivalent widths, growth curves, bond strengths, electronic transition moments, Franck-Condon factors and r-centroids, etc., are discussed. Spectroscopic information and relevant data of 6 diatomic (HF, HCL, CO, H2, O2, N2) and 6 polyatomic (CO2, N2), O3, HeO, NH3, CH4) molecules are presented.

  9. SmallSat Innovations for Planetary Science

    NASA Astrophysics Data System (ADS)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  10. A post-Cassini view of Titan's methane-based hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2018-05-01

    The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.

  11. The Africa Initiative for Planetary and Space Sciences

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  12. HESS Opinions: A planetary boundary on freshwater use is misleading

    NASA Astrophysics Data System (ADS)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far

  13. ESA's Planetary Science Archive: International collaborations towards transparent data access

    NASA Astrophysics Data System (ADS)

    Heather, David

    elapsed. This introduces a number of additional challenges in terms of managing different access rights to data throughout the mission lifetime. Both of these mission will have data pipelines running internally to our Science Ground Segment, in order to release the instrument teams to work more on science analyses. We have followed the IPDA recommendations of trying to start work on archiving with these missions very early in the life-cycle (especially on BepiColombo and now starting on JUICE), and endeavour to make sure that archiving requirements are clearly stated in official mission documentation at the time of selection. This has helped to ensure that adequate resources are available internally and within the instrument teams to support archive development. This year will also see major milestones for two of our operational missions. Venus Express will start an aerobraking phase in late spring / early summer, and will wind down science operations this year, while Rosetta will encounter the comet Churyamov-Gerasimenko, deploy the lander and start its main science phase. While these missions are at opposite ends of their science phases, many of the challenges from the archiving side are similar. Venus Express will have a full mission archive review this year and data pipelines will start to be updated / corrected where necessary in order to ensure long-term usability and interoperable access to the data. Rosetta will start to deliver science data in earnest towards the end of the year, and the focus will be on ensuring that data pipelines are ready and robust enough to maintain deliveries throughout the main science phase. For both missions, we aim to use the lessons learned and technologies developed through our international collaborations to maximise the availability and usability of the data delivered. In 2013, ESA established a Planetary Science Archive User Group (PSA-UG) to provide independent advice on ways to improve our services and our provision of data to

  14. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    The use of carbon-carbon (C-C) recuperators in closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance was forecast based on notional thermodynamic cycle state values for planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 40-55% were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25-1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, at least 50% savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  15. Geochemical sampling in arid environments by the U.S. Geological Survey

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1988-01-01

    The U.S. Geological Survey (USGS) is responsible for the geochemical evaluations used for mineral resource assessments of large tracts of public lands in the Western United States. Many of these lands are administered by the Bureau of Land Management (BLM) and are studied to determine their suitability or nonsuitability for wilderness designation. Much of the Western United States is arid or semiarid. This report discusses various geochemical sample media that have been used for evaluating areas in arid environments and describes case histories in BLM wilderness study areas in which stream-sediment and heavy-mineral-concentrate sample media were compared. As a result of these case history studies, the nonmagnetic fraction of panned heavy-mineral concentrates was selected as the most effective medium for reconnaissance geochemical sampling for resources other than gold, in arid areas. Nonmagnetic heavy-mineral-concentrate samples provide the primary analytical information currently used in geochemical interpretations of mineral resource potential assessment of BLM lands.

  16. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  17. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  18. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  19. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  20. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.